
1

P2/VB/mp12 SEUs Java 1.2 #1529-5 8.8.98 Ayanna intro LP#4

Introduction

In this chapter

This Book Is for You 2

How This Book Is Organized 2

Conventions Used in This Book 4

I N T R O D U C T I O N

Untitled-1 9/22/98, 10:42 AM1

P2/VB/mp12 SEUs Java 1.2 #1529-5 8.8.98 Ayanna intro LP#4

2 Introduction

Welcome to the amazing and dynamic world of Java! If you are brand new to Java, you’re in for
a treat. Java is an extremely rich language that is simple and easy to learn. Java gives the pro-
grammer unprecedented access to even the most complex of tasks.

What is Java? Java is a revolutionary programming language that was introduced by Sun
Microsystems in June 1995. Since then, hundreds of thousands of programmers have picked
up books just like the one you hold in your hands now and have realized just how powerful the
language is.

Java is an object-oriented programming language, which means that people programming in
Java can develop complex programs with great ease. In addition, Java has built-in support for
threads, networking, and a vast variety of other tools.

This Book Is for You
If you’re new to Java, this book is for you. Don’t be intimidated by the size of this book. It con-
tains a vast amount of rich information about every facet of the Java programming language,
along with easy-to-follow chapters that are designed to get you started.

If you’re already a Java expert, this book will become a treasured item on your shelf. Actually, it
may never leave your desk. This book puts into one source the most complete reference and
set of examples on every aspect of the Java programming language ever compiled. No cur-
rently available API has gone unexplored; no programming method has gone undocumented.
Between the covers of this book, you find examples and explanations that will make your life as
a programmer immensely easier.

How This Book Is Organized
This book is organized into 11 parts. Each part covers a large chunk of information about how
the Java programming language is organized.

Part I, “Introduction to Java,” introduces you to the design of the Java language and the Virtual
Machine. It shows you what Java can do for you, and how it’s being implemented in some pro-
grams today. Clear instructions have been included to help you get started by downloading the
Java Development Kit and installing it. Finally, this part teaches you how each of the free tools
included in the Java Development Kit (JDK) work.

Part II, “The Java Language,” shows how Java’s syntax is developed. The fundamental aspects
of Java are found in its language syntax. Every program is built using the fundamentals of the
language, and this part walks you through each segment. The second half of this part talks
about building specific Java programs, such as applets and applications. For the beginner, each
of the chapters has been structured to help you become familiar with Java programming. For
the expert, the individual aspects of the language are explored in great detail, making Part II a
great reference as well as a learning tool.

Untitled-1 9/22/98, 10:42 AM2

3

P2/VB/mp12 SEUs Java 1.2 #1529-5 8.8.98 Ayanna intro LP#4

Part III, “User Interface,” teaches you the details of building a graphical user interface in Java.
It shows you how to do this using the traditional AWT interfaces, and then demonstrates the
new features of Java 1.2 with the Java Foundation Classes (also know as Swing). In addition,
this part explores how to build and manipulate images, and then discusses Java 1.2’s 2D graph-
ics system.

Part IV, “IO,” walks you through reading and writing data into your Java application. The part
begins by teaching you the fundamental components and techniques of streaming and reading
files. Then you learn how to build networked applications. You’ll find priceless information
about the internet’s TCP/IP protocol. The part finishes by teaching you about the more ad-
vanced features, such as making sure your data transfers are secure. It covers using Java’s
serialization for sending and retrieving whole Java objects, and using Remote Method Invoca-
tion to run entire Java programs on remote machines. Finally, the part wraps up by discussing
the new management API in Java 1.2 that allows you to talk to advanced devices, such as
routers.

Part V, “Databases,” walks you through the details of one of the most important aspects of
building modern business applications. Databases are the core to almost all business
applications, and Java’s JDBC (Java DataBase Connectivity) eases the burden of
communicating between your Java applications and the database. In this part, you are
introduced to how databases work, given a bit of history, and then you learn the terminology
required to go on. Next, you explore Java’s JDBC interface, which allows you to connect, send,
and store data to any JDBC-compliant database. Welcome to the world of platform-independent
and DBMS-independent systems!

Part VI, “Component-Based Development,” will be fascinating to anyone interested in learning
how to make the development cycle faster and easier. Component-based development has been
around for many years now, but it has never been as easy to do as with Java. In this part, you
will learn how to use three different component models: Java’s own JavaBeans specification,
CORBA (which is rapidly becoming an industry standard, and maps very nicely to JavaBeans),
and COM (Microsoft’s interface for talking to Windows).

Part VII, “Advanced Java,” teaches you about some very complex technologies surrounding
Java when you’re ready to take the next step. Part VII shows you advanced techniques. You
learn how to take advantage of the server-side capabilities of Java and how to use the Java
Wallet for building commerce applications. You also learn about Java’s built-in data structures
and utilities, and how to build native applications. This part finishes with a comparison of Java
to C++.

Part VIII, “Debugging Java,” teaches you all the tricks of the trade. This part will quickly be-
come invaluable as you learn how important good debugging technique is when developing
applications. You will find great references on every aspect of the sun.tools.debug package,
as well as on the op-codes for Java’s Virtual Machine.

Part IX, “JavaScript,” talks about the distant cousin to Java, JavaScript, which can help you do
tasks with great ease. Because it can control the browser, it can even do some things Java can’t.
This part teaches you JavaScript programming, so you’ll be multilingual.

How This Book Is Organized

Untitled-1 9/22/98, 10:42 AM3

P2/VB/mp12 SEUs Java 1.2 #1529-5 8.8.98 Ayanna intro LP#4

4 Introduction

Part X, “Java Resources,” is a perfect source for additional material beyond this book. You’ll
find some terrific Web sites and other material to help you stay up to date and on top of the
Java community.

Part XI, “Appendix,” gives you an overview of all of the resources on the CD-ROM included
with this book.

Conventions Used in This Book
This book uses various stylistic and typographic conventions to make it easier to use.

When you see a note in this book, it indicates additional information that may help you
avoid problems or that should be considered in using the described features. ■

Tip paragraphs suggest easier or alternative methods of executing a procedure. Tips can help you see
that little extra concept or idea that can make your life so much easier.

CAUTION

Cautions warn you of hazardous procedures (for example, activities that delete files).

Special Edition Using Java 1.2, Fourth Edition, uses cross-references to help you access related
information in other parts of the book.
◊ See “The Object Class,” p. 1081

T I P

N O T E

Untitled-1 9/22/98, 10:42 AM4

P2/VB/swg#4 SE Using Java 1.2 #1529-5 7.15.98 Ayanna PT1 LP#1

IP A R T

Introduction to Java

1 What Java Can Do for You 7

2 Java Design 19

3 Installing the JDK and Getting Started 39

4 JDK Tools 55

P2/VB/swg#4 SE Using Java 1.2 #1529-5 7.15.98 Ayanna PT1 LP#1

7

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

1

I
Part

Ch

C H A P T E R

What Java Can Do for You

The Many Types of Java Applications 8

Learning About the Java Language 9

The Java Development Kit 9

Java Applets 10

Java GUI Applications 15

Java Command Line Applications 16

Java Is Client/Server 17

How to Stay Current 17

1

In this chapter

Untitled-3 9/22/98, 10:57 AM7

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

8 Chapter 1 What Java Can Do for You

The Many Types of Java Applications
By now you have probably heard enough hype about Java to go out and buy this book. The
good news is that the hype is well-justified. Java is probably everything you have heard that it is
and more.

In this chapter, you examine the various possibilities provided by the Java language by taking a
look at the different types of applications you can develop with it. To drive the point home, you
then take a look at several examples of Java applets that are currently on the Web. You also
examine examples of a Java Graphical User Interface (GUI) application and a Java command
line application. By the end of this chapter, you should have a fairly good idea of what you can
accomplish with Java and be excited about this language, the incredible new enhancements
with JDK 1.2, and how Java is changing the computing world.

Java is not used only to create applets or servlets. The amazing thing about Java is that it can
be used to create a huge variety of applications. The following are a few of the types of applica-
tions you can build in Java:

■ Applets (mini applications)

■ GUI applications

■ Command line applications

■ Servlets (server side applications)

■ Packages (libraries)

■ Embedded applications (such as oscilloscopes and other embedded computers)

■ Pen-based programs

Applets are essentially applications that run inside a Java-enabled browser, such as Netscape
Navigator, Microsoft Internet Explorer, or HotJava.

GUI applications developed in Java have graphical interfaces and stand on their own. They
operate like any other GUI application, for instance the Windows Notepad application, which
does not require a Web browser to execute it.

Command line applications can be run from an MS-DOS command prompt or a UNIX shell
prompt, just like the xcopy command in MS-DOS or the ls command in UNIX.

Packages are not applications per se. Rather, packages are more like a collection of classes
(portable Java-bytecode files) that belong to one package (similar to a C++ class library). There
is no custom format for packages like those used with static and dynamic libraries on the vari-
ous operating systems. The implementation in Java is much simpler and more portable.

Basically, all classes belonging to a package are placed in one directory. For example, all
classes belonging to Java’s Abstract Window Toolkit (AWT) package, java.awt, are placed in a
directory called AWT under the C:\jdk1.2\src directory. This is a directory tree of various
packages provided with the Java Development Kit:

Untitled-3 9/22/98, 10:57 AM8

9

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

1

I
Part

Ch

c:\java\classes
|___applet
|___awt
| |___Button.class
| |___Color.class
| |___Event.class
|___io
|___lang
|___net
|___util

A few examples of class files under the AWT directory are also shown to illustrate the point here
(in actuality, there are several dozen class files under the AWT directory).

Learning About the Java Language
When Java was first created, Sun Microsystems released a white paper that described Java with
a series of buzzwords to make your head spin:

Java is a simple, object-oriented, robust, secure, portable, high-performance, architectur-
ally neutral, interpreted, multithreaded, dynamic language.

Phew! Try saying all that in one breath. Anyway, the language itself is discussed in more
detail in the remainder of this book, but the one buzzword you need to learn for this chapter
is interpreted.

Java source code compiles into portable bytecodes that require an interpreter to execute them.
For applets, this task is handled by the browser. For GUI and command line applications, the
Java interpreter program is required to execute the application. The examples shown in the
section “Java Command Line Applications” later in this chapter illustrate both methods.

The Java Development Kit
The reason Java is so popular is not simply because of the benefits of the language itself. The
rich sets of packages (or class libraries to you C++ programmers) that come bundled with the
Java Development Kit (JDK) from Sun Microsystems also contribute to its popularity. These
prewritten objects get you up and running with Java quickly, for two main reasons:

■ You do not need to develop the functionality they provide.

■ The source code is available for all.

Here is a brief description of some of the more significant packages provided with Java:

Package Description

java.applet Classes for developing applets.

java.awt Abstract Window Toolkit (AWT) classes for the GUI interface,
such as windows, dialog boxes, buttons, text fields, and more.

The Java Development Kit

Untitled-3 9/22/98, 10:57 AM9

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

10 Chapter 1 What Java Can Do for You

Package Description

java.net Classes for networking, URLs, client/server sockets.

java.io Classes for various types of input and output.

java.lang Classes for various data types, running processes, strings,
threads, and much more.

java.util Utility classes for dates, vectors, and more.

java.awt.image Classes for managing and manipulating images.

Java Applets
As mentioned previously, Java applets run within a Java-enabled Web browser. Because Web
browsers were primarily developed for displaying HTML documents, incorporating Java
applets inside a Web browser requires an HTML tag to invoke an applet. This HTML tag is the
<APPLET> tag, as shown in the following example:

<applet code=TextEdit.class width=575 height=350></applet>

You will explore all the details of Applets in Chapters 14 and 15.

Real-World Examples of Java Applets on the Web
Because pictures truly say more than a thousand words, you will enjoy taking a look at some
examples of real-world Java applets on the Web today. Figures 1.2 through 1.11 are examples of
these applets.

Figure 1.1 shows a Java application called NetProphet. NetProphet is a wonderful utility that
allows you to chart and graph all of your stocks. It is a wonderful example of how having a Java
client interacting with a server (client/server) can be used to create dynamic information.
Netprofit is available from Neural Applications at http://www.neural.com/NetProphet/
NetProphet.html.

FIG. 1.1
NetProphet is a
wonderful example of
client/server Java.

Untitled-3 9/22/98, 10:57 AM10

11

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

1

I
Part

Ch

Figure 1.2 shows how Eastland Data Systems’s Internet Shopping Applet (http://
www.eastland.com/shoptech.html) has been applied by Blossom Flowers (http://
www.blossomflowers.com/shopping_frame.html).

FIG. 1.2
Internet shopping by
Eastland.

This applet is unique because it implements drag-and-drop features on the Internet.

Java has been shown to be a great language to write Internet games in. Figure 1.3 shows the
famous Rubik’s Cube that amused everyone a few years ago. This is a fully functional Rubik’s
cube developed in Java. You can play with it live on the Internet at http://www.tdb.uu.se/
~karl/java/rubik.html.

Figure 1.4 below shows another game that uses 3D graphics. Palle Pedalpost (http://
www.zapper.kd/postpil/postgame.html) performs with smooth animation, and is definitely
worth a look.

Lotus has been very innovative in its use of the Java language with the eSuite program. eSuite
is a collection of tools for building groupware applications, and is shown in Figure 1.5.

Java Applets

Untitled-3 9/22/98, 10:57 AM11

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

12 Chapter 1 What Java Can Do for You

One of the wonderful enhancements with JDK 1.2 is the capability to have applications display
multimedia. Figure 1.6 shows an MPG movie playing within a Java program.

FIG. 1.3
Rubik’s Cube.

FIG. 1.4
Pelle Pedalpost.

Untitled-3 9/22/98, 10:57 AM12

13

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

1

I
Part

Ch

The Chicago Tribune has used Java Servlets to create a wonderful site called Metromix.
Metromix, shown in Figure 1.7, is a source of entertainment in the Chicago area.

A group of students from Harvard has created a truly innovative system for scheduling classes.
This system, shown in Figure 1.8, can be viewed from http://www.digitas.harvard.edu.

FIG. 1.5
Lotus eSuite.

FIG. 1.6
This MPG movie is
playing in a Java
program.

Java Applets

Untitled-3 9/22/98, 10:57 AM13

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

14 Chapter 1 What Java Can Do for You

FIG. 1.7
Metromix Web site.

FIG. 1.8
Digitas Course Decision
Assistant.

Untitled-3 9/22/98, 10:58 AM14

15

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

1

I
Part

Ch

Java GUI Applications
While Java applets have stolen most of Java’s thunder, Java goes a lot further than applets. Java
can be used to develop portable GUI applications across all supported platforms. In fact, the
same Java source code can be used for both an applet and an application.

To illustrate this, look at an application called Text Editor that was developed for demonstration
purposes. As the name implies, this application is used for editing text files, similar to the Win-
dows Notepad application. Figure 1.9 shows the applet version of the Text Editor, Figure 1.10
shows the application version on Windows 95, and Figure 1.11 shows the application version
under Solaris.

All three versions of the Text Editor were generated using the same Java source files. In fact,
all three versions are executed using the same bytecode files that were compiled only once
under Windows 95 and copied to Solaris without requiring a recompilation.

Notice how the Java interpreter is used on the MS-DOS prompt to execute the application.

Notice the File dialog box in Figures 1.10 and 1.11. If you are a Windows 95 or Solaris user, you
know they are the standard File dialog boxes used on these operating systems. As a developer,
you do not need to custom code anything to get the native look and feel. All you have to do is
ensure that the class (bytecode) files are available from where the applet or application needs
to be invoked. The rest (the native look and feel, system-specific features, and so on) is
handled by Java’s dynamic link libraries.

FIG. 1.9
The Text Editor
application running
as an applet.

Java GUI Applications

Untitled-3 9/22/98, 10:58 AM15

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

16 Chapter 1 What Java Can Do for You

Java Command Line Applications
Even in today’s world, where GUI applications have become a standard on practically every
type of computer, there are times when you might need to drop down to the command line to
perform some tasks. For these times, Java provides the capability to develop command line
applications.

The only difference between command line and GUI applications is that command line applica-
tions do not use any of the GUI features provided in Java. In other words, command line appli-
cations do not use the java.awt package.

FIG. 1.10
The Text Editor
application on Windows
95 runs using the Java
interpreter.

FIG. 1.11
The Text Editor
application on Solaris.

Untitled-3 9/22/98, 10:58 AM16

17

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

1

I
Part

Ch

Figure 1.12 shows an example of a command line application, copyURL, which essentially is a
copy utility for copying files from the Internet to a local disk. This application uses the
java.net package to obtain information about a resource (file) on the Internet. Then copyURL
uses the java.io package to read the bytes of data from the file on the Internet and write them
to a local file.

FIG. 1.12
copyURL.class is an
Internet command line
copy utility.

Java Is Client/Server
In today’s computing world, client/server technology has found a place in most corporations.
The biggest benefit of this technology is that the processing load is shared between the client
and the server. A client can be any program (GUI application, Telnet, and so on) that requests
services from a server application. Examples of server applications include database servers,
application servers, communication (FTP, Telnet, Web) servers, and more.

In this chapter, you have seen several examples of Java client-side applets and applications.
However, Java provides classes for server-side processing as well. Java applications can be
used as clients or servers, whereas applets can only be used for client-side processing.

The java.net package provides classes necessary for developing client/server applications.
Figure 1.13 shows a Java applet, javaSQL, that sends free-form SQL queries typed in by the
user to a server application, javaSQLd. javaSQLd in turn queries a database and returns the
query results to the javaSQL applet.

Figure 1.14 illustrates the relationship between javaSQL and javaSQLd. Imagine querying a
database at work from home via a Java-enabled browser. With Java, the possibilities are end-
less!

How to Stay Current
Web-related technology is progressing so rapidly that it is difficult to stay on top of new events.
The pace of innovation on the Internet is extremely rapid, and Java has been growing at a rate
at least as astounding as the rest of the technology.

How to Stay Current

Untitled-3 9/22/98, 10:58 AM17

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 88.98 ayanna CH01 LP#4

18 Chapter 1 What Java Can Do for You

About the only way to stay current is to visit certain Web sites that post the latest news and
Java examples. While there are dozens of Java-related Web sites that provide timely informa-
tion, you will find a list of some of those that have a history of providing great information in
Chapter 56, “Java Resources.” ●

FIG. 1.13
javaSQL client applet.

FIG. 1.14
javaSQL and
javaSQLd.

Untitled-3 9/22/98, 10:58 AM18

19

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

C H A P T E R

Java Design

Java Is Interpreted 20

Java Is Object Oriented 21

The Java Virtual Machine 22

Security and the JVM 24

The Java API 24

2

In this chapter

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

20 Chapter 2 Java Design

Java Is Interpreted
Before you write any applets or programs with Java, it is important to understand how Java
works. This chapter introduces you to the actual language, the limitations of the language
(intentional and unintentional), and how code can be made reusable.

Strictly speaking, Java is interpreted, although in reality Java is both interpreted and compiled.
In fact, only about 20 percent of the Java code is interpreted by the browser, but this is a crucial
20 percent. Both Java’s security and its ability to run on multiple platforms stem from the fact
that the final steps of compilation are handled locally.

A programmer first compiles Java source into bytecode using the Java compiler. These
bytecodes are binary and architecturally neutral (or platform-independent—both work equally
well). The bytecode isn’t complete, however, until it’s put together with a Java runtime environ-
ment, usually a browser. Because each Java runtime environment is for a specific platform, the
bytecodes can be interpreted for the specific platform and the final product will work on that
specific platform.

This platform-specific feature of Java is good news for developers. It means that Java code is
Java code is Java code, no matter what platform you’re developing for or on. You could write
and compile a Java applet on your UNIX system and embed the applet into your Web page.
Three different people on three different machines, each with different environments, can take
a peek at your new applet. Provided that each of those people runs a Java-capable browser, it
won’t matter whether he or she is on an IBM, HP, or Macintosh. Using Java means that only
one source of Java code needs to be maintained for the bytecode to run on a variety of plat-
forms. One pass through a compiler for multiple platforms is good news for programmers.

The one drawback that comes with interpretation, however, is that there is a performance hit.
This is caused by the fact that the browser has to do some work with the class files (interpret
them) before they can be run. Under traditional programming, such as with C++, the code that
is generated can be run directly by the computer. The performance hit that interpretation
causes means that Java programs tend to run about 1/2 to 1/6 the speed of their native coun-
terparts.

This deficiency is largely overcome using a tool called a just-in-time (JIT) compiler. A just-in-
time compiler compiles Java methods to native code for the platform you’re using. It is embed-
ded with the Java environment for a particular platform (such as Netscape). Without the JIT
compiler, methods are not translated to native code but remain in the original machine-
independent bytecode. This bytecode is interpreted on any platform by the Java Virtual
Machine. A Java application is portable, but the just-in-time compiler itself cannot be portable
because it generates native code specific to a platform, exactly as you need a different version
of the virtual machine for each new platform. Generally, you don’t even need to concern
yourself with JITs. Both the Netscape Navigator and Microsoft’s Internet Explorer browsers
have JIT compilers in them.

Why is this combination of compilation and interpretation a positive feature?

21

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

Java Is Object Oriented

■ It facilitates security and stability. The Java environment contains an element called the
linker, which checks data coming into your machine to make sure it doesn’t contain
deliberately harmful files (security) or files that could disrupt the functioning of your
computer (robustness).

■ More importantly, this combination of compilation and interpretation alleviates concern
about version mismatches.

The fact that the final portion of compilation is being accomplished by a platform-specific de-
vice, which is maintained by the end user, relieves you of the responsibility of maintaining
multiple sources for multiple platforms. Interpretation also enables data to be incorporated at
runtime, which is the foundation of Java’s dynamic behavior.

Java Is Object Oriented
Java is an object-oriented language. Therefore, it’s part of a family of languages that focuses on
defining data as objects and the methods that may be applied to those objects. As explained,
Java and C++ share many of the same underlying principles; they just differ in style and struc-
ture. Simply put, object-oriented programming languages (OOP, for short) describe interac-
tions among data objects.
◊ See Chapter 50, “Java Versus C(++),” to learn more about the similarities of Java with C++,

p. 1161

Many OOP languages support multiple inheritance, which can sometimes lead to confusion or
unnecessary complications. Java doesn’t. As part of its less-is-more philosophy, Java supports
only single inheritance, which means each class can inherit from only one other class at any
given time. This type of inheritance avoids the problem of a class inheriting classes whose
behaviors are contradictory or mutually exclusive. Java enables you to create totally abstract
classes, known as interfaces. Interfaces allow you to define methods you can share with several
classes, without regard for how the other classes are handling the methods.
◊ See Chapter 5, “Object-Oriented Programming,” to learn more, p. 71

Although Java does not support multiple inheritance, Java does allow a class to implement
more than one interface.

Each class, abstract or not, defines the behavior of an object through a set of methods. All the code
used for Java is divided into classes. Methods can be inherited from one class to the next, and at the
head of the class hierarchy is the class called Object. The Object class belongs to the java.lang
package of the Java Core API. You are introduced in the last section of this chapter to the Java Core
API. ■

◊ See Chapter 11, “Classes,” to learn more about classes and objects, p. 157

Objects can also implement any number of interfaces (or abstract classes). The Java interfaces
are a lot like the Interface Definition Language (IDL) interfaces. This similarity means it’s easy
to build a compiler from IDL to Java.

N O T E

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

22 Chapter 2 Java Design

That compiler could be used in the Common Object Request Broker Architecture (CORBA)
system of objects to build distributed object systems. Is this good? Yes. Both IDL interfaces
and the CORBA system are used in a wide variety of computer systems and this variety facili-
tates Java’s platform independence.
◊ See Chapter 42, “JavaIDL: A Java Interface to CORBA,” to learn more about CORBA, p. 939

As part of the effort to keep Java simple, not everything in this object-oriented language is an
object. Booleans, numbers, and other simple types are not objects, but Java does have wrapper
objects for all simple types. Wrapper objects enable all simple types to be implemented as
though they are classes.

It is important to remember that Java is unforgivingly object oriented; it simply does not allow
you to declare anything that is not encapsulated in an object. Even though C++ is considered an
OOP language, it enables you to develop bad habits and not encapsulate types.
◊ See Chapter 7, “Data Types and Other Tokens,” to learn more about types, p. 97

Object-oriented design is also the mechanism that allows modules to “plug and play.” The
object-oriented facilities of Java are essentially those of C++, with extensions from Objective C
for more dynamic method resolution.

The Java Virtual Machine
The heart of Java is the Java Virtual Machine, or JVM. The JVM is a virtual computer that
resides in memory only. The JVM enables Java programs to be executed on a variety of plat-
forms as opposed to only the one platform for which the code is compiled. The fact that Java
programs are compiled for the JVM is what makes the language so unique, but in order for
Java programs to run on a particular platform, the JVM must be implemented for that platform.
◊ See Chapter 53, “Inside the Java Virtual Machine,” to learn more about the JVM, p. 1253

The JVM is the very reason that Java is portable. It provides a layer of abstraction between the
compiled Java program and the underlying hardware platform and operating system.

The JVM is actually very small when implemented in RAM. It is purposely designed to be small
so that it can be used in a variety of consumer electronics. In fact, the whole Java language was
originally developed with household electronics in mind. Gadgets such as phones, PCs, appli-
ances, television sets, and so on will soon have the JVM in their firmware and allow Java pro-
grams to run. Cool, huh?

Java Source Code
Java source code is compiled to the bytecode level, as opposed to the bitcode level. The JVM
executes the Java bytecode. The javac program, which is the Java compiler, reads files with the
.java extension, converts the source code in the .java file into bytecodes, and saves the result-
ing bytecodes in a file with a .class extension.

The JVM reads the stream of bytecode from the .class file as a sequence of instructions. Each
instruction consists of a one-byte opcode, which is a specific and recognizable command, and

23

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

The Java Virtual Machine

zero or more operands (the data needed to complete the opcode). The opcode tells the JVM
what to do. If the JVM needs more than just the opcode to perform an action, then an operand
immediately follows the opcode.
◊ See Chapter 52, “Understanding the .class File,” to learn about opcodes, p. 1233

There are four parts to the JVM:

■ Stack

■ Registers

■ Garbage-collection heap

■ Method area

The Java Stack
The size of an address in the JVM is 32 bits. Therefore, it can address up to 4G of memory,
with each memory location containing one byte. Each register in the JVM stores one 32-bit
address. The stack, the garbage-collection heap, and the method area reside somewhere within
the 4G of addressable memory. This 4G of addressable memory limit isn’t really a limitation
now, because most PCs don’t have more than 32M of RAM. Java methods are limited to 32K in
size for each single method.

Java Registers
All processors use registers. The JVM uses the following to manage the system stack:

■ Program counter Keeps track of where exactly the program is in execution.

■ Optop Points to the top of the operand stack.

■ Frame Points to the current execution environment.

■ Vars Points to the first local variable of the current execution environment.

The Java development team decided that Java would only use four registers because if Java had
more registers than the processor it was being ported to, that processor would take a serious
reduction in performance.

The stack is where parameters are stored in the JVM. The JVM is passed to the bytecode from
the Java program and creates a stack frame for each method. Each frame holds three kinds of
information:

■ Local variables An array of 32-bit variables that is pointed to by the vars register.

■ Execution environment Where the method is executed and is pointed to by the frame
register.

■ Operand stack Acts on the first-in, first-out principle, or FIFO. It is 32 bits wide and
holds the arguments necessary for the opcodes. The top of this stack is indexed by the
optop register.

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

24 Chapter 2 Java Design

Garbage-Collection Heap
The heap is the collection of memory from which class instances are allocated. Any time you
allocate memory with the new operator, that memory comes from the heap. You can call the
garbage collector directly, but it is not necessary or recommended under most circumstances.
The runtime environment keeps track of the references to each object on the heap and auto-
matically frees the memory occupied by objects that are no longer referenced. Garbage collec-
tions run as a thread in the background and clean up during CPU inactivity.

The Java Method Area
The JVM has two other memory areas:

■ Method

■ Constant pool

There are no limitations as to where these memory areas must actually exist, making the JVM
more portable and secure. The fact that memory areas can exist anywhere makes the JVM
more secure in the fact that a hacker couldn’t forge a memory pointer.

The JVM handles the following primitive data types:

■ byte (8 bits)

■ float (32 bits)

■ int (32 bits)

■ short (16 bits)

■ double (64 bits)

■ char (16 bits)

■ long (64 bits)

Security and the JVM
This section is organized into six parts. You will explore the issue of security of networked
computing in general and define the security problem associated with executable content. I
propose a six-step approach to constructing a viable and flexible security mechanism. How the
architecture of the Java language implements security mechanisms will also be covered. As
with any new technology, there are several open questions related to Java security, which are
still being debated on the Net and in other forums.

Executable Content and Security
In this section, you will analyze the concept of security in the general context of interactivity on
the Web and security implementation via executable content.

Let’s examine the duality of security versus interactivity on the Web and examine the evolution
of the Web as a medium in the context of this duality. To do this, let’s create a definition of the
security problem in the context of executable content.

25

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

Security and the JVM

The Security Problem Defined A program arriving from outside the computer via the net-
work has to be greeted by the user with a certain degree of trust and allowed a corresponding
degree of access to the computer’s resources to serve any useful purpose. The program is
written by someone else, however, under no contractual or transactional obligation to the user.
If this someone is a hacker, the executable content coming in could be a malicious program
with the same degree of freedom as a local program.
◊ See Chapter 34, “Java Security in Depth,” to learn more about Java Security, p. 769

Does the user have to restrict completely the outside program from accessing any resource
whatsoever on the computer? Of course not. This would cripple the ability of executable con-
tent to do anything useful at all. A more complete and viable security solution strategy would
be a six-step approach:

1. Anticipate all potential malicious behavior and attack scenarios.

2. Reduce all such malicious behavior to a minimal orthogonal basis set.

3. Construct a programming environment/computer language that implicitly disallows the
basis set of malicious behavior and, hence, by implication, all potential malicious
behavior.

4. Logically or, if possible, axiomatically prove that the language/environment is indeed
secure against the intended attack scenarios.

5. Implement and allow executable content using only this proven secure language.

6. Design the language such that any new attack scenarios arising in the future can be dealt
with by a corresponding set of countermeasures that can be retrofitted into the basic
security mechanism.

Working backwards from the previous solution strategy, the security problem associated with
executable content can be stated as consisting of the following six subproblems:

■ What are the potential target resources and corresponding attack scenarios?

■ What is the basic, minimal set of behavioral components that can account for the
previous scenarios?

■ How should a computer language/programming environment that implicitly forbids the
basis set of malicious behavior be designed?

■ How can you prove that such a language/environment is, indeed, secure as claimed?

■ How can you make sure that incoming executable content has, indeed, been imple-
mented in and originated from the trusted language?

■ How can you make the language future proof (extensible) to co-opt security strategies to
counter new threats arising in the future?

As you will learn, Java has been designed from the ground up to address most (but probably
not all) of the security problems as defined here. Before you move on to Java security architec-
ture itself, the attack targets and scenarios are identified next.

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

26 Chapter 2 Java Design

Potential Vulnerability In this subsection, I list the various possible attack scenarios and
resources on a user’s computer that are likely to be targeted by a potentially malicious, exter-
nal, executable content module.

Attack scenarios could belong to one of the following categories and have one of the following
goals (this is not an exhaustive list):

■ Damage or modify integrity of data and/or the execution state of programs.

■ Collect and smuggle out confidential data.

■ Lock up resources, making them unavailable for legitimate users and programs.

■ Steal resources for use by an external, unauthorized party.

■ Cause nonfatal but low-intensity unwelcome effects, especially on output devices.

■ Usurp identity and impersonate the user or the user’s computer to attack other targets
on the network.

Table 2.1 lists the resources that could be potentially targeted and the type of attack they could
be subject to. A good security strategy assigns security/risk weights to each resource and
designs an appropriate access policy for external executable content.

Table 2.1 Potential Targets and Attack Scenarios

Targets Damage Smuggle Lock Up/ Steal Nonfatal Imper-
Integrity Information Deny Usage Resource Distraction sonate

File system X X X X X

Confidential X X X X X
data

Network X X X X X

CPU X X X

Memory X X X X

Output devices X X X X

Input devices X X X

OS, program X X X X
state

Java Approach to Security
This following discussion is in reference to the six-step approach outlined in the previous sec-
tion.

Step 1: Visualize All Attack Scenarios Instead of coming up with every conceivable attack
scenario, the Java security architecture posits potential targets of a basic set of attack catego-
ries very similar to the previous attack scenario matrix.

27

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

Security and the JVM

Specifically, the Java security model covers the following potential targets:

■ Memory

■ OS/program state

■ Client file system

■ Network

against the following attack types listed in Table 2.1:

■ Damage integrity of software resources on the client machine. Achieved by what is
usually called a virus. A virus is usually written to hide itself in memory and corrupt
specific files when a particular event occurs or on a certain date.

■ Lock up/deny usage of resource on the client machine. Usually achieved by a virus.

■ Smuggle information out of the client machine. Can be done easily with UNIX
SENDMAIL, for example.

■ Impersonate the client machine. Can be done through IP spoofing. This style of attack
was brought to the attention of the world by Kevin Mitnick when he hacked into one of
computer security guru Tsutumo Shimura’s personal machines. The whole incident is
well-documented in the New York Times best-selling book Takedown by Tsutumo
Shimura.

Step 2: Construct a Basic Set of Malicious Behavior Instead of arriving at a basic set of
malicious behavior, Java anticipates a basic set of security hotspots and implements a mecha-
nism to secure each of these:

■ Java language mechanism and compiler.

■ Java-compiled class file.

■ Java bytecode verifier and interpreter.

■ Java runtime system, including class loader, memory manager, and thread manager.

■ Java external environment, such as Java Web browsers and their interface mechanisms.

■ Java applets and the degrees of freedom allowed for applets (which constitute executable
content).

Step 3: Design Security Architecture Against Previous Behavior Set Construct a program-
ming environment/computer language that implicitly disallows the basic set of malicious be-
havior and hence, by implication, all potential malicious behavior. You guessed it—this lan-
guage is Java!

Step 4: Prove the Security of Architecture This step involves logically or, if possible, axiom-
atically proving that the language/environment is indeed secure against the intended attack
scenarios.

Security mechanisms built into Java have not (yet) been axiomatically or even logically proven
to be secure. Instead, Java encapsulates all its security mechanism into distinct and well-
defined layers. Each of these security loci can be observed to be secure by inspection in

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

28 Chapter 2 Java Design

relation to the language design framework and target execution environment of Java language
programs and applets.

Step 5: Restrict Executable Content to Proven Secure Architecture The Java class file
checker and bytecode verifier achieve this objective.

Step 6: Make Security Architecture Extensible This step requires that the language be
designed. Design the language such that any new attack scenarios arising in the future can be
dealt with by a corresponding set of counter-measures, which can be retrofitted into the basic
security mechanism.

The encapsulation of security mechanisms into distinct and well-defined loci, combined with
the provision of a Java SecurityManager class, provides a generic mechanism for incremental
enhancement of security.

Security at the Java Language Level
The first tier of security in Java is the language design itself—the syntactical and semantic
constructs allowed by the language. The following is an examination of Java language design
constructs with a bearing on security.

Strictly Object Oriented Java is fully object oriented, with every single primitive data struc-
ture (and, hence, derived data structure) being a first-class, full-fledged object. Having wrap-
pers around each primitive data structure ensures that all the theoretical security advantages of
OOP permeate the entire syntax and semantics of programs written in Java:

■ Encapsulation and hiding of data behind private declarations.

■ Controlled access to data structures via public methods only.

■ Incremental and hierarchical complexity of program structure.

■ No operator overloading.

Final Classes and Methods Classes and methods can be declared as final, which disallows
further subclassing and method overriding. This declaration prevents malicious modification of
trusted and verified code.

Strong Typing and Safe Typecasting Typecasting is security checked both statically and
dynamically, which ensures that a declared compile-time type of an object is strictly compatible
with eventual runtime type, even if the object transitions through typecasts and coercions.
Typecasting prevents malicious type camouflaging.

No Pointers This is possibly the strongest guarantor of security that is built right into the
Java language. Banishment of pointers ensures that no portion of a Java program is ever anony-
mous. Every single data structure and code fragment has a handle that makes it fully traceable.

Language Syntax for Thread-Safe Data Structures Java is multithreaded. Java language
enforces thread-safe access to data structures and objects. Chapter 13, “Threads,” examines
Java threads in detail, with examples and application code.

29

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

Security and the JVM

Unique Object Handles Every single Java object has a unique hash code that is associated
with it. This means that the state of a Java program can be fully inventoried at any time.

Security in Compiled Java Code
At compile time, all the security mechanisms implied by the Java language syntax and seman-
tics are checked, including conformance to private and public declarations, typesafeness, and
the initialization of all variables to a guaranteed known value.

Class Version and Class File Format Verification Each compiled class file is verified to con-
form to the currently published official class file format. The class file is checked for both
structure and consistency of information within each component of the class file format. Cross-
references between classes (via method calls or variable assignments) are verified for conform-
ance to public and private declarations.

Each Java class is also assigned a major and minor version number. Version mismatches be-
tween classes within the same program are checked.

Bytecode Verification Java source classes are compiled into bytecodes. The bytecode verifier
subjects the compiled code to a variety of consistency and security checks. The verification
steps applied to bytecode include:

■ Checking for stack underflows and overflows.

■ Validating of register accesses.

■ Checking for correctness of bytecode parameters.

■ Analyzing dataflow of bytecode generated by methods to ensure integrity of a stack,
objects passed into and returned by a method.

Namespace Encapsulation Java classes are defined within packages. Package names qualify
Java class names. Packages ensure that code which comes from the network is distinguished
from local code. An incoming class library cannot maliciously shadow and impersonate local
trusted class libraries, even if both have the same name. This also ensures unverified, acciden-
tal interaction between local and incoming classes.

Very Late Linking and Binding Late linking and binding ensures that the exact layout of
runtime resources, such as stack and heap, is delayed as much as possible. Late linking and
binding constitutes a road block to security attacks by using specific assumptions about the
allocation of these resources.

Java Runtime System Security
The default mechanism of runtime loading of Java classes is to fetch the referred class from a
file on the local host machine. Any other way of loading a class—including from across the
network—requires an associated ClassLoader. A ClassLoader is a subtype of the standard Java
ClassLoader class, which has methods that implement all the consistency and security mecha-
nisms and applies them to every class that is newly loaded.

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

30 Chapter 2 Java Design

For security reasons, the ClassLoader cannot make any assumptions about the bytecode,
which could have been created from a Java program compiled with the Java compiler. The
bytecode could also have been created by a C++ compiler modified to generate Java bytecode.
This means the ClassLoader kicks in only after the incoming bytecode has been verified.

ClassLoader has the responsibility of creating a namespace for downloaded code and resolving
the names of classes referenced by the downloaded code. The ClassLoader enforces package-
delimited namespaces.

Automatic Garbage Collection and Implicit Memory Management In C and C++, the pro-
grammer has the explicit responsibility to allocate memory, deallocate memory, and keep track
of all the pointers to allocated memory. This often is a maintenance nightmare and a major
source of bugs that result from memory leaks, dangling pointers, null pointers, and mis-
matched allocation and deallocation operations.

Java eliminates pointers and, with it, the programmer’s obligation to manage memory explic-
itly. Memory allocation and deallocation are automatic, strictly structured, and fully typesafe.
Java uses garbage collection to free unused memory instead of explicit programmer-mediated
deallocation. Garbage collection eliminates memory-related bugs as well as potential security
holes. Manual allocation and deallocation allows unauthorized replication, cloning, and imper-
sonation of trusted objects, as well as attacks on data consistency.

SecurityManager Class SecurityManager is a generic and extensible locus for implementing
security policies and providing security wrappers around other parts of Java, including class
libraries and external environments (such as Java-enabled browsers and native methods). The
SecurityManager class itself is not intended to be used directly (each of the checks defaults to
throwing a security exception). It is a shell class that is intended to be fleshed out via
subclassing to implement a specific set of security policies.

Among other features, SecurityManager has methods to determine whether a security check is
in progress and also checks the following:

■ To prevent the installation of additional ClassLoaders.

■ If dynamic libraries can be linked (used for native code).

■ If a class file can be read from.

■ If a file can be written to.

■ If a network connection can be created.

■ If a certain network port can be listened to for connections.

■ If a network connection can be accepted.

■ If a certain package can be accessed.

■ If a new class can be added to a package.

■ The security of a native OS system call.

31

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

Security and the JVM

Security of Executable Code
The major source of security threats from and to Java programs is Java code that comes in
across the network and executes on the client machine. This class of transportable Java pro-
grams is called the Java applet class. A Java applet has a very distinct set of capabilities and
restrictions within the language framework, especially from the security standpoint.

File System and Network Access Restrictions Applets loaded over the network have the
following restrictions imposed on them:

■ They cannot read or write files on the local file system.

■ They cannot create, rename, or copy files and directories on the local file system.

■ They cannot make arbitrary network connections, except to the host machine they
originally came from. The host machine would be the host domain name specified in the
URL of the HTML page that contains the <APPLET> tag for the applet, or the host name
specified in the CODEBASE parameter of the <APPLET> tag. The numeric IP address of the
host does not work.

The previous strict set of restrictions on access to a local file system applies to applets running
under Netscape Navigator. The JDK AppletViewer slightly relaxes the restrictions by letting
the user define a specific, explicit list of files that can be accessed by applets.

Now, as you will learn in Chapter 16, “JAR,” it is possible to overcome the limitations on applets
in 1.1-compliant browsers by “signing” the files. This enables applets that need to perform one
of these functions this capability while maintaining a security framework.

External Code Access Restrictions Applets cannot do the following:

■ Call external programs via such system calls as fork or exec.

■ Manipulate any Java thread groups except their own thread group that is rooted in the
main applet thread.

System Information Access Applets can read some system properties by invoking
System.getProperty (String key). Applets under Netscape have unrestricted access to these
properties. Sun’s JDK AppletViewer enables individual control over access to each property.
Table 2.2 lists the type of information returned for various values of key.

Table 2.2 System Variable Availability

Key Information Returned

java.version Java version number

java.vendor Java vendor-specific string

java.vendor.url Java vendor URL

java.class.version Java class version number

os.name Operating system name

continues

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

32 Chapter 2 Java Design

os.arch Operating system architecture

file.separator File separator (such as /)

path.separator Path separator (such as :)

line.separator Line separator

Inaccessible System Information The information provided in Table 2.3 is not accessible to
applets under Netscape. AppletViewer and the HotJava browser enable user-controllable ac-
cess to one or more of these resources.

Table 2.3 System Variables Restricted from Applets

Key Information Returned

java.home Java installation directory

java.class.path Java classpath

user.name User’s account name

user.home User’s home directory

user.dir User’s current working directory

Applets Loaded from the Local Client There are two different ways that applets are loaded
by a Java system (note: this applies only to AppletViewer). An applet can arrive over the net-
work or be loaded from the local file system. The way an applet is loaded determines its degree
of freedom.

If an applet arrives over the network, it is loaded by the ClassLoader and is subject to security
checks imposed by the ClassLoader and SecurityManager classes. If an applet resides on the
client’s local file system in a directory listed in the user’s CLASSPATH environment variable, then
it is loaded by the file system loader.

From a security standpoint, locally loaded applets can:

■ Read and write the local file system.

■ Load libraries on the client.

■ Execute external processes on the local machine.

■ Exit the JVM.

■ Skip being checked by the bytecode verifier.

Table 2.2 Continued

Key Information Returned

33

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

Security and the JVM

Open Issues
Having examined the issue of security of executable content both in general and specifically in
the framework of Java, you now examine some aspects of security that are not fully addressed
by the current version of the Java architecture. You also learn if, for some types of threats, 100
percent security can be achieved.

The following components of the Java architecture are the loci of security mechanisms:

■ Language syntax and semantics.

■ Compiler and compiled class file format and version checker.

■ Bytecode verifier and interpreter.

■ Java runtime system, including ClassLoader, SecurityManager, memory, and thread
management.

■ Java external environment, such as Java Web browsers and their interface mechanisms.

■ Java applets and the degrees of freedom allowed for applets (which constitute executable
content).

Security provided by each of these layers, however, can be diluted or defeated in some ways
with varying degrees of difficulty:

■ Data layout in the source code can be haphazard and exposed despite hiding and control
mechanisms provided by Java syntax. This situation can lead to security breaches if, for
instance, access and assignment to objects are not thread safe or data structures that
ought to be declared private are instead exposed as public resources.

■ The runtime system is currently implemented in a platform-dependent, non-Java
language, such as C. The only way to ensure the system is not compromised is by
licensing it from Sun or comparing it with a reference implementation.

Using runtime systems written in non-Java languages can lead to a security compromise
if, instead of using Sun’s own runtime system or a verified clone, someone uses a home-
brew or no-name version of the runtime that has diluted versions of the class loader or
bytecode verifier.

■ The interface between Java and external non-Java environments, such as Web browsers,
may be compromised.

Security issues that cannot easily be addressed within Java (or any other mechanism of execut-
able content, for that matter) include:

■ CPU resources on the client side can be stolen. A user can send an applet to your
computer that uses your CPU to perform some computation and returns the results back
to the user.

■ Applets can contain nasty or annoying content (images, audio, or text). If this happens
often, users have to block applets on a per-site basis. User-definable content filtering
should be integrated into the standard Java class library.

■ An applet can allocate an arbitrary amount of memory.

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

34 Chapter 2 Java Design

■ An applet can start up an arbitrary number of threads.

■ Security compromises can arise out of inherent weaknesses in Internet protocols,
especially those that were implemented before Java and executable content burst on the
scene.

One generic way to deal with security problems is for Java applet classes to be sent encrypted
and digitally signed. The ClassLoader, SecurityManager, and even the bytecode verifier can
include built-in decryption and signature verification methods.

These and other open issues related to Java security are topics of ongoing debate and
exploration of specific and involved security breach scenarios, especially on online forums.

The next and final section of this chapter points to references and sources of further information on
this topic. ■

The Java API
The Java Application Programming Interface, or API, is a set of classes developed by Sun for
use with the Java language. It is designed to assist you in developing your own classes, applets,
and applications. With these sets of classes already written for you, you can write an application
in Java that is only a few lines long, as opposed to an application that would be hundreds of
lines long if it were written in C. Which would you rather debug?

The classes in the Java API are grouped into packages, each of which may have several classes
and interfaces. Furthermore, each of these items may also have several properties, such as
fields and/or methods.

Although it is possible to program in Java without knowing too much about the API, every
class that you develop will be dependent on at least one class within the API, with the exception
of java.lang.Object, which is the superclass of all other objects. Consequently, when you begin
to develop more complex programs that deal with strings, sockets, and graphical interfaces, it
is extremely helpful for you to know the objects provided to you by Sun, as well as the proper-
ties of these objects.

I suggest downloading the Core API in HTML format from JavaSoft and reading through it to really get a
good feel of how the language works. As you go through each package, you will begin to understand
how easy to use and powerful an object-oriented language like Java can be.

Java Core API
The Core API is the API that is currently shipped with Java 1.1. These packages make up the
objects that are guaranteed to be available, regardless of the Java implementation, so long as
the implementation supports at least version 1.1:

■ java.lang

■ java.lang.reflect

T I P

N O T E

35

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

The Java API

■ java.bean

■ java.rmi, java.rmi.registry, and java.rmi.server

■ java.security, java.security.acl, and java.security.interfaces

■ java.io

■ java.util

■ java.util.zip

■ java.net

■ java.awt

■ java.awt.image

■ java.awt.peer

■ java.awt.datatransfer

■ java.awt.event

■ java.applet

■ java.sql

■ java.text

Those packages that were added under 1.1 are only guaranteed to be available on
machines supporting the 1.1 API. ■

java.lang The java.lang package consists of classes that are the core of the Java language. It
provides you not only with the basic data types, such as Character and Integer, but also the
means of handling errors through the Throwable and Error classes. Furthermore, the
SecurityManager and System classes supply you with some degree of control over the Java
Runtime System.
◊ See Chapter 47, “java.lang,” to learn more about java.lang, p. 1079

java.io The java.io package serves as the standard input/output library for the Java language.
This package provides you with the ability to create and handle streams of data in several ways.
It provides you with types as simple as a String and as complex as a StreamTokenizer.

java.util The java.util package is composed essentially of a variety of useful classes that do
not truly fit in any of the other packages. Among these handy classes are:

■ Date class, designed to manage and handle operations with dates.

■ Hashtable class.

■ Classes to develop ADTs, such as Stack and Vector.

◊ See Chapter 46, “Data Structures and Java Utilities,” to learn more about the java.util package,
p. 1049

java.net The java.net package is the package that makes Java a networked-based language.
It provides you with the capability to communicate with remote sources by creating or
connecting to sockets or using URLs. You can write your own Telnet, Chat, or FTP clients and/
or servers, for example, by using this package.

N O T E

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

36 Chapter 2 Java Design

java.awt The java.awt package is also known as the Java Abstract Window Toolkit (AWT). It
consists of resources that enable you to create rich, attractive, and useful interfaces in your
applets and standalone applications. The AWT not only contains managerial classes, such as
GridBagLayout, but it also has several concrete interactive tools, such as Button and TextField.
More importantly, however, is the Graphics class that provides you with a wealth of graphical
abilities, including the ability to draw shapes and display images.

java.awt.image The java.awt.image package is closely related to the java.awt package. This
package consists of tools that are designed to handle and manipulate images coming across a
network.

java.awt.peer java.awt.peer is a package of interfaces that serve as intermediaries between
your code and the computer on which your code is running. You probably won’t need to work
directly with this package.

java.applet The java.applet package is the smallest package in the API, but it is also the most
notable as a result of the Applet class. This class is full of useful methods, as it lays the founda-
tion for all applets and is also able to provide you with information regarding the applet’s sur-
roundings via the AppletContext interface.

1.1 Packages The following packages were added to Java during the 1.1 upgrade:

java.awt.datatransfer java.awt.datatransfer provides classes for dealing with the transfer of
data. This includes new classes for clipboards and the capability to send Java strings.

java.awt.event Under JDK 1.0, all events used a single class called java.awt.event. This
mechanism proved to be fairly clumsy and difficult to extend. To combat this, the
java.awt.event package provides you the ability to use events any way you want.

JavaBean API
The JavaBean API defines a portable, platform-neutral set of APIs for software components.
JavaBean components are also able to plug into existing component architectures, such as
Microsoft’s OLE/COM/ActiveX architecture, OpenDoc, and Netscape’s LiveConnect. The
advantage of JavaBean is that end users are able to join JavaBean components using application
builders, such as the BeanBox. A button component could trigger a bar chart to be drawn in
another component, for example, or a live data feed component could be represented as a chart
in another component.

java.rmi, java.rmi.registry, and java.rmi.server The java.rmi, java.rmi.registry, and
java.rmi.server packages provide all the tools you need to perform Remote Method Invocation
(RMI). Using RMI you can create objects on a remote computer (server) and use them on a
local computer (client) seamlessly.
◊ See Chapter 36, “Remote Method Invocation,” to learn more about RMI, p. 809

java.lang.reflect The java.lang.reflect package provides the tools you need to reflect objects.
Reflection enables you to inspect a runtime object to determine what its constructors, methods,
and fields are.
◊ See Chapter 48, “Reflection,” to learn more, p. 1129

37

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

2

I
Part

Ch

The Java API

java.security, java.security.acl, and java.security.interfaces The java.security packages
provide the tools necessary for you to use encryption in your Java programs. By using the
java.security packages, you can securely transfer data back and forth from a client to a server.
◊ See Chapter 34, “Java Security in Depth,” to learn more about the java.security packages, p. 769

java.sql The java.sql package encompasses what is known as JDBC, or the Java DataBase
Connectivity. JDBC enables you to access relation databases, such as Microsoft SQL Server or
Sybase SQL Anywhere.
◊ See Chapters 38 to 40 to learn more about JDBC, p. 855

Printed documentation for all the APIs is available from the JavaSoft Web site at http://
www.javasoft.com. ■

New to JDK 1.2
The following packages were added during the upgrade to 1.2:

Java Enterprise API The Java Enterprise API supports connectivity to enterprise databases
and legacy applications. With these APIs, corporate developers are building distributed client/
server applets and applications in Java that run on any OS or hardware platform in the enter-
prise.

Java Database Connectivity, or JDBC, is a standard SQL database access interface that provides
uniform access to a wide range of relational databases. You have probably heard of ODBC. Sun
has left no stone unturned in making Java applicable to every standard in the computing indus-
try today.

Java IDL is developed to the OMG Interface Definition Language specification as a language-
neutral way to specify an interface between an object and its client on a different platform.

Java RMI is a remote-method invocation between peers or the client and server when applica-
tions at both ends of the invocation are written in Java.

Java Commerce API The JavaCommerce API brings secure purchasing and financial manage-
ment to the Web. JavaWallet is the initial component, which defines and implements a client-
side framework for credit card, debit card, and electronic cash transactions. Just imagine—
surfing the Internet will take up all of your spare time…and money!

Java Server API Java Server API is an extensible framework that enables and eases the devel-
opment of a whole spectrum of Java-powered Internet and intranet servers. The Java Server
API provides uniform and consistent access to the server and administrative system resources.
This API is required for developers to quickly develop their own Java servlets—executable
programs that users upload to run on networks or servers.

Java Media API The Java Media API easily and flexibly allows developers and users to take
advantage of a wide range of rich, interactive media on the Web. The Media Framework has
clocks for synchronizing and media players for playing audio, video, and MIDI. Two-D and 3D
provide advanced imaging models. Animation provides for motion and transformations of 2D

N O T E

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH02 LP#5

38 Chapter 2 Java Design

objects. Java Share provides for sharing of applications among multiple users, such as a shared
white board. Finally, Telephony integrates the telephone with the computer. This API is prob-
ably the most fun of all to explore.

Java Security API The Java Security API is a framework for developers to include security
functionality easily and securely in their applets and applications. This functionality includes
cryptography with digital signatures, encryption, and authentication.

Java Management API Java Management API provides a rich set of extensible Java objects
and methods for building applets that can manage an enterprise network over the Internet and
intranets. It has been developed in collaboration with SunSoft and a broad range of industry
leaders including AutoTrol, Bay Networks, BGS, BMC, Central Design Systems, Cisco Sys-
tems, Computer Associates, CompuWare, LandMark Technologies, Legato Systems, Novell,
OpenVision, Platinum Technologies, Tivoli Systems, and 3Com.

Java Embedded API
The Java Embedded API specifies how the Java API may be subsetted for embedded devices
that are incapable of supporting the full Java Core API. It includes a minimal embedded API
based on java.lang, java.util, and parts of java.io. It then defines a series of extensions for par-
ticular areas, such as networking and GUIs. ●

39

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

C H A P T E R

Installing The JDK and Getting Started

Why You Need Sun’s Java Development Kit to Write Java 40

More on How Java Is Both Compiled and Interpreted 40

Getting and Installing Sun’s JDK 41

Installing a Downloaded JDK 45

Testing the Java Compiler and JVM 49

Installing IBM’s Applet Developer’s Kit for Windows 3.1 51

3

In this chapter

Untitled-5 9/22/98, 11:34 AM39

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

40 Chapter 3 Installing The JDK and Getting Started

Why You Need Sun’s Java Development Kit to Write
Java

This chapter intends to help you install Java, give you a basic introduction to the Java Develop-
ment Kit, and give you several Java-enabled browsers. By the end of the chapter, you will have
installed what you need to get going and you’ll have compiled and run your first Java applica-
tion.

The Java Development Kit (JDK) is a software package that Sun has made available to the
public for free. This package gives you all the tools you need to start writing and running Java
programs. It includes all the basic components that make up the Java environment, including
the Java compiler, the Java interpreter, an applet viewer that lets you see applets without open-
ing a Java-compatible Web browser, as well as a number of other programs useful in creating
Java programs. The JDK represents the bare minimum of what you need to work with Java.

If there’s no such thing as a free lunch, then JDK is more of a free light snack. Although it does
contain all the tools you really need to work with Java, it isn’t the integrated development envi-
ronment many programmers are used to working with. The tools that come with the JDK are
command-line driven and they don’t have a nice graphical user interface like those of Visual
C++ or Borland C++. The tools are intended to be executed from the command prompt (the
DOS prompt, for Windows 95 and NT systems). The files that contain your source code are
plain ASCII text files you create with a text editor (which you need to supply), such as the
NotePad (for Win32 systems), vi (on UNIX), or BBEdit (on the Macintosh).

A growing number of integrated development environments (IDEs) are available from
various third-party companies, each with various features that make life easier on the

programmer. If you decide to do your Java development with an IDE, you will probably get a code editor
that can colorize Java code, a project file manager, and a faster compiler. Most of the major develop-
ment companies have IDEs for Java. Microsoft (Visual J++), Borland (JBuilder), Symantec (Cafe), IBM
(Visual Age for Java), Metroworks (CodeWarrior), and Aysmetrix (SuperCede) are just a few of the
commercial Java development environments available. Each has strengths and weaknesses. If you plan
on doing serious Java development, check them out and see which fits your programming needs the
best. Even if you plan to use an integrated development environment (IDE) like Visual J++, Visual Café
or Visual Age for Java, you will want to learn about the JDK because it’s the reference by which all
others are compared. ■

More on How Java Is Both Compiled and Interpreted
A C++ compiler takes high-level C++ code and compiles it into instructions a computer’s micro-
processor can understand (Machine Code). This means that every different type of computer
platform will need a separate compiling of a given C++ program in order to be able to run it.
Taking a C++ program and compiling it on different types of computers is not an easy task.
Because different computers do things in different ways, the C++ program has to be able to

N O T E

Untitled-5 9/22/98, 11:34 AM40

41

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

handle those differences. This is a significant problem when dealing with the wide variety of
computer platforms available today.

The Java environment overcomes this problem by putting a middleman between the compiler
and the computer called the Java Virtual Machine (JVM). Instead of compiling directly for one
type of computer, the Java compiler, javac, takes the high-level, human-readable Java source
code in a text file and compiles it into lower-level Java bytecodes that the JVM understands.
The JVM then takes that bytecode and interprets it so that the Java program runs on the com-
puter the JVM is running on. The only platform-specific program is the JVM itself. Similarly,
Web browsers that support Java applets all have JVMs built into them.

The JVM concept provides a number of advantages, the main one being cross-platform compat-
ibility. Java programmers don’t need to worry about how a computer platform handles specific
tasks and they don’t need to worry about how to compile different versions of their program to
run on different platforms. The only platform that programmers need to worry about is the
JVM. Programmers can be reasonably confident that their program will run on whatever plat-
forms have JVMs, such as Windows 95, Solaris, and Macintosh.

CAUTION

Even with Java, there are slight differences between platforms. When working with Java, it’s a good idea to
test a program on as many different types of computers as possible.

On the other hand, languages like Basic are not compiled. In order to run the program, you
need a basic interpreter, which reads each line of code, parses out what you’ve written, and
figures out all the machine-code necessary to run the program. The major disadvantage of this
type of interpreter is that it requires a lot of processing power, so inevitably it is very slow.

Because Java is compiled, it meets you halfway. The amount of interpretation is therefore
greatly reduced. The main disadvantage of this system is that interpreting code is still slower
than running a program that is native to the host computer. For each instruction in the Java
bytecode, the JVM must figure out what the equivalent is for the system it is running on. This
creates a slowdown in processing a Java program.

To overcome the speed limitation of Java, a number of Just-In-Time compilers (JITs) are avail-
able. JITs make the Java system even more confusing, but they make it run much faster by
taking the already compiled Java bytecode and compiling it into instructions that are native to a
given computer. It’s all done transparently to the user from within the JVM. The JIT, because
it’s part of the JVM, is also platform-specific but runs any Java bytecode, regardless of what
type of machine it comes from. Using a JIT, a Java program can achieve speeds close to that of
a native C++ program.

Getting and Installing Sun’s JDK
Now that you know a little bit more about what Java and the JDK are, you’re now ready to get
going on actually installing and using it.

Getting and Installing Sun’s JDK

Untitled-5 9/22/98, 11:34 AM41

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

42 Chapter 3 Installing The JDK and Getting Started

If you haven’t done so already, sit down at your computer, turn it on, and load the CD-ROM
from the back of the book. On the CD-ROM is a directory called JDK. Inside the directory
“JDK” are three subdirectories: MACINTOSH, SOLARIS, and WINDOWS. Each of these subdirectories
contains the complete installation of Sun’s Java Developer’s Kit for each of those three plat-
forms. Table 3.1 shows what those refer to.

Table 3.1 Contents of the JDK Folder on the CD-ROM

Directory Contents

MACINTOSH Contains the JDK for the Macintosh platform, both
68k and PowerPC.

SOLARIS Contains two subdirectories, one for the SPARC Solaris JDK
and one for the x86 Solaris JDK.

WINDOWS Contains the JDK for x86 32-bit Windows systems, namely
Windows 95 and Windows NT.

Alternately, you can use a Web browser and a connection to the Internet to receive the JDK.
If you are going to download it, see the section “Downloading the JDK” later in this chapter.

What if you’re not using one of those three platforms? You may or may not be in luck. A number
of other JDKs exist for other platforms, but you may need to look around the Internet for them. The
three previous ones are supported by Sun; any other platforms are not. There are ports for systems
such as Linux, DEC Alpha, Amiga, OS/2 and many others. The best place to look for information on
those releases is the list of third party ports on Sun’s list: http://www.javasoft.com/products/
jdk/1.2/. ■

Now you’ll look at how to install the JDK onto 32-bit Windows systems from the CD-ROM. The
setup is fairly easy, but you should be familiar with the Windows and DOS environments before
attempting to install the JDK.

Installing the JDK Off the CD-ROM for Windows 95 and NT
Step 1: Remove Previous Versions of the JDK There should not be any copies of previous
versions of the Java Developers Kit on your computer. If you have stored any additional Java
source code files (files you have written or files you have received from someone else) in a
directory under the main JDK Java directory, you should move those files to a new directory
before deleting previous versions of the JDK. You can delete the entire Java directory tree
using Windows Explorer or the File Manager.

N O T E

Untitled-5 9/22/98, 11:34 AM42

43

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

Step 2: Unpacking the JDK After removing the previous version of the JDK, execute the self-
extracting archive to unpack the JDK files. You should unpack the file in the root directory of
the C drive to create C:\ JDK1.2. If you want the JDK in some other directory, unpack the
archive file in that directory. Unpacking the archive creates a Java parent directory and all the
necessary subdirectories for this release.

If you look through the files that are installed with the JDK you will find a several files in the lib
and jre\lib files with the extension .jar. The .jar files contain the runtime API classes neces-
sary for the Java VM to operate successfully. Note: prior to JDK 1.2 the setup program created
a file called lib/classes.zip instead of the various .jar files. DO NOT UNZIP THE CLASSES.ZIP
FILE.

Step 3: Update Environment Variables After unpacking, you should add the JAVA\BIN direc-
tory onto the path. The easiest way to accomplish this is to edit the AUTOEXEC.BAT file and make
the change to the path statement there.

If you have set the CLASSPATH environment variable, you may need to update it. For instance,
you may have to make a CLASSPATH entry that points to the jdk1.2\jre\lib\rt.jar file.
Again, the easiest way to accomplish this is to edit the AUTOEXEC.BAT file and make the change
to the CLASSPATH environment variable there, or you can let the setup program make the
changes for you.

After completing these changes to AUTOEXEC.BAT, save the file and reboot so the changes take
effect.

The next section covers the installation of the JDK for x86 and SPARC Solaris UNIX Systems.
This installation procedure is similar to some of the other UNIX operating system installations.
For more information about getting ports of the JDK for other UNIX systems (such as Linux)
see Chapter 49, “Java Resources.”

Installing the JDK Off the CD-ROM for x86 and SPARC Solaris
The setup for installing the JDK onto a 32-bit Windows system is fairly easy, but you should be
familiar with the Windows and DOS environments before attempting to install the JDK.

Step 1: Copy the Directory to Your Hard Drive Copy the appropriate directory (either the
x86 or Sparc Solaris release directory) onto your hard drive. Depending on how your file sys-
tem is configured and the privileges on your system, you might want to either copy the direc-
tory into a public area, such as /usr/local/ or into your home directory. The command to
copy the Sparc release from the Solaris directory on the CD-ROM to your home directory is

>cp -r sparc ~/

Step 2: Set Your Environment Variables The CLASSPATH variable is an environment variable
that defines a path to the rt.jar file. Most of the tools that come with the JDK use the
CLASSPATH variable to find that file, so having it set correctly is fairly important. You can set the
CLASSPATH variable at the command prompt by entering the following:

% setenv CLASSPATH .:/usr/local/jdk1.2/jre/lib/rt.jar

Getting and Installing Sun’s JDK

Untitled-5 9/22/98, 11:34 AM43

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

44 Chapter 3 Installing The JDK and Getting Started

Or you can put this line of text in your .login or .profile files, so it’s called every time you
log in:

setenv CLASSPATH .:/usr/local/jdk1.2/jre/lib/rt.jar

If you are using a version of Java prior to JDK 1.2, you will need to substitute jre/lib/
rt.jar with lib/classes.zip in all of the examples through out this book. ■

Downloading the JDK
You can download the JDK off the Internet instead of getting it from the CD-ROM in the back
of the book. When you download the JDK off the Internet, you can be fairly certain that you’re
getting the latest version of it.

What You Need to Download the JDK The first item you need to download the JDK is a com-
puter with a connection to the Internet that can use a Web browser. The particular browser
doesn’t really matter all that much, but the Netscape Navigator browser is used for these ex-
amples.

The second item you need is some (well, actually, quite a bit) of free hard disk space on the
machine to which you are planning to download the JDK. Table 3.3 contains the amounts of
disk space you need to download and uncompress the JDK for each platform.

Table 3.3 Disk Space Requirements for the JDK 1.1

Platform Disk Space Compressed Disk Space Uncompressed

Solaris 13.7 MB 16.5 MB

Windows 5.77 MB 12.1 MB

Starting Your Download If you have some free disk space and a browser handy, you’re ready
to download. Now you can get started!

1. Launch your Net connection (if you need to do that) and your Web browser. If you are
unsure of how to do this, consult your system administrator, your friends who know how
to use computers, the manuals, or a book on using the Web, such as Que’s Special
Edition Using the World Wide Web.

2. Point your browser at the JavaSoft JDK download site at
http://www.javasoft.com/products/jdk/1.2/

3. Scroll down to the pop-up menu that says “Download JDK Software” lists the various
operating systems on which the JDK is available from Sun. Pick your operating system of
choice in that pop-up menu.

4. Click the “Download Software” button just below the pop-up menu.

N O T E

Untitled-5 9/22/98, 11:34 AM44

45

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

5. You’ll hit a page that has a number of restrictions on the distribution of the JDK. Read
each and, if you comply to all the restrictions, click the “Yes” button to go to the down-
load page.

6. The page that now comes up has a list of various sites the JDK is available to download
from. If there are options available, use the one closest to your location. Click the link to
start the download.

The JDK is a pretty big file and downloading is going to take a while. How long it takes de-
pends on how fast your connection is, the user load on the FTP server at that particular mo-
ment, the network load on the Internet at the time of day you are downloading the file, the
beating of a butterfly’s wings somewhere on the planet, sunspots, blind luck, and a large num-
ber of other factors that are even more difficult to predict. If the file transfer is going too slow
for your taste, try connecting at another time. Depending on where you are on the planet, good
times to connect will vary, again depending on many of the same factors that control the trans-
fer rate.

Installing a Downloaded JDK
Now that you have the appropriate installer file for your computer somewhere handy on your
hard drive, it is time to actually install the software so you can get to work programming. Each
platform has its own standard installation procedures and the 1.2 release of the JDK is pretty
good at following them to make installation a simple and straightforward procedure.

Solaris x86 and SPARC Platforms
For Solaris, the JDK 1.2 is normally distributed as a self-extracting shell script (a file with a .sh
extension); the name of the file indicates its version.

CAUTION

Use tar or your standard system backup process to back up any previous releases of the JDK before
beginning installation of a new version. You don’t want to lose all that work you put into it and you’ll have a
copy of the previous release in the event something goes wrong with your new copy.

Installing the JDK on a Solaris machine can be done in one of two ways. It can either be in-
stalled into a user’s home directory for individual use or it can be installed into a public bin
directory, such as /usr/local/bin/, so that all users on a system can use it. The installation
process is the same for both.

1. Choose a directory for the installation. These instructions assume an installation location
of /usr1/JDK1.2. If you choose a different base directory, simply replace USR with the
name of your installation directory. For example, if you choose to install under your
home directory, everywhere you see usr, replace it with ~ or $HOME.

Installing a Downloaded JDK

Untitled-5 9/22/98, 11:34 AM45

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

46 Chapter 3 Installing The JDK and Getting Started

2. Verify that you have write permissions for the installation directory. Use this command to
check the current permissions:
ls -ld /usr1

The options to the ls command specify a long listing, which includes information about
ownership and permission, and also specifies to ls to not list the contents of the direc-
tory, which is the default. For more information about the ls command, see your system
manuals.

The output of the command should be similar to the following:
drwxr-xr-x root other 512 Feb 18 21:34 /usr

In this case, the directory is owned by root (the system administrator) and neither the
group nor the general user community has permission to write to this directory. If you
run into this situation and you are not root, you need the assistance of your system
administrator to install in that directory.

3. Move or copy the JDK distribution file to /USR1.

4. Extract the JDK by typing a period, a space, and then the jdk.sh filename (such as
jdk1.2-solaris2-sparc.sh).
> . jdk1.2-solaris2-sparc.sh

This executes the shell script, which then automatically uncompresses the file you need
into the directories that you need them in.

5. Verify that the following subdirectories were created under /USR1:

jdk1.2

jdk1.2/bin

jdk1.2/classes

jdk1.2/demo

jdk1.2/lib

jdk1.2/src

6. Set your PATH environment variable. For the C shell and its derivatives, use:
setenv PATH $PATH:/usr1/jdk1.2/bin

For the Korn shell and its derivatives, use:
PATH= $PATH;/usr1/jdk1.2/bin
export PATH

7. Set your CLASSPATH environment variable. For the C shell and its derivatives, use:

setenv CLASSPATH /usr1/jdk1.2/jre/lib/rt.jar

For the Korn shell and its derivatives, use:
CLASSPATH = CLASSPATH /usr1/jdk1.2/jre/lib/rt.jar
export CLASSPATH

Untitled-5 9/22/98, 11:34 AM46

47

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

Rather than set these variables from the command line each time, you probably should add the
commands to set the PATH and CLASSPATH variables in your shell resource file—.shrc, .cshrc,
.profile, and so on. If you are a system administrator installing the JDK as a network development
tool, you may want to add these parameters to the default configuration files.

Windows Installation
You need Windows 95 or Windows NT to run Java. For Windows 3.1, see “Installing IBM’s
Applet Developer’s Kit for Windows 3.1" later in this chapter.

Installing the JDK is a fairly simple procedure, but you should know your way around the Win-
dows and DOS environments. For Windows, the JDK is provided in a standard windows setup
format; the name of the file indicates its version.

1. Choose a directory for the installation. These instructions assume an installation location
of C:\JDK1.2. If you choose a different base directory, simply append the appropriate
path (and change the drive letter, if appropriate). If you want to install to E:\TOOLS\JAVA,
for example, replace C: with e:\tools whenever it shows up in the instructions.

CAUTION

Rename the JAVA directory (for example, to OLDJAVA) using the Explorer in Windows 95 or Windows NT. If the
installation fails for any reason, you can restore the previous version directly from OLDJAVA. Otherwise, after
the installation is complete, you can move any additional files, such as documentation, from your old
installation into your new installation before removing it from your system.

2. If you plan on installing to a networked drive, make sure you have permission to write to
the desired directory.

3. Extract the JDK by running the self-extracting program (double-clicking the icon in
Explorer or File Manager works just fine).

4. Verify that the following subdirectories were created on drive C:\ .

C:\JDK1.2

C:\JDK1.2\BIN

C:\JDK1.2\CLASSES

C:\JDK1.2\DEMO

C:\JDK1.2\LIB

For Windows NT 4.0 and later, you can skip steps 6, 7, and 8, and set the CLASSPATH from a
properties sheet. You do not need to reboot, but you may have to close any DOS Prompt windows that
you had open to use the new variable.

T I P

T I P

Installing a Downloaded JDK

Untitled-5 9/22/98, 11:34 AM47

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

48 Chapter 3 Installing The JDK and Getting Started

6. Add C:\JDK1.2\BIN to your PATH statement in your autoexec.bat file:
set PATH=c:\windows;c:\dos;...;c:\java\bin

7. Set your CLASSPATH environment variable in your autoexec.bat file:
set CLASSPATH=c:\java\jre\lib\rt.jar

8. Reboot your computer for the environment variables to take effect.

Macintosh Installation
For Macintosh, the JDK is normally distributed as a stuffed, bin-hexed archive (a file with a
HQX.SIT extension). The file version is indicated in its name.

CAUTION

Make sure to archive your current version of the JDK before installing a newer version. You don’t want to lose
all that work you put into it and you’ll have a copy of the previous release in the event something goes wrong
with your new copy.

To install the JDK for Macintosh, follow the following steps.

1. After following the instructions earlier in this chapter for downloading the MacJDK 1.2,
you should have an installer titled MacJDK.SEA. Double-click this installer so that it
launches into a fairly standard Macintosh installer dialog box.

CAUTION

The Macintosh enables you to name directories and files in a manner that choke UNIX. Filenames that UNIX
can’t handle include the naming of directories with slashes (/). This causes problems with the JDK because
it uses a mixed UNIX/Mac method of tracking paths when the JDK attempts to locate your files. Thus, a slash
in the name of a directory is interpreted as a change of directory.

UNIX also has a few problems with names that include spaces. As of this release, you should follow the UNIX
file and directory naming conventions used by the developers. This means you shouldn’t use spaces,
slashes, asterisks, and most other punctuation characters in your file and directory names. You can, however,
use as many periods as you want, and the filename can be as long as you want it (as long as it’s less than
32 characters).

For example, the following is a perfectly good Macintosh filename but will not work under UNIX:

/../..../Stuff \/\/..java

To work under UNIX and the Mac, the filename should look like this:

Stuff.java

2. In the lower-left corner of the installer dialog box in the Install Location area, you can
specify where you want to install the JDK. After selecting the appropriate drive and
directory, click the Install or hit “return” button to run the installer. It puts all the Mac
JDK in a directory called MACJDK at whatever location you specify in the installer. The
default installation location is the root level of your startup disk.

Untitled-5 9/22/98, 11:34 AM48

49

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

You now have a working copy of the JDK on your hard drive folder. This includes two essential
programs: the Java compiler and the AppletViewer. You are now ready to move onto the next
(and much more fun) parts of Java development.

Testing the Java Compiler and JVM
Now you’re ready to write a small Java application to test your installation of the JDK.

Creating a New Java Project
Somewhere on your hard drive, create a new directory to store your projects. I call mine
PROJECTS and I keep it out of the JDK directory, so that I don’t need to move it around when-
ever I install a new version of the JDK. Inside that directory, create another directory called
HELLOWORLD.

Now, using your favorite text editor (such as the NotePad, vi, emacs, SimpleText, or something
else), create a file called HelloWorld.java (double-check your capitalization—Java is case-
sensitive), and type into it:

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println(“Hello, World!”);
 }
};

Don’t worry about the details of syntax right now; just type that in, save it, and exit your text
editor. Make sure it’s saved as a standard ASCII text file.

Running a Java Application for UNIX or Windows
If you’re on a UNIX or Windows machine, at the command (DOS) prompt, type the following:

javac HelloWorld.java

Your system should pause for a moment, then return you to your prompt.

Get a directory listing in a DOS window to make sure you have the following files:

>dir
HelloWorld.class HelloWorld.java

Or, in UNIX, get a directory listing to make sure you have the following files:

>ls
HelloWorld.class HelloWorld.java

If you get any errors, check the HelloWorld.java code to make sure it looks exactly as it does
here.

If you get an error that javac was not found, you didn’t set the JAVA/BIN directory in your PATH
variable. Go back and check your installation.

Testing the Java Compiler and JVM

Untitled-5 9/22/98, 11:34 AM49

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

50 Chapter 3 Installing The JDK and Getting Started

Now you’re ready to run your first Java program! At your command prompt, type the following:

>java HelloWorld

You should see the following:

Hello, World!

If you did, congratulations. You’ve run your first Java application, but more importantly, you’ve
correctly and successfully installed the JDK.

If you didn’t see “Hello, World!”, there is something wrong with your installation. Check to
make sure your CLASSPATH variable is set to point at both the current working directory (a
period “.”) and to the rt.jar file. Check to make sure you typed the name of the file correctly,
keeping in mind that Java is case-sensitive. If none of that works, you may need to reinstall the
JDK.

Running a Java Application for the Macintosh
The procedure for compiling and running a Java application is a bit different for a Macintosh
because it doesn’t have a command prompt.

1. On your Mac, open your HELLOWORLD folder so that your HelloWorld.java file
appears.

2. Then open the MACJDK folder so that the Java compiler icon appears (it should be a
little “Duke” with a “C” on his chest). Drag the HelloWorld.java file onto the Java
compiler icon. The Java compiler then launches and begins compiling the program.
When it’s finished, a file called HelloWorld.class should appear in your HELLOWORLD
folder.

3. If you received compile time errors, check the HelloWorld.java code to make sure it
looks exactly the same as the previous code.

4. Double-click the HelloWorld.class file. The java runner application launches, loads the
HelloWorld program, and runs the program. A window titled stdout should appear, with
the words Hello, World! in them.

If it did, congrats. You’ve installed the JDK and run your first Java program.

If you didn’t see Hello, World!, there is something wrong with your installation. Check to
make sure you are running System 7, that the JDK installed completely, and that the filename
and the name of the class generated match, keeping in mind that Java is case-sensitive. If you
still can’t get it to work, you may need to reinstall the JDK.

The authors of the Macintosh Java Runner application have cleverly hidden the Quit
command in the Apple menu. Why they did that isn’t known. If you want to free up the

memory that the Java Runner is taking up after it’s finished running your program, choose Apple, Java
Runtime, Quit. Not very Mac-like, but at least it’s not a command line.

To quit, you can just hit command-Q, like any other normal Mac program. ■

N O T E

Untitled-5 9/22/98, 11:34 AM50

51

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

Installing IBM’s Applet Developer’s Kit for
Windows 3.1

Why isn’t there a Sun JDK for Windows 3.1? Well, a number of technical issues make porting
the JDK tools to Windows 3.1 difficult, and with the release of Windows 95, Windows 3.1 was
seen as a dying platform, so the decision was made to not directly support it. Some of these
issues include the fact that Java needs long filenames such as the “.java” and “.class” filenames.
The eight-character file name and three-character extension of Window’s 3.1 naming system
just couldn’t fully support Java file names. A more difficult problem to solve, however, is the
fact that Java is a multi-threaded language, meaning it can run more than one process at the
same time, but Windows 3.1 doesn’t support multithreading. In order to support Java in Win-
dows 3.1, several groups undertook projects to port the JDK to 3.1, the most successful of
which is IBM’s ADK.

With IBM’s release of their ADK, Windows 3.1 users now have a way to develop Java applets
and applications without upgrading to Windows 95 or NT. It includes a number of programs
that help get around the problems previously described, as well as improving upon the tools
that come with the JDK.

Downloading the ADK
To get to the main ADK Web page, you first need to launch your Web browser and go to
http://www.alphaworks.ibm.com/. This is the main Web page for a number of IBM’s projects
that are currently under development. To get to the ADK Web page, you’ll need to pick the
“ADK for Win 3.1” entry in the pop-up menu in the “Select” selection.

To completely install the ADK and use all its features, you need three components: the ADK
itself, the Windows 32-bit extension Win32s, and the WinG graphics extension.

To download and install the two windows components, ftp to ftp://ftp.microsoft.com/
softlib/mslfiles/ and get the following two files:

pw1118.exe

wing10.exe

The WinG extension file name is wing10.exe and it is about 830k.

The Win32s file name is pw1118.exe and it is about 2.4 MB. You need to get and install both of
these before installing the ADK.

To install these two system enhancements, make a temporary directory for each of the two and
put the .exe files into them. Use either a DOS prompt or the Run command in the File menu of
the program manager, to execute the .exe files. If you put the wing10.exe file in a directory
called wingtemp on your C: drive, for example, the DOS prompt command would look like:

C:\wingtemp\>wing10.exe

Installing IBM’s Applet Developer’s Kit for Windows 3.1

Untitled-5 9/22/98, 11:34 AM51

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

52 Chapter 3 Installing The JDK and Getting Started

This decompresses all the files to do the complete install. Each should decompress to a large
number of files with an executable called setup.exe. After it is done decompressing, execute
the setup program, again using either a DOS prompt or the File, Run menu. The setup
program prompts you for some information and then installs all the needed files. After you
are done installing these, you can delete the temporary directories you put the installer
programs in.

When you have WinG and Win32s installed, you can proceed with the installation of the ADK
itself. You will first need to read the ADK license agreement at http://www.alphaWorks.
ibm.com/ADK.

At the bottom of the page is a button labeled “I Agree.” If you read the license and agree to its
terms, you can click that button, which takes you to the download page where you can down-
load the ADK installer. The actual ADK file is rather large, about 4 MB, and will take a while to
download, especially over a modem connection.

Once you’ve gotten the ADK installer, you can then execute it from the Windows program
manager File, Run menu. It asks you for an installation directory (for example: C:\java\) and
then it does its stuff, installing all the files you’ll need to get up and running with the ADK.

When the ADK is completely installed, it creates a program group with the items in Table 3.4.

Table 3.4 Files in the ADK Program Group

Name Description

Configure AppletViewer This runs the AppletViewer and displays a license document.

ADK.WRI The ADK User Guide—read this for more information on the
ADK.

ADK File A file manager type application that lets you manipulate files
with long file names, rather than the Win 3.1 standard 8.3 file
names.

ADK Edit A small editor that integrates the ADK tools into one
program, so you can work with Java code without having to
switch between a number of other programs.

ADK Console The guts of the ADK, this is the program that runs all the
Java environment-based tools, such as AppletViewer and
javac.

To set up the ADK, run the “Configure AppletViewer” program, agree to the license agree-
ment, follow the instructions to configure the AppletViewer, and then close the applet.

To test your installation, follow these steps:

1. Launch the “ADK Console” program.

2. Select AppletViewer from the Tools menu.

Untitled-5 9/22/98, 11:34 AM52

53

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

3

I
Part

Ch

3. Type C:\java\demo\Animator\ into the Working Directory Field (or whatever directory
you installed the ADK).

4. Type example1.html into the Command Options field.

5. Press OK.

This should launch the Animator applet and put a dancing Duke on your screen. If it did, then
you’re all set to develop Java programs on your Windows 3.1 machine. If it didn’t, make sure
that the path you put in the Working Directory field is actually the path that has the Animator
applet and that there is a example1.html file in that directory. If not, you may need to go back
through the installation process and try again. ●

Installing IBM’s Applet Developer’s Kit for Windows 3.1

Untitled-5 9/22/98, 11:35 AM53

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH03 LP#5

54 Chapter 3 Installing The JDK and Getting Started

Untitled-5 9/22/98, 11:35 AM54

55

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

4

I
Part

Ch

C H A P T E R

JDK Tools

JDK Tools Reference 56

AppletViewer 56

java, The Java Interpreter 57

javac, The Java Compiler 59

javap, The Java Disassembler 60

javah C-Header and Stub File Creation 61

The javadoc Tool (Documentation Generator) 62

jdb, The Java Debugger 63

The CLASSPATH Environment Variable 64

Macintosh Issues 64

The Java Compiler 67

JavaH: C-Header File Generator 67

4

In this chapter

Untitled-6 9/22/98, 2:38 PM55

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

56 Chapter 4 JDK Tools

JDK Tools Reference
This chapter is intended to cover all the tools that are included in the Java Developer’s Kit.
You’ll learn about each tool, what it does, all its associated options, and the environment vari-
ables it references. If you’re just beginning programming in Java, this chapter serves as an
introduction to the tools of the JDK. If you’re a hard-core Java hacker, this chapter is more of a
reference tool, so you don’t have to waste precious CPU cycles bringing the rather ugly man
page reference materials. Either way, reading this chapter gives you a pretty good idea of what
the JDK tools can do and how to make them do it.

AppletViewer
Applets are programs written in Java that are designed to run embedded in an HTML docu-
ment, just like a Web page. Under most circumstances, they don’t have the ability to run by
themselves. The AppletViewer tool is a small program that lets you run applets without the
overhead of launching a system that hogs the Web browser. It’s a quick and easy way to test
your applets as you’re developing them.

You call the AppletViewer with the following command:

AppletViewer [options] URLs...

The URLs in the command line are the Uniform Resource Locators to HTML files that contain
applet tags (such as http://www.javasoft.com/index.html). Alternatively, if you’re in a
directory that has an HTML file that references an applet, you can call AppletViewer simply
by typing in the name of the HTML file that contains the applet tag. The following option is
available:

Option Description

-debug Starts the AppletViewer in the Java debugger, jdb, thus allowing you to
debug the applets in the HTML document.

The AppletViewer also has an Applet menu in the AppletViewer window that enables you to set
a number of different functions of the AppletViewer. Those menu options are as follows:

■ Restart Restarts the applet using the current settings.

■ Reload Reloads the applet. Changes in the class file are applied upon reload.

■ Stop Causes the stop() method of the applet to be called and halts the applet. Note the
applet is not destroyed in this example as it is with Reload.

■ Save Saves the serialized state of the applet.

■ Start Starts the applet. This is useful when the Stop option has been utilized. If the
applet has not been stopped, it has no action.

■ Clone Clones (duplicates) the current applet, using the same settings to create another
AppletViewer instance.

■ Tag Shows the HTML applet tag that is used to run the current applet, as well as any
parameters that are passed to the applet from the HTML tag (see Figure 4.1).

Untitled-6 9/22/98, 2:38 PM56

57

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

4

I
Part

Ch

java, The Java Interpreter

■ Info Shows special information about the applet, which is set within the applet’s
program (see Figure 4.2).

■ Edit This doesn’t appear to do anything; it has been grayed out since the first beta.

■ Print Causes the applet’s PrintGraphics to be sent to a printer.

■ Properties Shows the AppletViewer security properties. These settings enable you to
configure AppletViewer for a network environment that includes a firewall proxy, or an
HTTP proxy, using the relative proxy server and proxy port boxes. The Network Access
box allows you to select the type of network access that AppletViewer is allowed. The
choices are No Network Access, Applet Host (default), and Unrestricted. The Class
Access box enables you to choose what kind of access—Restricted or Unrestricted—you
would like AppletViewer to have on other classes (see Figure. 4.3)

■ Close Closes the AppletViewer window and terminates the applet.

■ Quit Closes the AppletViewer window and terminates the applet.

java, The Java Interpreter
The Java interpreter is what you use to run your compiled Java application.

The syntax for the interpreter is:

java [options] classname

where classname only includes the name of the class and not the extension (.class). The Java
interpreter options are listed in Table 4.1.

FIG. 4.1
The AppletViewer’s Tag
window.

Untitled-6 9/22/98, 2:38 PM57

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

58 Chapter 4 JDK Tools

Table 4.1 Java Interpreter Options

Option Description

-help Displays all the options.

-version Displays the version of the JDK that is used to compile the
source code.

-v (also -verbose) Displays all the classes as they are loaded. (Performs the
same functions as in the javac tool.)

-cs (also -checksource) Checks to see if the source code is newer (not yet compiled)
than its class file. If this is the case, then the new version of
source is compiled.

FIG. 4.2
The AppletViewer’s
Applet Info window.

FIG. 4.3
The AppletViewer’s
Properties window.

Untitled-6 9/22/98, 2:38 PM58

59

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

4

I
Part

Ch

javac, The Java Compiler

-debug Used with remote Java files that are to be debugged later with
the jdb tool. The interpreter generates a password for you,
which is used in the jdb’s password option (see the section
“jdb, The Java Debugger” later in this chapter.)

-prof Output profiling information to file \JAVA.PROF.

-classpath dirs java looks for class files in the specified directories, DIRS. For
multiple directories, a colon (in UNIX) or semicolon (in DOS)
is used to separate each directory. For example, on a DOS
machine, the classpath might look like set
CLASSPATH=.;C:\users\dac\classes;C:\tools\java\classes.

-noasyncgc Turns off asynchronous garbage collection.

-verbosegc Prints out a message each time a garbage collection occurs.

-noclassgc Disables class garbage collection.

-verify Verifies all classes that are loaded.

-verifyremote Verifies classes that are imported or inherited. This is the
default setting.

-noverify Turns off class verification.

-mx val Sets the maximum Java heap size to the value specified by val.
The minimum heap size is 1K (-mx 1k) and the default is 16M
(-mx 16m). (Use the letters m and k to specify megabytes or
kilobytes for the value of val.)

-ms val Sets the initial Java heap size to the value specified by val. The
minimum heap size is 1K (-mx 1k) and the default is 1M (-mx
1m). (Use the letters m and k to specify megabytes or
kilobytes for the value of val.)

-ss val Sets the value of the stack size for a C process to the value
specified in val. The stack size must be greater than 1K (-ss
1k). (Use the letters m and k to specify megabytes or kilobytes
for the value of val.)

-oss val Sets the stack size of a Java process to the specified value in
val.(Use the letters m and k to specify megabytes or kilobytes
for the value of val.)

javac, The Java Compiler
The javac program is the tool you use to convert .java files into class files that can be run by the
interpreter. Table 4.2 lists the Java compiler options.

Option Description

Untitled-6 9/22/98, 2:38 PM59

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

60 Chapter 4 JDK Tools

Table 4.2 Java Compiler Options

Option Description

-O Displays the current version of the JDK.

-classpath <path> Overrides the default CLASSPATH environment variable and
specifies a new path to look up classes. Make certain you always
include library classes, such as jdk1.2\jre\rt.jar.

-d <directory> Specifies the directory to place the resulting class files in. Note
the directory specifies the root location.

-g Using this option causes debugging tables to be generated with
the class files. This information is necessary to provide complete
debugging information when you use jdb.

-nowarn Turns off warnings. When this is turned out, the Compiler does
not generate any warning messages. Note: this option is available
in JDK 1.1 and above, but not in JDK 1.0

-O Turns optimization on. This causes all static, final, and prive
methods to be placed inline. Although this can result in faster
performance, it may also cause your class files to become larger.

-verbose Turn verbose compilation on. This causes the compiler to print
out the source files that are being compiled and loaded.

-depend Using the depend option causes the compiler to consider
recompiling class files that are referenced from other class files.
Ordinarily, recompilation is only done based on file dates. Note:
this is JDK 1.2 and is not available in JDK 1.0

-Jjavaoption This option can be used to pass a single argument through to the
Java interpreter that is actually running the compiler. The
javaoption should not contain any spaces; if spaces are required,
multiple –J parameters should be used. This option can be used to
enable you to pass options like mx or ms to alter the amount of
memory used during the compiler’s execution.

javap, The Java Disassembler
The Java disassembler is used to disassemble Java bytecode that has already been compiled.
After disassembling the code, information about the member variables and methods is printed.
The syntax for the Java disassembler is:

javap [options] classnames

Multiple classes can be disassembled. Use a single space to separate each class. The options
available for the disassembler are shown in Table 4.3.

Untitled-6 9/22/98, 2:38 PM60

61

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

4

I
Part

Ch

javah C-Header and Stub File Creation

Table 4.3 javap Options

Option Description

-version Displays the version of the JDK that javap is being executed from.

-c Disassembles the source file and displays the bytecodes produced by
the compiler.

-l Prints the local variable tables.

-public Shows only public classes and members.

-protected Shows protected and public classes and members.

-package Prints out private, protected, and public member variables and meth-
ods. (By default, javap uses this option.)

-private Shows all classes and members.

-s Print internal type signatures.

-verbose Prints stacks, local variables, and member methods as the javap works.

-classpath dirs Looks for class files in the specified directories, _DIRS. For multiple
directories, a colon (UNIX) or semicolon (DOS) is used to separate
each directory. For example, on a DOS machine the classpath might
look like set CLASSPATH=.;C:\users\dac\classes;C:\tools\java\
classes.

-verify Runs the verifier on the source, and checks the classes being loaded.

javah C-Header and Stub File Creation
The javah tool creates C-header and stub files needed to extend your Java code with the C
language.

The syntax of the javah tool is:

javah [options] classname

where classname is the name of the Java class file without the .class extension. See Table 4.4
for a list of javah options.

Table 4.4 javah Options

Option Description

-version Prints out the build version.

-help Prints out the help screen. This is the same as typing javah by itself.

-jni Creates a header file for use in JNI.

continues

Untitled-6 9/22/98, 2:38 PM61

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

62 Chapter 4 JDK Tools

-td Identifies the temporary directory for javah to use.

-trace Causes trace information to be added to the stub files.

-classpath Specifies the classpath for use with javah.

-stubs Creates stub files instead of the default header files.

-d dir Tells the javah tool in what directory to create the header or stub files.

-v Prints out the status as it creates the header or stub file.

-o filename Puts both the stub and header files into the file specified by file name.
This file could be a regular text file or even a header (FILENAME.H) or
stub (FILENAME.C) file.

The javadoc Tool (Documentation Generator)
The javadoc tool creates an HTML file based on the tags that are embedded in the /** */ type
of comments within a Java source file. These HTML files are used to store information about
the classes and methods that you can easily view with any Web browser.

Javadoc was actually used by the creators of the JDK to create the Java API Documentation
(refer to http://www.javasoft.com/doc for more information). You can view the API online
and you can also see the source code used to generate it in your \JDK1.2\SRC\JAVA directory.
See Tables 4.5 and 4.6 for information regarding options and tags.

Table 4.5 javadoc Options

Option Description

-verbose Displays more information about what files are being documented.

-d directory Specifies the directory where javadoc stores the generated HTML files.
For example, javadoc -d C:\usrs\dac\public_html\doc java.lang.

-classpath dirs Looks for class files, included in the source file, in the specified
directories, DIRS. For multiple directories, a colon (UNIX)
or semicolon (DOS) is used to separate each directory. For example, on
a DOS machine, the classpath might look like set
CLASSPATH=.;C:\users\dac\classes;C:\tools\java\classes.

-sourcefile dirs Specifies in colon-separated directories the list of files to use.

-doctype Specifies the type of file to output the information in. The default is
HTML, but it can be set to MIF.

-nodepreciated Causes javadoc to ignore @depreciated paragraphs.

Table 4.4 Continued

Option Description

Untitled-6 9/22/98, 2:38 PM62

63

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

4

I
Part

Ch

jdb, The Java Debugger

-author Causes javadoc to utilize the @author paragraphs.

-noindex Javadoc does not create an index file.

-notree Javadoc does not create a tree file.

-J<flag> The specified flag is passed directly to the Java runtime.

Table 4.6 javadoc Tags

Tag Description

@see class Puts a See Also link in the HTML file to the class specified by
class.

@see class#method Puts a See Also link in the HTML file to the method specified by
method.

@param param descr Describes method arguments.

@version ver Specifies the version of the program.

@author name Includes the author’s name in the HTML file.

@return descr Describes a method’s return value.

@exception class Creates a link to the exceptions thrown by the class specified by
class.

jdb, The Java Debugger
The Java debugger is the debugging tool for the Java environment and is completely command-
line driven. You can use the debugger to debug files located on your local system or files that
are located on a remote system. For remote Java files, the jdb must be used with the -host and
-password options described in the table of options. The jdb also consists of a list of commands
that are not covered in this chapter. See Table 4.7 for information regarding jdb options.

Table 4.7 jdb Options

Options Description

-host hostname Tells the jdb where the remote Java program resides. hostname is
the name of the remote computer (such as well.com or sun.com).

-password password Passes to the jdb the password for the remote Java file, issued by
the Java interpreter using the -debug option.

Option Description

Untitled-6 9/22/98, 2:38 PM63

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

64 Chapter 4 JDK Tools

Now that you’ve covered the JDK tools, look at the one variable upon which they all depend—
the CLASSPATH variable.

The CLASSPATH Environment Variable
There is really only one environment variable used by the various tools of the JDK, which is
the CLASSPATH variable and it is essential that it is set correctly. If it is not, the compiler, inter-
preter, and other JDK tools will not be able to find the .class files they need to complete their
tasks.

The CLASSPATH variable points to the directories where all the classes that are available to
import from reside. CLASSPATH lets you put your own class files in various directories and lets
the JDK tools know where they are.

On UNIX machines, the CLASSPATH variable is a colon-separated list of directories in the form:

setenv CLASSPATH .:/users/java/:/usr/local/jdk1.2/classes/

This command can be put in your .login file, so it’s set properly every time you log in.

In DOS land, it’s a semicolon-separated list of directories in the form:

set CLASSPATH=.;C:\users\dac\classes;C:\tools\jdk1.2\classes

This line can be put in your AUTOEXEC.BAT file so that the CLASSPATH is set properly every time
you boot your machine.

The first period points the CLASSPATH at the current working directory, which is quite helpful if
you don’t feel like typing in full path names every time you want to do something with the Java
program you’re working on at a given moment.

The UNIX and Win32 versions of the JDK are quite similar and most of the commands that
work for one work for the other. The Macintosh version of the JDK has some significant differ-
ences, however.

Macintosh Issues
Because the Mac doesn’t have a command-line interface, the tools for the JDK are slightly
different on the Mac than they are on other platforms.

The most notable difference is that fewer tools come with the Mac JDK than for other
platforms. Hopefully, this will change soon, but until then, Mac users have to make due

without some of the most basic tools, such as the Java debugger, javadoc, and the Java
disassembler. ■

The Mac JDK includes four tools:

■ AppletViewer The applet viewer program to run applets outside of a browser.

■ Java Compiler Compiles the .java files into .class bytecodes.

N O T E

Untitled-6 9/22/98, 2:38 PM64

65

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

4

I
Part

Ch

Macintosh Issues

■ Java Runner The Java interpreter, basically the “java” described previously.

■ JavaH C-header creator, with stub file creation, otherwise known as javah.

For the most part, these do the same things as their non-GUI counterparts but have some
interface issues that make them different. Some tools, like the AppletViewer, are quite similar
to the versions on other platforms. Other tools, like the Java Runner, are completely different.
Here’s the basic information on those tools and where they differ from their cross-platform
counterparts.

AppletViewer for the Macintosh
When opened, the Mac AppletViewer has the standard Mac File and Edit menus. There is also
a status box, which shows the current amount of memory allotted to the Applet-viewer’s Java
Virtual Machine, and how much of that memory is taken. That box also shows progress bars
indicating the status of any information being loaded into the AppletViewer, like .class files or
GIF image files.

If you are running a Mac that supports drag and drop (supported in Mac OS 7.1 and
above), you can launch applets off your hard drive by simply dragging the HTML file that

contains the <applet> tag onto the little Duke icon of the AppletViewer. You can also double-click the
AppletViewer Duke icon and use one of the two Open menus to open an applet. ■

The AppletViewer File menu contains the following options:

■ Open URL Opens a URL to a Web page that contains an applet.

■ Open Local Brings up a standard Mac Open dialog box that lets you open an HTML file
on your local hard drive.

■ Save Doesn’t do anything; it’s there to comply with the Mac human interface guide-
lines.

■ Close Closes the topmost window, if that window can be closed.

■ Properties Shows the AppletViewer security properties. These settings enable you to
configure AppletViewer for a network environment that includes a firewall proxy, or an
HTTP proxy, using the relative proxy server and proxy port boxes. The Network Access
box allows you to select the type of network access that AppletViewer is allowed. The
choices are No Network Access, Applet Host (default), and Unrestricted. The Class
Access box enables you to choose what kind of access—restricted or unrestricted you
would like AppletViewer to have on other classes.

■ Quit Closes all the open applets and exits the AppletViewer.

The AppletViewer also has an Edit menu, but this is not enabled as of this writing. Hopefully, it
will be enabled soon, at the very least, so you don’t have to type in long URLs in the Open URL
dialog box.

When an applet is running, an Applet menu also appears. The commands available in that
menu are as follows:

N O T E

Untitled-6 9/22/98, 2:38 PM65

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

66 Chapter 4 JDK Tools

■ Restart Restarts the applet using the current settings.

■ Reload Reloads the applet. Changes in the class file are applied upon reload.

■ Clone Clones (duplicates) the current applet, using the same settings to create another
AppletViewer instance.

■ Tag Shows the HTML applet tag that is used to run the current applet, as well as any
parameters that are passed to the applet from the HTML tag (refer to Figure 4.1).

■ Info Shows special information about the applet, which is set within the applet’s
program (refer to Figure 4.2).

■ Properties Shows the AppletViewer security properties. These settings enable you to
configure AppletViewer for a network environment that includes a firewall proxy, or an
HTTP proxy, using the relative proxy server and proxy port boxes. The Network Access
box allows you to select the type of network access that AppletViewer is allowed. The
choices are No Network Access, Applet Host (default), and Unrestricted. The Class
Access box enables you to choose what kind of access—Restricted or Unrestricted—you
would like AppletViewer to have on other classes (refer to Figure 4.3).

■ Quit Closes the AppletViewer window and terminates the applet.

Java Runner, The Mac Java Interpreter
The Mac Java Runner is the Mac equivalent of the java command described earlier. Because
the Mac has no command line, it has a very rudimentary GUI to set the various options. To
make matters slightly worse, that GUI doesn’t quite follow the Apple Human Interface Guide-
lines, which means there’s a menu where you wouldn’t normally expect it.

You normally launch the Java Runner by double-clicking a .class file that has a main()
method. You use the Java compiler to create that .class file, and so it appears on the desktop,
or in the folder from which it was launched, as a document icon with Duke in the middle, and
1s and 0s in the upper-left corner of the icon.

Alternatively, you can drag the .class file onto the Java Runner icon, or double-click the Java
Runner icon and select the .class file in the Open File dialog box that appears.

The Java Runner’s menus are cleverly hidden as a submenu in the Apple, Java Runtime menu
so that they don’t interfere with any menus created by the Java application that is running:

■ Edit Mem Lets you set the maximum and minimum heap sizes and disable asynchro-
nous garbage collection (to speed things up).

■ Edit Classpath This option is not currently enabled.

■ Redirect Stderr Redirects error messages to a file that you specify in the Create File
dialog box that appears after selecting this menu option.

■ Redirect Stdout Redirects program messages to a file that you specify in the Create File
dialog box that appears after selecting this menu option.

■ Save Options Saves your other menu settings.

Untitled-6 9/22/98, 2:38 PM66

67

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

4

I
Part

Ch

JavaH: C-Header File Generator

■ Save Text Window Saves the frontmost text window (for example, the output window of
the HelloWorld program) to a file.

■ Close Text Window Closes the topmost text window.

■ Quit Quits the Java Runner and kills any running Java applications.

The Java Compiler
The Java compiler has a basic GUI that lets you set the options that are available as command-
line arguments to the other systems. You can compile files by either dragging the .java files
onto the compiler, or by choosing File, Compile File. Other menu options are as follows:

■ Close Seems to return an error when selected. Hopefully, this will be fixed in a future
release.

CAUTION

As of version 1.02 of the MacJDK, the Close menu item appears to have a bug that causes a method not
found exception when used. Until that bug is fixed, do not use the Close menu item.

■ Properties Opens a dialog box that lets you set—using check boxes and other items—
most of the options available to the other systems. It also lets you select an outside editor
from a list of popular editors. The default is simple text. This dialog box also lets you set
the CLASSPATH for the compiler, the target folder where .class files will be written, and
disable threaded compiles to speed up the compiler in situations where multithreading is
slowing things down.

■ Quit Quits the compiler.

JavaH: C-Header File Generator
JavaH is provided so that you can link native methods into Java code. At this time, it only works
for PowerPC-based Macs. It has no menus of its own outside of the standard Java Runner in the
Apple menu, such as the all-important Quit command. To use JavaH, you need a third-party
compiler, such as Metrowerks CodeWarrior, in order to generate the C code to actually link in
with the Java. ●

Untitled-6 9/22/98, 2:38 PM67

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH04 LP#4

68 Chapter 4 JDK Tools

Untitled-6 9/22/98, 2:38 PM68

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTII LP#2

IIP A R T

The Java Language

5 Object-Oriented Programming 71

6 Hello world!: Your First Java Program 83

7 Data Types and Other Tokens 97

8 Methods 119

9 Using Expressions 131

10 Control Flow 143

11 Classes 157

12 Interfaces 191

13 Threads 207

14 Writing an Applet 227

15 Advance Applet Code 259

16 JAR Archive Files 273

17 Applets Versus Applications 289

18 Managing Applications 313

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTII LP#2

71

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

5

II
Part

Ch

C H A P T E R

Obejct-Oriented Programming

5

In this chapter

Object-Oriented Programming: A New Way of
Thinking 72

A Short History of Programming 72

A Lesson in Objects 74

Objects as Multiple Entities 78

Organizing Code 78

Objects and How They Relate to Java Classes 78

Building a Hierarchy: A Recipe for OOP Design 79

Java Isn’t a Magic OOP Bullet 81

Untitled-8 9/22/98, 2:44 PM71

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

72 Chapter 5 Object-Oriented Programming

Object-Oriented Programming: A New Way of
Thinking

By now, as a programmer, you have no doubt heard of a marvelous term called OOP—object-
oriented programming. OOP is truly the hottest method of software development today. It isn’t
a totally new concept, but it has been a long time in coming to the masses. While Java doesn’t
impose OOP programming like some languages (such as SmallTalk), it does embrace it and
allow you to dance with the technology seamlessly.

Object-oriented programming is a completely new way of programming. At the same time, in
many ways OOP is much the same as structured programming. After you learn and embrace
the new terms and concepts associated with object programming, the switch can be so easy
that you might not even notice you are doing it. You see, OOP’s goal is to provide you, the
programmer, with a few new ways to actually write code and a whole lot of new ways to think
about programming.

After you have embraced the new ways OOP teaches you to think about programming, the
lexical changes, or how you actually write code grammatically, come quite naturally. Unfortu-
nately, truly embracing these changes can take some time. For others, the realization of how
OOP works comes in flashes of inspiration. With each new realization, you open up a whole
new set of programming possibilities.

A Short History of Programming
To understand why object-oriented programming is of such great benefit to you as a program-
mer, it’s necessary to take a look at the history of programming as a technology.

In the early days of computing, programming was an extremely labored process. Each step the
computer needed to take had to be meticulously (and flawlessly) programmed. The early lan-
guages were known as Machine Language, which later evolved to Assembly Language.

If you have ever tried giving another person directions for how to tie their shoes, you probably
found that it was very difficult—especially if they had never seen shoelaces before. As a simple
exercise, ask a coworker (one that won’t think this is too weird) to take his or her shoes off.
Ask that person to do exactly what you tell him or her to do, and no more. You find that it is
necessary to give very precise, step-by-step directions. “Lift up the left shoelace, move it to the
right side below the right shoelace. Pick up the right shoelace,” and so on.

If you can grasp the number of instructions you need to teach someone how to tie a shoe, you
might be able to grasp what this type of programming was like. For programmers, the instruc-
tions were a bit more cryptic (and the computer was much less forgiving about imprecise
directions). It was necessary to give directions such as “Push the contents of register 1 onto
the stack,” “Take the contents of the accumulator and place them in register 1,” and so on.

Untitled-8 9/22/98, 2:44 PM72

73

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

5

II
Part

Ch

Procedural Languages
Programmers soon saw the need for more stylized procedural languages. These procedural
languages placed code into blocks called procedures or functions. The goal of each of these
blocks was to act like a black box that completed one task or another. For instance, you might
create a procedure to write something to the screen, like writeln in Pascal or printf in C. The
purists of this type of programming believed that you could always write these functions with-
out modifying external data. In the example of printf or writeln, the string that you print to
the screen is the same string before and after you print the string out. In essence, the ideal was
not only to build a black box, but to weld the box shut when you were done testing it.

One of the problems with this method, though, is to write all functions in such a way that they
actually do not modify data outside their boundary. This can be very difficult. For instance,
what if you want to pass in a value that you want to have updated while it “lives” inside the
method (but not one that is returned)? Frequently, constraining a procedure in this manner
turns out to be too difficult a restriction. So, as functions began changing data outside their
scope (in C this is done by passing a pointer), a problem called coupling began to surface.
Because the functions were now changing data outside of their scope, testing became more
and more difficult. Coupling meant that each method had to be tested—not only individually,
but also to make sure that it wasn’t used in such a way that a value it changed wasn’t corrupted
as a result. In addition, it meant that each black box had to be tested with all of its black boxes
in place. If any of those boxes where changed, the parent box had to be retested because the
other box may have changed a value and the parent box may not work any longer. (Starts to
sound pretty complicated doesn’t it?)

As large programs were developed, the problem of coupling reared its ugly head. Testing
these programs begot a whole sub-industry, and software managers lost most of their hair.
If they were lucky enough to keep their hair, you could spot them just as easily because they
never cut it.

Structured Development
The next solution was to try structured development. Structured development didn’t necessar-
ily change the languages that were being used, but rather provided a new process. Using struc-
tured development, programmers were expected to plan 100 percent of their program before
ever writing a single line of code. When a program was developed, huge schematics and flow
charts were developed showing the interaction of each function with every other and how each
piece of data flowed through the program. This heavy pre-code work proved to be effective in
some cases, but limiting for most. This pitfall might have come in large part because the em-
phasis in programming became good documentation and not necessarily great design.

In addition, when programmers were pushed to predesign all of their code before actually
writing any of it, a bad thing happened. Programming became institutionalized. You see, good
programs tended to be as much experimentation as real development. Structured development
pulled at this portion of the development cycle. Because the program needed to be completely
designed before anything was implemented, programmers were no longer free to sit and ex-
periment with individual portions of the system.

A Short History of Programming

Untitled-8 9/22/98, 2:44 PM73

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

74 Chapter 5 Object-Oriented Programming

Ahh…Object-Oriented Programming
Finally, along came object-oriented programming. Object-oriented programming did require a
few language changes, but also changed the way that programmers think about programming.
The resulting programming technique goes back to procedural development by emphasizing
black boxes, embraces structured development (and actually pushes it further), and most
importantly, encourages creative programming design.

Objects under an OOP paradigm are represented in a system, not just their acquainted data
structures. Objects aren’t just numbers, like integers and characters; they are also the methods
that relate and manipulate the numbers. In OOP programming, rather than passing data
around a system openly (such as to a function), messages are passed to and from objects.
Rather than taking data and pushing it through a function, a message is passed to an object
telling it to perform its task.

Object-oriented programming really isn’t all that new; it was developed in the 1970s by the
same group of researchers at Xerox Parc that brought us GUI (graphical user interfaces),
EtherNet, and a host of other products that are commonplace today. Why has OOP taken so
long to enter into the masses? OOP requires a paradigm shift in development. In addition,
because the computer ends up doing much more work, programs developed using OOP do
tend to require a bit more computing horsepower to obtain the same performance results—but
what a difference those little breaks can make.

Objects themselves are the cornerstone of object-oriented programming. The concept of ob-
jects is perhaps the first and most significant change each programmer who wants to do OOP
design must understand.

Objects are robust packages that contain both data and methods. Objects can be replicated and
adjusted without damaging the predefined code. Instead of being trapped under innumerable
potential additional uses, a method’s purpose is easily definable, as is the data upon which it
will work. As the needs of new programs begin to grow, the method can be replicated or ad-
justed to fit the needs of the new system taking advantage of the current method, but not nec-
essarily altering it (by overloading or overriding the method).

Objects themselves can be expanded and, by deriving new objects from existing ones, code
time is greatly reduced. Equally important, if not more important, debug time is greatly re-
duced by localizing bugs, because coupling changes are limited, at worst, to new classes.

A Lesson in Objects
As you work, you are familiar with objects all the time: calculators, phones, computers, fax
machines, and stereos are all examples of objects in the real world. When you deal with these
objects, you don’t separate the object from its quantities and methods. For example, when you
turn on your stereo, you don’t think about the quantities (such as the station number) from the
methods (such as turning the dial or making sound). You simply turn it on, select a station, and
sit back to listen to the music.

Untitled-8 9/22/98, 2:44 PM74

75

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

5

II
Part

Ch

By using object-oriented programming, you can approach the same simplicity of use. As a
structured programmer, you are used to creating data structures to hold data and to defining
methods and functions to manipulate this data. Objects, however, take and combine the data
with the code. The synergistic relationship that comes out is one object that knows everything
necessary to exist and work.

Take a look at an example using your car. When you describe a car, there are a number of
important physical factors: the number of people a car can hold, the speed the car is going, the
amount of horsepower the engine has, the drag coefficient, and so on. In addition, the car has
several functional definitions: It accelerates, decelerates, turns, and parks. Neither the physical
nor the functional definitions alone embody the definition of your car—it is necessary to define
them both.

Traditional Program Design
In a traditional program, you might define a data structure called MyCarData to look like this:

public class MyCarData {
 int weight;
 float speed;
 int hp;
 double dragCoef;
 }
}

Then you would create a set of methods to deal with the data:

public class RunCar {
 public void speedUp(MyCarData m){
 ...
 }

 public void slowDown(MyCarData m){
 ...
 }

 public void stop(MyCarData m){
 ...
 }
}

The OOP Way
In OOP programming, the methods for the car to run and the actual running of the car are
combined into one object:

public class Car{
int weight;
float speed;
int hp;
double dragCoef;

public void speedUp(){
 speed += hp/weight;
}

A Lesson in Objects

Untitled-8 9/22/98, 2:44 PM75

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

76 Chapter 5 Object-Oriented Programming

public void slowDown(){
 speed -= speed * dragCoef;
}

public void stop(){
 speed=0;
}
}

Within each of the new methods, there is no need to either reference the variables using dot
notation (such as m.speed) or pass in a reference to variables (such as (MyCarData m)). The
methods implicitly know about the variables of their own class. (These variables are also
known as field variables.)

Extending Objects Through Inheritance
The next step in developing objects is to create multiple objects based on one super object.
Return to the car example. A Saturn SL 2 is a car, and yet certainly it has several attributes that
not all cars have. When building a car, manufacturers don’t typically start from scratch. They
know their cars are going to need several things: tires, doors, steering wheels, and more. Fre-
quently, the same parts can be used between cars. Wouldn’t it be nice to start with a generic
car, build up the specifics of a Saturn, and from there (because each Saturn has its own pecu-
liarities) build up the SL 2?

Inheritance is a feature of OOP programming that enables you to do just this. By inheriting all
the common features of a car into a Saturn, it’s not necessary to reinvent the object (car) every
time.

In addition, by inheriting a car’s features into the Saturn—through an added benefit called
polymorphism—the Saturn is also a car. Now that might seem obvious, but the reach and scope
of that fact is enormous. Under traditional programming techniques, you would have to sepa-
rately deal with each type of car—Fords here, GMCs there, and so on. Under OOP, the features
all cars have are encapsulated in the car object. When you inherit car into Ford, GMC, and
Saturn, you can then polymorph them back to car, and much, if not all, of this work is elimi-
nated.

For instance, say you have a race track program. On the race track, you have a green light,
yellow light, and red light. Now, each race car driver comes to the race with a different type of
car. Each driver has accessible to him each of the peculiarities of his individual car (such as
some fancy accelerator in your Volvo). As you put each car on the track, you give a reference of
your car to the track itself. The track controller doesn’t need access to any methods that access
that fancy accelerator of yours or the CD player; those methods are individual to each of the
cars. However, the person sitting in the control tower does want to be able to tell both drivers
to slow down when the yellow light is illuminated. Because the makes are cars, the control
tower program has received them as cars. Take a look at this hypothetical code.

Here are two cars:

class Lamborghini extends Car{
 public void superCharge(){

Untitled-8 9/22/98, 2:44 PM76

77

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

5

II
Part

Ch

 for (int x=0;x<infinity;x++)
 speedUp();
 }
}

class Volvo extends Car{
CDPlayer cd;

public void goFaster(){
 while(I_Have_Gas){
 speedUp();
 }
}

public void jam(){
 cd.turnOn();
}

}

Here is the race track itself:

class RaceTrack {
 Car theCars[] = new Car[3];
 int numberOfCars = 0;

 public void addCar(Car newCar){
 theCars[numberOfCars]=newCar;
 numberOfCars++;
 }

 public void yellowLight(){
 for (int x=0;x<numberOfCars;x++)
 theCars[x].slowDown();
 }
}

Here is the program that puts it all together:

class RaceProgram{
Lamborghini me = new Lamborghini();
Volvo you = new Volvo();
RaceTrack rc = new RaceTrack();

public void start(){
rc.addCar(me);
rc.addCar(you);
while(true){
if (somethingIsWrong)
rc.yellowLight();
}
}
}

How can this work? In the RaceProgram class, you created two different objects: me (of type
Lamborghini) and you (of type Volvo). How can you call rc.addCar, which takes a Car as a
parameter type? The answer lies in polymorphism. Because both of the cars extended Car, they

A Lesson in Objects

Untitled-8 9/22/98, 2:44 PM77

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

78 Chapter 5 Object-Oriented Programming

can be used as Cars as well as their individual types. This means that if you create yet another
type of car (Saturn), you could call rc.addCar (the Saturn) without having to make any
changes to RaceTrack whatsoever. Notice that this is true, even though Volvo effectively is a
different structure, because it now also contains a CDPlayer variable!

Objects as Multiple Entities
One of the pitfalls you have probably fallen into as a procedural programmer is thinking of the
data in your program as a fixed quantity. A perfect example of this is the screen. Usually proce-
dural programs tend to write something to the (one) screen. The problem with this method is
that when you switch to a windowing environment and have to write to multiple screens, the
whole program is in jeopardy. It takes quite a bit of work to go back and change the program so
that the right data is written to the appropriate window.

In contrast, OOP programming treats the screen not as the screen but as a screen. Adding
windows is as simple as telling the function it’s writing to a different screen object.

This demonstrates one of the aspects of OOP that saves the most real programming time im-
mediately. When you become an OOP programmer, you begin thinking of dealing with objects.
No matter if there’s 1 or 100 of them, it doesn’t affect the program in any way. If you’re not
familiar with OOP programming, this might not make sense. After all, what you are saying to
yourself is, “If I have two screens, when I go to print something to the screen, I need to be sure
to position it correctly on the correct screen, and pay attention to user interaction to each dif-
ferent window.”

Believe it or not, under OOP the need to do this is washed away. After the elements of a win-
dow or screen are abstracted sufficiently, when you write the method, it’s irrelevant which
screen you’re writing to. The window object handles all of that for you. This is actually the flip
side of polymorphism, because all you care about is that the item is a screen, and not any of the
extra capabilities any one particular screen has.

Organizing Code
OOP organizes your code elegantly because of two key factors:

■ When used correctly, OOP forces you to organize your code into many manageable
pieces.

■ By using OOP, each piece is organized naturally, without you having to actually think
about the organization. Given that you are forced to organize your code and the organiza-
tion is natural, this is an amazingly powerful feature.

Objects and How They Relate to Java Classes
At the heart of Java is support for these objects you have been hearing about. They come in a
form called a class. (Actually, there is a Java class called Object, which all classes inherit from,
so all classes literally are Objects.)

Untitled-8 9/22/98, 2:44 PM78

79

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

5

II
Part

Ch

Objects are instances of classes. In this sense, classes can be thought of as a template for creat-
ing an object. Take a rectangle as an example. A rectangle you want to create should have an
x,y location, height, width, move method, and resize method (for shrinking or enlarging the
rectangle). When you write the code for the rectangle, you create it in a class. However, to take
advantage of the code, you need to create an instance of that class. The instance is a single
Rectangle object.

Building a Hierarchy: A Recipe for OOP Design
When setting out to develop an OOP program for the first time, it is often helpful to have a
recipe to follow. Developing good OOP structures is a lot like baking a pie. It’s first necessary
to gather all the ingredients, then begin assembling each portion of the pie.

Break Down Code to Its Smallest Entities
When writing an OOP program, it’s first necessary to figure out which ingredients are needed.
For instance, if you were writing an arcade game, it would be necessary to figure out every-
thing that would be in that game: creatures, power pieces, the main character, bullets, and so
on.

After you have assembled these pieces, you need to break them down into all of their entities,
both data and functional. For this example, if you were setting out to write the arcade game,
you might create a list like this for the four items:

Piece Entity

Creatures Location, size, power level, attack capability to, and maneuver-
ability

Power Pieces Must be drawn, location, power level

Bullets Capability to be fired, size, and quantity

Main Character Capability to receive commands from the user, capability to move
around the maze according to these commands, capability to at-
tack, location, and size

Look for Commonality Between the Entities
The next phase of developing an OOP structure is to look for all the common relationships
between each of the entities. For instance, right away you might recognize that the primary
difference between the creatures and the main character (aside from how they look) is who
controls each. Namely, the creatures are controlled by the computer, and the main character is
controlled by the user. Wouldn’t it be great if you could write most of the code for both the
creatures and the main character once, and then just write separate code for moving them?

If that’s how you feel, but you really don’t think it could be that easy, keep reading. Treating
objects this way is exactly what the OOP paradigm is all about.

Building a Hierarchy: A Recipe for OOP Design

Untitled-8 9/22/98, 2:44 PM79

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

80 Chapter 5 Object-Oriented Programming

Look for Differences Between Entities
The next step is to find the differences between the entities. For instance, the bullets move and
the power pieces stay put. Creatures are controlled by the computer, and the main character is
controlled by the user. You are looking for relationships that unite and separate all of those
entities in your program.

Find the Largest Commonality Between All Entities
The third step is to find the largest common relationship between all the entities in your pro-
gram. Rarely is it impossible to find any common relationships among all objects. It is possible,
however, to find one entity so completely different that it doesn’t share anything with any other
object.

Looking at the game example, what do you see that all four objects have in common? A quick
list might include size, the capability to move around (the power piece doesn’t really need to
move, but it wouldn’t hurt if it could), and location.

Is that all they have in common? Perhaps the most obvious commonality wasn’t even (inten-
tionally) listed before—the capability to be drawn to the screen. This capability is so obvious
you might just miss it. Don’t forget to look at the obvious.

With these entities, you could create a class called Draw_Object. The class would contain all
the items just listed.

Put Remaining Common Objects Together and Repeat
The next phase is to put objects that still have things in common together (after you have elimi-
nated the aspects that were just grouped into the previous class). You use these commonalties
to produce another level of classes, each of which inherits from the class that contains all the
completely common information (Draw_Object).

Going back to the example, at this point the power pieces and the bullets probably split from
the creatures and the main character. Now, take the remaining objects and repeat the recipe
again.

Going through the next phase, you find that the only real difference between the power pieces
and the bullets is their size and how fast they move (the power pieces at speed 0). Because
these are primarily minor differences, you combine them into one class.

When you look at the creatures and the main character, you have decided that the main charac-
ter contains everything that a creature does plus some, so you inherit the Creature class in the
Main_Character class.

The final class hierarchy is shown in Figure 5.1. Try this on your own. There are countless
variations to the chart developed here; see what you come up with.

Untitled-8 9/22/98, 2:44 PM80

81

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

5

II
Part

Ch

Using Objects to Add As Many As Desired
When writing a game, it is often desirable to be able to add as many attack creatures as a par-
ticular board wants. Because the creature class encapsulates, all that you need to create a
creature and a new board with more creatures is to add those creatures to the list. Again, this
might seem obvious, but it’s extremely powerful; it means you don’t need to create a string of
variables like creature1Speed, creature2Speed, creature1Power, creature2Power, and so on.

You can think of this step as if you were creating any other variable. For instance, assuming
that you’re already a programmer in a different language, you’re probably very used to just
creating an integer variable any time you need one. Now you can create a whole new creature
any time you need one.

Java Isn’t a Magic OOP Bullet
The focus of this chapter has been to introduce the concepts of good OOP. The chapter has
intentionally avoided complicated coding implementations; the rest of this book should help
you fill in that portion.

Now that you have seen many of the fundamentals of OOP programming at a surface level,
establish why you went through all of this. Java isn’t a magic bullet to creating OOP programs.
While Java embraces the OOP paradigm, it is still possible (and not unusual) to write struc-
tured programs using Java. It’s not unusual to see Java programs written without any acknowl-
edgment of some of the OOP tools just covered, like polymorphism and encapsulation.

By introducing OOP at this stage, hopefully you can break the bad habits of structured pro-
gramming before they begin. You need to remember that OOP is as much a different way of
thinking as it is a different way of programming. Throughout this book, there are applets and
applications written both ways. Look for those programs that are broken into multiple pieces.
Then, when you think you understand OOP, reread this chapter and see if any more insights
are brought to mind. ●

Draw_Object

Creature Power Pieces / Bullets

Main_Character

FIG. 5.1
Building a hierarchy for
your game enables you
to save a lot of coding.

Java Isn’t a Magic OOP Bullet

Untitled-8 9/22/98, 2:44 PM81

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH05 LP#4

82 Chapter 5 Object-Oriented Programming

Untitled-8 9/22/98, 2:44 PM82

83

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

6

II
Part

Ch

C H A P T E R

HelloWorld!: Your First Java Program

6

In this chapter

HelloWorld Application 84

Understanding HelloWorld 85

HelloWorld as an Applet—Running in Netscape 90

Keywords 94

API 95

Untitled-9 9/22/98, 2:47 PM83

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

84 Chapter 6 HelloWorld!: Your First Java Program

HelloWorld Application
When learning to program, it is often useful to jump in headfirst, learn how to write a short
application, and then step back and learn the rest of the fundamentals. In this chapter you do
just that, and by the end you should be able to write your own Java programs.

You have already seen the simplest Java program, HelloWorld, in Chapter 3, “Installing the JDK
and Getting Started.” Take a closer look at each of the components. Listing 6.1 shows the
HelloWorld application.

Listing 6.1 The HelloWorld Application

public class HelloWorld {
 public static void main(String args[]){
 System.out.println(“Hello World!!”);
 }
}

As you can see, there really isn’t a lot to this program, which may be why it’s called the easiest
Java application. Nevertheless, you take a close look at the program from the inside out. Before
you do that, though, compile the program and run it.

Create the File
The first step to creating the HelloWorld application is to copy the text from Listing 6.1 into a
file called HelloWorld.java using your favorite text editor (Windows NotePad, or SimpleText on
the Macintosh will work if you don’t have another). It is very important to call the file
HelloWorld.java, because the compiler expects the filename to match the class identifier (see
“Declaring a Class” later in this chapter).

CAUTION

If you use a program such as Microsoft Word to type the code, make sure that you save the file as text only.
If you save it as a Word document, Word adds a lot of information about formatting the text that simply
doesn’t apply to your situation, and only causes you grief.

Compile the Code
To compile the program, you need to first install the JDK. Then, use the program javac in-
cluded with the JDK to convert the text in Listing 6.1 to a form the computer can run. To run
javac on a Macintosh, drag the source file over the javac icon. On any other computer, type the
following at a command prompt: javac HelloWorld.java.

The javac program creates a file called HelloWorld.class from the HelloWorld.java file. Inside
this file (HelloWorld.class) are what is known as bytecodes. Bytecodes are special instructions
that can be run by the Java interpreter.
◊ See “Installing a Downloaded JDK,” p. 45

Untitled-9 9/22/98, 2:47 PM84

85

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

6

II
Part

Ch

Run the Program
Now that you have compiled the program, you can run it by typing the following at the com-
mand prompt: java HelloWorld.

The HelloWorld used in the command prompt java HelloWorld is not HelloWorld.class or
HelloWorld.java, just the name of the class. ■

After you do this, the computer should print the following to the screen:

Hello World!!

That may not seem very interesting, but then it’s a simple program. If you don’t see that on the
screen, go back and make sure you have typed in the file exactly as it is shown in Listing 6.1,
and make sure that you called the file HelloWorld.java.

Understanding HelloWorld
Now that you have seen the results of the HelloWorld program, go back to the original source
code and see if you can understand how it works. As you should begin to see, there are a lot of
parts to the HelloWorld program. After you understand all of them, you’re a long way to being
able to write any program.

Declaring a Class
The first task when creating any Java program is to create a class. Take a look at the first line of
the HelloWorld application:

public class HelloWorld {

This declares a class called HelloWorld.
◊ See “Classes in Java,” p. 160

To create any class, simply write a line that looks like:

public class ClassName

Here, ClassName is the name of the program you are writing. In addition, ClassName must
correspond to the filename. It’s a good idea to make all your class names descriptive, so that
it’s easier to remember for what they are used.

It is an accepted practice that class names should always begin with a capital letter. This is
not required, but considered good style. There are also a number of limitations on the

names you can assign to a class, but you learn more about that later in Chapter 11, “Classes.” ■

Next, notice the brace ({) that is located before the class declaration. If you look at the end of
the class, there is also a closing brace (}). The braces tell the compiler where your class will
begin and end. Any code between those two braces is considered to be in the HelloWorld class.

N O T E

N O T E

Understanding HelloWorld

Untitled-9 9/22/98, 2:47 PM85

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

86 Chapter 6 HelloWorld!: Your First Java Program

Don’t be confused. Braces are used for a number of things called blocks, which are covered in
more detail in Chapter 8, “Methods.” The braces are matched in a LIFO (Last In, First Out)
format. That means that the next closing brace closes the open brace that was closest to it. In
the case of the HelloWorld program, there are two open braces, so the one that closes the class
is the very last one.

main Method
The next line in the HelloWorld program reads like the following:

public static void main(String args[]){

This line declares what is known as the main method. Methods are essentially mini-programs.
Each method performs some of the tasks of a complete program. The main method is the most
important one with respect to applications, because it is the place that all Java applications
start. For instance, when you run java HelloWorld, the Java interpreter starts at the first line
of the main method.

When creating any Java application, you need to create a main method as shown. In Chapter 8
you learn more about declaring and using methods.

Writing to the Screen
How does the text Hello World!! appear when you run the HelloWorld program? The answer
(as you have probably guessed) lies in the next line of the program:

System.out.println(“Hello World!!”);

You can replace any of the text within the quotation marks (“”) with any text you would like.

The System.out line is run because, the interpreter looks at the first line of code (namely the
printout) and executes it when the application starts. If you place any other code there, it runs
that code instead.

System.out and System.in
You have just seen how System.out.println was used to print text to the screen. In fact,
System.out.println can be used at any time to print text to what is known as Standard Out. In
almost all cases, Standard Out is the screen.

The system.out.println serves approximately the same purpose as the writeln in Pascal. In
C, the function is printf, and in C++, cout.

println Versus print There is one minor variation on println that is also readily used:
print(“Hello World!!”). The difference between println and print is that print does not
add a carriage return at the end of the line, so any subsequent printouts are on the same line.
Strictly speaking, print is the true cousin to printf and cout for C/C++ programmers.

To demonstrate this, expand your HelloWorld example a bit by copying Listing 6.2 into a file
called HelloWorld2.java and compiling it with the line java HelloWorld2.java.

Untitled-9 9/22/98, 2:47 PM86

87

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

6

II
Part

Ch

Listing 6.2 A HelloWorld Program with Two Printouts

public class HelloWorld2 {
 public static void main(String args[]){
 System.out.println(“Hello World!”);
 System.out.println(“Hello World Again!”);
 }
}

To run the program, type java HelloWorld2. You should see output that looks like the
following:

Hello World!
Hello World Again!

Notice that each phrase appears on its own line. Now, for comparison, try the program again
using print instead of println. Copy Listing 6.3 into a file called HelloWorld3, compile, and
run it.

Listing 6.3 A HelloWorld Output Using print Statements

public class HelloWorld3 {
 public static void main (String args[]){
 System.out.print (“Hello World!”);
 System.out.print (“Hello World Again!”);
 }
}

You should notice that the output looks like this:

Hello World!Hello World Again!

What caused the change? When you use print, the program does not add the extra carriage
return.

Extending the String: Writing More Than HelloWorld One of the features Java has inherited
from C++ is the capability to add strings together. Although this might not seem completely
mathematically logical, it is awfully convenient for a programmer. Revisit your last HelloWorld
program and get the same output using one println and the + operator (see Listing 6.4).

Listing 6.4 HelloWorld Output Adding Two Strings

public class HelloWorld4 {
 public static void main (String Args[]){
 System.out.print (“Hello World!” + “Hello World Again!”);
 }
}

When you compile and run HelloWorld4, you should see the same output that was produced
from HelloWorld3. This might not seem too interesting, so take a look at one more extensions

Understanding HelloWorld

Untitled-9 9/22/98, 2:47 PM87

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

88 Chapter 6 HelloWorld!: Your First Java Program

of the ability to add to strings—you can also add numbers. For instance, say you want to add
the number 43 to the string. Listing 6.5 shows an example of just such a situation.

Listing 6.5 HelloWorld with a Number

public class HelloWorld5 {
 public static void main (String args[]){
 System.out.print (“Hello World! “ + 43);
 }
}

Listing 6.5 produces the following:

Hello World! 43

Getting Information from the User with System.in System.out has a convenient partner
called System.in. While System.out is used to print information to the screen, System.in is
used to get information into the program.

Requesting Input from the User Use System.in.read() to get a character from the user.
This is not covered in too much depth, because System.in isn’t used that often in Java pro-
grams; that is primarily, because (as you learn in the upcoming section “HelloWorld as an
Applet”) it really doesn’t apply to applets. Nevertheless, Listing 6.6 shows an example of a Java
application that reads a letter from the user.

Listing 6.6 ReadHello: An Application that Reads Input from the User

 import java.io.*;

 public class ReadHello {
 public static void main (String args[]){
 int inChar;
 System.out.println(“Enter a Character:”);
 try {
 inChar = System.in.read();
 System.out.println(“You entered “ + inChar);
 } catch (IOException e){
 System.out.println(“Error reading from user”);
 }
 }
}

You’ve probably already noticed that there is a lot more to this code than there was to the last
one. Before that’s explained, you should compile the program and prove to yourself that it
works:

Enter a Character:
A
You entered 65

Untitled-9 9/22/98, 2:47 PM88

89

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

6

II
Part

Ch

First things first. The code you are most interested in is the line that reads:

inChar = System.in.read();

System.in.read() is a method that takes a look at the character that the user enters. It then
performs what is known as a return on that value. A value that is returned by a method can
then be used in an expression. In the case of ReadHello, a variable called inChar is set to the
value that is returned by the System.in.read() method.

In the next line, the value of the inChar variable is added to the System.out string, just as you
did in Listing 6.5. By adding the variable into the string, you can see the results of your work.
It’s not necessary to use a variable. If you prefer, you can print it out directly in the second
System.out line, by changing it to the following:

System.out.println(“You entered “+ System.in.read());

Notice that the program displays a number instead of a character for what you entered. This is
because the read() method of System.in returns an integer, not an actual character. The num-
ber corresponds to what is known as the ASCII character set.

Converting an Integer to a Character You need to do what is known as a cast to convert the
number that is returned from System.in into a character. Casting effectively converts a given
datatype to another one. Change ReadHello to look like Listing 6.7.

Listing 6.7 ReadHello: An Application that Reads in a Character from
the User

import java.io.*;
public class ReadHello {
 public static void main (String args[]){
 char inChar;
 System.out.println(“Enter a Character:”);
 try {
 inChar =(char) System.in.read();
 System.out.println(“You entered “ + inChar);
 } catch (IOException e){
 System.out.println(“Error reading from user”);
 }
 }
}

Notice the characters before System.in.read().The (char) causes the integer to be changed
into a character.

The Rest of the Extra Code—try and catch What does the rest of all that code do? There is a
sequence there called a try-catch block in this code.

In some programming languages, when a problem occurs during execution, there is no way for
you as a programmer to catch it and deal with the problem. When a problem occurs, the sys-
tem halts and ends the program (usually with some nasty message like General Protection
Fault, or Core Dump). In some languages, it’s a bit complicated. In Java, most problems cause

Understanding HelloWorld

Untitled-9 9/22/98, 2:47 PM89

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

90 Chapter 6 HelloWorld!: Your First Java Program

what are known as exceptions, which can be handled by you, so your program doesn’t stop
working.
◊ See “Java’s Exceptions,” p. 364

◊ See “Java’s Events,” p. 381

When a method states that it will throw an exception, it is your responsibility to try to perform
that method, and if it throws the exception, you need to catch it. Do you see the line of code
right after the catch phase? If there is an error while reading, an exception called an
IOException is thrown. When that happens, the code in the catch block is called.

 HelloWorld as an Applet—Running in Netscape
If you are reading this book, odds are you are most interested in using Java to write programs
called applets. Applets can be run in a browser, such as Netscape Navigator.

Several differences exist between applets and applications. The most important is that Java
applet classes extend an existing class. This class is called java.applet.Applet. For now, it’s
enough to say that you have to extend Applet for a class to be usable as such. This is covered
in more detail in a later chapter.
◊ See “Applets Versus Applications,” p. 775

The New Source Code—Compiling It
One of the simplest applets is the HelloWorld applet, the source code for which is shown in
Listing 6.8. Right away you should see that the applet HelloWorld is quite different from the
HelloWorld application in Listing 6.1. You break down the source code to understand it a little
later in this chapter. For now, copy Listing 6.8 into a file called HelloApplet.java and compile it.

Listing 6.8 HelloWorld as an Applet

import java.applet.Applet;
import java.awt.Graphics;
public class HelloApplet extends Applet {
 public void paint (Graphics g) {
 g.drawString (“Hello World!”,0,50);
 }
}

Creating an HTML File
When you created the HelloWorld application in Listings 6.1 through 6.5, you ran them using
the Java interpreter. Applets, however, don’t run from the command line; they are executed
within a browser—but how do you tell the browser to open the applet?

If you have already written Web pages, you are familiar with HTML. HTML pages are what a
browser such as Netscape is used to dealing with. To get the applet into the browser, you need

Untitled-9 9/22/98, 2:47 PM90

91

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

6

II
Part

Ch

to embed what are known as HTML tags into an HTML file. The HTML file can then be read
into a browser.

The simplest HTML file for the HelloApplet class is shown in Listing 6.9. Copy this text into a
file called HelloApplet.html.
◊ See “Including a Java Applet in an HTML Page,” p. 228

Take a look at the third line of Listing 6.9. Notice the <APPLET> tag? The <APPLET> tag is a new
HTML tag that is used to include Java applets. When creating your own HTML files, don’t
forget to include the closing </APPLET> tag as well, or your applets won’t appear.

With Java files, it is necessary that the filename be the same as the class file. This is not
necessary with the HTML file. In fact, a single HTML file can contain several <APPLET>

tags. ■

Listing 6.9 HelloApp.html—HTML File to Use for Applet

<HTML>
<BODY>
<APPLET CODE=”HelloApplet.class” WIDTH = 200 HEIGHT=200> </APPLET>
</BODY>
</HTML>

Running the Program in AppletViewer
To run the applet, the JDK includes a very simplified version of a browser called AppletViewer.
AppletViewer looks for <APPLET> tags in any given HTML file and opens a new window for
each of them.

When you run the HTML file in AppletViewer, you see output such as that in Figure 6.1. To
run the HelloApplet program using AppletViewer, type appletviewer HelloApplet.html on
the command line.

N O T E

FIG. 6.1
AppletViewer opens a
new window and runs
HelloApplet in it.

HelloWorld as an Applet—Running in Netwcape

Untitled-9 9/22/98, 2:47 PM91

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

92 Chapter 6 HelloWorld!: Your First Java Program

Running HelloWorld in Netscape
Another option for running applets is with Netscape Communicator. You’re probably already
familiar with using the Navigator. To open the HelloApplet program in Netscape, choose File,
Open File, then select the HelloApplet.html file, as shown in Figure 6.2.

FIG. 6.2
HelloApplet can also be
run by using Netscape
Navigator.

Understanding the Source Code
Now that you have seen how to run the HelloApplet program, go back and see how the pro-
gram works.

Importing Other Classes The first thing to notice are the top two lines of the code:

import java.applet.Applet;
import java.awt.Graphics;

The import statement is a new one. It is often necessary or easier to use the contents of a class
file that have already been created, rather than try to reproduce that work yourself. The import
statement enables you to use these other classes. If you are familiar with the C/C++ #include
declaration, the import statement works in somewhat the same way.

In the case of the HelloApplet program, there are two classes used, other than HelloApplet.
The first is the java.applet.Applet class. The Applet class contains all the information that is
specific to applets. In fact, any class run in a browser as an applet must extend
java.applet.Applet.

Untitled-9 9/22/98, 2:47 PM92

93

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

6

II
Part

Ch

The second class that is imported into HelloApplet is the java.awt.Graphics class.
java.awt.Graphics contains all kinds of tools for drawing things to the screen. In fact, the
screen is treated as a Graphics object.

Declaring an Applet Class You might have noticed that there is a slight difference between
this class declaration for the HelloApplet class compared with the HelloWorld application.
HelloApplet extends Applet. Remember in the last chapter how you learned about building a
class structure? extends is the keyword that indicates that a class should be entered into that
class hierarchy. In fact, a class that extends another class is placed at the bottom of the existing
chain:

public class HelloApplet extends Applet {

◊ See “Super Classes—Extending Another Class,” p.164

You might think this harps the issue, but it’s important: All applets must extend
java.applet.Applet. However, because you imported the Applet class, you can simply call it
Applet. If you had not imported java.applet.Applet, you could still have extended it using
the full name:

public class HelloApplet extends java.applet.Applet {

Applet Methods—paint The next item to notice about the HelloApplet class versus
HelloWorld is that HelloApplet doesn’t have a main method. Instead, this applet only has a
paint method. How is this possible?

The answer lies in the fact that the applets don’t start themselves. They are being added to an
already running program (the browser). The browser has a predefined means for getting each
applet to do what it wants. It does this by calling methods that it knows the applet has. One of
these is paint:

public void paint (Graphics g) {

The paint method is called any time the browser needs to display the applet on the screen; you
can use the paint method to display anything. The browser helps by passing a Graphics ob-
ject to the paint method. This object gives the paint method a way to display items directly to
the screen.

The next line shows an example of using the Graphics object to draw text to the screen:

 g.drawString (“Hello World!”,0,50);
 }
}

The Brief Life of an Applet
The paint method is not the only method that the browser calls of the applet. You can override
any of these other methods just like you did for the paint method in the HelloWorld example.

When the applet is loaded, the browser calls the init() method. This method is only called
once no matter how many times you return to the same Web page.

HelloWorld as an Applet—Running in Netwcape

Untitled-9 9/22/98, 2:47 PM93

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

94 Chapter 6 HelloWorld!: Your First Java Program

After the init() method, the browser first calls the paint() method. This means that if you
need to initialize some data before you get into the paint() method, you should do so in the
init() method.

Next, the start() method is called. The start() method is called every time an applet page is
accessed. This means that if you leave a Web page and then click the Back button, the start()
method is called again. However, the init() method is not.

When you leave a Web page (for example, by clicking a link), the stop() method is called.

Finally, the destroy() method is called when the browser exits all together.

Notice that unlike the paint(Graphics g) method, the init(), start(),stop(),
and destroy() methods do not take any parameters between the parentheses. ■

Keywords
Before you set off on a more in-depth exploration of each of the topics discussed in this chap-
ter, there are a few other housekeeping matters you need to learn.

The most important of these is the use of keywords in Java. There are certain sequences of
characters, called keywords, that have special meaning in Java. Some of them are like verbs,
some like adjectives, and some like pronouns. Some of them are tokens that are saved for later
versions of the language, and one (goto) is a vile oath from ancient procedural tongues that
may never be uttered in polite Java.

The following is a list of the 56 keywords you can use in Java. When you know the meanings of
all these terms, you will be well on your way to being a Java programmer.

abstract boolean break byte

case cast catch char

class const continue default

do double else extends

final finally float for

future generic goto if

implements import inner instanceof

int interface long native

new null operator outer

package private protected public

rest return short static

super switch synchronized this

throw throws transient try

var void volatile while

N O T E

Untitled-9 9/22/98, 2:47 PM94

95

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

6

II
Part

Ch

The keywords byvalue, cast, const, future, generic, goto, inner, operator, outer, rest, and
var are the reserved words that have no meaning in Java. Programmers experienced with
other languages such as C, C++, Pascal, or SQL may know for what these terms might eventu-
ally be used. For the time being, you won’t use these terms, and Java is much simpler and
easier to maintain without them.

The tokens true and false are not on this list; technically, they are literal values for Boolean
variables or constants.

The reason you care about keywords is these terms have specific meaning in Java; you can’t
use them as identifiers for something else. This means that you can’t create classes with any of
these names. If HelloApplet had been on the list, the compiler never would have compiled that
program for you. In addition, they cannot be used as variables, constants, and so on. However,
they can be used as part of a longer token, for example:

public int abstract_int;

Because Java is case sensitive, you can use an initial uppercase letter if you are bent on
using one of these words as an identifier of some sort. Although this is possible, it is a very

bad idea in terms of human readability, and it results in wasted manhours when the code must be
improved later to this:

public short Long;

It can be done, but for the sake of clarity and mankind’s future condition, please don’t do it. ■

In addition, there are numerous classes defined in the standard packages. Although their
names are not keywords, the overuse of these names can make your meaning unclear to
people who work on your application or applet in the future.

API
In this chapter, you learned how to use several classes other than the one you were writing.
The most important of these was java.applet.Applet.

Why were you told what methods were in java.applet.Applet? The answer is that all the
classes in what is known as the Java API are well documented. Although it’s unlikely that you
will have great success understanding the API until you have finished reading several more
chapters, it’s important to start looking at it now.

As you progress as a Java programmer, the API will probably become one of your best friends.
In fact, it may well be that Java’s rich API is one of the reasons for its success.

You can access a hyperlink version of the API documentation on Sun’s site at http://
www.javasoft.com/products/JDK/CurrentRelease/.

When exploring the API, you should notice how various classes inherit from others using the
extends keyword. Sun has done a great deal of work to keep you from having to write nearly as
much code; you simply must learn to make good use of the classes. ●

N O T E

API

Untitled-9 9/22/98, 2:47 PM95

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH06 LP#4

96 Chapter 6 HelloWorld!: Your First Java Program

Untitled-9 9/22/98, 2:47 PM96

97

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

C H A P T E R

Data Types and Other Tokens

7

In this chapter

Java Has Two Data Types 98

Learning About boolean Variables 99

The Various Flavors of Integer 101

Operators 103

Character Variables 106

Floating-Point Variables 106

Arrays 107

Whitespace 109

Comments 110

Literals: Assigning Values 112

Creating and Destroying Objects 116

Untitled-10 9/22/98, 3:10 PM97

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

98 Chapter 7 Data Types and Other Tokens

Java Has Two Data Types
When working with computers—either for something as simple as writing a college paper or as
complex as solving quantum theory equations—the single most important thing the computer
does is deal with data. Data to a computer can be numbers, characters, or simply values. Java
has several types of data it can work with, and this chapter covers some of the most important.

In Java, there are two categories into which data types have been divided.

■ Primitive types

■ Reference types

Java has eight primitive types, each with its own purpose and use.

■ Boolean

■ char

■ float

■ byte

■ int

■ double

■ short

■ long

As you proceed through this chapter, each of these types is covered in detail. For now, take a
look at Table 7.1, which shows the numerical limits each type has.

Table 7.1 Primitive Data Types in the Java Language

Type Description

Boolean These have values of either true or false.

byte 7-bit 2s-complement integer with values between -27 and 27
-1

(-128 to 127).

short 16-bit 2s-complement integer with values between -215 and 215
-1

(-32,768 to 32,767).

char 16-bit Unicode characters. For alphanumerics, these are the same
as ASCII with the high byte set to 0. The numerical values are
unsigned 16-bit values between 0 and 65535.

int 32-bit 2s-complement integer with values between -231 and 231
-1

(-2,147,483,648 to 2, 147,483,647).

long 64-bit 2s-complement integer with values between -263 and 263
-1

(-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807).

Untitled-10 9/22/98, 3:10 PM98

99

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

float 32-bit single precision floating-point numbers using the IEEE 754-
1985 standard (+/- about 1039).

double 64-bit double precision floating-point numbers using the IEEE 754-
1985 standard (+/- about 10317).

Primitive types in Java are unique because, unlike many other languages, the values listed in
Table 7.1 are always as shown here, regardless of what type of computer you are working on.
This gives you, as a programmer, added security and portability you might not always have in
other languages.

Learning About boolean Variables
The simplest data type available to you in Java is that of the boolean. boolean variables have
two possible values—true or false. In some other languages, Booleans are 0 or 1; or, as in
C(++), false is 0 and all other numbers are true. Java has simplified this a bit, and made actual
values true and false.

boolean variables are used mostly when you want to keep track of the state an object is in. For
instance, a piece of paper is either on or off the table. A simple piece of code might say:

boolean on_the_table = true;

Declaring a Variable
You should understand what the line of code in the last section means before you go any fur-
ther. When you create a variable in Java, you must know at least a few things:

■ You must know what data type you are going to use. In this case, that was Boolean.

■ You must know what you want to call the variable (on_the_table).

■ You might also want to know the value with which the variable should start. In this case,
assume the paper is on the table initially, so you set the variable to true. If you do not
specify a value for the variable, the Java compiler automatically makes your Boolean
variables false.

You can create any variable in Java in the same way as was just shown:

1. State the data type that you will be using (boolean).

2. State the name the variable will be called (on_the_table).

3. Assign the variable a value (= true).

4. As with every other line of code in Java, terminate the line with a semicolon (;).

Type Description

Learning About boolean Variables

Untitled-10 9/22/98, 3:10 PM99

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

100 Chapter 7 Data Types and Other Tokens

Identifiers: The Naming of a Variable
Refer to the first example:

boolean on_the_table = true;

How does the computer work with the characters that make up on_the_table? on_the_table
is called an identifier in programming lexicology. Identifiers are important because they are
used to represent a whole host of things. In fact, identifiers are any phrases chosen by the
programmer to represent variables, constants, classes, objects, labels, or methods. After an
identifier is created, it represents the same object in any other place it is used in the same code
block.

There are several rules that must be obeyed when creating an identifier:

■ The first character of an identifier must be a letter. After that, all subsequent characters
can be letters or numerals.

■ The characters do not need to be Latin numerals or digits; they can be from any alpha-
bet. Because Java is based on the Unicode, standard identifiers can be in any language,
such as Arabic-Indic, Devanagari, Bengali, Tamil, Thai, or many others.

■ The underscore (_) and the dollar sign ($) are considered letters and can be used as any
character in an identifier, including the first one.

■ In Java, as in C and most other modern languages, identifiers are case sensitive and
language sensitive. This means that on_the_table is not the same as On_The_Table.
Changing the case changes the identifier by which the variable is known.

■ Make your identifier names long enough so that they are descriptive. Most application
developers are forever walking the line of compromise between choosing identifiers that
are short enough to be quickly and easily typed without error and those that are long
enough to be descriptive and easily read. Either way, in a large application, it is useful to
choose a naming convention that reduces the likelihood of accidental reuse of a particu-
lar identifier. It is not generally a good idea to create four variables called x, x1, x2, and
x4, because it would be difficult to remember the purpose of each variable. In addition,
identifiers cannot be keywords.

Table 7.2 shows several legal and illegal identifiers. The first illegal identifier is forbidden be-
cause it begins with a numeral. The second has an illegal character (&) in it. The third also has
an inappropriate character: the blank space. The fourth is a literal number (216) and cannot be
used as an identifier. The last one contains yet another bad character: the hyphen, or minus
sign. Java would try to treat this last case as an expression containing two identifiers and an
operation to be performed on them.

Table 7.2 Examples of Legal and Illegal Identifiers

Legal Identifiers Illegal Identifiers

HelloWorld 9HelloWorld

counter count&add

Untitled-10 9/22/98, 3:10 PM100

101

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

HotJava$ Hot Java

ioc_Queue3 65536

ErnestLawrenceThayers non-plussed
FamousPoemOfJune1888

Changing Boolean Variables
In Chapter 10, “Control Flow,” you see how Boolean variables can be used to change the behav-
ior of a program. For instance, if the paper is on the table, you do nothing, but if it has fallen
onto the floor, you can tell the computer to pick it up.

There are two ways in which you can change a Boolean variable. Because Booleans are not
represented by numbers, you must always set a Boolean to either true or false. The first way
to do this is explicitly. For instance, if you have a variable called My_First_Boolean, to change
this variable to false, you would type:

My_First_Boolean = false;

If you compare this line to the declaration of on_the_table earlier, you might notice that they
are very similar.

The next way to assign a Boolean variable is based on an equation or other variable. For in-
stance, if you want My_First_Boolean to have the same value as on_the_table, you might type
a line like this:

My_First_Boolean= on_the_table;

You can also make the variable have a value based on the equality of other numbers. For in-
stance, the following line would make My_First_Boolean false:

My_First_Boolean = 6>7;

Because 6 is not greater than 7, the equation on the right would evaluate false. You learn
more about this type of equation later in Chapter 10.

Boolean types are a new feature in Java, not found in C and C++. To some, this stricter
adherence to typing may seem oppressive. On the other hand, pervasive ambiguity, which

has resulted in countless lost man-hours from the world’s intellectual workforce in the form of chasing
many hard-to-detect programming errors, may be eliminated. ■

The Various Flavors of Integer
The next set of primitive types in Java are all known as integer types:

■ byte

■ int

Legal Identifiers Illegal Identifiers

N O T E

The Various Flavors of Integer

Untitled-10 9/22/98, 3:10 PM101

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

102 Chapter 7 Data Types and Other Tokens

■ char

■ short

■ long

As you saw in Table 7.1, each of these types has a different limit to the numbers it can carry.
For instance, a byte cannot hold any number that is greater than 127, but a long can easily
hold the amount of the national debt. It can actually hold one million times that number.

There are different reasons to use each type, and you should not use a long for every variable
just because it is the biggest. It is unlikely that most of the programs you write will need to deal
with numbers large enough to take advantage of that size. More importantly, large variables
such as longs take up much more space in the computer’s memory than do variables like
short.

Limits on Integer Values
Integers can have values in the ranges shown in Table 7.3.

Table 7.3 Integer Types and Their Limits

Integer Minimum Default Maximum
Type Value Value Value

byte -128 (byte) 0 127

short -32,768 (short) 0 32,767

int -2,147,483,648 0 2,147,483,647

long -9,223,372,036,854,775,808 0 9,223,372,036,854,775,807

char 0 0 65535

The maximum number for a long is enough to provide a unique ID for one transaction per
second for every person on the planet for the next 50 years. It is also the number of grains

in about a cubic mile of sand. Yet, if a project to count the black flies in Maine is undertaken, surely
the cry will arise for 128-bit integers.

If some operation creates a number exceeding the ranges shown here, no overflow or
exception is created. Instead, the 2s-complement value is the result. (For a byte, it’s

127+1=-128, 127+9 =-120, and 127+127=-2.) However, an ArithmeticException is thrown if
the right-hand operand in an integer divide or modulo operation is zero. ■

Creating Integer Variables
All of the main four integer types can be created in nearly the same way (you learn about char
later in this chapter). The following lines show how to create a variable of each of these types:

N O T E

N O T E

Untitled-10 9/22/98, 3:10 PM102

103

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

byte My_First_Byte = 10;
short My_First_Short = 15;
int My_First_Int = 20;
long My_First_Long = 25;

Notice that the declaration of the integer types is nearly identical to that for the Boolean vari-
able and that it is exactly the same for all integer types. The one main difference is that an
integer variable must be assigned a number, not true or false. Also, notice that an integer
must be assigned a whole number, not a fraction. In other words, if you want to have a number
like 5.5 or 5 2/3, you cannot do so with an integer. You learn more about these types of num-
bers in the section “Floating-Point Variables” later in this chapter.

Operations on Integers
You can perform a wide variety of operations on integer variables. Table 7.4 shows a complete
list.

Table 7.4 Operations on Integer Expressions

Operation Description

=, +=, -=, *=, /= Assignment operators

==, != Equality and inequality operators

<, <=, >, >= Inequality operators

+, - Unary sign operators

+, -, *, /, % Addition, subtraction, multiplication, division, and modulus operators

+=, -=, *=, /= Addition, subtraction, multiplication, division, and assign operators

++, — Increment and decrement operators

<<, >>, >>> Bitwise shift operators

<<=, >>=, >>>= Bitwise shift and assign operators

~ Bitwise logical negation operator

&, |, ^ Bitwise AND, OR, and exclusive or (XOR) operators

&=, |=, ^= Bitwise AND, OR, exclusive or (XOR), and assign operators

Later in Chapter 10 you learn about the equality and inequality operators that produce Boolean
results. For now, concentrate on the arithmetic operators.

Operators
Operators are used to change the value of a particular object. For instance, say you want to add
or subtract 5 from 10. As you soon see, you would use the addition or subtraction operator.

Operators

Untitled-10 9/22/98, 3:10 PM103

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

104 Chapter 7 Data Types and Other Tokens

They are described here in several related categories. C and C++ programmers should find the
operators in Table 7.4 very familiar.

Arithmetic Operators
Arithmetic operators are used to perform standard math operations on variables. These opera-
tors include:

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

% Modulus operator (gives the
remainder of a division)

Probably the only operator in this list that you are not familiar with is the modulus operator.
The modulus of an operation is the remainder of the operand divided by the operandi. In other
words, in the equation 10 % 5, the remainder is 0 because 5 divides evenly into 5. However, the
result of 11 % 5 is 1 because (if you can remember your early math classes), 11 divided by 5 is 2
R 1, or 2 remainder 1.

Listing 7.1 shows an example of these operators in use.

Listing 7.1 Examples Using Arithmetic Operators

int j = 60; // set the byte j’s value to 60
int k = 24;
int l = 30;
int m = 12L;
int result = 0L;

result = j + k; // result gets 84: (60 plus 24)
result = result / m; // result gets 7: (84 divided by 12)
result = j - (2*k + result); // result gets 5: (60 minus (48 plus 7))
result = k % result; // result gets 4: (remainder 24 div by 5)

Assignment Operators
The simplest assignment operator is the standard assignment operator. This operator is often
known as the gets operator, because the value on the left gets the value on the right:

= Assignment operator

The arithmetic assignment operators provide a shortcut for assigning a value. When the previ-
ous value of a variable is a factor in determining the value that you want to assign, the arith-
metic assignment operators are often more efficient:

Untitled-10 9/22/98, 3:10 PM104

105

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

+= Add and assign operator

-= Subtract and assign operator

*= Multiply and assign operator

/= Divide and assign operator

%= Modulus and assign operator

Except for the assignment operator, the arithmetic assignment operators work as if the variable
on the left of the operator were placed on the right. For instance, the following two lines are
essentially the same:

x = x + 5;
x += 5;

Listing 7.2 shows more examples of the operators in use.

Listing 7.2 Examples Using Arithmetic Assignment Operators

byte j = 60; // set the byte j’s value to 60
short k = 24;
int l = 30;
long m = 12L;
long result = 0L;

result += j; // result gets 60: (0 plus 60)
result += k; // result gets 84: (60 plus 24)
result /= m; // result gets 7: (84 divided by 12)
result -= l; // result gets -23: (7 minus 30))
result = -result; // result gets 23: (-(-23))
result %= m; // result gets 11: (remainder 23 div by 12)

Increment/Decrement Operators
The increment and decrement operators are used with one variable (they are known as unary
operators):

++ Increment operator

— Decrement operator

For instance, the increment operator (++) adds one to the operand, as shown in the next line of
code:

x++;

This is the same as:

x+=1;

The increment and decrement operators behave slightly differently based on the side of the
operand they are placed on. If the operand is placed before the operator (for example, ++x), the

Operators

Untitled-10 9/22/98, 3:10 PM105

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

106 Chapter 7 Data Types and Other Tokens

increment occurs before the value is taken for the expression. The result of y is 6 in the follow-
ing code fragment:

int x=5;
int y=++x; // y=6 x=6

If the operator appears after the operand, the addition occurs after the value is taken. y is 5 as
shown in the next code fragment. Notice that in both examples, x is 6 at the end of the
fragment:

int x=5;
int y = x++; //y=5 x=6

Similarly, the decrement operator (—) subtracts one from the operand, and the timing of this is
in relation to the evaluation of the expression in which it occurs.

Character Variables
Characters in Java are a special set. They can be treated as either a 16-bit unsigned integer with
a value from 0 to 65535, or as a Unicode character. The Unicode standard makes room for the
use of many different languages’ alphabets. The Latin alphabet, numerals, and punctuation
have the same values as the ASCII character set (a set that is used on most PCs and with val-
ues between 0 and 256). The default value for a char variable is \u0000.

The syntax to create a character variable is the same as for integers and Booleans:

char myChar = ‘b’;

In this example, the myChar variable has been assigned the value of the letter ‘b’. Notice the
tick marks (‘) around the letter b ? These tell the compiler that you want the literal value of b
rather than an identifier called b.

Floating-Point Variables
Floating-point numbers are the last category of native types in Java. Floating-point numbers are
used to represent numbers that have a decimal point in them (such as 5.3 or 99.234). Whole
numbers can also be represented, but as a floating point, the number 5 is actually 5.0.

In Java, floating-point numbers are represented by the types float and double. Both of these
follow a standard floating-point specification: IEEE Standard for Binary Floating-Point Arith-
metic, ANSI/IEEE Std. 754-1985 (IEEE, New York). The fact that these floating-point numbers
follow this specification—no matter what machine the application or applet is running on—is
one of the details that makes Java so portable. In other languages, floating-point operations are
defined for the floating-point unit (FPU) of the particular machine the program is executing on.
This means that the representation of 5.0 on an IBM PC is not the same as on, for example, a
DEC VAX, and the limits on both machines are shown in the following table:

Untitled-10 9/22/98, 3:10 PM106

107

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

Floating- Minimum Positive Default Maximum
Point Value Value Value
Type

float 1.40239846e–45f 0 3.40282347e+38f

double 4.94065645841246544e–324d 0 1.7976931348623157e+308d

In addition, there are four unique states that floating-point numbers can have:

■ Negative infinity

■ Positive infinity

■ Zero

■ Not a number

These states are required, due to how the 754-1985 standard works, to account for number
rollover. For instance, adding 1 to the maximum number of a floating point results in a positive
infinity result.

Many of the operations that can be done on integers have an analogous operation that can be
done on floating-point numbers. The main exceptions are the bitwise operations. The operators
that may be used in expressions of type, float, or double are given in Table 7.5.

Table 7.5 Operations on float and double Expressions

Operation Description

=, +=, -=, *=, /= Assignment operators

==, != Equality and inequality operators

<, <=, >, >= Inequality operators

+, - Unary sign operators

+, -, *, / Addition, subtraction, multiplication, and division operators

+=, -=, *=, /= Addition, subtraction, multiplication, division, and assign operators

++, — Increment and decrement operators

Arrays
There are three types of reference variables:

■ Classes

■ Interfaces

■ Arrays

Arrays

Untitled-10 9/22/98, 3:10 PM107

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

108 Chapter 7 Data Types and Other Tokens

Classes and interfaces are so complicated that each gets its own chapter, but arrays are com-
paratively simple and are covered here with the primitive types.

An array is simply a way to have several items in a row. If you have data that can be easily
indexed, arrays are the perfect means to represent them. For instance, if you have five people
in a class and you want to represent all of their IQs, an array would work perfectly. An example
of such an array is:

int IQ[] = {123,109,156,142,131};

The next line shows an example of accessing the IQ of the third individual:

int ThirdPerson = IQ[3];

Arrays in Java are somewhat tricky. This is mostly because, unlike most other languages, there
are really three steps to filling out an array, rather than one.

1. Declare the array. There are two ways to do this: Place a pair of brackets after the
variable type or place brackets after the identifier name. The following two lines produce
the same result:
int MyIntArray[];

int[] MyIntArray;

2. Create space for the array and define the size. To do this, you must use the keyword new,
followed by the variable type and size:
MyIntArray = new int[500];

3. Place data in the array. For arrays of native types (like those in this chapter), the array
values are all set to 0 initially. The next line shows how to set the fifth element in the
array:

MyIntArray[4] = 467;

At this point, you may be asking yourself how you were able to create the five-element array
and declare the values with the IQ example. The IQ example took advantage of a shortcut. For
native types only, you can declare the initial values of the array by placing the values between
braces ({,}) on the initial declaration line.

Array declarations are composed of the following parts:

Array modifiers Optional The keywords public, protected,
private, or synchronized

Type name Required The name of the type or class being
arrayed

Brackets Required []

Initialization Optional See Chapter 11 for more details about
initialization

Semicolon Required ;

Untitled-10 9/22/98, 3:10 PM108

109

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

Listing 7.3 shows several more examples of using arrays.

Listing 7.3 Examples of Declaring Arrays

long Primes[] = new long[1000000]; // Declare an array and assign
 // some memory to hold it.
long[] EvenPrimes = new long[1]; // Either way, it’s an array.
EvenPrimes[0] = 2; // Populate the array.

// Now declare an array with an implied ‘new’ and populate.

long Fibonacci[] = {1,1,2,3,5,8,13,21,34,55,89,144};

long Perfects[] = {6, 28}; // Creates two element array.

long BlackFlyNum[]; // Declare an array.
 // Default value is null.

BlackFlyNum = new long[2147483647]; // Array indexes must be type int.

// Declare a two dimensional array and populate it.
long TowerOfHanoi[][]={{10,9,8,7,6,5,4,3,2,1},{},{}};

long[][][] ThreeDTicTacToe; // Uninitialized 3D array.

There are several additional points about arrays you need to know:

■ Indexing of arrays starts with 0 (as in C and C++). In other words, the first element of an
array is MyArray[0], not MyArray[1].

■ You can populate an array on initialization. This only applies to native types and allows
you to define the value of the array elements.

■ Array indexes must either be type int (32-bit integer) or be able to be cast as an int. As
a result, the largest possible array size is 2,147,483,647. Most Java installations would fail
with arrays anywhere near that size, but that is the maximum defined by the language.

■ When populating an array, the rightmost index sequences within the innermost curly
braces.

Whitespace
Of some importance to most languages is the use of whitespace. Whitespace is any character
that is used just to separate letters on a line—a space, tab, line feed, or carriage return.

In Java, whitespace can be declared anywhere within the application’s source code without
affecting the meaning of the code to the compiler. The only place that whitespace cannot be is
between a token, such as a variable or class name. This may be obvious, because the following
two lines are obviously not the same:

int myInt;
int my Int;

Whitespace

Untitled-10 9/22/98, 3:10 PM109

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

110 Chapter 7 Data Types and Other Tokens

Whitespace is optional, but because proper use of it has a big impact on the maintainability of
the source code for an application or applet, its use is highly recommended. Let’s take a look at
the ever popular HelloWorld application written with minimal use of whitespace:

public class HelloWorld{public static void main(String args
➥[]){System.out.println(“Hello World!!”);}}

Clearly, it is a little harder to ferret out what this application does, or even that you have started
at the beginning and finished at the end. Choose a scheme for applying meaningful whitespace
and follow it. You stand a better chance of knowing which close curly brace (}) matches which
open brace ({).

Comments
Comments are an important part of any language. Comments enable you to leave a message for
other programmers (or yourself) as a reminder of what is going on in that particular section of
code. They are not tokens and neither are any of their contents.

Java supports three styles of comments:

■ Traditional (from the C language tradition)

■ C++ style

■ javadoc (a minor modification on traditional comments)

Traditional Comments
A traditional comment is a C-style comment that begins with a slash-star (/*) and ends with a
star-slash (*/). Take a look at Listing 7.4, which shows two traditional comments.

Listing 7.4 Example Containing Two Traditional Comments

/* The following is a code fragment
 * that is here only for the purpose
 * of demonstrating a style of comment.
 */

double pi = 3.141592654 /* close enough for now */ ;

As you can see, comments of this sort can span many lines or can be contained within a single
line (outside a token). Comments cannot be nested. Thus, if you try to nest them, the opening
of the inner one is not detected by the compiler, the closing of the inner one ends the com-
ment, and subsequent text is interpreted as tokens. Listing 7.5 shows how this can become
very confusing.

Listing 7.5 An Example of a Single Comment That Looks Like Two

/* This opens the comment
/* That looked like it opened another comment but it is the same one
* This will close the entire comment */

Untitled-10 9/22/98, 3:10 PM110

111

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

C++ Style Comments
The second style of comment begins with a slash-slash (//) and ends when the current source
code line ends. These comments are especially useful for describing the intended meaning of
the current line of code. Listing 7.6 demonstrates the use of this style of comment.

Listing 7.6 An Example Using Traditional and C++ Style Comments

for (int j = 0, Boolean Bad = false; // initialize outer loop
 j < MAX_ROW; // repeat for all rows
 j++) {
 for (int k = 0; // initialize inner loop
 k < MAX_COL; // repeat for all columns
 k++) {
 if (NumeralArray[j][k] > ‘9’) { // > highest numeric?
 Bad = true; // mark bad
 } // close if > ‘9’
 if (NumeralArray[j][k] < ‘0’) { // < lowest numeric?
 Bad = true; // mark bad
 } // close if < ‘0’
 } // close inner loop
} // close outer loop

javadoc Comments
The final style of comment in Java is a special case of the first. It has the properties mentioned
previously, but the contents of the comment may be used in automatically generated documen-
tation by the javadoc tool.

CAUTION

Avoid inadvertent use of this style if you plan to use javadoc. The javadoc program will not be able to tell the
difference.

javadoc comments are opened with /**, and are closed with */. By using these comments in an
appropriate manner, you can use javadoc to automatically create documentation pages similar
to those of the Java API. Listing 7.7 shows a javadoc comment.

Listing 7.7 An Example of a javadoc Comment

/** This class is for processing databases
 * Example use:
 * xdb myDB = new xdb (myDbFile);
* System.out.println(xdb.showAll()); */

Comments

Untitled-10 9/22/98, 3:10 PM111

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

112 Chapter 7 Data Types and Other Tokens

Literals: Assigning Values
When you learned about assigning a Boolean variable, there were only two possible values:
true and false. For integers, the values are nearly endless. In addition, there are many ways
an integer value can be represented using literals.

The easiest way to assign a value to an integer value is with its traditional Roman numeral:

int j = 3;

However, what happens when you want to assign a number that is represented in a different
form, such as hexadecimal? To tell the computer that you are giving it a hexadecimal number,
you need to use the hexadecimal literal. For a number like 3, this doesn’t make much differ-
ence, but consider the number 11. Represented in hexadecimal (0x11), it has a value of 16!
Certainly, you need a way to make sure the computer gets this right.

The following statements all contain various literals:

int j=0;
long GrainOfSandOnTheBeachNum=1L;
short Mask1=0x007f;
static String FirstName = “Ernest”;
static Char TibetanNine = ‘\u1049’
Boolean UniverseWillExpandForever = true;

Clearly, there are several types of literals. In fact, there are five major types of literals in the
Java language:

■ Boolean

■ Integer

■ Character

■ String

■ Floating-point

Integer Literals
Integer literals are used to represent numbers of integer types. Because integers can be ex-
pressed as decimal (base 10), octal (base 8), or hexadecimal (base 16) numbers, each has its
own literal. In addition, integer numbers can be represented with an optional uppercase L (‘L’)
or lowercase L (‘l’) at the end, which tells the computer to treat that number as a long (64-bit)
integer.

As with C and C++, Java identifies decimal integer literals as any number beginning with a non-
zero digit (for example, any number between 1 and 9). Octal integer literal tokens are recog-
nized by the leading zero (045 is the same as 37 decimal); they may not contain the numerals 8
or 9. Hexadecimal integer literal tokens are known by their distinctive ‘zero-X’ at the begin-
ning of the token. Hex numbers are composed of the numerals 0 through 9—plus the Latin
letters A through F (case is not important).

Untitled-10 9/22/98, 3:10 PM112

113

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

The largest and smallest values for integer literals are shown in each of these three formats:

Largest 32-bit integer literal 2147483647
017777777777
0x7fffffff

Most negative 32-bit integer -2147483648
literal 020000000000

0x80000000

Largest 64-bit integer literal 9223372036854775807L
0777777777777777777777L
0x7fffffffffffffffL

Most negative 64-bit integer -9223372036854775808L
literal 01777777777777777777777L

0xffffffffffffffffL

CAUTION

Attempts to represent integers outside the range shown in this table result in compile-time errors.

Character Literals
Character literals are enclosed in single quotation marks. This is true whether the character
value is Latin alphanumeric, an escape sequence, or any other Unicode character. Single char-
acters are any printable character except hyphen (–) or backslash (\). Some examples of these
literals are ‘a’, ‘A’, ‘9’, ‘+’, ‘_’, and ‘~’.

Some characters, such as the backspace, would be difficult to write out like this, so to solve this
problem, these characters are represented by what are called escape characters. The escape
sequence character literals are in the form of ‘\b’. These are found within single quotation
marks—a backslash followed by one of the following:

■ Another character (b, t, n, f, r, “, ‘, or \)

■ A series of octal digits

■ A u followed by a series of hex digits expressing a nonline-terminating Unicode character

The Escape characters are shown in Table 7.6.

Table 7.6 Escape Characters

Escape Literal Meaning

 ‘\b’ \u0008 backspace

 ‘\t’ \u0009 horizontal tab

 ‘\n’ \u000a linefeed

continues

Literals: Assigning Values

Untitled-10 9/22/98, 3:10 PM113

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

114 Chapter 7 Data Types and Other Tokens

 ‘\f’ \u000c form feed

 ‘\r’ \u000d carriage return

 ‘\”’ \u0022 double quotation mark

 ‘\’’ \u0027 single quotation mark

 ‘\\’ \u005c backslash

CAUTION

Don’t use the \u format to express an end-of-line character. Use the \n or \r characters instead.

Character literals mentioned in Table 7.6 are called octal escape literals. They can be used to
represent any Unicode value from ‘\u0000’ to ‘\u00ff’ (the traditional ASCII range). In octal
(base 8), these values are from \000 to \377. Note that octal numerals are from 0 to 7 inclusive.
Table 7.7 shows some examples of octal literals.

Table 7.7 Octal Values and Their Meaning

Octal Literal Meaning

 ‘\007’ \u0007 bell

 ‘\101’ \u0041 ‘A’

 ‘\141’ \u0061 ‘a’

 ‘\071’ \u0039 ‘9’

 ‘\042’ \u0022 double quotation mark

CAUTION

Character literals of the type in the previous table are interpreted very early by javac. As a result, using the
escape Unicode literals to express a line termination character—such as carriage return or line feed—results
in an end-of-line appearing before the terminal single quotation mark. The result is a compile-time error.
Examples of this type of character literal appear in the Meaning heading listed in the previous table.

Floating-Point Literals
Floating-point numbers can be represented in a number of ways. The following are all legiti-
mate floating-point numbers:

Table 7.6 Continued

Escape Literal Meaning

Untitled-10 9/22/98, 3:10 PM114

115

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

1003.45 .00100345e6 100.345E+1100345e-2

1.00345e3 0.00100345e+6

Floating-point literals have several parts, which appear in the following order as shown in
Table 7.8.

Table 7.8 Floating-Point Requirements

Part Is It Required? Examples

Whole Number Not if fractional part is present. 0, 1, 2,…, 9, Number Part 12345

Decimal Point Not if exponent is present;
must be there if there is a
fractional part.

Fractional Can’t be present if there is no 0, 1, 14159,
decimal point. Must be there if 718281828,41421, 9944
there is no whole number part.

Exponent Only if there is no decimal point. e23, E-19, E6, e+307, e-1

Type Suffix No. The number is assumed f, F, d, D
to be double precision in the
absence of a type suffix.

The whole number part does not have to be a single numeral; case is not important for the E
which starts the exponent, or for the F or D, which indicate the type. As a result, a given num-
ber can be represented in several different ways as a literal:

■ Single precision floating-point literals produce compile-time errors if their values are non-
zero and have an absolute value outside the range from 1.40239846e-45f through
3.40282347e+38f.

■ The range for the non-zero absolute values of double precision literals is
4.94065645841246544e-324 through 1.7976931348623157e+308.

String Literals
Strings are not really native types. However, it is also necessary to talk about them to finish the
discussion of literals. String literals have zero or more characters enclosed in double quotation
marks. These characters may include the escape sequences listed in the “Character Literals”
section earlier in this chapter. Both double quotation marks must appear on the same line of
the source code, so strings may not directly contain a newline character. To achieve the new
line effect, you must use an escape sequence such as \n or \r.

The double-quotation mark (“) and backslash (\) characters must also be represented using
the escape sequences (\” and \\).

Literals: Assigning Values

Untitled-10 9/22/98, 3:10 PM115

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

116 Chapter 7 Data Types and Other Tokens

One nice feature Java inherits from C++ is that if you need to use a longer string, a string may
be created from concatenating two or more smaller strings with the string concatenation opera-
tor (+).

CAUTION

Although it is often convenient to use the + operator for strings, the current implementation of the String
class isn’t very efficient. As a result, doing lots of string concatenations can waste memory resources.

Some examples of string literals include:

 “Java”
 “Hello World!\n”
 “The Devanagari numeral for 9 is \u096f “
 “Do you mean the European Swallow or the African Swallow?”
 “*** *ERROR 9912 Date/Time 1/1/1900 00:01”
+ “ predates last backup: all files deleted!”
 “If this were an actual emergency"

Creating and Destroying Objects
Memory management is a topic that is very important to all computer languages. Whenever
you create a new instance of a class, the Java runtime system sets aside a portion of memory in
which to store the information pertaining to the class. However, when the object falls out of
scope or is no longer needed by the program, this portion of memory is freed to be used again
by other objects.

While Java hides most of these operations from the programmer, it does provide you some
chances to optimize your code by performing certain additional tasks. While requiring you to
allocate memory explicitly for each new object with the new operator, it also enables you to
specialize your new object (by using its constructor methods) and ensures that it leaves no
loose ends when it is destroyed.

Unlike C and C++, which provide the programmer with a great deal of control over memory
management, Java performs many of these tasks for you. Most notably, in its aptly called

garbage collection, Java automatically frees objects when there are no references to the given object,
thereby making the C++ free() method unnecessary. ■

Creating Objects with the new Operator
When creating an instance of a class, it is necessary to set aside a piece of memory to store its
data. However, when you declare the instance at the beginning of a class, you are merely tell-
ing the compiler that a variable with a certain name will be used in the class, not to actually
allocate memory for it. Consequently, it is necessary to create the memory for the variable
using the new operator. Examine the following code:

N O T E

Untitled-10 9/22/98, 3:11 PM116

117

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

7

II
Part

Ch

public class Checkers
{
 private GameBoard board;
 public Checkers() {
 board = new GameBoard(“Checkers”);
 board.cleanBoard();
}
...

You see that although the variable board is declared in the third line, you must also allocate
memory for it using the new operator. The syntax of a statement involving the new operator is:

instanceofClass = new ClassName(optional_parameters);

Quite simply, the line tells the compiler to allocate memory for an instance of the class and
points the variable to the new section of memory. In the process of doing this, the compiler also
calls the class’s constructor method and passes the appropriate parameters to it.

Pointers: Fact or Fiction?
Java claims not to possess pointers and, as a result, prevents the programmer from making some of
the mistakes associated with pointer handling. Nevertheless, although it chooses not to adopt the
pointer-based mindset, Java is forced to deal with the same issues of allocating memory and
creating references to these locations in memory.

Thus, although assigned a different name, references are Java’s version of pointers. Although you
cannot perform some of the intrusive operations with pointers as you can with C, there are striking
parallels between pointer assignment and object creation. You must first declare a variable (the
reference). Then you must allocate adequate memory and assign the reference to it. Furthermore,
because you may later decide to set a reference equal to another type of the same variable (or null),
Java’s reference system is extremely similar to C’s system of pointers.

While Java’s implementation effectively hides the behavior of pointers from the programmer and
shields you from their pitfalls, it is nevertheless a good idea to consider what is occurring behind the
scenes when you create and refer to a variable.

Creating and Destroying Objects

Untitled-10 9/22/98, 3:11 PM117

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH07 LP#4

118 Chapter 7 Data Types and Other Tokens

Untitled-10 9/22/98, 3:11 PM118

119

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

8

II
Part

Ch

C H A P T E R

Methods

8

In this chapter

Parts of a Method 120

Blocks and Statements 128

Separators 130

Untitled-11 9/22/98, 3:12 PM119

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

120 Chapter 8 Methods

Parts of a Method
Methods are truly the heart and soul of Java programs. Methods serve the same purpose in
Java that functions do in C, C++, Pascal. All execution, which takes place in any applet or appli-
cation, takes place within a method, and only by combining multiple dynamic methods are
large-scale quality Java applications written.

Like C and C++ functions, Java methods are the essence of the class and are responsible for
managing all tasks that will be performed. A method has two parts: a declaration and a body.
While the actual implementation of the method is contained within the method’s body, a great
deal of important information is defined in the method declaration.

The simplest method (and least useful) would look like this:

void SimpleMethod(){

Declaration
The declaration for a method is similar to the first line in the previous section. At the very least,
it specifies what the method will return, and the name the method will be known by. Ordinarily,
as you will soon see, more options than these two are used. In general, method declarations
have the form

access_specifier modifier return_value nameofmethod (parameters)
throws ExceptionList

where everything in italics is optional.

Access Specifiers The first option for a method is the access specifier. Access specifiers are
used to restrict access to the method. Regardless of what the access specifier is, though, the
method is accessible from any other method in the same class. However, although all methods
in a class are accessible by all other methods in the same class, there are certain necessary
tasks that you might not want other objects to be able to perform. You learn more about
classes in Chapter 11, “Classes.” For now you look at how the access modifiers can change a
method.

Public The public modifier is the most relaxed modifier possible for a method. By specifying
a method as public, it becomes accessible to all classes regardless of their lineage or their
package. In other words, a public method is not restricted in any way. For example:

public void toggleStatus()

Protected The second possible access modifier is protected. Protected methods can be
accessed by any class that extends the current class. For instance, the class
java.awt.Component has a protected method paramString(), which is used in classes such as
java.awt.Button, but is inaccessible to any class that you might create that does not extend
Component. For example:

protected void toggleStatus()

◊ See “Using Packages to Organize Your Code,” p.189

Untitled-11 9/22/98, 3:12 PM120

121

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

8

II
Part

Ch

If you are having a compile-time error caused by an attempt to access a method not visible
to the current scope, you might have trouble diagnosing the source of your problems. This

is because the error message does not tell you that you are attempting to access a protected method.
Instead it resembles the following:

No method matching paramString() found in class java.awt.Button.

java.awt.Button.paramString() is a protected method in java.awt.Button. This is because
the restricted methods are effectively hidden from the non-privileged classes. Therefore, when
compiling a class that does not meet the security restrictions, such methods are hidden from the
compiler.

Also note that you encounter a similar error message when trying to access a private or protected
method outside of its range of access, as well as when you attempt to access a field from an
unprivileged class. ■

Private Private is the highest degree of protection that can be applied to a method.

A private method is only accessible by those methods in the same class. Even classes that
extend from the current class do not have access to a private class. For example:

private void toggleStatus()

Default Those methods that do not declare their access level have a special accessibility in
Java. These methods are accessible to any class in the rest of the current package, but not any
classes outside the current package. For example:

package abc;
public class NetworkSender {
 void sendInfo(String mes) {
 system.out.println(mes)
 }
}

package abc;
public class NetworkSenderTest {
 String mes = “test”;
 void informOthers(String mes) {
 NetworkSender messenger;
 messenger = new NetworkSender();
 messanger.sendInfo(mes); // this is legal
}
}

package xyz;
import NetworkSender;
public class NetworkSenderTest2 extends NetworkSender{
 String mes = “test”;
 void informOthers(String mes) {
 NetworkSender messenger;
 messenger = new NetworkSender();
 messanger.sendInfo(mes); // this is NOT legal
 }
}

N O T E

Parts of a Method

Untitled-11 9/22/98, 3:12 PM121

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

122 Chapter 8 Methods

The first statement invokes sendInfo() as a method belonging to the NetworkSender. This is
legal because default methods are accessible to other classes in the same package (both
NetworkSender and NetworkSenderTest are in the package abc). However, in
NetworkSenderTest2 the statement is illegal because it attempts to invoke sendInfo() on an
instance of the NetworkSender class, but NetworkSenderTest2 is in a different package (xyz).
Even though NetworkSenderTest2 is a subclass of NetworkSender, it is referencing sendInfo()
not as a method belonging to its superclass, but rather as a method belonging to an instance of
NetworkSender.

Modifiers Method modifiers enable you to set properties for the method, such as where it
will be visible and how subclasses of the current class will interact with it.

Static Static, or class, variables and methods are closely related. For example:

static void toggleStatus()

It is important to differentiate between the properties of a specific instance of a class and the
class itself. In the following code (see Listing 8.1), you create two instances of the Elevator
class and perform some operations with them.

Listing 8.1 Hotel.java—Hotel Example with Instance Methods

class Elevator {
 boolean running = true;
 void shutDown() {
 running = false;
 }
}

class FrontDesk {
 private final int EVENING = 8;
 Elevator NorthElevator, SouthElevator;

 FrontDesk() { // the class constructor
 NorthElevator = new Elevator();
 SouthElevator = new Elevator();
 }

 void maintenance(int time) {
 if (time == EVENING)
 NorthElevator.shutDown();
 }

 void displayStatus() {
 // code is very inefficient, but serves a purpose
 System.out.print(“North Elevator is “);
 if (!(NorthElevator.running))
 System.out.print(“not “);
 System.out.println(“running.”);
 System.out.print(“South Elevator is “);
 if (!(SouthElevator.running))

Untitled-11 9/22/98, 3:12 PM122

123

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

8

II
Part

Ch

 System.out.print(“ not “);
 System.out.println(“running.”);
 }
 }

public class Hotel {
 public static void main(String args[]) {
 FrontDesk lobby;
 lobby = new FrontDesk();
 System.out.println(“It’s 7:00. Time to check the elevators.”);
 lobby.maintenance(7);
 lobby.displayStatus();

 System.out.println();
 System.out.println(“It’s 8:00. Time to check the elevators.”);
 lobby.maintenance(8);
 lobby.displayStatus();
 }
}

Both NorthElevator and SouthElevator are instances of the Elevator class. This means that
each is created with its own running variable and its own copy of the shutDown() method.
Although these are initially identical for both elevators, as you can see from the preceding
example, the status of running in NorthElevator and SouthElevator does not remain equal
once the maintenance() method is called.

Consequently, if compiled and run, the preceding code produces the following output:

C:\dev>\JDK1.2\java\bin\java Hotel
It’s 7:00. Time to check the elevators.
North Elevator is running.
South Elevator is running.
It’s 8:00. Time to check the elevators.
North Elevator is not running.
South Elevator is running.

In the preceding example, you might notice a rather funny looking method named
FrontDesk(). What is it? As you learn in the “Constructors” section in Chapter 11, this is

the constructor method for the FrontDesk class. Called whenever an instance of FrontDesk is
created, it provides you the ability to initialize fields and perform other such preparatory operations. ■

Variables and methods such as running and shutDown() are called instance variables and in-
stance methods. This is because every time the Elevator class is instantiated, a new copy of
each is created. In the preceding example, while the value of the running variable certainly can
change because there are two copies of it, changing one does not change the other. Therefore,
you can track the status of the NorthElevator and SouthElevator separately.

However, what if you want to define and modify a property for all elevators? Examine the ex-
ample in Listing 8.2 and note the additions.

N O T E

Parts of a Method

Untitled-11 9/22/98, 3:12 PM123

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

124 Chapter 8 Methods

Listing 8.2 Hotel2.java—Hotel Example with Static Methods

class Elevator {
 boolean running = true;
 static boolean powered = true;
 void shutDown() {
 running = false;
 }
 static void togglePower() {
 powered = !powered;
 }
}

class FrontDesk {
 private final int EVENING = 8;
 private final int CLOSING = 10;
 private final int OPENING = 6;
 Elevator NorthElevator, SouthElevator;
 FrontDesk() {
 NorthElevator = new Elevator();
 SouthElevator = new Elevator();
 }

 void maintenance(int time) {
 if (time == EVENING)
 NorthElevator.shutDown();
 else if ((time == CLOSING) || (time == OPENING))
 Elevator.togglePower();
 }

 void displayStatus() {
 // Code is very inefficient, but serves a purpose.
 System.out.print(“North Elevator is “);
 if (!(NorthElevator.running))
 System.out.print(“not “);
 System.out.println(“running.”);
 System.out.print(“South Elevator is “);
 if (!(SouthElevator.running))
 System.out.print(“ not “);
 System.out.println(“running.”);
 System.out.print(“The elevators are “);
 if (!(Elevator.powered))
 System.out.print(“not “);
 System.out.println(“powered.”);
 }

public class Hotel2 {
 public static void main(String args[]) {
 FrontDesk lobby;
 lobby = new FrontDesk();
 System.out.println(“It’s 7:00. Time to check the elevators.”);
 lobby.maintenance(7);
 lobby.displayStatus();

 System.out.println();
 System.out.println(“It’s 8:00. Time to check the elevators.”);

Untitled-11 9/22/98, 3:12 PM124

125

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

8

II
Part

Ch

 lobby.maintenance(8);
 lobby.displayStatus();

 System.out.println();
 System.out.println(“It’s 10:00. Time to check the elevators.”);
 lobby.maintenance(10);
 lobby.displayStatus();
 }
}

In this case, the variable powered is now a static variable, and the method togglePower() is a
static method. This means that each is now a property of all Elevator classes, not the specific
instances. Invoking either the NorthElevator.togglePower(), SouthElevator.togglePower(),
or Elevator.togglePower() method would change the status of the powered variable in both
classes.

Consequently, the code would produce the following output:

C:\dev>\JDK1.2\java\bin\java Hotel2
It’s 7:00. Time to check the elevators.
North Elevator is running.
South Elevator is running.
The elevators are powered.
It’s 8:00. Time to check the elevators.
North Elevator is not running.
South Elevator is running.
The elevators are powered.
It’s 10:00. Time to check the elevators.
North Elevator is not running.
South Elevator is running.
The elevators are not powered.

Placing the static modifier in front of a method declaration makes the method a static
method. While nonstatic methods can also operate with static variables, static methods can
only deal with static variables and static methods.

Abstract Abstract methods are simply methods that are declared, but are not implemented in
the current class. The responsibility of defining the body of the method is left to subclasses of
the current class. For example:

abstract void toggleStatus();

CAUTION

Neither static methods nor class constructors can be declared to be abstract. Furthermore, you should
not make abstract methods final, because doing so prevents you from overriding the method.

Final By placing the keyword final in front of the method declaration, you prevent any
subclasses of the current class from overriding the given method. This ability enhances the
degree of insulation of your classes, and you can ensure that the functionality defined in this
method will never be altered in any way. For example:

final void toggleStatus()

Parts of a Method

Untitled-11 9/22/98, 3:12 PM125

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

126 Chapter 8 Methods

Native Native methods are methods that you want to use, but do not want to write in Java.
Native methods are most commonly written in C++ and can provide several benefits such as
faster execution time. Like abstract methods, they are declared simply by placing the modifier
native in front of the method declaration and by substituting a semicolon for the method body.

However, it is also important to remember that the declaration informs the compiler as to the
properties of the method. Therefore, it is imperative that you specify the same return type and
parameter list as can be found in the native code.

Synchronized By placing the keyword synchronized in front of a method declaration, you
can prevent data corruption that may result when two methods attempt to access the same
piece of data at the same time. Although this might not be a concern for simple programs, after
you begin to use threads in your programs, this can become a serious problem. For example:

synchronized void toggleStatus()

◊ See “What Are Threads?” p. 208

Returning Information Although returning information is one of the most important things a
method can do, there is little to discuss by way of details about returning information. Java
methods can return any data type ranging from simple ones, such as integers and characters,
to more complex objects. (This means that you can return things such as strings as well.)

Keep in mind that unless you use the keyword void as your return type, you must return a
variable of the type specified in your declaration.

For example, the following method is declared to return a variable of type boolean. The return
is actually accomplished by employing the return (either true or false) statement in the third
and fourth lines:

public synchronized boolean isEmpty(int x,˛ét y) {
 if (board[x][y] == EMPTY)
 return true;
 return false;
}

Method Name The rules regarding method names are quite simple and are the same as any
other Java identifier: Begin with a Unicode letter (or an underscore or dollar sign) and continue
with only Unicode characters.

Parameter Lists Simply put, the parameter list is the list of information that will be passed to
the method. It is in the following form and can consist of as many parameters as you want:

DataType VariableName, DataType VariableName,...

If you have no parameters, Java requires that you simply leave the parentheses empty. (This
is unlike other languages that permit you to omit a parameter list, or C, which requires the

keyword void.) Therefore, a method that took no parameters would have a declaration resembling the
following:

public static final void cleanBoard() ■

N O T E

Untitled-11 9/22/98, 3:12 PM126

127

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

8

II
Part

Ch

Passing Parameters in Java
In C and C++, variables are always passed by value. In Pascal, they are always passed by reference.
In Java, however, it depends on what data type you are using. This is probably the single most
ambiguous part of the entire Java language. Here is the rule: If the type being passed is a primitive
type (such as int, char, or float), the result is passed by value. If, however, the type being passed
is an object (such as a class you created), the object is passed by reference.

What does this mean? As shown in Listing 8.2, if you pass an int to a method and that method
changes the int, in the old class the int still has the value it did before. However, when a class is
passed and a variable is changed, the variable is changed in the old method, too. Take a look at
Listing 8.3.

Listing 8.3 PassingDemo.java—The Difference Between Passing an Object
and a Primitive Type

public class passingDemo {

 public void first(){
 xObject o = new xObject ();
 o.x = 5;
 int x = 5;

 changeThem (x, o);
 System.out.println();
 System.out.println(“Back in the original method”);
 System.out.println(“The value of o.x is “+o.x);
 System.out.println(“But, The value of x is now “+x);
 }

 public void changeThem (int x, xObject o){
 x =9;
 o.x = 9;
 System.out.println(“In the changThem method”);
 System.out.println(“The value of o.x is “+o.x);
 System.out.println(“The value of x is now “+x);
 }

 public static void main(String args[]){
 passingDemo myDemo = new passingDemo();
 myDemo.first();
 }
}

class xObject {
 public int x =5;
}

Parts of a Method

Untitled-11 9/22/98, 3:12 PM127

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

128 Chapter 8 Methods

The resulting output from this code is

In the changeThem method
The value of o.x is 9
The value of x is 9

Back in the original method

The value of o.x is 9
The value of x is 5

Pass by Reference or Pass by Value? One important thing to understand about any pro-
gramming language is whether the values are passed into a method by value or by reference.
If a language uses pass by reference, when you pass a value into a method as a parameter, and
then change the value it is changed back in the calling program as well. On the other hand, if a
language uses pass by value, only the value is passed into the method and any changes aren’t
present in the calling method.

Java is actually a mixed system. Native types (byte,short,char,int,long,float,double and bool-
ean) are passed by value. All objects however are passed by reference. This is why in the
example in the previous section the value of x (a native) is not changed in the original method.
On the other hand since o (an object) is passed by reference, o.x has been changed when it’s
printed out in the original method.

Blocks and Statements
Methods and static initializers in Java are defined by blocks of statements. A block of state-
ments is a series of statements enclosed within curly-braces {}. When a statement’s form calls
for a statement or substatement as a part, a block can be inserted in the substatement’s place.

The simplest block {} is shown in the following example:

public void HiThere() {
}

The next example is only slightly more complex:

public void HiThere(){
 int Test;
 Test = 5;
}

Code blocks are not only integral for defining the start and end of a method, but they can also
be used in a variety of locations throughout your code. One very important aspect of a block is
that it is treated lexically as one instruction. This means that you can put together large blocks
of code that will be treated as one instruction line.

There is nothing in the definition of Java that prevents the programmer from breaking code
into blocks even though they are not specifically called for, but this is seldom done. The follow-
ing code fragment demonstrates this legal but seldom-performed technique:

Untitled-11 9/22/98, 3:12 PM128

129

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

8

II
Part

Ch

Blocks and Statements

String Batter;
Short Inning, Out, Strikes;
Batsman Casey; // Object of class Batsman.
...
if ((Inning == 9) && (Out==2) && (Batter.equals(“Casey”))) {
 Casey.manner(“ease”);
 Casey.bearing(“pride”);
 { // Begins new block for no reason.
 int OnlyExistsInThisBlock = 1;
 Casey.face(“smile”);
 Casey.hat(“lightly doff”);
 } // Ends superfluous blocking.
}

Notice that this fragment contains two complete blocks. One is the substatement of the if
statement, and the other is the unneeded block, which contains the unused integer
OnlyExistsInThisBlock.

Labeled Statements
Any statement in Java can have a label. The actual label has the same properties as any other
identifier; it cannot have the same name as a keyword or already declared local identifier. If it
has the same name as a variable, method, or type name that is available to this block, then
within that block, the new label takes precedence and that outside variable, method, or type is
hidden. The label has the scope of the current block. The label is followed by a colon.

Labels are only used by the break and continue statements.

An example of labeled statements appears in the following code fragment:

writhing:
 Pitcher.GrindsBall(“Hip”);
 Casey.eye(“Defiance Gleams”);
 Casey.lip(“Curling Sneer”);
pitch: while (strike++ < 2) {
 if (strike < 2) continue pitch;
 break writhing;
}

The writhing statement is simple labeling of an expression statement, in this case, a method
call from a rather complicated object called Pitcher. The pitch statement is labeling an itera-
tion statement (while). This label is used as a parameter for the continue statement.

Scope
Another use of blocks is to control what is known as the scope of an object. When you declare a
variable, it is only available for your use within a given code block. For instance, say you had
the following block:

{
 int x= 5;
}
System.out.println (“X is =”+x); // This line is not valid.

Untitled-11 9/22/98, 3:12 PM129

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH08 LP#4

130 Chapter 8 Methods

The last line of this code would not be valid, because the computer creates the x variable, but
when the computer reaches the closing brace, it gets rid of x.

Separators
Separators are single-character tokens, which (as their name implies) are found between other
tokens. There are nine separators, which are loosely described as follows:

(Used both to open a parameter list for a method and to establish a precedence for
 operations in an expression

) Used both to close a parameter list for a method and to establish a precedence for
 operations in an expression

{ Used both to open a parameter list or used to begin a block of statements or an
 initialization list

} Used to close a block of statements or an initialization list

[Used both to open a parameter list for a Precedes an expression used as an array
 index

] Follows an expression used as an array index

; Used both to end an expression statement and to separate the parts of a for
 statement

, Used as a list delimiter in many contexts

. Used both as a decimal point and to separate such things as package name from class
 name from method or variable name

Untitled-11 9/22/98, 3:12 PM130

131

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

9

II
Part

Ch

C H A P T E R

Using Expressions

9

In this chapter

What Is an Expression? 132

How Expressions Are Evaluated 132

Of Special Interest to C Programmers 136

Bitwise Operators 136

The Shift Operators 138

Type Conversions 139

Addition of Strings 141

Untitled-12 9/22/98, 3:18 PM131

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

132 Chapter 9 Using Expressions

What Is an Expression?
Expressions—combinations of operators and operands—are one of the key building blocks of
the Java language, as they are of many programming languages. Expressions allow you to
perform arithmetic calculations, concatenate strings, compare values, perform logical opera-
tions, and manipulate objects. Without expressions, a programming language is dead—useless
and lifeless.

You’ve already seen some expressions, mostly fairly simple ones, in other chapters in this
book. Chapter 7, “Data Types and Other Tokens,” in particular showed you that operators—
one of the two key elements in an expression—form one of the main classifications of Java
tokens, along with such things as keywords, comments, and so on. In this chapter, you take a
closer look at how you can use operators to build expressions—in other words, how to put
operators to work for you.

There are all kinds of technical definitions of what an expression is, but at its simplest, an ex-
pression is what results when operands and operators are joined together. Expressions are
usually used to perform operations—manipulations—on variables or values. In Table 9.1, you
see several legal Java expressions.

Table 9.1 Legal Java Expressions

Name of Expression Example

Additive expression x+5

Assignment expression x=5

Array indexing sizes[11]

Method invocation Triangle.RotateLeft(50)

How Expressions Are Evaluated
When an expression is simple, like those shown in Table 9.1, figuring out the result of the
expression is easy. When the expression becomes more detailed and more than one operator is
used, things get more complicated.

In Chapter 7, you learned that expressions are just combinations of operators and operands.
And while that definition may be true, it’s not always very helpful. Sometimes you need to
create and use pretty complex expressions—maybe to perform some kind of complicated
calculation or other involved manipulation. To do this, you need a deeper understanding of how
Java expressions are created and evaluated. In this section, you look at three major tools that
will help you in your work with Java expressions: operator associativity, operator precedence,
and order of evaluation.

Untitled-12 9/22/98, 3:18 PM132

133

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

9

II
Part

Ch

Operator Associativity
The easiest of the expression rules is associativity. All the arithmetic operators are said to
associate left-to-right. This means that if the same operator appears more than once in an ex-
pression—as the plus in a+b+c does—then the leftmost occurrence is evaluated first, followed
by the one to its right, and so on. Consider the following assignment statement:

x = a+b+c;

In this example, the value of the expression on the right of the = is calculated and assigned to
the variable x on the left. In calculating the value on the right, the fact that the + operator asso-
ciates left-to-right means that the value of a+b is calculated first, and the result is then added to
c. The result of that second calculation is what is assigned to x. So if you were to write it using
explicit parentheses, the line would read:

x=((a+b)+c);

Notice that in the previous example, a+b+c, the same operator appears twice. It’s when
the same operator appears more than once—as it does in this case—that you apply the

associativity rule. ■

You would use the associativity rule in evaluating the right sides of each of the following as-
signment statements:

volume = length * width * height ;

OrderTotal = SubTotal + Freight + Taxes ;

PerOrderPerUnit = Purchase / Orders / Units ;

Of these expressions, only the last one would result in a different way if you associated the
expression incorrectly. The correct answer for this expression is

(Purchase / Orders)/ Units

However, evaluated incorrectly the result would be

Purchase / (Orders/Units)

which can also be written as

(Purchase * Units)/ Orders

which is obviously not the same as the correct expression.

Precedence of Java Operators
When you have an expression that involves different operators, the associativity rule doesn’t
apply, because the associativity rule only helps figure out how combinations of the same opera-
tor would be evaluated. Now you need to know how expressions using combinations of differ-
ent operators are evaluated.

How Expressions Are Evaluated

N O T E

Untitled-12 9/22/98, 3:18 PM133

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

134 Chapter 9 Using Expressions

Precedence helps to determine which operator to act on first. If you write A+B*C, by standard
mathematics you would first multiply B and C and then add the result to A. Precedence helps
the computer to do the same thing. The multiplicative operators (*, /, and %) have higher pre-
cedence than the additive operators (+ and –). So, in a compound expression that incorporates
both multiplicative and additive operators, the multiplicative operators are evaluated first.

Consider the following assignment statement, which is intended to convert a Fahrenheit tem-
perature to Celsius:

Celsius = Fahrenheit – 32 * 5 / 9;

The correct conversion between Celsius and Fahrenheit is that the degrees Celsius are equal
degrees Fahrenheit minus 32 times 5 divided by 9. However, in the equation, because the * and
/ operators have higher precedence, the sub-expression 32*5/9 is evaluated first (yielding the
result 17) and that value is subtracted from the Fahrenheit variable.

To correctly write this equation, and whenever you need to change the order of evaluation of
operators in an expression, you can use parentheses. Any expression within parentheses is
evaluated first. To perform the correct conversion for the preceding example, you would write:

Celsius = (Fahrenheit – 32) * 5 / 9;

Interestingly, there are some computer languages that do not use rules of precedence.
Some languages, like APL for example, use a straight left-to-right or right-to-left order of

evaluation, regardless of the operators involved. ■

Use of parentheses would also help with the following examples:

NewAmount = (Savings + Cash) * ExchangeRate ;

TotalConsumption = (Distance2 – Distance1) * ConsumptionRate ;

The precedence of the unary arithmetic operators—in fact all unary operators—is very high;
it’s above all the other arithmetic operators. In the following example, you multiply the value –5
times the value of Xantham, and not Xantham times five negated (although the results are the
same):

Ryman = –5 * Xantham;

Summary—The Operator Table
Table 9.2 is what is known as the precedence table. The operators with the highest precedence
are at the top. Operators on the same line are of equal precedence.

All these operators associate left-to-right, except the unary operators, assignments, and the
conditional. For any single operator, operand evaluation is strictly left-to-right, and all operands
are evaluated before operations are performed.

N O T E

Untitled-12 9/22/98, 3:18 PM134

135

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

9

II
Part

Ch

Table 9.2 The Complete Java Operator Precedence Table

Description Operators

High Precedence . [] ()

Instance Of Unary + – ~ ! ++ – –

Multiplicative * / %

Additive + –

Shift << >> >>>

Relational < <= >= > >

Equality == !=

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Conditional-AND &&

Conditional-OR ||

Conditional ?:

Assignment = op=

Order of Evaluation
Many people, when they first learn a language, confuse the issue of operator precedence with
order of evaluation. The two are actually quite different. The precedence rules help you deter-
mine which operators come first in an expression and what the operands are for an operator.
For example, in the following line of code, the operands of the * operator are a and (b+c):

d = a * (b+c) ;

The order of evaluation rules, on the other hand, help you to determine not when operators are
evaluated, but when operands are evaluated.

Here are three rules that should help you remember how an expression is evaluated:

■ For any binary operator, the left operand is evaluated before the right operand.

■ Operands are always evaluated fully before the operator is evaluated; for example, before
the operation is actually performed.

■ If a number of arguments are supplied in a method call, separated by commas, the
arguments are evaluated strictly left-to-right.

How Expressions Are Evaluated

Untitled-12 9/22/98, 3:18 PM135

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

136 Chapter 9 Using Expressions

Of Special Interest to C Programmers
Because Java is an evolutionary outgrowth of C and C++, it’s understandable that the expres-
sion syntax for the three languages is so similar. If you already know C, it’s important that you
keep in mind that the three languages are only similar—not identical.

One very important difference is that order of evaluation is guaranteed in Java, and is generally
undefined or implementation-specific in C. In Java, the remainder (%), increment (++), and
decrement (– –) operators are defined for all primitive data types (except Boolean); in C, they
are defined only for integers.

Relational and equality operators in Java produce a Boolean result; in C, they produce results of
type int. Furthermore, the logical operators in Java are restricted to Boolean operands.

Java supports native operations on strings—including string concatenation and string assign-
ment. C does not have this support for strings.

In C, using the right-shift operator (>>) on a signed quantity results in implementation-specific
behavior. Java avoids this confusion by using two different right-shift operators—one that pads
with zeroes and the other that does sign-extension.

Bitwise Operators
If you have a number, such as 0x0F2 (which is a hexadecimal number equal to 242), do you
know how to get rid of just the 2? Do you know how to find out which of the bits of 0x0F2 are
set the same as they are for the number 0x0A1? Bitwise operators allow you to solve these
problems easily. (To answer the question: 0x0F2&0x0F0 and 0x0F2&0x0A1.)

The bitwise operators are a set of operators that are either very important or completely unim-
portant to you depending on what you are doing. When you need a bitwise operator, it is rarely
the case that you can substitute any other operation to easily reproduce the same results. But,
at the same time, it’s highly likely that most of the work you do will not require you to perform
such esoteric calculations.

So what are bitwise operators? Bitwise operators work on the fundamental level of how values
are stored in a computer. Numbers are stored in sequences of on and off, known as bits, which
are most often translated to the binary numbers 1 and 0. A typical variable such as an int has
32 of these 1s and 0s in order to make up a complete number. It is often helpful to be able to
manipulate these values directly, and bitwise operators are the means to do that.

Consider a simple example using bytes. A byte comprises eight bits of memory. Each of the
eight bits can have the value of 0 or 1, and the value of the whole quantity is determined by
using base 2 arithmetic, meaning that the rightmost bit represents a value of 0 or 1; the next bit
represents the value of 0 or 2; the next represents the value 0 or 4, and so on, where each bit
has a value of 0 and 2n and n is the bit number. Table 9.3 shows the binary representation of
several numbers.

Untitled-12 9/22/98, 3:18 PM136

137

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

9

II
Part

Ch

Table 9.3 Some Base 10 Values and Their Base 2 Equivalents

Base 10 Value 128 64 32 16 8 4 2 1

17 0 0 0 0 1 0 0 0 1

63 0 0 0 1 1 1 1 1 1

75 0 0 1 0 0 1 0 1 1

131 0 1 0 0 0 0 0 1 1

To find the Base 10 value of the numbers in Table 9.3, you need to add together the number at
the top of the column for each of the columns containing a 1. For instance, the first row would
be

16+1 = 17

The numeric quantities in Table 9.3 are all positive integers, and that is on purpose. Negative
numbers are a little more difficult to represent. For any integer quantity in Java, except char,
the leftmost bit is reserved for the sign-bit. If the sign-bit is 1, then the value is negative. The
rest of the bits in a negative number are also determined a little differently, in what is known as
two’s-complement, but don’t worry about that now. Floating-point numbers also have their own
special binary representation, but that’s beyond the scope of this book.

The three binary bitwise operators perform the logical operations of AND, OR, and Exclusive
OR (sometimes called XOR) on each bit in turn. The three operators are:

■ Bitwise AND: &

■ Bitwise OR: |

■ Bitwise Exclusive OR: ^

Each of the operators produces a result based on what is known as a truth table. Each of the
operators has a different truth table, and the next three tables show them.

To determine the results of a bitwise operator, it is necessary to take a look at each of the oper-
ands as a set of bits and compare the bits to the appropriate truth table.

First Value (A) Second Value (B) Resulting Value
(A&B)

0 0 0

0 1 0

1 0 0

1 1 1

Bitwise Operators

Untitled-12 9/22/98, 3:18 PM137

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

138 Chapter 9 Using Expressions

First Value (a) Second Value (b) Resulting Value
(A|B)

0 0 0

0 1 1

1 0 1

1 1 1

First Value (a) Second Value (b) Resulting Value
(A ^ B)

0 0 0

0 1 1

1 0 1

1 1 0

The operands of the bitwise operators can also be Boolean, in addition to being any other
integer type.

Table 9.4 shows the results of each of these operations performed on two sample values. First,
you see the Boolean values of the two numbers 11309 and 798, and then the resulting bit se-
quences after the various bit operators are applied.

Table 9.4 Bitwise Operation Examples

Expression Binary Representation

11309 0010 1100 0010 1101

798 0000 0011 0001 1110

11309 & 798 0000 0000 0000 1100

11309 | 798 0010 1111 0011 1111

11309 ^ 798 0010 1111 0011 0011

The Shift Operators
There are three shift operators in Java, as follows:

■ Left shift: <<

■ Signed right shift: >>

■ Unsigned right shift: >>>

Untitled-12 9/22/98, 3:18 PM138

139

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

9

II
Part

Ch

The shift operators move (shift) all of the bits in a number to the left or the right. The left oper-
and is the value to be shifted, while the right operand is the number of bits to shift by, so in the
equation

17<<2

the number 17 will be shifted two bits to the left. The left shift and the unsigned right shift
populate the vacated spaces with zeroes. The signed right shift populates the vacated spaces
with the sign bit. The following table shows two 8-bit quantities, 31 and -17, and what happens
when they are shifted:

Quantity x x<<2 x>>2 x>>>2

31 00011111 01111100 00000111 00000111

–17 11101111 10111100 11111011 00111011

The precedence of the shift operators is above that of the relational operators, but below the
additive arithmetic operators.

Type Conversions
One very critical aspect of types in general in any language is how they interrelate. In other
words, if you have a float such as 1.2, how does that relate to, say, an integer? How does the
language handle a situation where a byte (8 bits) is added to an int (32 bits)? To deal with
these problems, Java performs type conversions. Java is called a strongly typed language,
because at compile time the type of every variable is known. Java performs extensive type-
checking (to help detect programmer errors) and imposes strict restrictions on when values
can be converted from one type to another.

There are really two different kinds of conversions:

■ Explicit conversions occur when you deliberately change the data type of a value.

■ Implicit conversions occur any time two unequal types are represented in an equation,
and they can be adjusted to be the same time. This can happen without your interven-
tion, even without your knowledge.

Briefly then, casting and converting are the way Java allows the use of a variable of one type to
be used in an expression of another type.

In C, almost any data type can be converted to almost any other across an assignment
statement. This is not the case in Java, and implicit conversions between numeric data

types are only performed if they do not result in loss of precision or magnitude. Any attempted
conversion that would result in such a loss produces a compiler error, unless there is an explicit
cast. ■

Implicit Type Conversions
Java performs a number of implicit type conversions when evaluating expressions, but the
rules are simpler and more controlled than in the case of C or even C++.

Type Conversions

N O T E

Untitled-12 9/22/98, 3:18 PM139

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

140 Chapter 9 Using Expressions

For unary operators (such as ++ or – –), the situation is very simple: Operands of type byte or
short are converted to int, and all other types are left as is.

For binary operators, the situation is only slightly more complex. For operations involving only
integer operands, if either of the operands is long, then the other is also converted to long;
otherwise, both operands are converted to int. The result of the expression is an int, unless
the value produced is so large that a long is required. For operations involving at least one
floating-point operand, if either of the operands is double, then the other is also converted to
double and the result of the expression is also a double; otherwise, both operands are con-
verted to float, and the result of the expression is also a float. Consider the expressions in
Listing 9.1.

Fortunately, implicit conversions take place almost always without your wanting or needing
to know. The compiler handles all the details of adding bytes and ints together so you don’t
have to.

Listing 9.1 Some Mixed Expressions Showing Type Conversions

short Width;
long Length, Area;
double TotalCost, CostPerFoot;

// In the multiplication below, Width will be converted to a
// long, and the result of the calculation will be a long.
Area = Length * Width;

// In the division below, Area will be converted to a double,
// and the result of the calculation will be a double.
CostPerFoot = TotalCost / Area ;

Cast Operator
Normally with implicit conversion, the conversion is so natural that you don’t even notice.
Sometimes, though, it is important to make sure a conversion occurs between two types. Doing
this type of conversion requires an explicit cast, by using the cast operator.

The cast operator consists of a type name within round brackets. It is a unary operator with
high precedence and comes before its operand, the result of which is a variable of the type
specified by the cast, but which has the value of the original object. The following example
shows an example of an explicit cast:

float x = 2.0;
float y = 1.7;
x = ((int)(x/y) * y)

When x is divided by y in this example, the type of the result is a floating-point number. How-
ever, the value of x/y is explicitly converted to type int by the cast operator, resulting in a 1,
not 1.2. So the end result of this equation is that x equals 1.7.

Untitled-12 9/22/98, 3:18 PM140

141

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

9

II
Part

Ch

Not all conversions are legal. For instance, Boolean values cannot be cast to any other type,
and objects can only be converted to a parent class.
◊ See “Declaring a Class,” p. 85

Because casting involves an unconditional type conversion (if the conversion is legal), it is
also sometimes known as type coercion. ■

Casting and Converting Integers
The four integer types can be cast to any other type except Boolean. However, casting into a
smaller type can result in a loss of data, and a cast to a floating-point number (float or double)
will probably result in the loss of some precision, unless the integer is a whole power of two
(for example, 1, 2, 4, 8,…).

Casting and Converting Characters
Characters can be cast in the same way 16-bit (short) integers are cast; that is, you can cast
them to be anything. But, if you cast into a smaller type (byte), you lose some data. In fact, even
if you convert between a character and a short, you can lose some data.

If you are using the Han character set (Chinese, Japanese, or Korean), you can lose data by
casting a char into a short (16-bit integer), because the top bit will be lost. ■

Casting and Converting Booleans
There are not any direct ways to cast or convert a Boolean to any other type. However, if you
are intent on getting an integer to have a 0 or 1 value based on the current value of a Boolean,
use an if-else statement, or imitate the following code.

int j;
boolean tf;
...
j = tf?1:0; // Integer j gets 1 if tf is true, and 0 otherwise.

Conversion the other way can be done with zero to be equal to false, and anything else equal to
true as follows:

int j;
boolean tf;
...
tf = (j!=0); // Boolean tf is true if j is not 0, false otherwise.

Addition of Strings
Before you can finally leave the subject of operators, it is important to also cover a special use
of the addition operator as it relates to strings.

N O T E

N O T E

Addition of Strings

Untitled-12 9/22/98, 3:18 PM141

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH09 LP#4

142 Chapter 9 Using Expressions

In general, Java does not support operator overloading; however, in Java, the concatenation of
strings is supported by using the + operator. The behavior of the + operator with strings is just
what you’d expect if you’re familiar with C++. The first and second string are concatenated to
produce a string that contains the values of both. In the following expression, the resulting
string would be “Hello World”:

“Hello” + “ World”

If a non-string value is added to a string, it is first converted to a string using implicit typecast-
ing before the concatenation takes place. This means, for example, that a numeric value can be
added to a string. The numeric value is converted to an appropriate sequence of digit charac-
ters, which are concatenated to the original string. All the following are legal string concatena-
tions:

“George “ + “Burns”

“Burns” + “ and “ + “Allen”

“Fahrenheit” + 451

“Answer is: “ + true

Untitled-12 9/22/98, 3:18 PM142

143

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

10

II
Part

Ch

C H A P T E R

Control Flow

10

In this chapter

Controlling the Execution 144

true and false Operators on Booleans 144

Logical Expressions 148

The Conditional Operator 150

Booleans in Control Flow Statements 150

Control Flow Functions 151

Iteration Statements 152

Jump Statements 156

Untitled-13 9/22/98, 3:19 PM143

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

144 Chapter 10 Control Flow

Controlling the Execution
Controlling the flow of execution is perhaps the most important aspect of any programming
language. Control flow allows you to direct the computer in different directions depending on
conditions. So, if you’re lost, you might turn in a random direction. Otherwise, you would fol-
low the map.

You can also think about control flow like a stoplight. If the light is red, you want to stop your
car, but if the light is green, you want all cars to go through the intersection. Without this type
of decision making, programs would be flat and lifeless. This chapter teaches you how to make
the computer follow the map and traffic laws.

true and false Operators on Booleans
Almost all control flow expressions in Java control the flow based on a true or false value. For
instance, as you learn later in this chapter, an if (value) statement causes the next statement
to be executed only if the value is true. You can actually write something like if (true), but
there is little value in it. Instead, usually the value is a Boolean expression.

Operators in Java have particular meanings for use with Boolean expressions. Many of the
same operator symbols are used with other types of expressions. In most cases, the meanings
are a natural extension from the operations performed on integer types. The operations shown
in Table 10.1 can be performed on Booleans.

Table 10.1 Operations on Boolean Expressions

Operation Name Description

= Assignment As in tf = true;.

== Equality This produces a true if the two Boolean operands have
the same value (true or false). It produces false
otherwise. This is equivalent to NOT EXCLUSIVE OR
(NXOR).

!= Inequality This produces a true if the two Boolean operands have
different values (one true, the other false). It produces
false otherwise. This is equivalent to EXCLUSIVE OR
(XOR).

! Logical NOT If the operand is false, the output is true, and vice versa.

& AND Produces a true if and only if both operands are true.
Note: This is only valid for Boolean operands. For other
values, it’s a bitwise operator.

| OR Produces a false if and only if both operands are false.
Note: This is only valid for Boolean operands. For other
values, it’s a bitwise operator.

Untitled-13 9/22/98, 3:19 PM144

145

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

10

II
Part

Ch

^ XOR Produces true only if exactly one (exclusive OR) operand
is true. Note: This is only valid for Boolean operands. For
other values, it’s a bitwise operator.

&& Logical AND Same result for Booleans as described for &.

|| Logical OR Same result for Booleans as described for |.

?: if-then-else Requires a Boolean expression before the question mark.

The Relational Operators
The most intuitive comparative operators are those that fall into a category known as relational
operators. Relational operators include those standard greater-than and less-than symbols you
learned about back in third grade. Conveniently enough, they work the same as they did back
in third grade, too. For instance, you know that if you write (3>4), you wrote something wrong
(false). On the other hand, (3<4) is correct (true). In Java and most other languages, you are
not limited to evaluating constants; you are free to use variables, so the statement
(Democrats>Republicans) is also valid. The complete list of relational operators is shown here:

Operator Boolean Result

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The precedence of the relational operators is below that of the arithmetic operators, but above
that of the assignment operator. Thus, the following two assignment statements produce identi-
cal results:

result1 = a+b < c*d ;
result2 = (a+b) < (c*d) ;

The associativity is left-to-right, but this feature isn’t really very useful. It may not be immedi-
ately obvious why, but consider the following expression:

a < b < c

The first expression, a<b, is evaluated first, and produces a value of true or false. This value
then would have to be compared to c. Because a Boolean cannot be used in a relational expres-
sion, the compiler generates a syntax error.

In C and C++, the relational operators produce an integer value of 0 or 1, which can be
used in any expression expecting an integer. Expressions like the following are legal in C or

C++, but generate compiler errors in Java:

RateArray [day1 < day2]
NewValue = OldValue + (NewRate > OldRate) * Interest; ■

Operation Name Description

N O T E

true and false Operators on Booleans

Untitled-13 9/22/98, 3:19 PM145

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

146 Chapter 10 Control Flow

Try a very basic program to test some of what you have just learned. Listing 10.1 shows a list
of printouts that tell if the things you learned in grade school were true. Here, we’re using
another convenient fact of Java—you can add Boolean values to a string and the answer true or
false will be displayed for you.

Listing 10.1 QuickTest.java—A Simple Lesson from the Third Grade

public class QuickTest
{
 public static void main(String args[]){
 System.out.println(“5 is greater than 6:”+(5>6));
 System.out.println(“6 is greater than or equal to 3:”+(6>=3));
 System.out.println(“8 is less than 10:”+(8<10));
 }
}

To run this program, first copy Listing 10.1 to a file called QuickTest.java. As discussed in
previous chapters, it’s important the file be called QuickTest.java with all capitalization the
same. Next, compile the program using javac:

javac QuickTest.java

After the file is compiled, you’re ready to run it:

java QuickTest

As you may have already guessed, the output you get should look like this:

5 is greater than 6:false
6 is greater than or equal to 3:true
8 is less than 10:true

The Equality Operators
The equality operators are the next set of evaluation operators in Java. Equality operators en-
able you to compare one value to another and find out if they are equal. In third grade, you
might have written this as (3=3). Unfortunately, in Java, this statement would cause the com-
piler to use the assignment operator (also known as gets) rather than evaluate the equation.
gets is used in traditional computing as a substitute for the = operator when reading text, as
shown here. So, if you were to read out loud the line 3=3, you would say “three gets three.”

The problem is that this is not the result you are looking for. To solve this problem, a separate
two-character operator (==) is used. In Java then, you would write the equation as (3==3). This
would be read out loud as “three equals three.”

On the other hand, obviously the equation (3==4) would result in an incorrect equation
(false).

Untitled-13 9/22/98, 3:19 PM146

147

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

10

II
Part

Ch

The following equality operators are very similar to the relational operators, with slightly lower
precedence:

Operator Boolean Result

== Is equal to

!= Is not equal to

The equality operators can take operands of virtually any type. In the case of the primitive data
types, the values of the operands are compared. However, if the operands are some other type
of object (such as a class you created), the evaluation determines if both operands refer to
exactly the same object. Consider the following example:

String1 == String2

In this example, String1 and String2 must refer to the same string—not to two different
strings that happen to contain the same sequence of characters. Consider the lines shown in
Listing 10.2.

Listing 10.2 ObjectEquals.java—Comparing Objects in Java

public class ObjectEquals
{
 public static void main(String args[]){
 String String1 = new String(“Hi Mom”);
 String String2 = new String(“Hi Mom”);
 //At this point String1 is not equal to String2
 System.out.println(“String1 == String2 :”+(String1==String2));

 String String3=String1;
 //Now String1 is equal to String2
 System.out.println(“String1 == String3 :”+(String1==String3));
 }
}

Given this sequence, String1==String2 would return false after the first two lines because
despite the fact that they contain the same letters, they are not the same object. On the other
hand, String1=String3 would return true because they refer to exactly the same object. So as
you may have already guessed, the output of this program is as follows:

String1 == String2 :false
String1 == String3 :true

If you want to compare String1 to String2 in the first two lines of this example, you can
use the equals method of String. This would be written String1.equals(String2).

The equals() method compares the strings character by character. ■

N O T E

true and false Operators on Booleans

Untitled-13 9/22/98, 3:19 PM147

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

148 Chapter 10 Control Flow

The associativity of these operators is again left-to-right. You’ve seen that the associativity of
the relational operators is really not useful to you as a programmer. The associativity of the
equality operators is only slightly more useful. Take a look at the following example:

StartTemp == EndTemp == LastRace

Here, the variables StartTemp and EndTemp are compared first, and the Boolean result of that
comparison is compared to LastRace, which must be Boolean. If LastRace is of some non-
Boolean type, the compiler generates an error.

CAUTION

Writing code that depends on this kind of subtlety is considered extremely poor form. Even if you understand
it completely when you write it, chances are you’ll be as mystified as everyone else when you try to read it a
few weeks or months later. Try to use constructs in your code that are easily read. If there is some reason
that you must use an expression like the one just given, be sure to use comments to explain how the
expression operates and, if possible, why you’ve chosen to implement your algorithm that way.

Logical Expressions
The third set of evaluation operators falls into a category known as logical expressions. Logical
expressions work a bit differently than the previous operators and are probably not something
you covered in your third-grade math class.

Logical expressions operate either on a pair of Booleans or on the individual bits of an object.
There are two types of logical operators which are divided roughly along these lines:

■ Boolean operators Only operate on Boolean values

■ Bitwise operators Operate on each bit in a pair of integral operands

You have already seen in Chapter 9, “Using Expressions,” how bitwise operators work. This
chapter covers only the conditional half of the logical expression operators. However, it is inter-
esting to note that, with some minor exceptions, bitwise operators and conditional operators
will produce the same result if the operands are Boolean.

Conditional-AND and Conditional-OR Operators
There are two primary Boolean operators:

■ Conditional-AND: &&

■ Conditional-OR: ||

Oddly, in most computer languages (including Java) there is no conditional-XOR operator.

These operators obey the same truth table that was constructed in Chapter 9 for the bitwise
operators. They also tend to be fairly easy to read. For instance, true && true when read “both
true and true” is obviously true. For your convenience, the truth tables for AND and OR are
reproduced:

Untitled-13 9/22/98, 3:20 PM148

149

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

10

II
Part

Ch

When A is And when B is (A && B) (A || B)

false false false false

false true false true

true false false true

true true true true

The operands of a conditional-OR or a conditional-AND expression are evaluated left-to-right;
if the value of the expression is determined after evaluating the left operand, the right operand
will not be evaluated. So, in the following example, if x is indeed less than y, then m and n are
not compared:

(x<y) || (m>n)

If the left side of this expression produces the Boolean value true, then the result of the whole
expression is true, regardless of the result of the comparison m>n. Note that in the following
expression, if you instead used a bitwise operator, m and n are compared regardless of the
values of x and y:

 (x<y) | (m>n)

The precedence of the two conditional operators is below that of the bitwise operators.

The Unary Logical Operators
There are two unary logical operators:

■ Logical negation of Boolean operand: !

■ Bitwise negation of integral or Boolean operand: ~

For integer operands, this operator is the bit flipper—each bit in its operand is toggled.
(What was 0 becomes 1; what was 1 becomes 0.) ■

By placing a negation operator in front of any value, the expression continues with the opposite
value of that which the value had originally. For instance, !true would be false.

Both these operators have high precedence, equivalent to that of the other unary operators.
Take a look at the following example, which shows a combination of the logical negation and
the conditional-AND:

if (!dbase.EOF && dbase.RecordIsValid())

Because the logical negation has high precedence, it is evaluated first. If EOF refers to End of
File, you first check to see if you have reached the end of the file on this database. If you
haven’t, the second operand is evaluated, which in this case is a method invocation that might
determine the validity of the record. The key to understanding this is to realize that if the first
operand is false—in other words, you have reached the end of the file—then you won’t check
to see if the record is valid.

N O T E

Logical Expressions

Untitled-13 9/22/98, 3:20 PM149

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

150 Chapter 10 Control Flow

The Conditional Operator
The conditional operator is unique because it is the one ternary or triadic operator meaning
that there are three operands to the expression (instead of the typical two). It operates in Java,
as it does in C and C++, and takes the following form:

expression1 ? expression2 : expression3

In this syntax, expression1 must produce a Boolean value. If this value is true, then
expression2 is evaluated, and its result is the value of the conditional. If expression1 is false,
then expression3 is evaluated, and its result is the value of the conditional. You can look at the
ternary operator just as if it was a typical if statement:

 If (expression1)
 expression2;
 else
 expression3;

Consider the following examples. The first is using the conditional operator to determine the
maximum of two values; the second is determining the minimum of two values; the third is
determining the absolute value of a quantity.

BestReturn = Stocks > Bonds ? Stocks : Bonds ;
LowSales = JuneSales < JulySales ? JuneSales : JulySales ;
Distance = Site1-Site2 > 0 ? Site1-Site2 : Site2 - Site1 ;

In reviewing these examples, think about the precedence rules and convince yourself that none
of the three examples requires any brackets to be evaluated correctly.

Booleans in Control Flow Statements
Booleans (and Boolean expressions) are the only type that may be used in the true clause of
the control flow statements as seen in the following code fragment:

Boolean TestVal = false;
int IntVal = 1;
...
if (TestVal) {} else {}
if (IntVal != 1) {} else {}
...
while (TestVal) {}
while (IntVal == 0) {}
...
do {} while (TestVal)
do {} while (IntVal == 0)
for (int j=0; TestVal; j++) {}
for (int j=0; IntVal < 5; j++) {}

In this code fragment, the comparisons of the integer IntVal to an integer constant value are
very simple Boolean expressions. Naturally, much more complicated expressions could be
used in the same place.

Untitled-13 9/22/98, 3:20 PM150

151

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

10

II
Part

Ch

Control Flow Functions
Control flow is the heart of any program. Control flow is the ability to adjust (control) the way
that a program progresses (flows). By adjusting the direction that a computer takes, the pro-
grams that you build become dynamic. Without control flow, programs would not be able to do
anything more than several sequential operations.

if Statements
The simplest form of control flow is the if statement. An if takes a look at a conditional ex-
pression (probably derived through any of the means described the first half of this chapter)
and if the value is true, the next block of code is executed. The general syntax for the if is as
follows:

if (expression)
statement;

If the value is false, the computer skips the statement and continues on. An example of an if
statement is shown in the following code fragment:

if (myNameIsFred)
System.out.println(“Hi Fred”);
System.out.println(“Welcome to the system”);

If the value of myNameIsFred is true, when this fragment runs the computer prints out the
following:

Hi Fred
Welcome to the system

However, if the value is false, the program skips over the line after the if and the result is as
follows:

Welcome to the system

In most situations, you will want to execute more than one line of code based on an evaluation.
To do this, you can place a code block after the if, which begins and ends with a pair of curly
braces. The following code fragment shows just such an example:

if (umpire.says.equals(“Strike two”)){ //equals method returns Boolean
Crowd.cry(“Fraud”); // method call
Strike++; // last statement in if block.
}
Casey.face(“Christian charity”); // 1st statement after if block.

if-else Statements
Only slightly more advanced than a simple if, the if-else expression passes execution to the
else statement if the if evaluates to false. The code in the else block is not run if the if is
true. Only one or the other set of code is run. The general syntax for an if-else is as follows:

if (expression)
if_statement;
else
else_statement;

Control Flow Functions

Untitled-13 9/22/98, 3:20 PM151

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

152 Chapter 10 Control Flow

An example of an if-else statement is as follows:

if (strike != 2)
Casey.lip(“Curling Sneer”); // single substatement (could have// been a
block)
else {
Casey.teeth(“Clenched in hate”); // block of substatements// (could have
been single)
Casey.bat.pound(“Plate”);
}

One important aspect of if-else blocks is how else blocks are evaluated when there are
nested ifs. In other words, consider the following code:

if (firstVal==0)
if (secondVal==1)
firstVal++;
else
firstVal—;

When is the else executed? In this example, the tabbing shows you that the else is associated
with the inner (second) if. An if-else expression counts as one statement, so the else be-
longs to the most recent if and is part of the if statement for the first if. Another way to put
this is that ifs are evaluated to elses in a First In First Out (FIFO) fashion. You can change
this by placing the second if in a block:

if (firstVal==0){
if (secondVal==1)
firstVal++;
}
else
firstVal—;

Because a block counts as a single statement, the else is associated with the first if.

Another equally valid if-else statement is known as the compound if:

if (firstVal==0)
 if (secondVal==1)
 firstVal++;
 else if (thirdVal==2)
 firstVal-—;

In this example, the firstVal statement is only executed when firstVal is 0, secondVal is not
1, and the thirdVal is 2. Follow this last example through to verify to yourself that this is the
case.

Iteration Statements
Programmers use iteration statements to control sequences of statements that are repeated
according to runtime conditions.

Untitled-13 9/22/98, 3:20 PM152

153

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

10

II
Part

Ch

Java supports five types of iteration statements:

■ while

■ for

■ break

■ do

■ continue

These are very similar to the statements of the same type found in C and C++, with the excep-
tion that continue and break statements in Java have optional parameters that can change their
behavior (compared with C and C++, where these statements have no parameters) within the
substatement blocks.

while Statements
The while statement tests an expression and, if it is true, executes the next statement or block
repeatedly until the expression becomes false. When the variable or expression is false,
control is passed to the next statement after the while statement. The syntax for a while loop
looks very similar to that of an if statement:

while (expression)
statement;

while loops can become endless, either intentionally or by accident, if the expression is made
so that it will never become false. The following example shows a while loop in action:

while (Casey.RoundingTheBasepads==true) {
Crowd.cry(“Hooray for Casey”);
}

In this example, it is clear that the expression might not be true initially, and if not, the block in
the substatement will never be executed. If it is true, this block of code is executed repeatedly
until it is not true.

do Statements
The do statement is similar to the while statement. In fact, it has a while clause at the end. Like
the while expression in the previous section, the expression in the while statement must be a
Boolean. The execution of a do loop processes the statement and then evaluates the while. If
the while is true, execution returns to the do statement until the expression becomes false.
The complete syntax for a do-while loop is as follows:

do
statement;
while (expression)

Iteration Statements

Untitled-13 9/22/98, 3:20 PM153

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

154 Chapter 10 Control Flow

The primary reason a programmer chooses to use a do statement instead of a while statement
is that the statement will always be executed at least once, regardless of the value of the ex-
pression. This is also known as post-evaluation. For example:

do {
Crowd.cry(“Kill the Umpire!”);
} while (umpire.says.equals(“Strike two”));

In this example, the method Crowd.cry is invoked at least once no matter what. As long as the
umpire.says method returns the string “Strike two”, the Crowd.cry method is called over
and over again.

for Statements
The most complicated of the four iteration statements is the for loop. The for statement gives
the programmer the capability of all three of the other iteration statements. The complete
syntax of a for loop is as follows:

for (initialization, expression , step)
statement;

The for loop first runs the initialization code (like a do) and then evaluates the expression (like
an if or while). If the expression is true, the statement is executed and then the step is per-
formed. A for loop can also be written with a while loop as follows:

initialization;
while (expression){
statement;
step;
}

An example of a for loop appears in the following code fragment:

for (int ball=0, int strike=0; (ball<4) && (strike<3);Ump.EvaluateSwing()) {
Pitcher.pitch();
Player.swing();
}

This example demonstrates the fact that the initialization clause can have more than one state-
ment, and that the statements are separated by commas. Both the initialization and step clauses
can have multiple statements this way. On the flip side, the statements can also be empty, with
no statements.

switch Statements
The next type of control flow is the switch statement. The switch statement is the first control
flow statement that does not require a Boolean evaluation. A switch passes control to one of
many statements within its block of substatements, depending on the value of the expression in
the statement. Control is passed to the first statement following a case label with the same
value as the expression. If there are none, control passes to the default label. If there is no
default label, control passes to the first statement after the switch block.

Untitled-13 9/22/98, 3:20 PM154

155

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

10

II
Part

Ch

The syntax for a switch is as follows:

switch (expression){
case V1: statement1;
break;
case V2: statement2;
break;
default: statementD;
}

Unique to switches, the expression must be of an integer type. You may use bytes, shorts,
chars, or ints, but not floats or Booleans.

The break statements are not really required. However, because of the way a switch works,
breaks frequently end up being used. As soon as a value matches the expression, execution
continues from that point. The execution falls through all the other statements. Take a look at
the following example:

switch (1){
case 1: System.out.println (“one”);
case 2: System.out.println (“two”);
case default: System.out.println(“Default”);
}

In this example, the resulting output would be as follows:

one
two
Default

This happens because as soon as a case match is made, the execution falls through, or contin-
ues through, to the end of the switch. It is likely, however, that you don’t want to print all three
results. The break can be used to only produce the one printout. To do this, the code should be
changed to the following:

switch (1){
case 1: System.out.println (“one”);
break;
case 2: System.out.println (“two”);
break;
case default: System.out.println(“Default”);
break;
}

Notice that unlike if, while, do, and for statements, the case statement is not limited
to a single statement, and no blocks are required. Execution simply begins after the case

and continues until a break. ■

The switch expression and case label constants must all evaluate to either byte, short, char,
or int. In addition, no two case labels in the same switch block can have the same value.

Another example of the switch statement is included in the following code fragment:

switch (strike) {
case 0:
case 1:

N O T E

Iteration Statements

Untitled-13 9/22/98, 3:20 PM155

P2/VB/mp12 SEU Java 1.2 #1529-5 8.10.98 ayanna CH10 LP#5

156 Chapter 10 Control Flow

Casey.lip(“Curling Sneer”);
break;
case 2:
Casey.teeth(“Clenched in hate”);
Casey.bat.pound(“Plate”);
break;
default:
System.out.println(“Strike out of range”);
}

In this example, assume that strike is a compatible integer type (for example, int). Control
passes to the correct line, depending on the value of strike. If strike doesn’t have one of the
values it should have, a programmer-defined error message is printed.

Jump Statements
In addition to the more common control flow functions, Java also has three kinds of jump state-
ments: break, continue, and return.

break Statements
The substatement blocks of loops and switch statements can be broken out of by using the
break statement. An unlabeled break statement passes control to the next line after the current
(innermost) iteration (while, do, for, or switch statement).

With a label, control may be passed to a statement with that label within the current method. If
there is a finally clause to a currently open try statement, that clause is executed before
control is passed on.

continue Statements
A continue statement may only appear within the substatement block of an iteration statement
(while, do, or for). The effect of the unlabeled continue statement is to skip the remainder of
the statements in the innermost iteration statement’s block and go on to the next pass through
the loop. The label parameter permits the programmer to choose which level of nested itera-
tion statements to continue with.

If there is a finally clause for a currently open try statement within the indicated level of
nesting, that clause is executed before control is passed on.

return Statements
A return statement passes control to the caller of the method, constructor, or static initializer
containing the return statement. If the return statement is in a method that is not declared
void, it may have a parameter of the same type as the method.

If there is a finally clause for a currently open try statement, that clause is executed before
control is passed.
◊ See “Returning Information,” p. 126

Untitled-13 9/22/98, 3:20 PM156

157

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

C H A P T E R

Classes

11

In this chapter

What Are Classes? 158

Why Use Classes? 158

Classes in Java 160

Declaring a Class 162

Constructors 165

Creating an Instance of a Class 167

Referring to Parts of Classes 169

Variables 172

Inner Classes 181

Packages 185

Importing Classes in Packages 186

Importing Entire Packages 186

Using a Class Without Importing It 187

Using Packages to Organize Your Code 189

Implicit Import of All java.lang Classes 190

Untitled-14 9/22/98, 3:22 PM157

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

158 Chapter 11 Classes

What Are Classes?
Classes are the major building block of an object-oriented structure. In fact, classes are what
make objects possible, and without objects, object-oriented programming would just be ori-
ented programming which, well, would not make sense. There are several major advantages to
using objects. They enable you to encapsulate data, keeping all information and actions about a
particular item separate from the rest of your code. They allow you to build class hierarchies,
which enables you to build up more and more complex structures from simpler ones. Lastly,
through a technique called polymorphism, dissimilar objects that share a common attribute
can be utilized by their similarities.

From a common-sense view, classes are a way to assemble a set of data and then determine all
of the methods needed to access, use, and change that data.

Fundamentally, every class has two major portions. The first portion is that of state. The state
of an object is nothing more than the values of each of its variables. If, for instance, you had a
class StopLight with one variable, RedGreenYellow, the state of the StopLight would be deter-
mined by the value of RedGreenYellow. For example:

public class StopLight{
 int RedGreenBlue;
}

The second portion of a class is its tools, or methods. The methods of a class determine the
utility the class has. In the case of the StopLight, it is likely that you would have a method
called changeLight(), which would cause the light to change from red to green (probably by
changing the RedGreenYellow variable).

public class StopLight{
 int RedGreenBlue;
 changeLight(){
 RedGreenBlue = ++RedGreenBlue%3;
 }
}

To distinguish class variables with variables that are parts of methods, class variables
are often referred to as fields, or class scope variables. In the previous example, the

RedGreenYellow variable would be a field of the StopLight class. ■

Why Use Classes?
When dealing with classes, it is important to remember that classes do not enable program-
mers to do anything more than what they would be able to do without them. While it might be
significantly more work, you could write all OOP programs structurally.

So why use classes? The answer to this question is similar to the reason why large companies
are divided into departments and sub-departments. By organizing hundreds of people with

N O T E

Untitled-14 9/22/98, 3:22 PM158

159

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

thousands of tasks, the department architecture provides for a simple distribution of tasks and
responsibilities. Furthermore, because the billing department knows how to bill customers,
the sales department does not need to worry about those details. By doing this work, the bill-
ing department has effectively encapsulated the work of billing within itself.

However, the power of object-oriented programming extends beyond the simple capability to
encapsulate functionality in objects. A great deal of the appeal of OOP is its capability to pro-
vide inheritance—the capability to create new classes based on old classes. As an example of
inheritance, consider a game board. Assume that you wrote a Checkers game a couple of
months ago, and would now like to write a chess game. By using traditional programming
techniques, you would start from scratch, or maybe cut and paste some of your old code. Using
inheritance can eliminate most of this work. Instead, you build upon the code you wrote for
your Checkers game. Override only those methods that behave differently in Checkers instead
of Chess, and add only those methods that Checkers simply doesn’t need.

When new classes inherit the properties of another class, they are referred to as child
classes or subclasses. The class from which they are derived is then called a parent or

superclass. ■

Another benefit of enclosing data and methods in classes is the OOP characteristic of encapsu-
lation—the capability to isolate and insulate information effectively from the rest of your pro-
gram. By creating isolated modules, after you have developed a complete class that performs a
certain task, you may effectively forget the intricacies of that task and simply use the methods
provided by the class. Because the class mechanisms are isolated, even if you have to signifi-
cantly change the inner workings of a given class later, you do not need to modify the rest of
your program as long the methods used to gain access to the class do not change. A side ben-
efit of this is that by placing the data within the class and creating the appropriate methods to
manipulate it, you may seal off the data from the rest of the program, thereby preventing acci-
dental corruption of the data.

Finally, the allure of the OOP approach to creating self-sustaining modules is further enhanced
by the fact that children of a given class are still considered to be of the same “type” as the
parent. This feature, called polymorphism, enables you to perform the same operation on dif-
ferent types of classes as long as they share a common trait. Although the behavior of each
class might be different, you know that the class will be able to perform the same operation as
its parent because it is of the same family tree. For example, if you were to create a Vehicle
class, you may later choose to create Truck and Bike classes, each extending the Vehicle class.
Although bikes and trucks are very different, they are both still vehicles! Therefore, every-
thing that you are permitted to do with an instance of the Vehicle class you may also do with
an instance of the Truck or Bike classes. A car dealership, then, need not worry if it is selling a
Volvo or Saturn. The lot is simply full of vehicles.

N O T E

Why Use Classes?

Untitled-14 9/22/98, 3:22 PM159

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

160 Chapter 11 Classes

What’s So New About Object-Oriented Programming?
OOP emphasizes a modular view of programming by forcing you to break down your task into
manageable components, each with a specific function. However, unlike procedural functions, which
are simply pieced together to form a program, objects are living “creatures” that have the capability
to manage themselves, running concurrently with other operations and even existing after the rest of
the program has terminated. It is this capability to exist and work with objects as a separate entity
that makes OOP a nice match for Java, a network-based language.

CAUTION

In the previous example, while every bike and truck is also a vehicle, a vehicle is not necessarily a bike or a
truck. Thus, while the Bike and Truck classes can be treated just like the Vehicle class in Java, you may
not perform an operation reserved for the Bike class on an instance of the Vehicle class.

Classes in Java
As stated at the beginning of this chapter, classes are the essential building block in any Java
applet or application. Classes are used to create objects. When you create an instance of a class,
you create an object. You can include all the code for that object within the class. In accordance
with the object-oriented paradigm, you can later choose to build upon that class to build new
programs or enhance your current program.

Bigger and Better Java
Java itself is built from classes that are made available to the general public in the JDK. While there
are some limitations, a large number of the classes that make up the Java architecture may them-
selves be extended. By doing this, you may tailor the classes in the Java API library—especially those
in the AWT—to meet your particular needs.

Before you start creating large programs, you must first learn how to create simple classes. In
terms of syntax, there are two parts to a class in Java: the declaration and the body. Listing 11.1
is a simple class that fulfills some of the requirements of the simple game board discussed
earlier. Examine this listing to get an idea of what constitutes a class. You can refer to this
listing again later as your understanding of classes grows.

Listing 11.1 GameBoard.java—A General Class for Creating a 10×10
Board Game

public class GameBoard
{
/* This is the beginning of a simple game board class that provides the basic */
/* structures necessary for a game board. It may easily be */
/* extended to create a richer game board. */

Untitled-14 9/22/98, 3:22 PM160

161

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

 private static final int WIDTH = 10; /* These are constants */
 private static final int HEIGHT = 10; /* that you want to */
 private static final int EMPTY = 0; /* keep as standards */

 private int board[][];
 // This array will keep track of the board

 public String myname; // what game is being played

 public GameBoard (String gamename) {
 board = new int[WIDTH][HEIGHT];
 myname = new String(gamename);
 }

 public final void cleanBoard() {
 for (int i = 0; i < WIDTH; i++)
 for (int j = 0; j < HEIGHT; j++)
 board[i][j] = EMPTY;
 }

 public synchronized void setSquare(int x, int y, int value) {
 board[x][y] = value;
 }

 public synchronized boolean isEmpty(int x, int y) {
 if (board[x][y] == EMPTY)
 return(true);
 return(false);
 }
}

Take a quick look through this class. The first part of any class is the class declaration. Most
classes you write will look very similar to GameBoard:

public class GameBoard

Declaring a class states several things, but probably the most important one is the name of the
class (GameBoard). In the case of any public class, the name of the class must also match up
with the name of the file it is in. In other words, this class must appear in the file
GameBoard.java.

The next part of the class is the opening brace. You should notice that there is a brace ({) at the
beginning of the class, and if you look all the way down at the bottom there is also a closing
brace (}). The braces define the area in the file where the class definitions will exist.

A bit farther down you will see several comments. As you learned in “Comments” (Chapter 7),
comments can exist anywhere in the file and are ignored by the compiler, but they help you
leave messages for yourself or other programmers. Next, you will see several fields declared.
Each of these variables is accessible from any of the methods in the class. When you change
them in one method, all the other methods will see the new value.

Classes in Java

Untitled-14 9/22/98, 3:22 PM161

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

162 Chapter 11 Classes

private static final int WIDTH = 10; /* These are constants */
private static final int HEIGHT = 10; /* that you want to */
private static final int EMPTY = 0; /* keep as standards */
private int board[][];
// This array will keep track of the board

public String myname; // what game is being played

Finally, you should see four methods:

 public GameBoard (String gamename) {
 board = new int[WIDTH][HEIGHT];
 myname = new String(gamename);
 }

 public final void cleanBoard() {
 for (int i = 0; i < WIDTH; i++)
 for (int j = 0; j < HEIGHT; j++)
 board[i][j] = EMPTY;
 }

 public synchronized void setSquare(int x, int y, int value) {
 board[x][y] = value;
 }

 public synchronized boolean isEmpty(int x, int y) {
 if (board[x][y] == EMPTY)
 return(true);
 return(false);
 }
}

Declaring a Class
In general, Java class declarations have the form

AccessSpecifier class NewClass extends NameofSuperClass implements
NameofInterface

where everything in italics is optional. As you can see, there are four properties of the class
that may be defined in the declaration:

■ Modifiers

■ Class name

■ SuperClasses

■ Interfaces

Access Specifiers
The access specifiers in a class declaration determine how the class can be handled in later
development and are very similar to those four access specifiers discussed in Chapter 8,
“Methods.” Although they are usually not extremely important in developing the class itself,

Untitled-14 9/22/98, 3:22 PM162

163

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

they become very important when you decide to create other classes, interfaces, and excep-
tions that involve that class.

When creating a class, you may choose to accept the default status or you may employ one of
the three specifiers: public, final, or abstract.

Public Classes By placing the modifier public in front of the class declaration, the class is
defined to be public. Public classes are, as their name implies, accessible by all objects. This
means that they can be used or extended by any object, regardless of its package. Here’s an
example:

public class PictureFrame

Also note that public classes must be defined in a file called ClassName.java (for example,
PictureFrame.java).

Protected Classes If you choose not to place a modifier in front of the class declaration, the
class is created with the default properties. Therefore, you should be aware of what these
properties are.

By default, all classes are assigned the protected level of access. This means that while the
class may be extended and employed by other classes, only those objects within the same
package may make use of this class. Here’s an example of a friendly class:

class PictureFrame

Final Classes Final classes may not have any subclasses and are created by placing the
modifier final in front of the class declaration.

The reason for creating final classes may not be not be evident at first. Why would you want to
prevent other classes from extending your class? Isn’t that one of the appeals of the object-
oriented approach?

It is important to remember that the object-oriented approach effectively enables you to create
many versions of a class (by creating children that inherit its properties but nevertheless
change it somewhat). Consequently, if you are creating a class to serve as a standard (for ex-
ample, a class that will handle network communications), you would not want to allow other
classes to handle this function in a different manner. Thus, by making the class final, you
eliminate this possibility and ensure consistency.

In addition, telling the compiler that this is the final version of a class allows the compiler to
perform a number of performance optimizations that otherwise would not be possible. Here’s
an example:

final class PictureFrame

Abstract Classes An abstract class, denoted by the modifier abstract, is a class in which at
least one method is not complete. This state of not being finished is referred to as abstract. For
example:

abstract class PictureFrame

Declaring a Class

Untitled-14 9/22/98, 3:22 PM163

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

164 Chapter 11 Classes

How can a finished class not be complete? In the case of a grammar-checking class that is to be
implemented in many languages, there are several methods that would have to be changed for
each language-dependent version class. To create a cleaner program, instead of creating an
EnglishChecker, a FrenchChecker, and a SpanishChecker class from scratch, you could simply
create a GrammarChecker class in which the language-specific methods are declared as ab-
stract and left empty. When ready, you could then create the language-specific classes that
would extend the abstract GrammarChecker class and fill in the blanks by redefining these meth-
ods with actual code. Although you would still end up with separate classes for each language,
the heart of your code would be in the GrammarChecker class, leaving only the language-
dependent portions for the specific classes.

Because they are not complete, you may not create instances of abstract classes.

The class declaration need not be very complex and most often is very simple. In this
example, only one modifier, public, was used; no other classes or interfaces were required. ■

Class Name
Like all other Java identifiers, the only requirements on a class name are that it:

■ Begin with a letter or the characters – or $

■ Contain only Unicode characters above hex 00C0 (basic letters and digits, as well as
some other special characters)

■ Not be the same as any Java keyword (such as void or int)

Also, it is general practice to capitalize the first letter in the name of any class.

Although only required for public classes, it is generally a good practice to name the file in which class
NewClass is defined NewClass.java. Doing so helps the compiler find NewClass, even if NewClass
has not been compiled yet.

Super Classes—Extending Another Class
One of the most important aspects of OOP is the ability to use the methods and fields of a class
you have already built. By building upon these simpler classes to build bigger ones, you can
save yourself a lot of coding. Possibly even more important, you can greatly reduce the work of
finding and fixing bugs in your code. To build upon a previous class, you must extend the class
in the class declaration.

By extending a super class, you are making your class a new copy of that class but are allowing
for growth. If you were simply to leave the rest of the class blank (and not do anything different
with the modifiers), the new class would behave identically to the original class. Your new class
will have all of the fields and methods declared or inherited in the original class.

N O T E

T I P

Untitled-14 9/22/98, 3:22 PM164

165

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

Does this example look familiar?

public class MyClass extends Applet {

If you look at the source of any applet, you see that its declaration resembles the example. In fact, you
probably have been extending the java.applet.Applet class without even knowing what you were
doing.

Remember the methods you have been able to use in your applets, such as showStatus(), init(),
and keyDown()? Did they appear out of thin air? No, they are drawn from the
java.applet.Applet class or one of the classes that it extends, such as java.awt.Component.

By extending the java.applet.Applet class, your applet class is able to access and implement
these methods, thereby providing your applet with a great deal of power. ■

Every class in Java is considered to be an object. By default, every class is derived from the
java.lang.Object class. So if your class does not extend any other class, it still extends
java.lang.Object.

Multiple-inheritance does not exist in Java. Thus, unlike C++, Java classes may only extend
one class. ■

Constructors
Constructors are very special methods with unique properties and a unique purpose. Con-
structors are used to set certain properties and perform certain tasks when instances of the
class are created. For instance, the constructor for the GameBoard class is:

public GameBoard (String gamename) {
 board = new int[WIDTH][HEIGHT];
 myname = new String(gamename);
}

Constructors are identified by having the same name as the class itself. Thus, in the GameBoard
class, the name of the constructor is GameBoard(). Secondly, constructors do not specify a
return argument because they are not actually called as a method. For instance, if you wanted
to create an instance of the GameClass, you would have a line that looked like this:

GameClass myGame = new GameClass();

When the new GameClass() is actually instantiated, the constructor method is called.

In general, constructors are used to initialize the class’s fields and perform various tasks re-
lated to creation, such as connecting to a server or performing some initial calculations.

Also note that overloading the constructor enables you to create an object in several different
ways. For example, by creating several constructors, each with a different set of parameters,
you enable yourself to create an instance of the GameBoard class by specifying the name of the
game, the values of the board, both, or neither. This practice is prevalent in the Java libraries
themselves. As a result, you can create most data types (such as java.lang.String and
java.net.Socket) while specifying varying degrees and types of information.

N O T E

N O T E

Constructors

Untitled-14 9/22/98, 3:22 PM165

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

166 Chapter 11 Classes

Most programmers choose to make their constructors public. This is because if the level of access for
the constructor is less than the level of access for the class itself, another class may be able to declare
an instance of your class but will not actually be able to create an instance of that class.

However, this loophole may actually be used to your advantage. By making your constructor private, you
may enable other classes to use static methods of your class without enabling them to create an
instance of it.

Finally, constructors cannot be declared to be native, abstract, static, synchronized, or
final.

Overriding Methods
It is not legal to create two methods within the same class that have both the same name and
the same parameter list. After all, doing so would just confuse the whole system (which method
would you really want to be calling?). However, one of the purposes of extending a class is to
create a new class with added functionality. To allow you to do this, when you inherit another
class, you can override any of its methods by defining a method with the same name and pa-
rameter list as a method in the superclass. For instance, consider an Elevator class, shown in
Listing 11.2.

Listing 11.2 Elevator.java—A Simple Elevator Class

 class Elevator {
 ...
 private boolean running = true;
 ...
 public void shutDown() {
 running = false;
 }
}

At some point you realize that this elevator just isn’t very safe, so you decide to create a safer
one. You want to extend the old Elevator class and maintain most of its properties, but change
some as well. Specifically, you want to check to make sure the elevator car is empty before
stopping, so you override the shutDown() method as shown in Listing 11.3.

Listing 11.3 SaferElevator.java—A Safer Elevator That Extends Elevator

 class SaferElevator extends Elevator {
 ...
 public void shutDown() {
 if (isEmpty())
 running = false;

T I P

Untitled-14 9/22/98, 3:22 PM166

167

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

 else
 printErrorMessage();
 }
 }

Note that overriding is accomplished only if the new method has the same name and param-
eter signature as the method in the parent class. If the parameter signature is not the same, the
new method will overload the parent method, not override it. For example, look at Listing 11.4.

Listing 11.4 SaferElevator.java—Safer Elevator with an Overloaded
shutDown() Not an Overridden One

class SaferElevator extends Elevator {
 ...
 public void shutDown(int delay) {
 if (isEmpty())
 running = false;
 else
 printErrorMessage();
 }
 }

The shutDown method from the Elevator class would not have changed. Adding the parameter
(int delay) to the method changes what is known as the method signature. The new
shutDown method is still valid, though, and can be called because it has overloaded the original
shutDown, as you learned in Chapter 8, “Methods.”

When you override a method, you may not make it more protected than the original
method. Because the shutDown method is public in Elevator, you cannot make it

private in SaferElevator. ■

Creating an Instance of a Class
To actually use a class you have created, you need to be able to create an instance of that class.
An instance is an object of the type of the class. Any class you create can be instantiated, just
like any other data type in Java. For example, to create an instance of the GameBoard, you would
generally declare a variable of that type. Listing 11.5 shows a class called Checkers creating an
instance of the GameBoard class.

Listing 11.5 Checkers.java—Creates an Instance of GameBoard

public class Checkers{
 GameBoard myBoard = new GameBoard();

}

N O T E

Creating an Instance of a Class

Untitled-14 9/22/98, 3:22 PM167

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

168 Chapter 11 Classes

Technically, it’s not necessary to create an instance of a class in order to use it. If the
method or variable you are calling is static, no instance is necessary. However, remember

that a static method can only refer to static class variables.

This exception is what allows you to access the out variable of System without actually instantiating
a System variable. In other words, you can type:

System.out.println(“Note, System was not instantiated!!”); ■

As you may have noticed, the one primary difference between declaring an Object type, like
GameBoard, and a primitive type, like int, is the use of the new keyword. In Listing 11.5, we
used the phrase new GameBoard() to create a new instance of GameBoard. new performs several
key tasks:

■ Tells the computer to allocate the space necessary to store a GameBoard

■ Causes the constructor method of GameBoard to be called

■ Returns a reference to the object (which is then assigned to myBoard)

You may be wondering in all of this, how does the very first instance of my class get created?
After all, when you create an applet or an application, you don’t have any way to actually instan-
tiate that class, so how does it come to be? The answer lies with the virtual machine.

When a browser encounters an <APPLET> tag (see Chapter 14, “Writing an Applet,” to learn
more about applets) or the Java program is run on an application (see Chapter 17, “Applets
Versus Applications”), the virtual machine does a few things. In the case of an application,
when you type java MyClass, the virtual machine calls the static method main() in MyClass.
That doesn’t actually create an instance of MyClass, but, because it’s static (see the preceding
note), an instance isn’t necessary. That’s why you typically need to create an instance of your
class in the main() method. In the case of an applet, the browser does create an instance of
MyClass when it encounters <APPLET CODE=”MyClass”> and automatically calls the init()
method.

One additional difference in Java between objects and primitive types is how they are
referenced. Primitive types are always referred to by their value. Object types are always

referred to by their reference. This means that in the following code, x and y are not equal at the end,
but in w and z, myName is the same:

int x = 5;

int y = x;

y++; // x = 5, y =6;

GameBoard w = new GameBoard();

GameBoard z = w;

w.myName = “newString”; //Since z and w point to the same object, they now

both have the same myName ■

N O T E

N O T E

Untitled-14 9/22/98, 3:22 PM168

169

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

Referring to Parts of Classes
Now that you have begun to develop classes, examine how they can be used in other classes.
As discussed earlier in the section “Why Use Classes?”, Java classes may contain instances of
other classes that are treated as variables. However, you may also deal with the fields and
methods of these class type reference variables. To do so, Java uses the standard dot notation
used in most OOP languages. Listing 11.6 is an example.

Listing 11.6 Checkers.java—The GameBoard is Accessed by its Instance
Board

import java.awt.*;
 public class Checkers
 {
 private GameBoard board;

 public Checkers() {
 board = new GameBoard(“Checkers”);
 board.cleanBoard();
 }
 ...

 public void movePiece(int player, int direction) {
 java.awt.Point destination;
 ...
 if (board.isEmpty(destination.x, destination.y))
 // code to move piece
 }

 private void showBoard(Graphics g) {
 g.drawString(board.myname,100,100);
 drawBoard(g);
 }

 private void drawBoard(Graphics g){
 ….
 }
}

Notice that board is an instance in the GameBoard class, and the variable myname in the
GameBoard class is referenced by board.myname. The general notation for this type of access is
instanceName.methodOrVariableName.

CAUTION

Notice that the variable myname is referred to as board.myname, not as GameBoard.myname. If you try to
do so, you get an error resembling:

Checkers.java:5: Can’t make a static reference to non-static variable

myname in class GameBoard.

Referring to Parts of Classes

Untitled-14 9/22/98, 3:22 PM169

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

170 Chapter 11 Classes

This is because GameBoard is a type of class, while board is an instance of the class. As discussed in the
previous section, when you deal with board, you deal with a specific copy of the GameBoard class.
Because myname is not a static variable, it is not a property of the GameBoard class, but rather a property
of the instances of that class. Therefore, it cannot be changed or referenced by using GameBoard as the
variable name.

This Special Variable You have seen how to refer to other classes. However, what if you want
the class to refer to itself? Although the reasons to do so may not seem so obvious at first,
being able to refer to itself is a capability that is very important for a class. To solve this prob-
lem, a unique variable called this is used whenever it is necessary to explicitly refer to the
class itself.

In general, there are two situations that warrant use of the this variable:

■ When there are two variables in your class with the same name—one belonging to the
class and one belonging to a specific method.

■ When a class needs to pass itself as an argument to a method. Often when you create
applets that employ other classes, it is desirable to provide those classes with access to
such methods as showStatus(). For example, if you are creating a Presentation applet
class and want to use a simple TextScroll class to display some text across the status
bar at the bottom of the screen, you need to provide the TextScroll class with some
means of using the showStatus() method belonging to the applet. The best way to
enable the TextScroll to do this is to create the TextScroll class with a constructor
method that accepts an instance of the Presentation applet class as one of its argu-
ments.

As seen in Listing 11.7, the TextScroll class would then be able to display the information
across the bottom of the Presentation class’s screen.

Listing 11.7 Presentation.java—An Instance of the Presentation Is Passed
to a TextScroll Constructor

public class Presentation extends Applet {
 TextScroll scroller;

 public void init() {
 ...
 scroller = new TextScroll(this, length_of_text);
 scroller.start();
 }
 ...
 }

 class TextScroll extends Thread {
 Presentation screen;
 String newMessage;
 boolean running;
 int size;

Untitled-14 9/22/98, 3:22 PM170

171

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

 TextScroll(Presentation appl, int size) {
 screen = appl;
 }

 public void run() {
 while (running) {
 displayText();
 }
 }

 void displayText() {
 // perform some operations to update what should
 // be displayed (newMessage)

 screen.showStatus(newMessage);
 }
 }

◊ See “What Are Threads?” p. 208

Note the use of the special this variable in the init() method of the Presentation class as
well as the result. This technique is extremely useful and powerful.

super Special Variable Along the same lines as this, the special variable super provides
access to a class’s super class. This is useful when overriding a method, because when doing
so you may want to use code from the old method as well. For example, if you were creating
a new class NewGameBoard that extended the GameBoard class and were overriding the
setSquare() method, you might employ the super variable to use the former code without
recopying all of it (see Listing 11.8).

Listing 11.8 NewGameBoard.java—Extending the setSquare Method, but
Still Using the Results of the Existing Method

class NewGameBoard extends game board {

 private static int FIXEDWALL = 99;
 // permanent wall, cannot be moved

public static synchronized void setSquare(int x, int y, int value){
 if (board[x][y] != FIXEDWALL) {
 super.setSquare(x,y,val);
 }
}

In the preceding example, you use the super variable to refer to the original version of the
setSquare() method, found in the GameBoard class. By doing so, you save yourself the head-
ache of recopying the entire method, while at the same time adding to the functionality of the
setSquare method. This allows you to keep the functionality of setSquare encapsulated in the
original GameBoard class. If, down the road you discover an error in some of the logic, you
won’t be forced to change it in both the GameBoard and the NewGameBoard classes.

Referring to Parts of Classes

Untitled-14 9/22/98, 3:22 PM171

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

172 Chapter 11 Classes

You should also examine how to call the super method if the method you are dealing with is a
constructor. It is necessary to call the constructor for a parent class, just as you need to call the
constructor for any class. Although calling a super constructor is not much different from any
other super method, its syntax may seem confusing at first:

public NewGameBoard(String gamename) {
 // new code would go here
 super(gamename);
}

Note that on a simplistic level, super can be considered equivalent to GameBoard. Consequently,
because GameBoard() is the name of the original constructor method, it may be referred to as
super().

Variables
Obviously, variables are an integral part of programs and, thus, classes as well. In Chapter 7,
“Data Types and Other Tokens,” you examined the various types of variables, but now you
must also consider how they are employed in your programs and the different roles they may
assume.

When creating variables, whether they are as simple as integers or as complex as derived
classes, you must consider how they will be used, what processes will require access to the
variables, and what degree of protection you want to provide to these variables.

The ability to access a given variable is dependent on two things: the access modifiers used
when creating the variable and the location of the variable declaration within the class.
◊ See “Literals—Assigning Values,” p. 1307

Class Fields Versus Method Variables
In a class, there are two types of variables: those belonging to the class itself and those belonging to
specific methods.

Those variables declared outside of any methods, but within a given class (usually immediately after
the class declaration and before any methods), are referred to as fields of the class and are
accessible to all methods of it.

In addition, one may declare variables within a method. These variables are local to the method and
may only be accessed within that method.

Because method variables exist only for the lifetime of the method, they cannot be accessed by other
classes. Consequently, you cannot apply any access modifiers to method variables.

Although it is possible to make every field accessible to every class, this is not a prudent prac-
tice. First of all, you would be defeating a great deal of the purpose of creating your program
from classes. Why do you choose appropriate class names instead of class1, class2, class3,
and so on? You do so simply to create a clean program that is easy to code, follow, and debug.
For the same reason, by creating various levels of protection, you encapsulate your code into
self-sufficient and more logical chunks.

Untitled-14 9/22/98, 3:22 PM172

173

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

Furthermore, inasmuch as OOP is heavily dependent on the modification of code that you have
written beforehand, access restrictions prevent you from later doing something that you
shouldn’t. (Keep in mind that preventing access to a field does not prevent the use of it.) For
example, if you were creating a Circle class, there would most likely be several fields that
would keep track of the properties of the class, such as radius, area, border_color, and so
on—many of which may be dependent on each other. Although it may seem logical to make the
radius field public (accessible by all other classes), consider what would happen if a few weeks
later you decided to write the code shown in Listing 11.9.

Listing 11.9 Circle.java—Code Fragment Showing What Direct Access to a
Class Field Looks Like

import java.awt.*;
class Circle {
 public int radius, area;
 public Color border_color;
...
}

class GraphicalInterface {
Circle ball;
...
void animateBall() {
 for (int update_radius = 0; update_radius <= 10; update_radius++){
 ball.radius = update_radius;
 paintBall(ball.area, ball.border_color);
 ...
 }
}
void paintBall(int area,Color color){
 …
}
}

This code would not produce the desired result. Although the

ball.radius = update_radius;

statement would change the radius, it would not affect the area field. As a result, you would be
supplying the paintBall() method with incorrect information. Now, instead, if the radius and
area variables are protected, and any update to the radius forced the area to be recomputed,
the problem would disappear as shown in Listing 11.10.

Listing 11.10 Circle.java—Providing Access to the Circle Fields Through
Methods
class Circle {
 protected int radius, area;

 public void newRadius (int rad){

continues

Variables

Untitled-14 9/22/98, 3:22 PM173

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

174 Chapter 11 Classes

 radius = rad;
 area = rad *2 * Math.PI;
 }

 public int radius(){
 return radius;
 }

 public int area (){
 return area;
 }
}

 class GraphicalInterface {
 Circle ball;
 ...
 void animateBall() {
 for (int update_radius = 0; update_radius <= 10; update_radius++){
 ball.newRadius (update_radius);
 paintBall(ball.area(), ball.border_color);
 ...
 }
 }
 }

In the next few sections, you examine the various ways of regulating access and solving this
problem.

Although it is important to consider the level of access that other objects will have to your
fields, it is also important to consider how visible the fields and method variables will be within
your class. Where the variable is accessible, a property called scope is very important. In
general, every variable is accessible only within the block (delimited by the curly braces { and
}) in which it is declared. However, there are some slight exceptions to this rule. Examine
Listing 11.11.

Listing 11.11 CashRegister.java—Variables Have Scope Based on Where
They Are Declared

class CashRegister {
 public int total;
 int sales_value[];
 Outputlog log;

 void printReceipt(int total_sale) {
 Tape.println(“Total Sale = $”+ total_sale);
 Tape.println(“Thank you for shopping with us.”);
 }

Listing 11.10 Continued

Untitled-14 9/22/98, 3:22 PM174

175

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

 void sellItem(int value) {
 log.sale(value);
 total += value;
 }

 int totalSales() {
 int num_of_sales, total = 0;
 num_of_sales = log.countSales();

 for (int i = 1; i <= num_of_sales; i++)
 total += sales_value[i];
 re
turn(total);
 }
}

Now examine some of the variables and their scope:

Variable Name Declared As Scope

total Field global to Entire class
CashRegister class

total Local to Within totalSales()
totalSales() method

log Field global to Entire class
CashRegister class

value Parameter to Within sellItem()
sellItem()

i Local to Within the for
totalSales() loop
within for loop

There are several things to note from the table. Start with the simplest variable, log. log is a
field of the CashRegister class and is, therefore, visible throughout the entire class. Every
method in the class (as well as other classes in the same package) may access log. Similarly,
value, although declared as a parameter, is nevertheless local to the method sellItem() in
which it was declared. Although all statements in sellItem() may access value, it may not be
accessed by any other methods. Slightly more confusing is the variable i, which is declared not
at the beginning of a method but within a for statement. Like log and value that exist only
within the block in which they were defined, i exists only within the for statement in which it
was defined. In fact, if you consider a complex for loop like that shown in the following ex-
ample, i is recreated (in this case, 10 times).

for (int x = 0; x<10 ;x++){
 for (int i =0;i < num_of_sales; i++)
 ...
}

To understand why this is the case, it may be helpful to look at how this code might look if you
“unwound it” into a while loop.

Variables

Untitled-14 9/22/98, 3:22 PM175

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

176 Chapter 11 Classes

{
 int x = 0; //declare x and set it’s initial value
 while (x <10) {
 { //start the next for loop
 int i = 0; //declare i and set it’s initial value
 while (i < num_of_sales) {
 … //do whatever is in the inner for loop
 i++; //perform the increment of i
 }
 }
 x++; //increment x
 }
}

As you can see, even though the for loop looks fairly simple, the scope of the variables is
actually quite complicated if you add all the implied braces.

Finally, you arrive at the problem of having two total variables with overlapping scope. While
the total field is accessible to all methods, a problem seems to arise in the totalSales()
method. In such cases, using the multiply-defined identifier refers to the most local definition of
the variable. Therefore, although having no impact on the rest of the class, within the
totalSales() the identifier total actually refers to the local variable total, not the global one.
This means that after exiting the totalSales() method, the total class variable is unchanged.
In such a situation, you can access the class by using the this keyword. So, to set the class
variable total to the value of the local variable total, you would type:

this.total = total;

Although using the same identifier as a field and method variable name does not cause many
problems and is considered an acceptable practice, it is preferable to choose a different (and
more descriptive) identifier, such as total_sales. Another equally valid way to make your
code easier to read is to come up with a unique naming scheme for all your class variables. The
following are two common ways to do this:

■ Add the letter m (for my) as the first letter to all class field variables

■ Add an underscore (_) to the beginning of the all field variables

Personally, I prefer the second option because it doesn’t cause the confusion that can come
from the former solution. If we were to have used this naming scheme in the previous example,
it would have looked like this:

class CashRegister {
 public int _total;
 int _sales__value[];
 Outputlog _log;

Although you can use the same identifier as a class field and as a local variable within a
method, this does not apply to all code blocks within your code. For example, declaring

num_of_sales as your counter within the for block would produce an error. ■

N O T E

Untitled-14 9/22/98, 3:22 PM176

177

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

Modifiers
Like the modifiers for classes and methods, access modifiers determine how accessible certain
variables are to other classes. However, it is important to realize that access modifiers apply
only to the global fields of the class. It makes little sense to speak of access modifiers for vari-
ables within methods because they exist only while the method is executing. Afterwards, they
are collected to free up memory for other variables.

Why Not Make All Variables Fields?
Because all class variables (fields) are accessible to all methods in a given class, why not make all
variables fields global to all methods in the class?

The first reason is that you would be wasting a great deal of memory. Although local variables (those
variables declared within the methods themselves) exist only while the method is executing, fields
must exist for the lifetime of the Object. Consequently, instead of allocating memory for dozens of
fields by making many of your variables local, you are able to use the same piece of memory over
and over again.

The second reason is that making all your variables global would create sloppy programs that would
be hard to follow. If you are going to be using a counter only in one method, why not declare it in that
method? Furthermore, if all of your variables are global, someone reviewing your code (or you, a few
weeks later) would have no idea from where the variables were obtaining their values, because there
would be no logical path of values being passed from method to method.

Default By default, fields are assigned a level of access that, although accessible to other
classes within the same package, are not accessible to subclasses of the current class or
classes outside of the current package. For example:

int size;

public Identical to the public access modifier for methods, the public modifier makes
fields visible to all classes, regardless of their package, as well as all subclasses. Again, you
should make an effort to limit public fields. For example:

public int size;

protected protected fields may be accessed by all subclasses of the current class, but are
not visible to classes outside of the current package. For example:

protected int size;

private The highest degree of protection, private fields are accessible to all methods within
the current class. They are, however, not accessible to any other classes, nor are they acces-
sible to the subclasses of the current class. For example:

private int size;

static As with methods, placing the modifier static in front of the field declaration makes
the field static. static fields are fields of the class whose values are the same in all instances
of the class. Consequently, changing a static field in one class will affect that field in all

Variables

Untitled-14 9/22/98, 3:22 PM177

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

178 Chapter 11 Classes

instances of the given class. static fields may be modified in both static and non-static
methods. For example:

static int size;

◊ See Chapter 8, “Methods,” p. 119

final Although Java does not have preprocess, #define-type statements, or constants,
there is a very simple way of creating constants—fields whose values cannot change while the
program is running. By placing the modifier final in front of a field declaration, you tell the
compiler that the value of the field cannot change during execution. Furthermore, because it
cannot change elsewhere, you must set the actual value of all final fields as soon as they are
declared, as seen in the next example:

final int SIZE = 5;

If the value cannot change, why not use the value itself within the program? The answer to this
question is twofold:

■ While you cannot change the value of constants within your code, as a programmer, you
may later change the value of a constant without having to change the value of each use
of the constant. For instance, if SIZE is used in 10 locations, you only need to change the
number 5 in one location, not in 10.

■ By using constants, your code becomes a lot cleaner and easier to follow. For example, in
the GameBoard class, using 0 as a check for an empty space would not always make sense
to a reader of your code. However, using the final field EMPTY and assigning it the value 0
makes the code a lot easier to follow.

By convention, all letters of constants are capitalized. Furthermore, to save memory,
constants are usually made static as well. ■

There are two additional modifiers for fields.

When dealing with many threads, there are several problems that can result when multiple
threads attempt to access the same data at the same time. Although a majority of these problems can
be solved by making certain methods synchronized, in future releases of Java, you will be able to
declare certain fields as threadsafe. Such fields will be handled extra carefully by the Java runtime
environment. In particular, the validity of each volatile field will be checked before and after each use.

The other heralded keyword, transient, is related closely to the capability to enable the creation of
persistent Java applets and Beans. In such an environment, transient fields would not be part of the
persistent object. ■

Using Methods to Provide Guarded Access
Although it may be advantageous to restrict access to certain fields in your class, it is neverthe-
less often necessary to provide some form of access to those fields. A very intelligent and
useful way of doing this is to allow access to restricted fields through less restricted methods
(often referred to as set and get methods), such as in Listing 11.12.

N O T E

N O T E

Untitled-14 9/22/98, 3:22 PM178

179

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

Listing 11.12 Circle.java—A Circle with Protected Fields

 class Circle {
 private int radius, area;
 private Color border_color;

 public void setRadius(int update_radius) {
 radius = update_radius;
 area = Math.PI * radius * 2;
 }

 public Color getColor() {
 return(border_color);
 }
 public int getRadius() {
 return(radius);
 }
 public int getArea() {
 return(area);
 }
 }
 class GraphicalInterface {
 Circle ball;
 ...
 void animateBall() {
 for (int update_radius = 0; update_radius <= 10;
 update_radius++){
 ball.setRadius(update_radius);
 paintBall(ball.getArea(), ball.getColor());
 }
 ...
 }
 }

By limiting access to the radius field to the setRadius() method, you ensure that any change
of the radius will be followed by an appropriate change of the area variable. Because you have
made the two fields private, you must also provide yourself with the means of accessing them
through the various get-type methods. These methods are commonly referred to as accessor
methods because they provide access to otherwise inaccessible fields. Although at first this
may seem a bit cumbersome, its benefits by far outweigh its disadvantages. As a result, it is a
very widely used approach that is extremely prevalent in the Java API libraries on which Java is
heavily dependent.

Using the finalize() Method
Belonging to the java.lang.Object class, and thus present in all classes, is the finalize()
method. Empty by default, this method is called by the Java runtime system during the process
of garbage collection and, may be used to clean up any ongoing processes before the object is
destroyed. For example, in a class that deals with sockets, it is good practice to close all sock-
ets before destroying the object defined by the class. Therefore, you could place the code to

Variables

Untitled-14 9/22/98, 3:22 PM179

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

180 Chapter 11 Classes

close the sockets in the finalize() method. After the instance of the class is no longer being
used in the program and is destroyed, this method would be invoked to close the sockets as
required.

The finalize() method is very similar to the ~classname() method in C++. ■

For example, take a look at the finalize() method in Listing 11.13.

Listing 11.13 NetworkSender.java—Using finalize()

import java.io.*;
Import java.net.*;
public class NetworkSender
{
 private Socket me;
 private OutputStream out;

 public NetworkSender(String host, int port) {
 try {
 me = new Socket(host,port);
 out = me.getOutputStream();
 }
 catch (Exception e) {
 System.out.println(e.getMessage();
 }
 }

 public void sendInfo(char signal) {
 try {
 out.write(signal);
 out.flush();
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

 public void disconnect() {
 System.out.println(“Disconnecting...”);
 try {
 me.close();
 }

 catch (Exception e)
 System.out.println(“Error on Disconnect” + e.getMessage());

 System.out.println(“done.”);
 }

/* In this case finalize() is the identical to disconnect() /*
/* and only attempts to ensure closure of the socket in the /*
/* case that disconnect() is not called. */

N O T E

Untitled-14 9/22/98, 3:22 PM180

181

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

 protected void finalize() {
 System.out.println(“Disconnecting...”);
 try {
 me.close();
 }
 catch (Exception e)
 System.out.println(“Error on Disconnect” + e.getMessage());

 System.out.println(“done.”);
 }

}

finalize() is declared to be protected in java.lang.Object and must remain
protected or become less restricted. ■

CAUTION

While the finalize() method is a legitimate tool, it should not be relied upon too heavily because
garbage collection is not a completely predictable process. This is because garbage collection runs in the
background as a low-priority thread and is generally performed when you have no memory left.

Consequently, it is a good practice to attempt to perform such clean-up tasks elsewhere in your code,
resorting to finalize() only as a last resort and when failure to execute such statements will not cause
significant problems.

Inner Classes
With the Java 1.1 compiler, Sun added several new features to the language. One of these was
nested classes. Nested classes can only be compiled using a Java 1.1 or 1.2 compiler.

What Are Inner Classes?
Inner classes are classes that are actually included within the body of another class. In fact, you
can even include a class within the body of a method. Nested classes are primarily useful to
programmers because they can help you structure your code in a more organized fashion. In
addition, in some cases they can add to the readability of the code.

You may wonder why you would ever want to do this. The reality is that you are never required
to develop anything using inner classes. However, inner classes provide you with the ability to
organize your code in a more understandable fashion, and occasionally provide the compiler
with a means to further optimize the final code. It is also true that you can produce identical
results by placing the inner classes in their own scope.

At this point, if you’re one of those programmers who rode out the evolution of C++, you might
be wondering whether or not inner classes are just one of those concepts that seemed like a
good idea to the designers at the time, but that ends up only causing confusion. Wasn’t Java
supposed to avoid these pitfalls? Wasn’t that the rationalization for avoiding operator

N O T E

Inner Classes

Untitled-14 9/22/98, 3:22 PM181

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

182 Chapter 11 Classes

overloading, multiple inheritance and other useful but confusing aspects of languages such as
C++? Well, the unfortunate answer is maybe. Time will tell how well inner classes are accepted
by the developer community as a whole. Regardless of what your own view is, it’s very impor-
tant to understand how to utilize inner classes in case you find yourself editing code from indi-
viduals who do utilize the power of inner classes. With that spirit, forge ahead and look at how
inner classes work.

Creating a Program with Inner Classes
The major advantage of inner classes is the ability to create what are known as adapter classes.
Adapter classes are classes that implement an interface. By isolating individual adapters into
nested classes, you can, in essence, build a package-like structure right within a single top-level
class.

Take a look at an example that uses an adapter class. Listing 11.14 demonstrates how two
individual and separate Runnable interfaces can be created in the same class. Both of these
interfaces need access to the variable currentCount of the top-level class.

Listing 11.14 BigBlue—An Application that Utilizes an Inner Class (Apple)

/*
 *
 * BigBlue
 *
 */
public class BigBlue implements Runnable{
 int currentCount;

 class Apple implements Runnable {
 public void run(){
 while(true){
 System.out.println(“count=”+currentCount);
 try{
 Thread.sleep(100);
 }catch (Exception e){}
 }
 }
 }

 public Runnable getApple(){
 return new Apple();
 }

 public void run(){
 while(true){
 currentCount+=5;
 try{
 Thread.sleep(75);
 }catch (Exception e){}
 }
 }

 public static void main(String argv[]){
 BigBlue b = new BigBlue();

Untitled-14 9/22/98, 3:22 PM182

183

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

 Thread appleThread = new Thread (b.get Apple());

 appleThread.start();
 Thread thisThread = new Thread (b);
 thisThread.start();
 }
})

As you look at the preceding example, notice that the run() method of BigBlue has access
directly to the currentCount variable, because currentCount is a field of the BigBlue class.
This works just like any other method. Now take a look at the Apple class. This class also has
access to the currentCount variable, and it accesses it just like it was its own, only it’s not; it’s
received from the top-level class BigBlue.

To compile this program, it’s not necessary to compile both Apple and BigBlue, just the
BigBlue class:

javac BigBlue.java

To run the program, type:

java BigBlue

What you end up seeing are a sequence of numbers. Notice that because the sleep time in the
BigBlue thread is a bit shorter than the Apple one, every once in a while the numbers incre-
ment faster. This was done to demonstrate that they were in fact two different threads, running
in two completely different loops.

CAUTION

If, when you compile a class containing an inner class, you get an error similar to:

bigBlue.java:30 :

no enclosing instance of class bigBlue is in scope; an explicit one must be

provided when creating class bigBlue. apple, as in outer. new inner() or

outer.super().

Thread appleThread = new Thread (new apple());

You may be very confused. To explain this error, look at what a main method would look like that might
generate this error:

 public static void main(String argv[]){

 bigBlue b = new bigBlue();

 Thread appleThread = new Thread (new apple());

 appleThread.start();

 Thread thisThread = new Thread (b);

 thisThread.start();

 }

Inner Classes

Untitled-14 9/22/98, 3:22 PM183

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

184 Chapter 11 Classes

What causes this error is an attempt to create a new apple() inside of the static main method. To be able
to access the apple class, you must do so in a non-static instance of BigBlue.

Synchronization with Inner Classes
From time to time, it is necessary to be able to synchronize a method on the parent class of an
inner class. Ordinarily, you might just declare a method to be synchronized or create a block
that is synchronized (this). However, because this is a new class, how are you to specify a
synchronization on the parent class? Consider the situation where we create an enumeration,
as in Listing 11.15.

Listing 11.15 Enumeration of Elements

public class FixedStack {
int array[] = new int[10];
 int top=0;

synchronized public void push(int item) {
array[top++] = item;
 }

 class Enumerator implements java.util.Enumeration {
public int nextElement() {
 synchronized (FixedStack.this) {
 if (count > top)
 count = top;
 if (count == 0)
 throw new
NoSuchElementException(“FixedStack”);
 return array[--count];
 }
 }
 }
}

In Listing 11.15, make sure you don’t try to access an element in the array with the
nextElement() method of the Enumeration at the same time an element is added with

the push() method. To do this, the example uses the qualified FixedStack.this variable. The
qualified name refers to the super class of this. The inner class implicitly knows that the qualified
this refers to the instance that instantiated the inner class. ■

So How Do Inner Classes Work?
At this point, you’re probably wondering how inner classes work. Under Java 1.0, inner classes
were not available. So, how did Java designers make the programs that you write using inner
classes work with virtual machines that were designed from the 1.0 specification? The answer
is that inner classes aren’t really new. The solution lies in the fact that when you write a class

N O T E

Untitled-14 9/22/98, 3:22 PM184

185

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

with an inner class in it, the compiler takes the inner class outside of the main class and just
adjusts the compiled result.

Again, if you’re one of those programmers who rode the change in the early days of C++, inner
classes will spark a note. The reason is that in the beginning of C++, C++ was really C wrapped
in an object-oriented shroud. When you wrote a C++ program, the C++ compiler actually just
converted your C++ code into C code, and then a C compiler did the real compilation. Well,
with Java, you don’t actually need two compilers, but the end result is very similar.

Why Use Inner Classes?
You might be saying to yourself, “Why should I ever use an inner class?” The answer, as indi-
cated at the beginning of this section, is to organize your code in a more suitable fashion. Sun’s
documentation refers to these inner classes as Adapter classes. To understand why, look at
what inner classes are usually used for.

An inner class can extend or implement any interface you would like—so can an ordinary
class. The only problem is that when a standard class implements an interface, it’s often diffi-
cult to locate where the methods associated with the interface are located within the code.
However, because the declaration and the code are together with an inner class, this is gener-
ally much clearer.

Packages
When you start creating a large number of classes for a program, it is helpful to keep them
together. A clutter of class files is not unlike how your hard drive would look without
subdirectories or folders. Imagine if all the files on your hard drive were placed in a single
folder. You would have thousands of files, and you would have to make sure that none of them
had the same name.

Class files by themselves must comply with this same arrangement. That’s a fairly rigid re-
quirement. To overcome this, Java has a system called packages. You can think of each pack-
age as a subdirectory. You have already seen how a number of packages are used in the Java
API. For example, java.awt is a package, java.lang is another package, and so on.

Packages in Java are groups of classes. These are similar to libraries in many computer lan-
guages. A package of Java classes typically contains related classes. You can imagine a package
called Transportation, which would have numerous classes defined in it such as Car, Boat,
Airplane, Train, Rocket, AmphibiousCar, SeaPlane, and so on. Applications that deal with
items of this sort might benefit from importing the imaginary Transportation package.

To make a class a member of a package, you must declare it using the package statement:

package Transportation;

Some unique requirements go along with the package statement, however:

■ For a class to be included in a package, its source code must be in the same directory as
the rest of the package files. You can get around this requirement, but it’s not really a
good idea.

Packages

Untitled-14 9/22/98, 3:22 PM185

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

186 Chapter 11 Classes

■ The package statement itself must be the very first statement in the file. In other words,
you can have comments and whitespace before the package line, but nothing else. The
following table shows an example of a valid and an invalid package statement:

Legal Illegal

package Transportation import java.applet.Applet;

import java.applet.Applet; package Transportation;

Importing Classes in Packages
After a file has been declared to be part of a package, the actual name for the class is the pack-
age name dot (.) and the name of the class. In other words, in our Transportation example,
the Car class would be Transportation.Car, where before it would have been simply Car.

This leads to a small problem with an easy solution. If you write a program and then later de-
cide to make all of the classes a member of a package, how does the compiler find the other
files? Before, they were called Car and Van. Now, you must import them as
Transportation.Car in order to use them. In other words, as shown here, where before you
imported Car, you must now import Transportation.Car:

Old New

import Car; import Transportation.Car

Importing Entire Packages
It is also possible to import the entire contents of a package or all of the classes in that pack-
age. You have probably already seen this done with some of the JDK classes such as java.awt.
To import all the classes, replace the individual class name with the wild card (*):

import java.awt.*;

By importing entire packages, you give yourself access to every class in the package. This can
be very convenient, because you don’t need to make up a big list like:

import java.awt.Graphics;
import java.awt.Image;
import java.awt.Button;
import java.awt.Canvas;
...

Now, if you’re thinking, “That seems simple; why don’t I just import the entire package all the
time?” The answer lies in the fact that there are a couple of drawbacks to importing the entire
package:

■ When you import an entire package, the virtual machine has to keep track of the names
of all of the elements in the package. Using extra RAM to store class and method names
is not terribly important right now because your computer probably has 16M or more of
RAM. However, as more and more small, Java-based computers come into play, this
could become an issue. In addition, this slows the system down slightly.

Untitled-14 9/22/98, 3:22 PM186

187

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

■ If you import several packages and they happen to share a class file name, things start to
fall apart. Which class do you really want? For instance, if you import YourCorp.*, which
has a Button class, and import java.awt.*, which also contains a Button class, the two
Button classes will collide.

■ The most important drawback deals with the bandwidth over the Internet. When you
import an entire package that is not on the computer already (this excludes the java.*
packages) the Appletviewer or other browser has to drag all of the class files for the
entire package across the Net before it can continue. If you have 30 classes in a package
and are only using two, your applets aren’t going to load nearly as fast, and you would be
wasting a lot of resources.

Using a Class Without Importing It
You may have not realized this before, but it is not necessary to actually import a class before
you use it. Ordinarily, classes in the null package (default) and that reside in the same physical
directory can be used without doing anything. For instance, if there are two classes Car and
Van in the same directory, you can create an instance of Car in the Van class without actually
importing the Car class. Listings 11.16 and 11.17 show two such classes.

Listing 11.16 A Simple Class File for the Car Class

//Car is just a generic class with a few variables
public class Car {
 int wheels;
 int tires;
 int speed;
 //simple constructor
 public Car (int inWheels, int inTires, int inSpeed){
 wheels=inWheels;
 tires = inTires;
 speed = inSpeed;
 }
}

Listing 11.17 A Simple Class File for Van that Uses the Car Class

//The Van class is another simple class, but uses the Car class
public class Van {
 //The Car class is used here without being imported
 Car theCar;
 int doors;
 //simple constructor
 public Van (Car inCar, int inDoor){
 theCar= inCar;
 doors= inDoor;
 }
}

Using a Class Without Importing It

Untitled-14 9/22/98, 3:22 PM187

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

188 Chapter 11 Classes

When you place a class in a package, you can still use the class without importing it. The only
difference is that you must use the full class name when declaring the instance. Listings 11.18
and 11.19 are identical to 11.15 and 11.16 except that Car is a member of the Transportation
package.

Listing 11.18 A Simple Class File for the Car Class in a Package

package Transportation;
//Car is just a generic class with a few variables
public class Car {
 int wheels;
 int tires;
 int speed;
 //simple constructor
 public Car (int inWheels, int inTires, int inSpeed){
 wheels=inWheels;
 tires = inTires;
 speed = inSpeed;
 }
}

Listing 11.19 A Simple Class File for Van that Uses the Car Class in a
Package

//The Van class is another simple class, but uses the Car class
public class Van {
 //The Car class is used here without being imported
 Transportation.Car theCar;
 int doors;
 //simple constructor
 public Van (Car inCar, int inDoor){
 theCar= inCar;
 doors= inDoor;
 }
}

Although you do not need to import a package to use the classes, doing so affords a
shorthand way to refer to classes defined in the package. Specifically, in the previous

example, if the package was imported:

import Transportation.Car;

to create an object of Class Car, you would not need Transportation in front of every Car
reference, and the code would look otherwise identical to Listing 11.18. ■

N O T E

Untitled-14 9/22/98, 3:22 PM188

189

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

11

II
Part

Ch

Using Packages to Organize Your Code
Packages are more than just a shortcut. They are a way of keeping things organized.

Java itself comes with a built-in set of packages, as shown in Table 11.1.

Table 11.1 Standard Java Packages

Package Description

java.applet Contains classes needed to create Java
applets that run under Netscape 2.0 (or
greater), HotJava, or other Java-
compatible browsers.

java.awt Contains classes helpful in writing
platform-independent graphic user
interface (GUI) applications. This comes
with several subpackages including
java.awt.peer and java.awt.image.

java.io Contains classes for doing I/O (input
and output). This is where the data
stream classes are kept.

java.lang Contains the essential Java classes.
java.lang is implicitly imported, so you
don’t need to import its classes.

java.net Contains the classes used for making
network connections. These are used in
tandem with java.io for reading and
writing data from the network.

java.util Contains other tools and data
structures, such as encoding, decoding,
vectors, stacks, and more.

Additional packages are also available commercially.

The one feature to notice about these classes is how Sun Microsystems has used the packages
to group similar classes together. When you set out to construct a program, you might be
tempted to place the entire program in a package. For instance, say you were writing a Pac
Man game. You might be tempted to place all of the classes in a package called Pac. Would this
be a good idea? Probably not, but it all depends on your implementation.

The odds are that your Pac Man game will include a lot of code that is likely to be used by
other arcade-style games you have written. For instance, you might create what is known as a

Using Packages to Organize Your Code

Untitled-14 9/22/98, 3:22 PM189

P2/VB/mp12 SEU Java 1.2 #1529-5 8.8.98 ayanna CH11 LP#4

190 Chapter 11 Classes

game sprite engine. It’s probably a more far-sighted approach to place all of the elements for
the game-sprite in their own package and then place only those classes that are specific to the
Pac Man game in the Pac package. Later you can go back and add to the game-sprite package
without disrupting the readability of your Pac Man game.

Implicit Import of All java.lang Classes
You might have noticed from reading the code throughout this book that there is another set of
classes that you don’t need to import to use. The classes in the java.lang package are always
imported for you. This means that you can use the java.lang.System class as if it was part of
the system—without importing it in statements like this:

 System.out.println(“Hi there, System hasn’t been imported”);

This can be a very convenient thing as in the case of System, but it can also be a source of
confusion. For instance, look back at Listing 11.10; the Math class is also used without instanti-
ating it to access the value of PI. However, if you’re not familiar with how Math got imported
(automatically), this may have caused you some confusion. The only way to overcome this is to
become familiar with the java.lang package and learn what classes are available to you. ●

Untitled-14 9/22/98, 3:22 PM190

191

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

C H A P T E R

Interfaces

What Are Interfaces? 192

Creating an Interface 193

Implementing Interfaces 198

Using Interfaces from Other Classes 201

Exceptions 204

12

In this chapter

Untitled-15 9/22/98, 3:25 PM191

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

192 Chapter 12 Interfaces

What Are Interfaces?
Interfaces are Java’s substitute for C++’s feature of multiple inheritance, the practice of allowing
a class to have several superclasses. Although it is often desirable to have a class inherit sev-
eral sets of properties, for several reasons the creators of Java decided not to allow multiple
inheritance. Java classes, however, can implement several interfaces, thereby enabling you to
create classes that build upon other objects without the problems created by multiple inherit-
ance.

Somewhat resembling classes in syntax, interfaces are used when you want to define a certain
functionality to be used in several classes, but are not sure exactly how this functionality will be
defined by each of these classes. By placing such methods in an interface, you are able to
outline common behavior and leave the specific implementation to the classes themselves. This
makes using interfaces instead of classes a better choice when dealing with advanced data
handling.

Interfaces are the underprivileged first cousins of classes. In fact, they are extremely similar to
pure abstract classes. Although classes have the capability to define an object, interfaces define
a set of methods and constants to be implemented by another object. From a practical view-
point, interfaces help to define the behavior of an object by declaring a set of characteristics for
the object. For example, knowing that a person is an athlete does not define her entire person-
ality, but does ensure that she has certain traits and capabilities.

As an example, say an athlete will always have a 100-meter time, be able to perform the task of
running a mile, and be able to lift weights. By later implementing the athlete interface, you
ensure that a person will possess these abilities.

Thinking of interfaces in another way, consider your radio, TV, and computer speakers. Each of
them has one common control: volume. For this reason, you might want all these devices to
implement an interface called VolumeControl.

Interfaces have one major limitation: They can define abstract methods and final fields, but
cannot specify any implementation for these methods. For methods, this means that the body
is empty. The classes that implement the interface are responsible for specifying the implemen-
tation of these methods. This means that, unlike extending a class, when you implement an
interface, you must override every method in the interface.

In general, interfaces enable you as a programmer to define a certain set of functionality with-
out having any idea as to how this functionality will be later defined. For example, if a class
implemented the java.lang.Runnable interface (an interface with one method—run()), the
class is known to have a run() method. Because the VM can be assured that any Runnable
class has a run() method, the VM can blindly call the run() method. At the same time, when
the designers were writing the VM, they did not have to know anything about what would
happen in the run() method. So, you could be doing an animation, or calculating the first 1,000
prime numbers. It doesn’t matter; all that does matter is that you will be running, and you have
established that by implementing the Runnable interface.

Untitled-15 9/22/98, 3:25 PM192

193

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

Creating an Interface

Another excellent example is the java.applet.AppletContext interface. This interface defines
a set of methods that returns information regarding the environment in which an applet is
running. For instance, the AppletContext defines a method called getImage. Any viewer ca-
pable of running an applet has a means to load an image through the implementation of this
method.

The problem is that different viewers such as the Appletviewer or Netscape Navigator get
images differently. Worse yet, even the same browser varies based on the platform it is running
on. Fortunately, every Java-enabled browser implements the AppletContext interface, so al-
though the java.applet.Applet class depends on the methods declared in the AppletContext
interface, it does not need to worry about how these methods work. That means, you can use
the same applet class and the same methods (such as java.applet.Applet.getImage()) in a
variety of environments and browsers without worrying about whether the getImage() method
will be there.

Creating an Interface
The syntax for creating an interface is extremely similar to that for creating a class. However,
there are a few exceptions. The most significant difference is that none of the methods in your
interface may have a body, nor can you declare any variables that will not serve as constants.

An example interface is shown in Listing 12.1. It shows three items: an interface, a class that
implements the interface, and a class that uses the derived class. Look it over to get an idea as
to how interfaces are used and where we are going in this chapter.

Listing 12.1 Product.java: Product Interface

public interface Product {
 static final String MAKER = “My Corp”;
 static final String PHONE = “555-123-4567”;

 public int getPrice(int id);

}

***begin Listing 12.1a: Shoe.java: Class Shoe which implements the Product
Interface
public class Shoe implements Product {
 public int getPrice(int id) {
 if (id == 1)
 return(5);
 else
 return(10);
 }
 public String getMaker() {
 return(MAKER);
 }
}

continues

Untitled-15 9/22/98, 3:25 PM193

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

194 Chapter 12 Interfaces

***Begin Listing 12.1b: Store.java: Class Store extends Shoe(which implements
Product)
public class Store {
 static Shoe hightop;

 public static void init() {
 hightop = new Shoe();
 }

 public static void main(String argv[]) {
 init();
 getInfo(hightop);
 orderInfo(hightop);
 }

 public static void getInfo(Shoe item) {
 System.out.println(“This Product is made by “+ item.MAKER);
 System.out.println(“It costs $” + item.getPrice(1) + ‘\n’);
 }

 public static void orderInfo(Product item) {
 System.out.println(“To order from “ + item.MAKER + “ call “ +
 ➥item.PHONE + “.”);
System.out.println(“Each item costs $” + item.getPrice(1));
 }
}

The Declaration
Interface declarations have the syntax

public interface NameofInterface extends InterfaceList

where everything in italics is optional.

Public Interfaces By default, interfaces may be implemented by all classes in the same pack-
age. But if you make your interface public, you allow classes and objects outside of the given
package to implement it as well.

Just like public classes, public interfaces must be defined in a file named NameOf Interface.java.

Interface Name The rules for an interface name are identical to those for classes. The only
requirements on the name are that it begin with a letter, an underscore character, or a dollar
sign; contain only Unicode characters (basic letters and digits, as well as some other special
characters); and not be the same as any Java keyword (such as extends or int). Again, like
classes, it is common practice to capitalize the first letter of any interface name.
◊ See “Keywords,” p. 94

Listing 12.1 Continued

T I P

Untitled-15 9/22/98, 3:25 PM194

195

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

Creating an Interface

Although only required for public interfaces, it is a good practice to place all interfaces in a file named
NameOf Interface.java. This enables both you and the Java compiler to find the source code for your
class.

Thus, while the Product interface is not public, you should still declare it in a file named Product.java.

Extending Other Interfaces In keeping with the OOP practice of inheritance, Java interfaces
may also extend other interfaces as a means of building larger interfaces upon previously
developed code. The new sub-interface inherits all the methods and static constants of the
super-interfaces just as subclasses inherit the properties of superclasses.
◊ See “Object-Oriented Programming: A New Way of Thinking,” p. 72

The one major rule that interfaces must obey when extending other interfaces is that they may
not define the body of the parent methods, any more than they can define the body of their own
methods. Any class that implements the new interface must define the body of all of the meth-
ods for both the parent and child interface.

As an example, the following lines show a new interface that extends a previously defined
interface (Runnable):

interface MonitoredRunnable extends java.lang.Runnable {
 boolean isRunning() {
 }
}

The declaration shows a more detailed Runnable interface, including some of the features that
can be found in java.lang.Thread.

Interfaces cannot extend classes. There are a number of reasons for this, but probably the
easiest to understand is that any class that the interface would be extending would have
its method bodies defined. This violates the “prime directive” of interfaces. ■

Remember that if you implement an extended interface, you must override both the methods
in the new interface and the methods in the old interface, as seen in Listing 12.2.

Listing 12.2 Fireworks Class Implementing the MonitoredRunnable Derived
Interface

class Fireworks implements MonitoredRunnable {
 private boolean running; // Keeps track of state.

 void run() {
 shootFireWorks();
 }

T I P

N O T E

continues

Untitled-15 9/22/98, 3:25 PM195

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

196 Chapter 12 Interfaces

 boolean isRunning() { // Provides access to other objects without
 return(running); //allowing them to change the value of running.
 }

}

Because Fireworks implements MonitoredRunnable, it must override isRunning(), declared in
MonitoredRunnable. Because MonitoredRunnable extends Runnable, it must also override
run(), declared in Runnable.

Although classes implement interfaces to inherit their properties, interfaces extend other
interfaces. When extending more than one interface, separate each by a comma. This

means that although classes cannot extend multiple classes, interfaces are allowed to extend multiple
interfaces:

interface MonitoredRunnable extends java.lang.Runnable,java.lang.Cloneable {
 boolean isRunning() {
 }
} ■

The Interface Body
The body of an interface cannot specify the specific implementation of any methods, but it does
specify their properties. In addition, interfaces may also contain final variables.

For example, declaring the MAKER variable in the Product interface allows you to declare a
constant that will be employed by all classes implementing the Product interface.

Another good example of final fields in interfaces can be found in the
java.awt.image.ImageConsumer interface. The interface defines a set of final integers that
serve as standards for interpreting information. Because the RANDOMPIXELORDER variable
equals 1, classes that implement the ImageConsumer interface can make reference to the vari-
able and know that the value of 1 means that the pixels will be sent in a random order. This is
shown in the setHints method of Listing 12.3.

Listing 12.3 Pseudocode for a Class Implementing ImageConsumer

public class MagnaImage implements ImageConsumer{
 imageComplete(int status) {
 ...
 }

 setColorModel(ColorModel cm) {
 ...
 }

 setDimensions(int x, int y) {
 ...
 }
 setHints(int hints) {

Listing 12.2 Continued

N O T E

Untitled-15 9/22/98, 3:25 PM196

197

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

Creating an Interface

 if ((hints & RANDOMPIXELORDER)!=0){
 ...
 }
 }

setPixels(int x, int y, int w , int h, ColorModel cm , byte pixels[],
➥int off, int scansize) {
 ...
 }

setPixels(int x, int y, int w, int h, ColorModel cm, int pixels[], int off,
➥int scansize) { ...
 }

 setProperties(Hashtable props) {
 ...
 }
}

Methods The main purpose of interfaces is to declare abstract methods that will be defined
in other classes. As a result, if you are dealing with a class that implements an interface, you
can be assured that these methods will be defined in the class. Although this process is not
overly complicated, there is one important difference that should be noticed.

The syntax for declaring a method in an interface is extremely similar to declaring a method in
a class, but in contrast to methods declared in classes, methods declared in interfaces cannot
possess bodies. An interface method consists of only a declaration. For example, the following
two methods are complete if they are defined in an interface:

public int getPrice(int id);

public void showState();

However, in a class, they would require method bodies:

public int getPrice(int id) {
 if (id == 1)
 return(5);
 else
 return(10);
}

public void showState() {
 System.out.println(“Massachusetts”);
}

The method declaration does not determine how a method will behave; it does define how it
will be used by defining what information it needs and what (if any) information will be re-
turned. The method that is actually defined later in a class must have the same properties as
you define in the interface. To make the best use of this fact, it is important to carefully con-
sider factors like return type and parameter lists when defining the method in the interface.

Method declarations in interfaces have the following syntax:

public return_value nameofmethod (parameters) throws ExceptionList;

Untitled-15 9/22/98, 3:25 PM197

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

198 Chapter 12 Interfaces

where everything in italics is optional. Also note that unlike normal method declarations in
classes, declarations in interfaces are immediately followed by a semicolon.

All methods in interfaces are public by default, regardless of the presence or absence of
the public modifier. This is in contrast to class methods which default to friendly.

It’s actually illegal to use any of the other standard method modifiers (including native, static,
synchronized, final, private, protected, or private protected) when declaring a method in an
interface. ■

Variables in Interfaces Although interfaces are generally employed to provide abstract
implementation of methods, you may also define variables within them. Because you cannot
place any code within the bodies of the methods, all variables declared in an interface must be
global to the class. Furthermore, regardless of the modifiers used when declaring the field, all
fields declared in an interface are always public, final, and static.

Although all fields will be created as public, final, and static, you do not need to explicitly state this in
the field declaration. All fields default to public, static, and final regardless of the presence of these
modifiers. It is, however, a good practice to explicitly define all fields in interfaces as public, final, and
static to remind yourself (and other programmers) of this fact.

As seen in the Product interface, interface fields—like final static fields in classes—are used to
define constants that can be accessed by all classes that implement the interface:

public interface Product {
//This variable is static and final.
static final String MAKER = “My Corp”;

//This variable is also static and final by default, even though not
//stated explicitly.
String PHONE = “555-123-4567”;

public int getPrice(int id);
}

Implementing Interfaces
Now that you know how to create interfaces, let’s examine how they are used in developing
classes. Listing 12.4 shows an example of a class that implements our Product interface.

Listing 12.4 Shoe Class Implementing the Product Interface

class Shoe implements Product {
 public int getPrice(int id) {
 if (id == 1)
 return(5);
 else
 return(10);
 }

N O T E

T I P

Untitled-15 9/22/98, 3:25 PM198

199

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

Implementing Interfaces

 public String getMaker() {
 return(MAKER);
 }
}

Of course, the code in the class can deal with functions other than those relating to the inter-
face (such as the getMaker() method). But, to fulfill the requirements of implementing the
Product interface, the class must override the getPrice(int) method.

Overriding Methods
Declaring a method in an interface is a good practice. However, the method cannot be used
until a class implements the interface and overrides the given method.

Remember that if you implement an interface, you are required to override all methods declared in the
interface. Failure to do so will make your class abstract.

Modifiers
As discussed earlier, methods declared in interfaces are by default assigned the public level of
access. Consequently, because you cannot override a method to be more private than it already
is, all methods declared in interfaces and overridden in classes must be assigned the public
access modifier, unless they are explicitly made less public in the interface.

Of the remaining modifiers that may be applied to methods, only native and abstract may be
applied to methods originally declared in interfaces.

Parameter List
Interface methods define a set of parameters that must be passed to the method. Consequently,
declaring a new method with the same name but a different set of parameters than the method
declared in your interface overloads the method, not overrides it.

Although there is nothing wrong with overloading methods declared in interfaces, it is also
important to implement the method declared in the interface. Therefore, unless you declare
your class to be abstract, you must override each method, employing the same parameter
signature as in your interface (see Listing 12.5). By the way, only one method satisfies the
run() method required for Runnable.

Listing 12.5 Runner.java—A Class (Runner) that Implements Runnable and
Has Two run Methods

public void Runner implements Runnable {

//This method overloads the run() method; it does not
//fulfill the requirements for Runnable.

T I P

continues

Untitled-15 9/22/98, 3:25 PM199

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

200 Chapter 12 Interfaces

public void run(int max){
 int count =0;
 while (count++<max){
 try{
 Thread.sleep(500);
 } catch (Exception e){}
 }
}

//This method fulfills the requirement for Runnable.
//You must have this method.
public void run(){
 while (true){
 try{
 Thread.sleep(500);
 } catch (Exception e){}
 }
}

}

If the method String createName(int length, boolean capitalized) is declared in an
interface, here are some valid and invalid examples of how to override it. The invalid methods
can exist (as overloaded versions of the method) in addition to the valid ones, but will not be
related to the interface:

Valid

String createName(int a, boolean b)

String createName(int width, boolean formatted)

Invalid

String createName (boolean capitalized, int length)

String createName(int length)

Body
When creating a class that implements an interface, one of your chief concerns will be creating
bodies for the methods originally declared in the interface. Unless you decide to make the
method native, it is necessary to create the body for every method originally declared in your
interface if you do not want to make your new class abstract.

The actual implementation and code of the body of your new method is entirely up to you. This
is one of the good things about using interfaces. Although the interface ensures that, in a non-
abstract class, its methods will be defined and will return an appropriate data type, the interface
places no further restrictions or limitations on the method bodies.

Listing 12.5 Continued

Untitled-15 9/22/98, 3:25 PM200

201

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

Using Interfaces from Other Classes

Using Interfaces from Other Classes
You’ve learned how to create interfaces and build classes based on interfaces. However, inter-
faces are not useful unless you can develop classes that will either employ the derived classes
or the interface itself.

Using an Interface’s Fields
Although the fields of an interface must be both static and final, they can be extremely useful in
your code.

The following example demonstrates that any variable from an interface can be referenced by
using the same dot notation you use with classes. That means you can use
java.awt.image.ImageConsumer.COMPLETESCANLINES just as with the class java.awt.Event
you use with java.awt.Event.MOUSE_DOWN. This provides you with access to constants. Listing
12.6 shows an example of another ImageConsumer variable being used.

Listing 12.6 Using the Constant Fields of an Interface

import java.awt.image.*;
class MyImageHandler {
/* The java.awt.image.ImageConsumer interface defines certain constants to serve
as indicators. STATICIMAGEDONE, which is set to equal 3, informs the consumer
that the image is complete.*/
 ImageConsumer picture;

 void checkStatus(boolean done) {
 if (done)
 picture.imageComplete(ImageConsumer.STATICIMAGEDONE);
 }
}

Using Interfaces as Types
One of the most important features of an interface is that it can be used as a data type. An
interface variable can be used just as you would any class.

As a Parameter Type In Listing 12.7, you create a simple application that employs the Shoe
class developed earlier. Because the Shoe class implements the Product interface, you may
deal with the instances of the Shoe class either as standard Shoe objects or as objects based on
the Product interface. Although both approaches produce the same results, treating the in-
stance as an object based on the Product interface provides you with a more flexible and useful
way of using the resources provided by the Product interface.

Listing 12.7 Using the Product Interface as a Parameter Type

class Store {
 static Shoe hightop;

continues

Untitled-15 9/22/98, 3:25 PM201

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

202 Chapter 12 Interfaces

 public static void init() {
 hightop = new Shoe();
 }

 public static void main(String argv[]) {
 init();
 getInfo(hightop);
 orderInfo(hightop);
 }

 public static void getInfo(Shoe item) {
System.out.println(“This Product is made by “+ item.MAKER);
 System.out.println(“It costs $” + item.getPrice(1) + ‘\n’);
 }

 public static void orderInfo(Product item) {
 System.out.println(“To order from “ +item.MAKER + “ call “ +
 ➥item.PHONE + “.”);
 System.out.println(“Each item costs $” + item.getPrice(1));
 }
}

Output In the following example, the getInfo() method treats hightop as a simple class with
certain methods and fields. However, the interesting example is orderInfo(), which extracts
almost the same information without knowing anything about a Shoe. Because a Shoe meets
the requirements of a Product, you are able to implicitly cast a Shoe to become a Product. As a
result, because you know that the Product interface declares certain features, you can be sure
that these features, such as the getPrice() method, are present in the parameter item:

C:\dev>\jdk\java\bin\java Store
This Product is made by My Corp
It costs $5

To order from My Corp call 555-123-4567.
Each item costs $5

Notice that in treating hightop as a Product, you are implicitly casting it as a new data
type without specifically stating so in your code. Although the compiler has no trouble

doing this, you could substitute that line of code in the Store class for the following:

orderInfo((Product)hightop);

This statement would accomplish the same goal and is often easier for other programmers to read,
because it shows that orderInfo() accepts a Product, not a Shoe as its argument. ■

Although it is not necessary to use the Product type as your argument in this simplistic ex-
ample, its use becomes apparent when you have multiple classes, each of which implements
the same interface. For example, consider a more elaborate Store class with several items, all
of which implemented the Product interface, such as in Listing 12.8.

N O T E

Listing 12.7 Continued

Untitled-15 9/22/98, 3:25 PM202

203

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

Using Interfaces from Other Classes

Listing 12.8 Using an Interface as a Type to Deal with Several Classes

interface Product {
 static final String MAKER = “My Corp”;
 static final String PHONE = “555-123-4567”;
 public int getPrice(int id);
 public void showName();
}
class Book implements Product {
 public int getPrice(int id) {
 if (id == 1)
 return(20);
 else
 return(30);
 }
 public void showName() {
 System.out.println(“I’m a book!”);
 }
}
class Shoe implements Product {
 public int getPrice(int id) {
 if (id == 1)
 return(5);
 else
 return(10);
 }
 public void showName() {
 System.out.println(“I’m a shoe!”);
 }
}
class store {
 static Shoe hightop;
 static Book using_java;

 public static void init() {
 hightop = new Shoe();
 using_java = new Book();
 }

 public static void main(String argv[]) {
 init();
 orderInfo(hightop);
 orderInfo(using_java);
 }

 public static void orderInfo(Product item) {
 item.showName();
 System.out.println(“To order from “ + item.MAKER + “ call “ +
 ➥item.PHONE + “.”);
 System.out.println(“Each item costs $” + item.getPrice(1));
 }
}

continues

Untitled-15 9/22/98, 3:25 PM203

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

204 Chapter 12 Interfaces

Output:
C:\dev>\JDK1.2\java\bin\java Store
I’m a shoe!
To order from My Corp call 555-123-4567.
Each item costs $5
I’m a book!
To order from My Corp call 555-123-4567.
Each item costs $20

Exceptions
For an interface method to throw an exception, the exception type (or one of its superclasses)
must be listed in the exception list for the method as defined in the interface. Here are the
rules for overriding methods that throw exceptions:

■ The new exception list may only contain exceptions listed in the original exception list,
or subclasses of the originally listed exceptions.

■ The new exception list does not need to contain any exceptions, regardless of the
number listed in the original exception list. (This is because the original list is inherently
assigned to the new method.)

■ The new method may throw any exception listed in the original exception list or derived
from an exception in the original list, regardless of its own exception list.

In general, the exception list of the method—which is declared in the interface, not the
redeclared method—determines which expectations can and cannot be thrown. In other
words, when a redeclared method changes the exception list, it cannot add any exceptions that
are not included in the original interface declaration.

As an example, examine the interface and method declarations in Listing 12.9.

Listing 12.9 Alternate Exception Lists

interface Example {
 public int getPrice(int id) throws java.lang.RuntimeException;
}

class User implements Example {
 public int getPrice(int id) throws java.awt.AWTException {
 // Illegal - Reason 1
 // java.awt.AWTException is not a subclass of java.lang.RuntimeException
 /// method body
 }
 public int getPrice(int id) {
 if (id == 6)
 throw new java.lang.IndexOutOfBoundsException();
 // Legal - Reason 2
 // IndexOutOfBoundsException is derived from

Listing 12.8 Continued

Untitled-15 9/22/98, 3:25 PM204

205

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

12

II
Part

Ch

Exceptions

 // RuntimeException
 else
 ...
 }
 public int getPrice(int id) throws java.lang.IndexOutOfBoundsException {
 // Legal - Reason 1
 // IndexOutOfBoundsException is derived from
 //RuntimeException
 if (id == 6)
 throw new java.lang.ArrayIndexOutOfBoundsException();
 // Legal - Reason 3
 // ArrayIndexOutOfBoundsException is derived from
 //IndexOutOfBoundsException
 ...
 }
}

Untitled-15 9/22/98, 3:25 PM205

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH LP#4

206 Chapter 12 Interfaces

Untitled-15 9/22/98, 3:25 PM206

207

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

C H A P T E R

Threads

What Are Threads? 208

Why Use Threads? 208

How to Make Your Classes Threadable 209

The Great Thread Race 209

Understanding the GreatRace 212

Thread Processing 214

Try Out the Great Thread Race 215

Changing the Priority 215

A Word About Thread Priority, Netscape, and Windows 217

Synchronization 219

Speaking with a Forked Tongue 220

Changing the Running State of the Threads 221

Obtaining the Number of Threads That Are Running 222

Finding All the Threads That Are Running 223

The Daemon Property 225

13

In this chapter

Untitled-1 9/22/98, 3:48 PM207

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

208 Chapter 13 Threads

What Are Threads?
A unique property of Java is its built-in support for threads. Threads allow you to do many
things at the same time. If you could only move one arm or leg at a time, you would probably
feel fairly limited. Threads are the computer’s answer to this problem. This chapter covers how
threads can be used in Java programs.

Think about a typical corporation. In almost every company there are at least three interdepen-
dent departments: management, accounting, and manufacturing/sales. For an efficient com-
pany to run, all three of these operations need to work at the same time. If accounting fails to
do its job, the company will go bankrupt. If management fails, the company will simply fall
apart, and if manufacturing doesn’t do its job, the company will have nothing with which to
make money.

Many software programs operate under the same conditions as your company. In a company,
you complete all the tasks at the same time by assigning them to different people. Each person
goes off and does his or her appointed task. With software, you (usually) only have a single
processor, and that single processor has to take on the tasks of all these groups. To manage
this, a concept called multitasking was invented. In reality, the processor is still only doing one
thing at any one time, but it switches between them so fast that it seems like it is doing them all
simultaneously. Fortunately, modern computers work much faster than human beings, so you
hardly even notice that this is happening.

Now, let’s go one step further. Have you ever noticed that the accounting person is really doing
more than one thing? For instance, that person spends time photocopying spreadsheets, calcu-
lating how many widgets the company needs to sell to corner the widget market, adding up all
the books, and making sure the bills get paid.

In operating system terms, this is known as multithreading. Think about it in this way: Each
program is assigned a particular person to carry out a group of tasks, called a process. That
person then breaks up his or her time even further into threads.

Why Use Threads?
So, you’re saying to yourself, “Why should I care how the computer works, so long as it runs
my programs?” Multithreading is important to understand because one of the great advances
Java makes over other programming languages is its built-in, native support for threading. By
using threading, you can avoid long pauses between what your users do and when they see
things happen. Better yet, you can send tasks such as printing off into the background where
users don’t have to worry about them—they can continue typing their dissertation or perform
some other task.

In Java, currently the most common use of a thread is to allow your applet to go off and do
something while the browser continues to do its job. Any application you’re working on that
requires two things to be done at the same time is probably a great candidate for threading.

Untitled-1 9/22/98, 3:48 PM208

209

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

How to Make Your Classes Threadable
You can make your applications and classes run in separate threads in two ways:

■ Extending the Thread class

■ Implementing the Runnable interface

It should be noted that making your class able to run as a thread does not automatically make
it run as such. A section later in this chapter explains this.

Extend Thread
You can make your class runnable as a thread by extending the class java.lang.Thread. This
gives you direct access to all the thread methods directly:

public class GreatRace extends Thread

Implement Runnable
Usually, when you want to make a class able to run in its own thread, you also want to extend
the features of some other class. Because Java doesn’t support multiple inheritance, the solu-
tion to this is to implement the Runnable interface. In fact, Thread actually implements
Runnable itself. The Runnable interface has only one method: run(). Any time you make a
class implement Runnable, you need to have a run() method in your class. In the run()
method you actually do all the work you want to have done by that particular thread:

public class GreatRace extends java.applet.Applet implements Runnable

The Great Thread Race
Now that you have seen how to make your class runnable, let’s take a look at a thread example.
The source code for two classes follows (see Listings 13.1 and 13.2):

■ GreatRace. A class that adds several items of the class Threader.

■ Threader. Operates in its own thread and races along a track to the finish line.

Listing 13.1 GreatRace.java

import java.awt.Graphics;
import java.awt.GridLayout;
import java.awt.Frame;
import Threader;

public class GreatRace extends java.applet.Applet implements Runnable{
 Threader theRacers[];
 static int racerCount = 3;
 Thread theThreads[];
 Thread thisThread;
 static boolean inApplet=true;

continues

The Great Thread Race

Untitled-1 9/22/98, 3:48 PM209

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

210 Chapter 13 Threads

Listing 13.1 Continued

 int numberofThreadsAtStart;

 public void init(){
 //we will use this later to see if all our Threads have died.
 numberofThreadsAtStart = Thread.activeCount();

 //Specify the layout. We will be adding all of the racers one on top
 //of the other.

 setLayout(new GridLayout(racerCount,1));

 //Specify the number of racers in this race, and make the arrays for the
 //Threaders and the actual threads the proper size.
 theRacers = new Threader [racerCount];
 theThreads = new Thread[racerCount];

 //Create a new Thread for each racer, and add it to the panel.
 for (int x=0;x<racerCount;x++){
 theRacers[x]=new Threader (“Racer #”+x);
 theRacers[x].setSize(getSize().width,getSize().height/racerCount);
 add (theRacers[x]);
 theThreads[x]=new Thread(theRacers[x]);

 }
 }

 public void start(){
 //Start all of the racing threads
 for (int x=0;x<racerCount;x++)
 theThreads[x].start();

 //Create a thread of our own. We will use this to monitor the state of
 //the racers and determine when we should quit altogether.
 thisThread= new Thread (this);
 thisThread.start();
 }

 public void stop(){
 for (int x= 0;x<theRacers.length;x++){
 theRacers[x].stop();
 }
 }

 public void run(){
 //Loop around until all of the racers have finished the race.
 while(Thread.activeCount()>numberofThreadsAtStart+2){
 try{
 thisThread.sleep(100);
 } catch (InterruptedException e){
 System.out.println(“thisThread was interrupted”);
 }
 }

Untitled-1 9/22/98, 3:48 PM210

211

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

 //Once the race is done, end the program.
 if (inApplet){
 stop();
 destroy();
 }
 else
 System.exit(0);
 }

 public static void main (String argv[]){
 inApplet=false;

 //Check to see if the number of racers has been specified on the command
 //line.
 if (argv.length>0)
 racerCount = Integer.parseInt(argv[0]);

 //Create a new frame and place the race in it.
 Frame theFrame = new Frame(“The Great Thread Race”);
 GreatRace theRace = new GreatRace();
 theFrame.setSize(400,200);
 theFrame.add (“Center”,theRace);
 theFrame.show();
 theRace.init();
 theFrame.pack();
 theRace.start();
 }

}//end class GreatRace.

Listing 13.2 Threader.java

import java.awt.Graphics;
import java.awt.Color;

public class Threader extends java.awt.Canvas implements Runnable {
 int myPosition =0;
 String myName;
 int numberofSteps=600;
 boolean keepRunning = true;

 //Constructor for a Threader. We need to know our name when we
 //create the Threader.
 public Threader (String inName){
 myName=new String (inName);
 }

 public synchronized void paint(Graphics g){
 //Draw a line for the ‘racing line’.
 g.setColor (Color.black);
 g.drawLine (0,getSize().height/2,getSize().width,getSize().height/2);

continues

The Great Thread Race

Untitled-1 9/22/98, 3:48 PM211

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

212 Chapter 13 Threads

Listing 13.2 Continued

 //Draw the round racer.
 g.setColor (Color.yellow);
 g.fillOval((myPosition*getSize().width/
 ➥numberofSteps),0,15,getSize().height);
 }

 public void stop(){
 keepRunning = false;
 }

 public void run(){
 //Loop until we have finished the race.
 while ((myPosition <numberofSteps)&& keepRunning){
 //Move ahead one position.
 myPosition++;
 repaint();

 //Put ourselves to sleep so the paint thread can get around to painting.
 try{
 Thread.currentThread().sleep(10);
 }catch (Exception e){System.out.println(“Exception on sleep”);}
 }
 System.out.println(“Threader:”+myName+” has finished the race”);
 }

}//end class Threader.

Understanding the GreatRace
Most of the code in Threader.java and GreatRace.java should be fairly easy for you to under-
stand by now. Let’s take a look at the key sections of the code that deal with the actual threads.
The first one to look at is the for loop in the init() method of GreatRace (see Listing 13.3).

Listing 13.3 for Loop from init() in GreatRace

for (int x=0;x<racerCount;x++){
 theRacers[x]=new Threader (“Racer #”+x);
 theRacers[x].resize(size().width,size().height/racerCount);
 add (theRacers[x]);
 theThreads[x]=new Thread(theRacers[x]);
}

In the for loop, the first thing to do is create an instance of the class Threader. As you can see
from Listing 13.2, Threader is an ordinary class that happens to also implement the Runnable
interface. After an instance of Threader is created, it is added to the panel, and the new thread
is created with your Threader argument. Don’t confuse the Threader class with the Thread
class.

Untitled-1 9/22/98, 3:48 PM212

213

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

CAUTION

The new Thread can only be called using an object extending Thread or one that implements Runnable.
In either case, the object must have a run() method. However, when you first create the thread, the run()
method is not called. That only happens when the thread is started.

The next important set of code is in the start() method, again of GreatRace.java (see
Listing 13.4).

Listing 13.4 start() Method of GreatRace

public void start(){
 //Start all of the racing threads.
 for (int x=0;x<racerCount;x++)
 // start() will call the run() method.
 theThreads[x].start();

//Create a thread of our own. We will use this to monitor the state of
//the racers and determine when we should quit altogether.
 thisThread= new Thread (this);
 thisThread.start();
}

The first task is to start up all the threads created in the init() method. When the thread is
started, it calls the run() method on its Runnable right away. In this case, that’s the run()
method of the Threader object that was passed to the constructor back in the init() method.

Notice that after the racers have started, a thread is created for the actual applet. This thread
will be used to monitor what is going on with all the threads. If the race finishes (that is, all the
other threads have died and are no longer active), you might as well end the program.

Finally, take a look at the last set of important code—the run() method of Threader (see List-
ing 13.5).

Listing 13.5 run() Method of Threader (racer)

public void run(){
 //Loop until we have finished the race.
 while ((myPosition <numberofSteps)&& keepRunning){
 //Move ahead one position.
 myPosition++;
 repaint();

 //Put ourselves to sleep so the paint thread can get around to painting.
 try{
 Thread.currentThread().sleep(10);
 }catch (Exception e){System.out.println(“Exception on sleep”);}
 }
 System.out.println(“Threader:”+myName+" has finished the race");
}

Understanding the GreatRace

Untitled-1 9/22/98, 3:48 PM213

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

214 Chapter 13 Threads

Notice that the while loop is fairly long. run() is only called once when the thread is started. If
you plan to do a lot of repetitive work—which is usually the case in a thread—you need to stay
within the confines of run(). In fact, it isn’t a bad idea to think of the run() method as being a
lot like typical main() methods in other structured languages.

Look down a few lines and notice that you put the thread to sleep a bit, in the middle of each
loop (Thread.currentThread().sleep(10)). This is an important task. You should almost
always put your threads to sleep once in a while to prevent other threads from going into star-
vation.

It is true that under Windows you can get away without doing this in some cases. This works
because Windows doesn’t really behave like it should with respect to the priority of a thread, as
discussed later in the section “A Word About Thread Priority, Netscape, and Windows.” How-
ever, this is a bad idea, and it probably will not be portable. UNIX machines in particular will
look like the applet has hung, and the Macintosh will do the same thing. This has to do with
the priority assigned to the paint thread, but there are many other reasons to give the system a
breather from your thread.

Thread Processing
To better understand the importance of putting a thread to sleep, it is important to first under-
stand how it is that a computer actually performs threading. How does a computer handle
threads so that it seems to us that it is doing more than one thing at a time? The answer lies at
the heart of what is known as task swapping.

Inside a computer is a periodic clock. For this example, say that the clock ticks every millisec-
ond (in reality, the period is probably much shorter). Now, every millisecond the computer
looks at its process table. In the table are pointers to each of the processes (and threads) cur-
rently running. It then checks to see whether there are any threads that want to run, and if not
goes back to the one it was previously running. This is shown in the timeline of Figure 13.1.

If the Task Manager looks at the process table and there are more threads that are not sleep-
ing, it then goes round-robin between them if they are the same priority. This activity is shown
in Figure 13.2.

Task
manager

Task
manager

Task
manager

Task
manager

process 1process 1process 1process 1

Time

FIG. 13.1
With only one process
running, the Task
Manager always goes
back to that process.

FIG. 13.2
With two processes of
the same priority
running, the Task
Manager swaps between
them.

Task
manager

Task
manager

Task
manager

Task
manager

process 1process 2process 1process 2process 1

Time

Untitled-1 9/22/98, 3:48 PM214

215

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

The third option that the Task Manager might find is that there are two threads running, but
process 2 is of a lower priority than process 1. In this case, the Task Manager runs only the
thread that is the higher priority. The timeline for this session is shown in Figure 13.3.

Task
manager

Task
manager

Task
manager

Task
manager

process 1process 2process 1process 1process 1

(Priority 9)(Priority 9)(Priority 9)

Process 1
goes to
sleep

Process 1
wakes

up

FIG. 13.3
The Task Manager
always returns to the
higher priority thread
(1) until it decides to
go to sleep.

Try Out the Great Thread Race
Go ahead and compile the GreatRace and run it as shown in Figure 13.4 by typing

java GreatRace

You can also access it using your browser, by opening the index.html file.

FIG. 13.4
GreatRace runs as an
application.

You just saw three rather boring ovals run across the screen. Did you notice that they all ran at
almost the same speed, yet they were really all processing separately? You can run the
GreatRace with as many racers as you want by typing

java GreatRace 5

The racers should all make it across the screen in about the same time (see Figure 13.5).

If you run the race a number of times, you see that the race is actually quite fair, and each of
the racers wins just about an equal number of times. If you show the Java Console under
Netscape or look at the window you ran Java GreatRace from, you can actually see the order
in which the racers finish, as shown in Figure 13.6.

Changing the Priority
There are two methods in java.lang.Thread that deal with the priority of a thread:

■ setPriority(int)—used to set a new priority for a thread.

■ getPriority()—used to obtain the current priority of a thread.

Changing the Priority

Untitled-1 9/22/98, 3:48 PM215

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

216 Chapter 13 Threads

Let’s see what happens when you tell the computer you want it to treat each of the racers a bit
differently by changing the priority.

Change the init() method in GreatRace.java by adding the following line into the for loop:

theThreads[x].setPriority(Thread.MIN_PRIORITY+x);

The for loop now looks like Listing 13.6.

Listing 13.6 New for Loop for init() Method

//Create a new Thread for each racer, and add it to the panel.
for (int x=0;x<racerCount;x++){
 theRacers[x]=new Threader (“Racer #”+x);
 theRacers[x].setSize(getSize().width,getSize().height/racerCount);
 add (theRacers[x]);
 theThreads[x]=new Thread(theRacers[x]);
 theThreads[x].setPriority(Thread.MIN_PRIORITY+x);
}

FIG. 13.5
GreatRace as an
applet.

FIG. 13.6
A window shows
GreatRace and the
DOS window it was run
from.

Untitled-1 9/22/98, 3:48 PM216

217

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

Recompile GreatRace now, and run it again, as shown in Figure 13.7.

FIG. 13.7
The New GreatRace
shown as it is run—
mid-race.

By changing the priority of the racers, all of a sudden the bottom racer always wins. Why? The
highest priority thread always gets to use the processor when it is not sleeping. This means
that every 10ms, the bottom racer gets to advance towards the finish line, stopping the work of
the other racers. The other racers get a chance to try to catch up only when that racer decides
to go to sleep. Unlike the hare in the fable about the tortoise and the hare, though, the highest
priority thread always wakes up in 10ms, and rather quickly outpaces the other racers all the
way to the finish line. As soon as that racer finishes, the next racer becomes the highest prior-
ity and gets to move every 10ms, leaving the next racer farther behind.

The priority of the thread was changed with the method setPriority(int) from
Thread. Note that you did not just give it a number. The priority was set relative to the

MIN_PRIORITY variable in Thread. This is an important step. The MIN_PRIORITY and
MAX_PRIORITY are variables that could be set differently for a particular machine. Currently, the
MIN_PRIORITY on all machines is 1, and the MAX_PRIORITY is 10. It is important not to exceed
these values. Doing so will cause an IllegalArgumentException to be thrown. ■

A Word About Thread Priority, Netscape,
and Windows

If you ran the updated version of GreatRace under Windows, you saw something like Figure
13.8. No doubt you’re wondering why your race did not turn out the same as was shown in
Figure 13.7. The trailing two racers stayed very close together until the first one won.

N O T E

FIG. 13.8
The New GreatRace
as it appears running
under Windows 95.

With Netscape under Windows, as shown in Figure 13.9, you may be wondering why your last
racer didn’t even win!

A Word About Thread Priority, Netscape, and Windows

Untitled-1 9/22/98, 3:48 PM217

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

218 Chapter 13 Threads

The reason for this discrepancy is that threads under Windows don’t have nearly the amount of
control in terms of priority as do threads under UNIX or Macintosh machines. In fact, threads
that have nearly the same priority are treated almost as if they had the same priority with the
Windows version of Netscape. That is the reason why under Netscape the last two racers seem
to have a nearly equal chance at winning the race. To make the last racer always win, you must
increase the priority difference. Try changing the line in the GreatRace init() method to read
like this:

theThreads[x].setPriority(Thread.MIN_PRIORITY+x*2);

Now if you try the race under Windows 95, the last racer should always win by a good margin,
as seen in Figure 13.10.

FIG. 13.9
New GreatRace run
as an applet running
under Windows 95.

FIG. 13.10
GreatRace with
increased priorities
under Windows 95.

If you run it again under Netscape, the last racer also wins, but just barely (see Figure 13.11).

Untitled-1 9/22/98, 3:48 PM218

219

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

This difference is important to realize. If you’re going to depend on the priority of your threads,
make sure that you test the application on both a Windows and Macintosh or UNIX machine. If
you don’t have the luxury of a UNIX machine or Macintosh, it seems that running the program
as a Java application rather than a Java applet is a closer approximation to how the thread pri-
orities should be handled, as you saw in the last two figures.

CAUTION

These thread priority differences make it dangerous to not put your threads to sleep occasionally if you’re
only using a Windows 95 machine. The paint thread, which is a low-priority thread, will get a chance at the
processor under Windows, but only because it will be able to keep up just as the racers did. However, this
does not work under a Macintosh or UNIX machine.

Synchronization
When dealing with multiple threads, consider this: What happens when two or more threads
want to access the same variable at the same time, and at least one of the threads wants to
change the variable? If they were allowed to do this at will, chaos would reign. For example,
while one thread reads Joe Smith’s record, another thread tries to change his salary (Joe has
earned a 50-cent raise). The problem is that this little change causes the thread reading the file
in the middle of the other update to see something somewhat random, and it thinks Joe has
gotten a $500 raise. That’s a great thing for Joe, but not such a great thing for the company, and
probably a worse thing for the programmer who will lose his job because of it. How do you
resolve this?

FIG. 13.11
GreatRace with
increased priorities as
an applet under
Windows 95.

Synchronization

Untitled-1 9/22/98, 3:48 PM219

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

220 Chapter 13 Threads

The first thing to do is declare the method that will change the data and the method that will
read to be synchronized. Java’s keyword, synchronized, tells the system to put a lock around a
particular method. At most, one thread may be in any synchronized method at a time. Listing
13.7 shows an example of two synchronized methods.

Listing 13.7 Two synchronized Methods

public synchronized void setVar(int){
 myVar=x;
}

public synchronized int getVar (){
 return myVar;
}

Now, while in setVar(), the JVM sets a condition lock, and no other thread will be allowed to
enter a synchronized method, including getVar(), until setVar() has finished. Because the
other threads are prevented from entering getVar(), no thread will obtain incorrect informa-
tion because setVar() is in mid-write.

Don’t make all your methods synchronized or you won’t be able to do any multithreading at all
because the other threads will wait for the lock to be released and only one thread will be ac-
tive at a time. But even with only a couple of methods declared as synchronized, what happens
when one thread starts a synchronized method, stops execution until some condition happens
that needs to be set by another thread, and that other thread would itself have to go into a
(blocked) synchronized method? The solution lies in the dining philosopher’s problem.

Speaking with a Forked Tongue
What is the dining philosopher’s problem? Well, I won’t go into all the details, but let me lay out
the scenario for you.

Five philosophers are sitting around a table with a plate of food in front of them. One chopstick
lies on the table between each philosopher, for a total of five chopsticks. What happens when
they all want to eat? They need two chopsticks to eat the food, but there are not enough chop-
sticks to go around. At most, two of them can eat at any one time—the other three will have to
wait. How do you make sure that each philosopher doesn’t pick up one chopstick, and none of
them can get two? This will lead to starvation because no one will be able to eat. (The philoso-
phers are too busy thinking to realize that one of them can go into the kitchen for more chop-
sticks; that isn’t the solution.)

There are a number of ways to solve this ancient problem (at least in terms of the life of a com-
puter). I won’t even try to solve this problem for you. But it’s important to realize the conse-
quences. If you make a method synchronized, and it is going to stop because of some condi-
tion that can only be set by another thread, make sure that you exit the method and return the
chopstick to the table. If you don’t, it is famine waiting to happen. The philosopher won’t return

Untitled-1 9/22/98, 3:48 PM220

221

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

his chopstick(s) to the table, and he will be waiting for something to happen that can’t happen
because his fellow thinkers don’t have utensils to be able to start eating.

Changing the Running State of the Threads
Threads have a number of possible states. Let’s take a look at how to change the state and what
the effects are. The methods covered here are:

■ start()

■ yield()

■ destroy()

■ sleep(long), sleep(long,int)

■ *stop()

■ *resume()

■ *suspend()

*These methods have been deprecated, so generally speaking don’t use them.

start() and stop() are relatively simple operations for a thread. start() tells a thread to start
the run() method of its associated Runnable object.

stop() tells the thread to stop. There is more that goes into stop()—it actually throws a
ThreadDeath object at the thread. In almost every situation, you should not try to catch this
object. The only time you need to consider doing so is if you have a number of extraordinary
things you need to clean up before you can stop.

CAUTION

stop(),suspend(), and resume() have all been deprecated in JDK 1.2. This is because they can
inherently lead to thread deadlocks, like we talked about with the philosophers. Instead of using these
methods, you should use conditions in the run() method to produce the same result.

CAUTION

If you catch the ThreadDeath object, be sure to throw it again. If you don’t do this, the thread will not
actually stop, and, because the error handler won’t notice this, nothing will ever complain.

You have already briefly looked at the sleep() method, when putting the Threadable to sleep
in the GreatRace. Putting a thread to sleep essentially tells the VM, “I’m done with what I am
doing right now; wake me up in a little while.” By putting a thread to sleep, you are allowing
lower-priority threads a chance to get a shot at the processor. This is especially important when
very low-priority threads are doing tasks that, although not as important, still need to be done
periodically. Without stepping out of the way occasionally, your thread can put these threads
into starvation.

Changing the Running State of the Threads

Untitled-1 9/22/98, 3:48 PM221

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

222 Chapter 13 Threads

The sleep() method comes in two varieties. The first is sleep(long), which tells the inter-
preter that you want to go to sleep for a certain number of milliseconds:

thisThread.sleep(100);

The only problem with this version is that a millisecond, although only an instant for humans,
is an awfully long time for a computer. Even on a 486/33 computer, this is enough time for the
processor to do 25,000 instructions. On high-end workstations, hundreds of thousands of in-
structions can be done in one millisecond.

As a result, there is a second incantation: sleep(long,int). With this version of the sleep
command, you can put a thread to sleep for a number of milliseconds, plus a few nanoseconds:

thisThread.sleep(99,250);

suspend() and resume() are two methods that you can use to put threads to sleep until some
other event has occurred. One such example is if you were about to start a huge mathematical
computation, such as finding the millionth prime number, and you don’t want the other threads
to be taking up any of the processor until the answer had been computed. (Incidentally, if
you’re really trying to find the millionth prime number, I would suggest you write the program
in a language other than Java. Fortran still is king for this type of calculation—and get yourself
a very large computer.)

Again, as of JDK 1.2, suspend() and resume() have been deprecated. You should have your
thread monitor its status and use a wait(), notify() scheme.

yield() works a bit differently from suspend(). yield() is much closer to sleep(). With
yield() you’re telling the interpreter that you want to get out of the way of the other threads,
but when they are done, you want to pick back up. yield() does not require a resume() to
start back up when the other threads have stopped, gone to sleep, or died.

The last method to change a thread’s running state is destroy(). In general, don’t use
destroy(). destroy() does not do any cleanup on the thread; it just destroys it. Because it is
essentially the same as shutting down a program in progress, you should use destroy() only
as a last resort.

Obtaining the Number of Threads That Are Running
Java.lang.Thread has one method that deals with determining the number of threads that are
running: activeCount().

Thread.activeCount() returns the integer number of the number of threads that are running
in the current ThreadGroup. This is used in the GreatRace to find out when all the threads have
finished executing. Notice that in the init() method, you check the number of threads that
are running when you start your program. In the run() method, you then compare this num-
ber plus two to the number of threads currently running to see whether your racers have fin-
ished the race:

while(Thread.activeCount()>numberofThreadsAtStart+2){

Untitled-1 9/22/98, 3:48 PM222

223

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

Why add +2? You need to account for two additional threads that do not exist before the
race starts. The first one is made out of GreatRace(thisThread), which actually runs

through the main loop of GreatRace. The other thread that has not started up at the point the
init() method is hit is the Screen_Updater thread. This thread does not start until it is required to
do something. ■

As with most programming solutions, you have many ways to determine whether all the racers have
finished. You can use thread messaging with PipedInputStream and PipedOutputStream, or
check to see whether the threads are alive.

Finding All the Threads That Are Running
Sometimes it’s necessary to be able to see all the threads that are running. For instance, what
if you did not know that there were two threads you needed to account for in the main() loop of
the GreatRace? There are three methods in java.lang.Thread that help you show just this
information:

■ enumerate(Thread[])

■ getName()

■ setName(String)

enumerate(Thread[]) is used to get a list of all the threads that are running in the current
ThreadGroup. getName() is used to get the name assigned to the thread, whereas its counter-
part setName(String) is used to actually set this name. By default, if you do not pass in a name
for the thread to the constructor of a thread, it is assigned the default name Thread-x where x
is a unique number for that thread.

Let’s modify the GreatRace a bit to show all the threads that are running. Change the run()
method to look like what’s shown in Listing 13.8.

Listing 13.8 New run() Method for GreatRace

public void run(){
 Thread allThreads[];
 //Loop around until all of the racers have finished the race.
 while(Thread.activeCount()>1){
 try{
 //Create a Thread array for allThreads.
 allThreads = new Thread[Thread.activeCount()];
 //Obtain a link to all of the current Threads.
 Thread.enumerate (allThreads);
 //Display the name of all the Threads.
 System.out.println(“****** New List ***** “);
 for (int x=0;x<allThreads.length;x++)
 System.out.println(“Thread:”+allThreads[x].getName()
➥+”:”+allThreads[x].getPriority()+”:”+allThreads[x].isDaemon());

T I P

continues

N O T E

Finding All the Threads That Are Running

Untitled-1 9/22/98, 3:48 PM223

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

224 Chapter 13 Threads

Listing 13.8 Continued

 thisThread.sleep(1000);
 } catch (InterruptedException e){
 System.out.println(“thisThread was interrupted”); }
 }

 //Once the race is done, end the program.
 if (inApplet){

 destroy();
 }
 else
 System.exit(0);
}

The new set of lines is at the beginning of the while() loop. These lines create an array of
threads, use the enumerate method, which was just talked about, and write out the name of
each of the threads to System.out.

Now recompile the program and run it. Under Netscape, make sure that you show the Java
Console by choosing Options, Show Java Console (see Figure 13.12).

As the race progresses and each of the racers completes the race, you can see that the number
of active threads really does decrease. In fact, run the application and give it a number higher
than three (see Figure 13.13). In other words, try:

java GreatRace 5

FIG. 13.12
The GreatRace
running under Netscape
with the Java Console
showing.

Untitled-1 9/22/98, 3:48 PM224

225

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

13

II
Part

Ch

FIG. 13.13
GreatRace can be run
with five racers.

The Daemon Property
Threads can be one of two types: either a user thread or a daemon thread.

So what is a daemon? Well, Webster’s Dictionary says it is “a supernatural being or force, not
specifically evil.”

In a sense, Webster’s is right, even with respect to daemon threads. Although the thread is not
actually supernatural and it is definitely not evil, a daemon thread is not a natural thread, either.
You can set off daemon threads on a path without ever worrying whether they come back.
After you start a daemon thread, you don’t need to worry about stopping it. When the thread
reaches the end of the tasks it was assigned, it stops and changes its state to inactive, much
like user threads.

An important difference between daemon threads and user threads is that daemon threads can
run all the time. If the Java interpreter determines that only daemon threads are running, it will
exit, without worrying whether the daemon threads have finished. This is useful because it
enables you to start threads that do things such as monitoring; they die on their own when
there is nothing else running.

The usefulness of this technique is limited for graphical Java applications because, by default,
several base threads are not set to be daemon. These include:

■ AWT-Input

■ Main

■ AWT-Motif

■ Screen_Updater

Unfortunately, this means that any application using the AWT class will have non-daemon
threads that prevent the application from exiting.

The Daemon Property

Untitled-1 9/22/98, 3:48 PM225

P2/VB/mpprp12 SE Using Java 1.2 #1529-5 8.6.98 ayanna CH13 LP#3

226 Chapter 13 Threads

Two methods in java.lang.Thread deal with the daemonic state assigned to a thread:

■ isDaemon()

■ setDaemon(boolean)

The first method, isDaemon(), is used to test the state of a particular thread. Occasionally, this
is useful to an object running as a thread so that it can determine whether it is running as a
daemon or a regular thread. isDaemon() returns true if the thread is a daemon, and false
otherwise.

The second method, setDaemon(boolean), is used to change the daemonic state of the thread.
To make a thread a daemon, you indicate this by setting the input value to true. To change it
back to a user thread, you set the Boolean value to false.

If you had wanted to make each of the racers in the GreatRace daemon threads, you could have
done so. In the init() for loop, this would have looked like Listing 13.9.

Listing 13.9 New for Loop for init() Method in GreatRace.java

for (int x=0;x<racerCount;x++){
 theRacers[x]=new Threader (“Racer #”+x);
 theRacers[x].resize(size().width,size().height/racerCount);
 add (theRacers[x]);
 theThreads[x]=new Thread(theRacers[x]);
 theThreads[x].setDaemon(true);
}

Untitled-1 9/22/98, 3:48 PM226

227

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

C H A P T E R

Writing an Applet

Java’s Children 228

Applets and HTML 228

Including a Java Applet in an HTML Page 228

Using Java Activator 234

Begin Developing Java Applets 237

Exploring the Life Cycle of an Applet 239

An Applet That Uses Controls 249

14

In this chapter

Untitled-2 9/22/98, 3:50 PM227

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

228 Chapter 14 Writing an Applet

Java’s Children
In the beginning there was FTP, and then came Telnet; years later Telnet begot the Web. The
Web was static and without life until there came CGI, but CGI required a submit button and
whole new pages to be downloaded, and the world saw that this was not good. Then a few
visionaries saw a product called Oak lying in the ashes, and like a phoenix, they resurrected it
to make the Web dynamic and client/server. They renamed this product Java, with children
they called applets. The world paused and saw that it was good.

If you’re new to Java, one thing you’re probably dying to learn how to do is write applets.
Applets are those Java programs you have seen running all over the World Wide Web. They
provide a fascinating layer on top of the already dynamic Java language, which extends far
beyond traditional programming architecture and methodology. When you write an applet, you
create a program that can not only be run on just about any computer but also can be included
in a standard HTML page. Now that you’ve learned the Java language, you are no doubt ex-
cited to start creating applets, those dynamic creatures you see all over the Internet. In this
chapter, you will learn to apply your new knowledge toward writing Java applets.

Applets and HTML
Because you’re interested in writing Java applets, you’re probably already familiar with using
HTML (Hypertext Markup Language) to create Web pages. If not, it’s probably not a bad idea
to pick up a book on HTML such as Que’s Special Edition Using HTML 4, Fourth Edition, to
get some idea of how that markup language actually works.

As you now know, Java can be used to create two types of programs: applets and standalone
applications. An applet must be included as part of a Web page, such as an image or a line of
text. When your Java-capable Web browser loads an HTML document containing a reference to
an applet, the applet is also loaded and executed. (See Chapter 1, “What Java Can Do for You,”
for more information.)

Let’s quickly review how an applet’s code comes to run on your computer. When the browser
detects an <APPLET> tag in an HTML file, it will retrieve the class files for the applet from the
server. The bytecode verifier then determines whether the class is a legitimate one. Assuming
that the class is legit, the verifier will start to process the class file. As the VM detects import
statements, it will continue to go back to the server for more class files until it has downloaded
all the code for the applet. For a visual depiction of this cycle see Figure 14.1.

Including a Java Applet in an HTML Page
If your primary goal with this chapter is to be able to display the “Java Compliant” logo on your
pages, this section is for you. The simplest means to obtain a Java applet is to get one that has
already been built, or that you contract to have built for you. If you have not had time to read
the rest of this book and learn to program in Java yourself, this is probably the direction you
will take. Look at how to include in a Web page a simple applet from MagnaStar, Inc., called
Muncher.

Untitled-2 9/22/98, 3:50 PM228

229

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

Listing 14.1 shows the simplest version of an HTML file that could be used to display Muncher.

Listing 14.1 An HTML File that Includes the Muncher Applet

<HTML>
<BODY>
<APPLET CODE=”GobLoader.class” HEIGHT=0 WIDTH=0></APPLET>
</BODY>
</HTML>

Notice the <APPLET> tag on the third line. The <APPLET> tag is used to indicate to the browser
that you want it to include an applet on your page. In many ways the <APPLET> tag is similar to
the tag. There are three key attributes to notice about the <APPLET> tag: CODE, HEIGHT,
and WIDTH.

Like most HTML tags, the <APPLET> tag is mostly case-insensitive. In other words, all three
of the following tags perform the same thing:

<APPLET CODE=”GobLoader.class” height=0 width=0></APPLET>
<Applet code=”GobLoader.class” HEIGHT=0 WIDTH=0></Applet>
<apPlEt cOdE=”GobLoader.class” height=0 width=0></ApPlET>

However, an important distinction needs to be made. Although the <APPLET> tag itself is case-
insensitive, its attribute values are not. This means that you cannot enter GobLoader as gobloader
or GOBLOADER. ■

The first attribute of the <APPLET> tag is the CODE statement. The CODE value of <APPLET> is
similar to the SRC value of . In the case of <APPLET>, the CODE value must be set to the
name of the main class file of the applet. In the case of Muncher, there are a number of classes,

FIG. 14.1
The bytecode verifier
will continue to return
to the server until all
the applet code has
been downloaded.

Including a Java Applet in an HTML Page

N O T E

Untitled-2 9/22/98, 3:51 PM229

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

230 Chapter 14 Writing an Applet

but the only one you should include in the HTML file is GobLoader.class (Muncher used to be
called Gobbler, so the name is a hold over). This is important to realize; including the wrong
class name can cause some strange and disastrous problems. It’s also important to remember
that having a CODE value is a required portion of an <APPLET> tag, unless an alternative OBJECT
attribute is not present.

Most applets come with either a description of which class file to include, or a sample
HTML file you can look at to find this answer. Alternatively, the class name is the one thing

you can see when viewing the HTML document source on another site. ■

The second and third attributes to notice are the HEIGHT and WIDTH attributes. These are identi-
cal to those in the tag. There is one unique thing about an applet, though, that is not
exactly the same as an image. Some applets, such as Muncher, don’t actually take up any space
on the Web page. Instead they create their own windows. This means that the size should be
set to 0. In addition, unlike images, for almost all applets, the HEIGHT and WIDTH attributes
should be set. With images, if you do not specify the height and width, the browser can figure
them out on its own eventually. With applets, this is usually not the case.

The final thing to notice about the <APPLET> tag is the closing </APPLET> tag. The ending tag is
required for an applet. In addition, as you will see in Listing 14.2, because the <APPLET> tag
does not have an ALT attribute like , the space before the </APPLET> tag can be used to
include alternative information.

Including Alternative Information
Listing 14.2 shows a more complete version of the HTML for Muncher (see Figure 14.2).

N O T E

FIG. 14.2
Muncher is a
shareware applet
available on the
Internet.

Untitled-2 9/22/98, 3:51 PM230

231

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

Listing 14.2 An HTML File That Includes an Applet Plus Alternative
Information for Non-Java Browsers

<HTML>
<BODY>
<APPLET CODE=”GobLoader.class” HEIGHT=0 WIDTH=0>
Warning: You are not using a Java browser. There is an applet on this
page you cannot see.
If you had a Java-enabled browser you would see something similar to the picture
➥below

</APPLET>
</BODY>
</HTML>

As you can see, you can include any standard HTML between the <APPLET> and </APPLET> tag.
A non-Java browser will ignore the <APPLET> tag and only read this information.

The <PARAM> Tag Java applets have a tag in addition to <APPLET>. This HTML tag is
<PARAM>. Many applets use the parameter tag to specify additional information about the
applet’s behavior. Take a look at another applet that does this. GrayButton, also from
MagnaStar, Inc., provides a simple means of adding some interaction to your Web pages (see
Figure 14.3).

FIG. 14.3
The GrayButton
applet is used on this
page to provide some
limited interaction.

The complete listing for including GrayButton on your Web page is shown in Listing 14.3.

Including a Java Applet in an HTML Page

Untitled-2 9/22/98, 3:51 PM231

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

232 Chapter 14 Writing an Applet

Listing 14.3 An HTML File for an Applet That Uses <PARAM> Tags

<HTML>
<BODY>
<APPLET CODE=”gray.class” WIDTH=300 HEIGHT=300>
<PARAM NAME=”graphic” VALUE =”http://www.magnastar.com/NOW.GIF”>
<PARAM NAME =”link” VALUE=”http://www.magnastar.com/GrayButton/license.html”>

</APPLET>
</BODY>
</HTML>

This example demonstrates two important things. First note the <PARAM> tags on lines 4 and 5.
To get this applet to run, you must specify a graphic for it to load and a place for it to link to if
the user clicks that button. Take a look at the syntax for the <PARAM> tag.

The <PARAM> tag must be included between the <APPLET> and the </APPLET> tags. A <PARAM>
tag anywhere else has no point of reference, so the browser ignores it.

In general, the <PARAM> tag has two attributes of its own: NAME and VALUE. The NAME attribute is
used to specify which parameter you are setting. In the case of the GrayButton, there are two
NAMEs that must be set, “graphic” and “link”.

The second attribute of the <PARAM> tag is VALUE. The VALUE attribute is used to dictate the
VALUE that should be associated with the NAME. The VALUE does not have to be a string, al-
though both of them with GrayButton are. The VALUE could easily be a number if the applet
called for that type of data.

In addition to the <PARAM> tags, the example in Listing 14.3 also shows the use of an
image link before the </APPLET>. This is another example of an alternative display. If the

viewer does not have a Java-enabled browser, the graphic will be displayed instead. In the case of
GrayButton, this works out especially nice, because the only thing that is lost without a Java browser
is the level of interaction. ■

Additional <APPLET> Attributes
In addition to the attributes already mentioned, you can use several attribute values to further
customize how an applet will behave, as shown in Table 14.1.

Table 14.1 Attributes for the <APPLET> Tag

Attribute Value Description

CODE* Class name Defines the name of the class file that
extends java.applet.Applet.

HEIGHT^ Number Height in pixels that the applet occupies
vertically on the Web page.

N O T E

Untitled-2 9/22/98, 3:51 PM232

233

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

Attribute Value Description

WIDTH^ Number Width in pixels that the applet occupies
horizontally on the Web page.

VSPACE Number Vertical space in pixels between the applet
and the rest of the HTML. Behaves identi-
cally to the Vspace value of an tag.

HSPACE Number Horizontal space in pixels between the applet
and the rest of the HTML. Behaves identi-
cally to the HSpace value of an tag.

ALIGN Any of: Indicates the alignment of the applet in
LEFT, RIGHT, relationship to the rest of the page.
TOP, TEXTTOP, These values work the same as their
MIDDLE, ABSMIDDLE, counterparts.
BASELINE, BOTTOM,
ABSBOTTOM

ALT String Specifies alternate text to be displayed by the
browser if it is unable to display the actual
applet. This attribute is only utilized if the
browser understands the <APPLET> tag but is
unable to display the applet. Otherwise, the
open HTML between the <APPLET> and
</APPLET> tags is displayed.

ARCHIVE Archive list Contains a list of archives and other re-
sources that should be “preloaded” by the
browser before it begins execution.

OBJECT Serialized Contains the name of the file
applet that has a serialized representation of the

applet. The init() method of the
applet is not called because it is presumed to
have been called on the serialized applet;
however, the start() method is.

Note: If an OBJECT attribute is present, a CODE
attribute need not be; however, one or the
other is required.

CODEBASE URL URL of base directory where the class files
for the applet are located (under the security
manager). This host, and the host where the
HTML with the <APPLET> tag is located, are
the only hosts that can be accessed by the
applet.

* Required
^ Highly Recommended

Including a Java Applet in an HTML Page

Untitled-2 9/22/98, 3:51 PM233

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

234 Chapter 14 Writing an Applet

To sum up, look at Listing 14.4. The text in normal characters is typed literally; the text shown
in italics is replaced by whatever is appropriate for the applet you’re including in the document.
The first and last lines are required. Other lines in the tag are optional. Figure 14.4 shows how
attributes can affect an applet’s placement.

FIG. 14.4
As you look at this
figure, you can see how
the various attributes
affect the applet’s
placement.

Listing 14.4 LST14_04.TXT—The <APPLET> Tag

<APPLET attributes>
parameters
alternate-content
</APPLET>

Using Java Plug-in
One of the best innovations that Sun Microsystems, Inc. has added in a while is known as the
Java Plug-in. Java Plug-in was designed to directly address the fragmentation of the Java Virtual
Machine in the variety of browsers. Over time, each browser started to include its own version
of the VM. This led to minor differences between each of the browsers. In addition, Microsoft
chose not to implement some of the key features of the JDK.

To use the Java Plug-in, users must download the Java Plug-in first and plug it into their brows-
ers. Adding the Java Plug-in gives the browser full support for the latest JDK. As an added
benefit, the way the Java Plug-in is used it will actually upgrade itself. The great thing about
this is it means in the future you will no longer have to concern yourself with using JDK 1.2 and
future JDKs because browsers will already be upgraded.

Untitled-2 9/22/98, 3:51 PM234

235

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

Using Java Plug-in in Internet Explorer
Using Java Plug-in in Internet Explorer requires that you use a different pattern other than the
one that you just learned with the <APPLET> tag. Java Plug-in is actually a different program for
Internet Explorer altogether, so you need to include it just like any other ActiveX component.
Listing 14.5 shows how Java Plug-in can be used in an HTML page designed for Internet Ex-
plorer, with the same applet used previously in Listing 14.3.

Listing 14.5 Using Java Plug-in in Internet Explorer

<OBJECT CLASSID=”clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH=”300" HEIGHT=”300" ALIGN=”baseline”
codebase=”http://java.sun.com/products/plugin/1.1/jinstall-11-
win32.cab#Version=1,1,0,0">
<PARAM NAME=”code” VALUE=”gray.class”>
<PARAM NAME=”codebase” VALUE=”html/”>
<PARAM NAME=”graphic” VALUE =”http://www.magnastar.com/NOW.GIF”>
<PARAM NAME =”link” VALUE=”http://www.magnastar.com/GrayButton/license.html”>
No JDK 1.2 support for APPLET!!
</OBJECT>

The <OBJECT> tag in Listing 14.5 has many of the same attributes as the <APPLET> tag in Listing
14.3. There are some differences, however. First, and perhaps most obvious, is the CLASSID
parameter. This ID identifies not the Java class, but rather the Java Plug-in. It should always be
this number, so you don’t have to worry about where this came from. The number will actually
be different for each different version of the Java Plug-in, so you may need to find out what the
latest version is and get its CLASSID.

Now, the CODEBASE in the <OBJECT> tag that you see is not the CODEBASE for the java class, but
it’s the CODEBASE for the Java Plug-in. Because both the code and CODEBASE parameters can’t be
specified in the <OBJECT> tag itself, they end up in the <PARAM> tags between <OBJECT> and
</OBJECT>.

Using Java Plug-in in Netscape
Netscape. does not use ActiveX components like Internet Explorer. Instead, you need to use a
Netscape plug-in. Listing 14.6 shows how to use Java Plug-in in Netscape.

Listing 14.6 Using Java Plug-in in Netscape.

<EMBED TYPE=”application/x-java-applet;version=1.2" WIDTH=”300" HEIGHT=”300"
ALIGN=”baseline” CODE=”gray.class” CODEBASE=”html/”
GRAPHIC=”http://www.magnastar.com/NOW.GIF”
LINK=”http://www.magnastar.com/GrayButton/license.html”
pluginspage=”http://java.sun.com/products/plugin/1.1/plugin-install.html”>
<NOEMBED>
No JDK 1.2 support for APPLET!!
</NOEMBED>
</EMBED>

Using Java Activator

Untitled-2 9/22/98, 3:51 PM235

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

236 Chapter 14 Writing an Applet

With the <EMBED> tag, the new parameter isn’t CLASSID; instead it’s the TYPE value. You might
notice that there is a VERSION value in the type. The VERSION allows you to specify the Java
version you wish to use. Note the PLUGINSPAGE parameter, which specifies where Netscape can
find the plug-in if it hasn’t already downloaded it.

One of the interesting things about using an <EMBED> tag is that there are no equivalents to the
<PARAM> tag. Instead, you see all of the values listed inside of the <EMBED> tag itself. Look at the
LINK parameter for an example of how this is used.

Setting Up the HTML for All Browsers
You can combine the <EMBED> and <OBJECT> tags as shown in Listing 14.7 so that both
Netscape and Internet Explorer will use Java Plug-in.

Listing 14.7 Using Java Plug-in in Both Internet Explorer and Netscape

<OBJECT CLASSID=”clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH=”300" HEIGHT=”300" ALIGN=”baseline”
codebase=”http://java.sun.com/products/plugin/1.1/jinstall-11-win32.cab
➥#Version=1,1,0,0"><PARAM NAME=”code” VALUE=”gray.class”>
<PARAM NAME=”codebase” VALUE=”html/”>
<PARAM NAME=”graphic” VALUE =”http://www.magnastar.com/NOW.GIF”>
<PARAM NAME =”link” VALUE=”http://www.magnastar.com/GrayButton/license.html”>
<PARAM NAME=”type” VALUE=”application/x-java-applet;version=1.1">
<COMMENT>
<EMBED TYPE=”application/x-java-applet;version=1.1" WIDTH=”300" HEIGHT=”300"
ALIGN=”baseline” CODE=”gray.class” CODEBASE=”html/”
GRAPHIC=http://www.magnastar.com/NOW.GIF
LINK=”http://www.magnastar.com/GrayButton/license.html”
pluginspage=”http://java.sun.com/products/plugin/1.1/plugin-install.html”>
<NOEMBED>
</COMMENT>
No JDK 1.2 support for APPLET!!
</NOEMBED></EMBED>
</OBJECT>

But Listing 14.7 tries to use Java Plug-in, even if it’s on a browser that doesn’t support the
ActiveX or plug-in. So to be truly accurate, the best thing to do is use Listing 14.8. This listing
includes the necessary JavaScript code to have the browser properly look for the right system.
Under Internet Explorer and Netscape on a Windows machine the browser will use the Java
Plug-in, and on all other platforms it will use the built-in VM. Normally you can just copy
Listing 14.8 into your HTML and replace all of the correct parameters, so even though this
looks complicated, you really just need to copy and paste.

Listing 14.8 Using the Best Java VM Regardless of Platform
<SCRIPT LANGUAGE=”JavaScript”><!--
if (_ie == true) document.writeln(‘<OBJECT
CLASSID=”clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

Untitled-2 9/22/98, 3:51 PM236

237

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

WIDTH=”300" HEIGHT=”300" ALIGN=”baseline”
codebase=”http://java.sun.com/products/plugin/1.1/jinstall-11-
➥win32.cab#Version=1,1,0,0">
<NOEMBED><XMP>’);
else if (_ns == true) document.writeln(‘<EMBED
TYPE=”application/x-java-applet;version=1.1" WIDTH=”200" HEIGHT=”200"
ALIGN=”baseline” CODE=”gray.class” CODEBASE=”html/”
GRAPHIC=http://www.magnastar.com/NOW.GIF
LINK =”http://www.magnastar.com/GrayButton/license.html”
pluginspage=”http://java.sun.com/products/plugin/1.1/plugin-install.html”>
<NOEMBED><XMP>’);
//--></SCRIPT>
<APPLET CODE=”gray.class” CODEBASE=”html/” ALIGN=”baseline”
WIDTH=”300" HEIGHT=”300"></XMP>
<PARAM NAME=”code” VALUE=”gray.class”>
<PARAM NAME=”codebase” VALUE=”html/”>
<PARAM NAME=”graphic” VALUE =”http://www.magnastar.com/NOW.GIF”>
<PARAM NAME =”link” VALUE=”http://www.magnastar.com/GrayButton/license.html”>
No JDK 1.2 support for APPLET!!
</APPLET></NOEMBED></EMBED></OBJECT>

Begin Developing Java Applets
Now that you have explored how to include an applet in an HTML page, take a look at how to
write some of your own.

Many years ago, two programming visionaries named Kernie and Richie invented a language
called C. The first program they wrote was called Hello World. Since that time, the first pro-
gram that any programmer writes in any language simply displays “Hello World” to the screen.
So, take a look at how to write the HelloWorld applet in Java.

In the preceding several chapters, you have learned about each of the parts of the Hello World
application, but let’s review it one more time, as shown in Listing 14.9.

Listing 14.9 Hello World as an Applet

import java.applet.Applet;
import java.awt.Graphics;
/*
 *
 * HelloWorld
 *
 */
public class HelloWorld extends Applet {
 public void paint (Graphics g){
 g.drawString (“HelloWorld”,5,20);
 }
}

Begin Developing Java Applets

Untitled-2 9/22/98, 3:51 PM237

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

238 Chapter 14 Writing an Applet

To create the HelloWorld applet, copy the contents of Listing 14.9 into a file called
HelloWorld.java. It is important that you call the file HelloWorld.java, or you will be unable
to compile the program. Now, assuming that you have installed the JDK from Sun in your path,
compile the program by typing the following at a command prompt:

javac HelloWorld.java

Windows users, for this to work, you will need to open a DOS prompt window. ■

If everything has worked correctly, you should now have an additional file in your directory
called HelloWorld.class. This file is the Java equivalent of an .exe file. Before you can run the
applet, though, you will need to create an HTML file as discussed in the previous section. In
the case of the HelloWorld applet, the HTML file should look like Listing 14.10.

Technically, the class file is not an executable file by itself. However, several products such
as Asymetric’s SuperCede and Microsoft’s Visual J++ now include native compilers for Java

that actually produce .exe files. These compilers are also known as static compilers and will generate
.exe files, but are no longer platform independent. ■

Listing 14.10 An HTML File for the HelloWorld Applet

<HTML>
<BODY>
<APPLET CODE=”HelloWorld.class” HEIGHT=100 WIDTH=100></APPLET>
</BODY>
</HTML>

After you have created the HTML file, you can open it in a browser like Netscape Navigator, or
use one of the tools that come with the JDK called appletviewer. Figure 14.5 shows what
happens when you load this file in Netscape.

Notice that when a Java applet is loaded, the Navigator has to go back to the server (or in this
case, your hard drive) to download the HelloWorld.class file before it can be run. This is done
exactly the same way that a GIF file is grabbed for an image, but it does take an extra second or
two.

Understanding Hello World—Building Applets
Now, go back and break down the code in the HelloWorld applet, so you can understand it.

The first thing that you should have noticed is that HelloWorld extends java.applet.Applet.
Every applet in the world must extend Applet. As you can see, you take advantage of object-
oriented programming (OOP) inheritance to declare your applet class by subclassing Java’s
Applet class. For more information on inheritance, check out Chapter 11, “Classes.”

N O T E

N O T E

Untitled-2 9/22/98, 3:51 PM238

239

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

The reason it is necessary to extend Applet is because every browser expects to receive
an Applet class from the CODE attribute. By using the polymorphic characteristics of

inheritance, your custom applet, such as HelloWorld, is both a HelloWorld class and an Applet
class. ■

Exploring the Life Cycle of an Applet
It might surprise you to learn that an applet actually has a life cycle. This means that through-
out the time that an applet exists, certain methods will be called on that applet. To be precise,
four methods are called on an applet:

init()—Called the first time that an applet is loaded

start()—Called after the init() method, and thereafter each time a browser returns to
a page on which the applet is contained

stop()—Called any time a browser leaves a Web page containing the applet

destroy()—Called before a browser completely shuts down

Figure 14.6 shows the life cycle of an applet. To better understand how the life cycle of an
applet works, take a look at a program designed to show when these methods are called. List-
ing 14.11 contains a program that prints out a message each time one of the methods is called
and puts up a graph of this activity.

FIG. 14.5
HelloWorld displays
some text on the
browser.

N O T E

Exploring the Life Cycle of an Applet

Untitled-2 9/22/98, 3:51 PM239

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

240 Chapter 14 Writing an Applet

Listing 14.11 InitStartStop Applet, Which Demonstrates the Use of the Life
Cycle Methods

import java.applet.Applet;
import java.awt.*;

/*
 *
 * InitStartStop
 *
 */
public class InitStartStop extends Applet{
 int initCount = 0;
 int startCount = 0;
 int stopCount = 0;
 int destroyCount = 0;

 public void paint (Graphics g){
 //clear the area
 g.setColor(Color.white);
 g.fillRect(0,0,size().width,size().height);
 //paint all the standard parts of the graph
 g.setColor (Color.red);
 g.drawLine (120,20,120,220);
 g.drawLine (120,220,300,220);
 //draw the labels
 g.setColor (Color.gray);
 g.drawString (“Init Count”, 5,50);
 g.drawString (“Start Count”, 5,100);
 g.drawString (“Stop Count”, 5,150);
 g.drawString (“Destroy Count”, 5,200);
 //paint the grid lines
 g.setColor(Color.lightGray);
 for (int x=(120+25);x<300;x+=25){
 g.drawLine(x,20,x,199);
 }

Destroy

Start

Stop

Init

Reload or
resize browser,

or return to
Web page

Exit
Browser

Leave
Web page

FIG. 14.6
A visual representation
of the life cycle of an
applet.

Untitled-2 9/22/98, 3:51 PM240

241

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

 //draw the bars for each of the stats
 g.setColor (Color.black);
 g.fillRect (120,30,initCount * 25,40);
 g.fillRect (120,80,startCount * 25,40);
 g.fillRect (120,130,stopCount * 25, 40);
 g.fillRect (120,180,destroyCount * 25, 40);
 }

 public void update(Graphics g){
 paint(g);
 }

 public void init(){
 initCount++;
 System.out.println(“init”);
 repaint();
 }

 public void start(){
 startCount++;
 System.out.println(“start”);
 repaint();
 }

 public void stop(){
 stopCount++;
 System.out.println(“stop”);
 repaint();
 }

 public void destroy(){
 destroyCount++;
 System.out.println(“destroy”);
 repaint();
 }

}

Compiling the InitStartStop Applet
To be able to run the InitStartStop applet, just like the HelloWorld applet, you must compile
it and generate an HTML file that references the applet. To do this, first copy the contents of
Listing 14.11 to a file called InitStartStop.java. Then compile this file using javac:

javac InitStartStop.java

Now, before you can actually use the InitStartStop applet, you must first create the HTML for
it. The InitStartStop.html file is as follows:

<HTML>
<BODY>
<APPLET code=”InitStartStop.class” HEIGHT=300 WIDTH=400></APPLET>
</BODY>
</HTML>

Exploring the Life Cycle of an Applet

Untitled-2 9/22/98, 3:51 PM241

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

242 Chapter 14 Writing an Applet

Finally, you’re set to run the InitStartStop applet. To do this, load the InitStartStop.html
file into a browser such as Netscape Navigator. The first time you load the program you will see
something that looks like Figure 14.7. The init() method has been called once, as has the
start() method. This should be exactly what you expected to see.

FIG. 14.7
When InitStartStop
first starts, it has run the
init() method and the
start() method once.

Now click the reload button a couple of times. Each time you do, the number of times that
stop() is called and the number of times that start() is called will both increment once, as
demonstrated in Figure 14.8. However, the init() count will stay the same because the init()
method is only called the first time the browser loads the applet.

As you run the applet, you can also look at those printout statements you were generating. To
do this in Netscape 3.1 and earlier, select Options, Show Java Console. Users of Netscape 4.0
can get to the Java Console by accessing Communicator, Java Console. This should produce
yet another window, as shown in Figure 14.9. Inside this window, you can see all the
System.out messages as they appear. Try clicking reload a few more times. Now, try going to a
different Web page. What happened? Well of course, stop() was called, and start() wasn’t.
Now click the back button. start() is called.

Understanding the InitStartStop Applet
To understand the InitStartStop applet, take it step by step.

import java.applet.Applet;
import java.awt.*;

Untitled-2 9/22/98, 3:51 PM242

243

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

The first thing in the file are several import statements. As you learned in Chapter 11, for a
class to be used (without fully qualifying its name each time), the class must first be imported.
Just like the HelloWorld applet, InitStartStop needs access to the java.awt.Graphics class.
In addition, InitStartStop will need access to a couple of other java.awt classes. So rather
than import each individual class separately, the entire package of java.awt is imported here.

The first method in InitStartStop is the paint method. This method paints a number of
things to the screen using methods available in the java.Graphics class. You will learn more
about the Graphics class in Chapter 27, “Files, Streams, and Java,” so for now, just concentrate
on the last part of the paint() method.

FIG. 14.8
After leaving the page
and coming back
several times, start()
and stop() will have
incremented. Notice
that the applet has
always started one
more time than it has
stopped.

FIG. 14.9
The Java Console in
Netscape shows you
the System.out
messages as they
appear.

Exploring the Life Cycle of an Applet

Untitled-2 9/22/98, 3:51 PM243

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

244 Chapter 14 Writing an Applet

//draw the bars for each of the stats
g.setColor (Color.black);
g.fillRect (120,30,initCount * 25,40);
g.fillRect (120,80,startCount * 25,40);
g.fillRect (120,130,stopCount * 25, 40);
g.fillRect (120,180,destroyCount * 25, 40);

The purpose of this section is to draw the actual bars that you saw indicating how many times
each of the methods had been called. This is accomplished by increasing the width of the bar
by 25 times the count number (such as initCount*25).

public void update(Graphics g){
 paint(g);
}

The next method in the class is update(). update() just calls paint(), so you might be won-
dering what it is doing there. To understand why, it’s necessary to understand the relationship
between update() and paint(). Ordinarily when an applet needs to be painted, either because
it’s just been displayed to the screen, or perhaps a different screen that had been covering the
applet was just removed, the paint() method is called. However, when an applet only needs to
be partially painted, such as when another window has only partially obscured the applet or
when the repaint() method was called, the update() method is called. By default, update()
clears the panel and then calls paint(). However, this can cause an annoying flicker (try run-
ning InitStartStop with this method removed). To get around this, it’s become routine for
programmers to insert an update() method, which does not clear the screen but calls paint()
right away.

The next several methods are really the ones you want to see something from. Each method
increments a counter, does a printout, and calls repaint()(which causes the update/paint()
method to be called).

 public void init(){
 initCount++;
 System.out.println(“init”);
 repaint();
 }

 public void start(){
 startCount++;
 System.out.println(“start”);
 repaint();
 }

 public void stop(){
 stopCount++;
 System.out.println(“stop”);
 repaint();
 }

Untitled-2 9/22/98, 3:51 PM244

245

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

 public void destroy(){
 destroyCount++;
 System.out.println(“destroy”);
 repaint();
 }

}

Java Animator Applet
One of the fun things to do with Java is create simple animations. It should be pointed out that
Java is not the best medium to do this. If all you want to do is create an animation, there are
much better ways to do so, such as GIF89a Cel Frame animations. Or you can use the Java
Media Framework discussed in Chapter 44, “Java Media Framework.” However, because deri-
vations of animations are so frequently done in Java, an animator is shown here. Listing 14.12
shows a complete version of an animator written in Java.

Listing 14.12 Animator Class Cycles Through Images

import java.awt.*;
import java.util.Vector;

public class Animator extends java.applet.Applet implements Runnable {
Vector images;
int imgNumber;
int currentImage=1;
Thread thisThread;

 public void init(){
 //Read in the number of images in the animation
 imgNumber = new Integer(getParameter(“imgNumber”)).intValue();

 //Load the images
 for (int x=0;x<imgNumber;x++){
 Image img = getImage(getDocumentBase(),”images/img”+(x+1));
 images.addElement(img);
 }
 }

 public void paint(Graphics g){
 g.drawImage((Image)images.elementAt(currentImage++),0,0,null);
 currentImage%=imgNumber;
 }

 public void update(Graphics g){
 paint(g);
 }

 public void start(){
 thisThread = new Thread(this);
 thisThread.start();
 }

continues

Exploring the Life Cycle of an Applet

Untitled-2 9/22/98, 3:52 PM245

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

246 Chapter 14 Writing an Applet

Listing 14.12 Continued

 public void stop(){
 thisThread.stop();
 }

 public void run(){
 while(true){
 try{
 thisThread.sleep(100);
 }
 catch (Exception e){}
 }
 }
}

You can probably tell that there is much more to this applet than to the HelloWorld one. To
compile this program, first copy all of Listing 14.12 into a file called Animator.java. To run it,
you will need to create an HTML file that should look something like Listing 14.13.

Listing 14.13 HTML File for Including Animator

<HTML>
<BODY>
<APPLET code=”Animator.class” HEIGHT=200 WIDTH=200>
<PARAM NAME=”imgNumber” VALUE=”5">
</APPLET>
</BODY>
</HTML>

In addition to these files, you will also need to have several images that you want to animate,
and you will need to place them in a subdirectory called images. The images must be called
img1.gif, img2.gif, and so on, where img1.gif is the first image of the animation. You will
also want to change the imgNumber parameter to have the correct number of images. With all
that done, you should see something similar to Figure 14.10.

Now, to understand how Animator works, break Listing 14.12 into some more manageable
chunks. First, take the first three lines of the code:

import java.awt.*;
import java.util.Vector;

public class Animator extends java.applet.Applet implements Runnable {

The first two lines serve to import other Java classes. Java is an extensible language, and the
object-oriented nature of the language allows you to take advantage of prebuilt classes. The
first two lines of the Animator code import such classes.

Untitled-2 9/22/98, 3:52 PM246

247

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

The third line of code is the class declaration. At the end of the line you will notice that the
Animator, like HelloWorld, extends java.applet.Applet. java.applet.Applet is the name of
the class from which all applets extend. Immediately after the class declaration is the statement
implements Runnable, which indicates that the application can be run as a thread. It is impor-
tant that Animator be able to run as a thread because it will continue to process even after the
rest of the page is finished loading.

Immediately after these lines of code, Animator declares several variables of its own.

Vector images;
int imgNumber;
int currentImage=1;
Thread thisThread;

Remember from Chapter 10, “Control Flow,” that Java is a strongly typed language. This means
that each variable must be declared to be a specific type. In some other languages, such as
JavaScript, you would have created the variables with only the var keyword.

var images;
var imgNumber;
var currentImage=1;
var thisThread;

For a variety of reasons, this is not really the best way to work, and Java requires that you
declare the type that each variable will be. As you can see, you are creating four variables. The
Vector is a class type that is convenient to contain a number of elements, especially if you do
not know ahead of time how many you will be adding. The thread variable will be used to
control the activity of the applet later on.

FIG. 14.10
Java can be used to
generate some
interesting animations.

Exploring the Life Cycle of an Applet

Untitled-2 9/22/98, 3:52 PM247

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

248 Chapter 14 Writing an Applet

The Animator applet has several methods. The first of these is the init() method.

public void init(){
 //Read in the number of images in the animation
 imgNumber = new Integer(getParameter(“imgNumber”)).intValue();

 //Load the images
 for (int x=0;x<imgNumber;x++){
 Image img = getImage(getDocumentBase(),”images/img”+(x+1));
 images.addElement(img);
 }
}

The init() method is called when the page is initially loaded into the browser. It is convenient
to use the init() method to set up variables that only have to be initialized once. In the case of
the Animator class, all the images only need to be loaded once. Notice that after the getImage
method is called, the image is added to the Vector of images.

The next method is the paint() method. The paint() method is called each time the applet
needs to be displayed on the Web page. This can happen if the user scrolls the applet off the
screen and then scrolls back, or if you specifically cause the applet to be repainted.

public void paint(Graphics g){
 g.drawImage((Image)images.elementAt(currentImage++),0,0,null);
 currentImage%=imgNumber;
 }

Without breaking the paint() method apart completely, break the drawImage line apart a bit.
drawImage()is a method that obviously draws an image to the graphics screen. Four param-
eters must be given the drawImage() method. First, the name of the image, next the x and y
locations, and finally the imageObserver, which should pay attention to the image.

So why is the image name ((Image)images.elementAt(currentImage++) so complicated?
Well, take it from the right side back. First, you want to display the current image
(currentImage). It is convenient to increment the currentImage number so that the next time
through you will display the next image and you automatically increment the currentImage
variable (currentImage++). Now you have stored the images in a vector, and the way to get the
current image from the vector is to use the method elementAt on the image object
(elementAt(CurrentImage++)). The only problem at this point is that the vector does not
really know it is holding an image. The vector only knows that it has something, and so it re-
turns the image to you in a way that isn’t quite right, so you need to perform what is known as
a cast. The (Image) in front of the images.elementAt performs the cast for you, and now you
have retrieved an image.

The next method is start(). start() is called each time the user goes to a specific page. But
wait, isn’t that when the init() method is called? No, not exactly. You see, the init() method
is only called the first time the page is loaded. From that point on, each time the page is loaded,
the only method called is start(). start() is called the first time too, after the init() method,
but on successive loads only start() is called.

Untitled-2 9/22/98, 3:52 PM248

249

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

public void start(){
 thisThread = new Thread(this);
 thisThread.start();
 }

The start() method is a great place to put the applet into a known state. In the case of
Animator, a thread is created. Without a complete explanation of threads, this means that the
applet will continue to run as the rest of the browser does other things.

public void stop(){
 thisThread.stop();
}

◊ See Chapter 13, “Threads.” p. 207

A close cousin to the start() method is the stop() method, which is called each time the user
leaves the page. It is important to clean up what you have started when the page is exited. The
stop() method of Animator takes the thread it was running and stops it.

The last method for Animator is run(). run() is the method that actually runs in the thread.

public void run(){
 while(true){
 repaint();
 try{
 thisThread.sleep(100);
 }
 catch (Exception e){}
 }
}

Essentially what occurs in Animator’s run method is a constant loop that consists of first telling
the Animator to repaint and then to place the Animator thread in a state known as sleep for
100ms. The result of this is that 10 times a second (1/100ms) the next frame of the animation is
displayed.

An Applet That Uses Controls
As you saw in the previous applet example, applets are interactive applications that can handle
messages generated by both the system and the user. Another way, besides the mouse, that
you can enable user interaction is by including controls—such as buttons, menus, list boxes,
and text boxes—in your applet’s display. Although controls are covered thoroughly in Chapter
19, “java.awt: Components,” you’ll get an introduction to them now, as you create an applet
that can connect you to various Web sites on the Internet.

Listing 14.14 is the Java source code for the applet in question, and Listing 14.15 is the applet’s
HTML document. Before running this applet (by loading its HTML document into a Java-
compatible browser), make your Internet connection. Then, when you run the applet, you see a
window something like Figure 14.16, which shows InternetApplet running in Netscape Navi-
gator 3.1. Just click one of the connection buttons, and you automatically log on to the Web site
associated with the button. Figure 14.12 shows where you end up when you click the CNet
button.

An Applet That Uses Controls

Untitled-2 9/22/98, 3:52 PM249

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

250 Chapter 14 Writing an Applet

FIG. 14.11
The InternetApplet
applet uses buttons to
provide an instant
connection to eight
different Web sites.

FIG. 14.12
The CNet button, for
example, connects to
CNet’s terrific site.

Untitled-2 9/22/98, 3:52 PM250

251

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

Listing 14.14 InternetApplet.java—The InternetApplet Applet

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.net.*;
public class InternetApplet extends Applet implements ActionListener {
 boolean badURL;
 public void init() {
 GridLayout layout = new GridLayout(2, 4, 10, 10);
 setLayout(layout);
 Font font = new Font(“TimesRoman”, Font.PLAIN, 24);
 setFont(font);
 Button button = new Button(“Sun”);
 button.setActionCommand(“http://www.sun.com”);
 button.addActionListener(this);
 add(button);
 button = new Button(“Netscape”);
 button.setActionCommand(“http://www.netscape.com”);
 button.addActionListener(this);
 add(button);
 button = new Button(“Javasoft”);
 button.setActionCommand(“http://www.javasoft.com”);
 button.addActionListener(this);
 add(button);
 button = new Button(“Macmillan”);
 button.setActionCommand(“http://www.mcp.com”);
 button.addActionListener(this);
 add(button);
 button = new Button(“Time”);
 button.setActionCommand(“http://www.pathfinder.com”);
 button.addActionListener(this);
 add(button);
 button = new Button(“CNet”);
 button.setActionCommand(“http://www.cnet.com”);
 button.addActionListener(this);
 add(button);
 button = new Button(“Borland”);
 button.setActionCommand(“http://www.borland.com”);
 button.addActionListener(this);
 add(button);
 button = new Button(“Yahoo”);
 button.setActionCommand(“http://www.yahoo.com”);
 button.addActionListener(this);
 add(button);
 badURL = false;
 }

 public void paint(Graphics g) {
 if (badURL)
 g.drawString(“Bad URL!”, 60, 130);
 }
 public void actionPerformed(ActionEvent event) {
 String pageName = event.getActionCommand();

continues

An Applet That Uses Controls

Untitled-2 9/22/98, 3:52 PM251

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

252 Chapter 14 Writing an Applet

Listing 14.14 Continued

 try {
 URL url = new URL(pageName);
 AppletContext context = getAppletContext();
 context.showDocument(url);
 }
 catch (MalformedURLException e) {
 badURL = true;
 repaint();
 }
 }
}

The preceding applet works only in browsers that support Java 1.1 or better. So, if you need
to use an older browser that has not been upgraded, you will want to look through the

following code in Listing 14.15, which supports the 1.0 model. ■

Listing 14.15 InternetApplet.java—The InternetApplet Applet

import java.awt.*;
import java.applet.*;
import java.net.*;
public class InternetApplet extends Applet
{
 boolean badURL;
 public void init()
 {
 GridLayout layout = new GridLayout(2, 4, 10, 10);
 setLayout(layout);
 Font font = new Font(“TimesRoman”, Font.PLAIN, 24);
 setFont(font);
 Button button = new Button(“Sun”);
 add(button);
 button = new Button(“Netscape”);
 add(button);
 button = new Button(“Microsoft”);
 add(button);
 button = new Button(“Macmillan”);
 add(button);
 button = new Button(“Time”);
 add(button);
 button = new Button(“CNet”);
 add(button);
 button = new Button(“Borland”);
 add(button);
 button = new Button(“Yahoo”);
 add(button);
 badURL = false;

N O T E

Untitled-2 9/22/98, 3:52 PM252

253

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

 }
 public void paint(Graphics g)
 {
 if (badURL)
 g.drawString(“Bad URL!”, 60, 130);
 }
 public boolean action(Event evt, Object arg)
 {
 String str;
 if (arg == “Sun”)
 str = “http://www.sun.com”;
 else if (arg == “Netscape”)
 str = “http://www.netscape.com”;
 else if (arg == “Microsoft”)
 str = “http://www.microsoft.com”;
 else if (arg == “Macmillan”)
 str = “http://www.mcp.com”;
 else if (arg == “Time”)
 str = “http://www.pathfinder.com”;
 else if (arg == “CNet”)
 str = “http://www.cnet.com”;
 else if (arg == “Borland”)
 str = “http://www.borland.com”;
 else
 str = “http://www.yahoo.com”;
 try
 {
 URL url = new URL(str);
 AppletContext context = getAppletContext();
 context.showDocument(url);
 }
 catch (MalformedURLException e)
 {
 badURL = true;
 repaint();
 }

 return true;
 }
}

Listing 14.16 InternetApplet.html—InternetApplet’s HTML Document

<TITLE>Applet Test Page</TITLE>
<H1>Applet Test Page</H1>
<APPLET
 CODE=”InternetApplet.class”
 WIDTH=500
 HEIGHT=150
 NAME=”InternetApplet”>
</APPLET>

An Applet That Uses Controls

Untitled-2 9/22/98, 3:52 PM253

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

254 Chapter 14 Writing an Applet

Understanding the InternetApplet Applet
Now take a look at the applet’s source code. The first three lines enable the program to access
the classes stored in Java’s awt, applet, and net packages:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.net.*;

You’re already familiar with the awt and applet packages. The net package contains the
classes needed to log on to the Internet.

The applet’s main class, which is derived from Applet, begins in the next line:

public class InternetApplet extends Applet

InternetApplet then declares its single data member:

boolean badURL;

The badURL data member is used in the program to notify the applet that the currently selected
URL is no good.

Exploring the init() Method
Next comes the familiar init() method, where the applet can perform whatever initialization it
requires. In this case, the applet first declares and sets a layout manager:

GridLayout layout = new GridLayout(2, 4, 10, 10);
setLayout(layout);

Java programs use layout managers to control where components in the program will appear
on the screen. Java offers many types of layout managers, each represented by its own class in
the awt package. (See Chapter 21, “Containers and Layout Managers,” for more information on
layout managers.) If you don’t create and set your own layout manager, Java uses the
FlowLayout manager—which places components horizontally one after the other—by default.
In InternetApplet, you’re using a GridLayout manager, which organizes components into a
grid. GridLayout’s constructor takes four arguments:

■ Number of rows in the grid

■ Number of columns in the grid

■ Horizontal space between cells in the grid

■ Vertical space between the cells

These latter two arguments have default values of 0 if you want to leave them off.

The setLayout()function is a member of the Container class, which is a superclass (a parent
class in the class hierarchy) of the Applet class. Its single argument is a reference to a layout-
manager object. After calling setLayout(), Java knows to use the new layout manager rather
than the default one.

Untitled-2 9/22/98, 3:52 PM254

255

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

After setting the applet’s layout manager, the program creates and sets the font that’ll be used
for all text in the applet:

Font font = new Font(“TimesRoman”, Font.PLAIN, 24);
setFont(font);

The constructor for the Font class takes three arguments—the font’s name, attribute, and size.
The font’s name can be Dialog, Helvetica, TimesRoman, Courier, or Symbol, whereas the at-
tribute can be Font.PLAIN, Font.ITALIC, or Font.BOLD. The setFont()method sets the new
font for the applet.

The next task is to create and add to the applet the button controls used to select Web sites.
Listing 14.17 shows a sample of the code that accomplishes this task.

Listing 14.17 LST14_17.TXT—Creating Button Controls

Button button = new Button(“Sun”);
button.setActionCommand(“http://www.sun.com”);
button.addActionListener(this);
add(button);

The Button class’s constructor takes a single argument, which is the text label that appears in
the button when it’s displayed. If you want your buttons to be more interesting with graphics as
well as text, you will probably want to read about JFC in Chapters 34, “Java Security in Depth,”
and 35, “Object Serialization.” JFC includes more advanced buttons, but because there is more
involved, we haven’t used them in this chapter.

ActionCommand and ActionListeners
When you create a button, you have the option of specifying the command that will be issued
when the button is clicked. By default, this command is the same as the label you put on the
button. However, in this case, when the button is clicked you want it to specify an URL. So, the
next line after each button is created specifies the action command for that button.

For the command to be useful, though, you must establish a listener for the button. After a
listener is registered with the applet, it will receive a notification any time the indicated event
occurs. In this case, we want to listen to the Action event.

The add() method adds the button to the next available cell in the GridLayout manager.

Finally, init()sets the badURL flag to false. In the event that one of the URLs you’ve entered
doesn’t work out, the badURL flag will help you notify the user.

badURL = false;

The actionPeformed() Method
Before you can add this as an action listener, you must first implement the ActionListener
interface. The ActionListener requires you to create an actionPeformed() method.

An Applet That Uses Controls

Untitled-2 9/22/98, 3:52 PM255

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

256 Chapter 14 Writing an Applet

When the user clicks one of the applet’s buttons, the actionPeformed() method is called.
Because you’ve specified the URL as the command for the button, you can use the action
command to obtain the selected URL as shown below.

String pageName = event.getActionCommand();

After obtaining the selected URL, the applet can connect to the Web site. Before doing this,
though, the program must set up a try and catch program block because the URL class’s con-
structor throws a MalformedURLException, which must be caught by your program. (You learn
more about exceptions in Chapter 20, “Exceptions and Events in Depth.”) The try program
blocks attempts to create the URL object and connects to the Web site, as shown in Listing
14.18.

Listing 14.18 LST14_18.TXT—Connecting to a Web Site

try
{
 URL url = new URL(pageName);
 AppletContext context = getAppletContext();
 context.showDocument(url);
}

In the try block, the program first tries to create an URL object from the URL text string. If the
construction fails, the URL class throws a MalformedURLException, and program execution
continues at the catch program block, which you look at soon. If the URL object gets con-
structed successfully, the program calls the getAppletContext() method to get a reference to
the applet’s AppletContext object. This object’s showDocument() method connects the applet to
the chosen URL.

If the URL class’s constructor throws an exception, program execution jumps to the catch pro-
gram block, which is shown in Listing 14.19.

Listing 14.19 LST14_19.TXT—The Catch Program Block

catch (MalformedURLException e)
{
 badURL = true;
 repaint();
}

In the catch program block, the program simply sets the badURL flag to true and calls
repaint() to display an error message to the user.

Exploring the paint() Method
Listing 14.20 shows the applet’s paint() method, which does nothing more than display an
error message if the badURL flag is set to true.

Untitled-2 9/22/98, 3:52 PM256

257

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.6.98 Ayanna CH14 LP#3

14

II
Part

Ch

Because the URLs are hard-coded into the program, it’s not likely that the URL will
construct improperly. If you were to change a button’s URL, though, the error message lets

you know whether you typed the URL incorrectly. ■

Listing 14.20 LST14_20.TXT—The paint() Method

public void paint(Graphics g)
{
 if (badURL)
 g.drawString(“Bad URL!”, 60, 130);
}

The drawString()function, which is a method of the Graphics class, displays a text string on
the screen. Its three arguments are the string to display, and the X,Y coordinates at which to
display the string. ●

N O T E

An Applet that Uses Controls

Untitled-2 9/22/98, 3:52 PM257

Untitled-2 9/22/98, 3:52 PM258

259

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

15

II
Part

Ch

C H A P T E R

Advanced Applet Code

Using the <PARAM> Tag 260

Adding Images to an Applet 264

Adding Sound to an Applet 266

Using the Applet to Control the Browser 268

Putting It All Together 270

15

In this chapter

Untitled-3 9/22/98, 3:53 PM259

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

260 Chapter 15 Advanced Applet Code

Using the <PARAM> Tag
The most utilized java.applet. Applet feature is the capability to get information from the
HTML file. This information can be useful because it enables you to use the HTML file almost
as a batch file, containing the runtime parameters for a particular applet. This also enables you
to write an applet once, which can be customized by people unfamiliar with Java coding. This
information is placed in what are known as <PARAM> tags.

In Chapter 14, “Writing an Applet,” you learned that <PARAM> tags are part of the <APPLET> tag
included in HTML files. In addition, you learned that the syntax for a <PARAM> tag is

<PARAM NAME=”parameter_name” VALUE=value_of_parameter>

where the items in italics are replaced by specific information for your case. In this chapter, you
learn how to use this information within an applet.
◊ See “Writing an Applet,” p. 227

To access the parameter data, java.applet.Applet has a method called getParameter(). The
method prototype for this method looks like this:

public String getParameter(String name)

As you can see from the prototype, getParameter() requires a parameter—a name. That name
corresponds directly to the NAME value in the <PARAM> tag, so if you had a tag that looked like

<PARAM NAME=”Stars” VALUE=50>

you could retrieve the result with a line of code similar to this:

String starCount = getParameter(“Stars”);

Normally, you will actually develop the program and then the HTML file, so this example will
probably be backward for most of your development. ■

If what you had wanted to get from the parameter was a string value, the previous code might
be enough to satisfy your needs. However, odds are that what you really wanted was an integer
with a value of 50. Because getParameter() returns a string, how can you obtain the int value
50? The answer lies in the Wrapper class for int called java.lang.Integer. Integer can take a
string that represents a number and “parse” through it to get the number value. Using Integer,
you can retrieve the value into an int by using Integer’s parseInt() method, as shown here:

int starCountInt = Integer.parseInt(starCount);

How to put this whole thing together in a complete applet that paints the stars in random places
on the screen is shown in Listing 15.1.

N O T E

Untitled-3 9/22/98, 3:53 PM260

261

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

15

II
Part

Ch

Listing 15.1 StarPainter Reads in a Value for the Number of Stars and Paints
Them to the Screen

import java.applet.Applet;
import java.awt.*;

/*
 *
 * StarPainter
 *
 */
public class StarPainter extends Applet{
 int starCount;
 public void init(){
 starCount = Integer.parseInt(getParameter(“Stars”));
 }

 public void paint(Graphics g){
 g.setColor(Color.black);
 for (int count=0;count<starCount;count++){
 int xValue = (int)(getSize().width*Math.random());
 int yValue = (int)(getSize().height*Math.random());
 g.drawLine(xValue,yValue,xValue,yValue);
 }
 }
}

When you compile StarPainter, you also need to create an HTML file for it. In Listing 15.2,
you see one possible version of this HTML file. Figure 15.1 shows what StarPainter looks like
with those parameter values. Try changing the number of stars to see what happens (you
might want to increase it by a large number because it’s difficult to see small changes in this
applet).

FIG. 15.1
StarPainter paints
stars at random places
on the screen.

Listing 15.2 An HTML File for the StarPainter Applet

<HR>
<APPLET CODE=”StarPainter.class” WIDTH=100 HEIGHT=100>
<PARAM NAME=Stars VALUE=500>
</APPLET>
<HR>

Using the <PARAM> Tag

Untitled-3 9/22/98, 3:53 PM261

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

262 Chapter 15 Advanced Applet Code

Understanding the StarPainter Source Code
Because you’re still fairly new to applet programming, take a look at Listing 15.1 and walk
through how the StarPainter applet works.

import java.applet.Applet;
import java.awt.*;

The first thing to notice is, like all Java classes, the StarPainter program needs to import
several classes. This is really an important step. When you’re just starting to program in Java,
you may get frustrated by an error that looks like the following:

StarPainter.java:14 Class Graphics not found in type declaration.
 public void paint(Graphics g){
 ^

This error occurs because you failed to import the Graphics class.

public void init(){
 starCount = Integer.parseInt(getParameter(“Stars”));
}

The init() method of StarPainter should look just like you thought it would, except for one
minor change. You have combined the two lines of code you saw earlier into one. Notice that
this demonstrates the fact that it is perfectly legitimate to use a method (getParameter()) as a
parameter to a second method (parseInt()) when the proper value is being returned.

 public void paint(Graphics g){
 g.setColor(Color.black);
 for (int count=0;count<starCount;count++){
 int xValue = (int)(getSize().width*Math.random());
 int yValue = (int)(getSize().height*Math.random());
 g.drawLine(xValue,yValue,xValue,yValue);
 }
 }
}

The paint() method of StarPainter is not too involved but does contain some methods you
haven’t seen until now. The first thing that the paint() method does is set the paint color to
black.
◊ See “Graphics,” p. 431

Using the getSize() Method
Now concentrate on the xValue= and the yValue= lines.

int xValue = (int)(getSize().width*Math.random());

To help you understand this line, break it up into several lines of equivalent code:

int width = getSize().width;
double randomLoc = Math.random();
double location = width * randomLoc;
int xValue = (int) location;

Untitled-3 9/22/98, 3:53 PM262

263

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

15

II
Part

Ch

Go through the code on your own and verify that it does get you the same result as the xValue=
line in StarPainter.

The first line of code uses a method you haven’t seen before—getSize(). getSize() is a
method that an applet inherits from the java.awt.Component class. getSize() can be a useful
method for applets because it allows you to find out how much room you have to work with. To
understand how the applet obtained the getSize() method, take a look at the API for the
applet at http://www.javasoft.com/products/jdk/1.2/docs/api/packages.html.

When you visit the Web site, you see a structure at the top of the applet, called an inheritance
tree, which looks like the following:

Class java.applet.Applet

java.lang.Object
 |
 +––––java.awt.Component
 |
 +––––java.awt.Container
 |
 +––––java.awt.Panel
 |
 +––––java.applet.Applet

An inheritance tree helps you to see all the classes Applet inherits from. You see that, just like
when you create your applets by extending the java.applet.Applet class (and in so doing you
obtain all the methods of Applet), when Applet extends Panel, it obtains all of Panel’s meth-
ods. So even though you aren’t extending Component, because Container does and because
Panel extends Container, and Applet extends Panel, and PaintStars extends Applet, you
have effectively inherited all those classes and can use the methods present in all of them.

At the top of the tree, you will see Component, which is a rich class with a lot of methods. You
will want to get to know Component very well. Component has a method called getSize(), which
is the method you were looking for.

Going back to your equivalent code, the next line after the width = getSize().width; is a line
that says:

double randomLoc = Math.random();

Math is a class in the java.lang package (that is, java.lang.Math). Math has a number of valu-
able methods, one of which is random(). random() returns a random number from 0.0–1.0. This
can be useful because, as you used it here, you can use that number to generate any random
number you need. The rest of the code should be easy to follow after you understand random()
and getSize().

Notice that when you call random(), you are doing this on the class Math and not on an
actual instance of Math. In other words, what you are NOT doing is

Math myMathVar = new Math();
double randomLoc = myMathVar.random();

Using the <PARAM> Tag

N O T E

Untitled-3 9/22/98, 3:54 PM263

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

264 Chapter 15 Advanced Applet Code

How can you do this? Ordinarily you cannot call methods just using their class names. However, if a
method is defined as static, the method can be invoked without having to create an instance object of
the class first. It just so happens that all of Math’s methods are static, so you can use them without
having to actually invoke Math. If you’re following along using Sun Microsystems’s API, you may have
noticed that random() is preceded by a green dot rather than a red one. This is to indicate that
random() is a static method. ■

◊ See “Methods,” p. 119

Adding Images to an Applet
Another common task when building an applet is displaying an image. As you saw in the
StarPainter applet, you can create images on your own using the Graphics class, but you can
also load images stored in .gif or .jpg formats. getImage() is the method that has been added
to java.applet.Applet for the purpose of loading such images.

public Image getImage(URL url)

getImage() is an easy method to use. All you need to know is the URL where the image can be
found. So to get the image called banner.gif from the Web site www.magnastar.com, all you
would need to do is use a line similar to this:

Image testImage = getImage (new URL(“http://www.magnastar.com/banner.gif”);

To put this in an applet, see Listing 15.3.

Listing 15.3 PaintBanner Loads an Image and Displays It

import java.applet.Applet;
import java.awt.*;
import java.net.URL;

/*
 *
 * PaintBanner
 *
 */
public class PaintBanner extends Applet{
 Image testImage;
 public void init(){
 testImage = getImage(“http://www.magnastar.com/banner.gif”);
 }

 public void paint(Graphics g){
 g.drawImage(testImage,0,0,this);
 }
}

Untitled-3 9/22/98, 3:54 PM264

265

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

15

II
Part

Ch

PaintBanner is an effective applet if what you want to do is paint one image: banner.gif. How-
ever, it’s unlikely that you will have too many requirements for banner.gif. Because of the
URL restrictions imposed on applets, you would not even be able to load the banner.gif image
from www.magnastar.com unless the applet actually resides on the www.magnastar.com com-
puter.

You can get away from this requirement by using the getParameter() method you learned
about in the preceding section, embedding a parameter that would be used for the URL. For
limited cases, this might actually work. However, what if you want to load the banner.gif
graphic, and you want to always load it off the current computer? In other words, what if you
create an applet that relies on a number of graphics, but when somebody from www.jars.com
loads the applet, they need to get the image from www.jars.com, not from www.magnastar.com.

java.applet.Applet has two methods that can help you in this pursuit. It has the capability to
tell you the relative URL of either the location where the class files for the applet were re-
trieved, or where the HTML file the applet was contained in are from. These two methods are
getDocumentBase() and getCodeBase().

public URL getDocumentBase()
public URL getCodeBase()

The getDocumentBase() method will return the relative URL where the applet is contained.
getCodeBase() returns the relative URL where the applet’s class files are located.The key here
is the term relative. The two methods return only the relative location for the file. For instance,
the relative URL for the banner.gif file talked about before would be http://
www.magnastar.com/. Had it been located in a subdirectory called Images, the URL would be
http://www.magnastar.com/Images/. To get to the whole URL, you need to create an URL
from both this URL and the name of the actual file you’re looking for. How do you do this? The
answer is twofold; first you could use the two-parameter constructor for an URL, which would
look like new URL(getDocumentBase(),“banner.gif”). It just so happens that getImage()
itself has been overloaded to provide this same functionality as well. Listing 15.4 shows Listing
15.3 again using the getDocumentBase() method.

Listing 15.4 Loading an Image from the Current Directory

import java.applet.Applet;
import java.awt.*;
import java.net.URL;

/*
 *
 * PaintBanner
 *
 */
public class PaintBanner extends Applet{
 Image testImage;
 public void init(){
 testImage = getImage(getDocumentBase(),”banner.gif”);
 }

continues

Adding Images to an Applet

Untitled-3 9/22/98, 3:54 PM265

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

266 Chapter 15 Advanced Applet Code

Listing 15.4 Continued

 public void paint(Graphics g){
 g.drawImage(testImage,0,0,this);
 }
}

Figure 15.2 shows the result of adding the getDocumentBase() method.

FIG. 15.2
The
getDocumentBase()
method will return the
relative URL where the
applet is contained.

Now when you run PaintBanner, the browser will look for the graphic banner.gif in the same
directory where it found the HTML file. When you move PaintBanner to another system or
directory, there is no need to change either the HTML or the source code.

One interesting characteristic of getImage() is that it returns immediately. In other words,
your program starts to process the next file right away. getImage() does not wait until

after the image has been dragged across the Net; in fact, the image isn’t actually even retrieved until it
is first used. Be aware of this fact because you’ll likely see images paint slowly at times. You learn more
about this in Chapter 22, “Graphics.” ■

Adding Sound to an Applet
Another useful feature of applets is their capability to load and use sounds. One new feature of
Java 1.2 is the capability to load many sound files. In the past, Java only had support for one
format—the AU format. Now you can use many file formats, including WAVE, AU, AIFF, MIDI,
and a great format—RMF.

Audio is abstracted in Java in a class called java.applet.AudioClip. Applet provides several
methods to load the audio files, the getAudioClip() method is available in a variety of formats,
and a new method—newAudioClip()—allows you to load an audio file without needing to have
the browser’s support.

N O T E

Untitled-3 9/22/98, 3:54 PM266

267

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

15

II
Part

Ch

public AudioClip getAudioClip(URL url)
public AudioClip getAudioClip(URL url, String name)

public static final AudioClip newAudioClip(URL r)

newAudioClip() and getAudioClip() work similarly to getImage(). In fact, just as with
getImage(), getAudioClip() has two possibilities, one with just the URL, and one with a rela-
tive URL and a name. To actually use the AudioClip, you will need to use one of AudioClip’s
methods: play(), loop(), or stop(). Each of these methods works exactly as you would think
it would. play() plays the clip once, whereas loop() plays it over and over. Please use courtesy
when using loop(). There is nothing worse than hearing the same clip over and over, so don’t
arbitrarily loop an AudioClip endlessly. Put these together in a small applet, as shown in List-
ing 15.5.

Listing 15.5 Play AudioClip—When You Click This Applet It Plays a Sound

import java.applet.Applet;
import java.applet.AudioClip;
import java.awt.Event;

/*
 *
 * PlayAudio
 *
 */
public class PlayAudio extends java.applet.Applet{
 AudioClip audio;

 public void init(){
 audio = getAudioClip(getDocumentBase(),”welcome.au”);
 }

 public booleanmouseDown(Event evt, int x, int y){
 audio.play();
 returns true;
 }
}

One major difference between getAudioClip() and getImage() is that getAudioClip() will go
out to the Net and return the actual audio clip. getImage() does not do this, instead
getImage() returns immediately and only loads the image when you need it. However, when
you get an audio clip, the rest of your program will have to wait until that audio file has been
downloaded.

One more audio-related method in Applet is called play(). play() is overloaded the same way
that getAudioClip() and getImage() are. The difference between play() and getAudioClip()
is that play() grabs the audio clip and plays it right away. However, it doesn’t save the audio
clip so, if you need it again, it will have to be re-downloaded from the Net.

Adding Sound to an Applet

Untitled-3 9/22/98, 3:54 PM267

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

268 Chapter 15 Advanced Applet Code

Using the Applet to Control the Browser
Another thing you can use an applet to do is provide control over the browser. This is impor-
tant because it allows the applets that you write to extend the capabilities of a standard
browser, actually changing the experience of a user to fit your new needs.

One difference between the methods used to control the browser, as opposed to the rest of the
methods discussed in this chapter, is that java.applet.Applet doesn’t have the capability to
change the Web page itself. Instead, a class called AppletContext, which is basically a link to
the browser itself, actually controls the browser environment in which the applet lives.

To retrieve the AppletContext for the browser, you need to use the following method:

public AppletContext getAppletContext()

After you have the AppletContext for the applet, you can begin to manipulate the browser.

Changing the Status Message
An applet can cause the browser to change Web pages or display a different message. The first
method for doing this is showStatus(). showStatus() causes the message to be displayed in
the status window, normally at the bottom of the page, as seen in Figure 15.3.

FIG. 15.3
When you click the
applet, the status line
changes.

public void showStatus(String msg)

Using showStatus(), you can change the value of this output to be any string you want. Listing
15.6 shows a sample program that changes the status to indicate the number of times you’ve
clicked the applet.

Untitled-3 9/22/98, 3:54 PM268

269

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

15

II
Part

Ch

Listing 15.6 The Status Window of This Browser Is Changed by the Applet

import java.applet.Applet;
import java.awt.Event;

/*
 *
 * ShowClickCount
 *
 */
public class ShowClickCount extends Applet
{

 int count=0;

 public boolean mouseDown(Event evt, int x, int y){
 getAppletContext().showStatus(“You’ve clicked “+(count++)+” times”);
 return true;
 }

}

When you run the ShowClickCount applet, you will notice the status message changes each
time you click the applet. Changing the status message at the bottom of the page can be a
useful way to give feedback to your users. Notice how the browser uses the status area to tell
you about where a link goes, or the status of a download.

Changing the Page the Browser Displays
Another thing you can do with the browser is change the Web page it is displaying. This can be
useful because it means you can now add navigation capabilities to your applet.
AppletContext’s method for doing this comes in two varieties:

showDocument(URL)
showDocument(URL, String)

If you’re jumping ahead, you’re thinking to yourself, “Ahh huh, showDocument() has the same
relative URL and final document options that getImage() and getAudioClip() did.” If that’s
what you’re thinking—well, there’s no easy way to break this to you—you’re wrong. The two
versions of showDocument() do not work the same way as getImage() and getAudioClip(), so
read on.

First, showDocument(URL) does change the browser window to the URL you’ve pointed it to,
just as you might have guessed. So, if you want to create a simple applet that just changes to
the Web page, you could put something together like Listing 15.7.

Using the Applet to Control the Browser

Untitled-3 9/22/98, 3:54 PM269

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

270 Chapter 15 Advanced Applet Code

Listing 15.7 Show Document Displaying a Different Web Page in the
Browser

import java.applet.Applet;
import java.awt.Event;
import java.net.*;

/*
 *
 * ShowDocument
 *
 */
public class ShowDocument extends Applet {
 public boolean mouseDown(Event evt, int x, int y){
 try{
 getAppletContext().showDocument(new URL(“http://www.magnastar.com”));
 } catch (MalformedURLException urlException){
 System.out.println(“Sorry but there was an error creating the
➥URL:”+urlException);
 }
 return true;
 }

}

When you run the ShowDocument applet and then click it, your browser changes to the
www.magnastar.com Web page. Notice the try-catch sequence in the preceding example. Do
you realize why you need it? It’s required because the constructor for URL throws an exception
if the URL isn’t valid. For instance, if you point to http://www.magnastar.com, this would not
be a valid URL because URL doesn’t know what to do with http.

So what, then, is the difference between the two showDocument() methods? Well, the first
method takes the URL you want to show, as just covered. The second takes the URL you want
to point to and the name of the target frame to display the document in. You can use the actual
name of the frame you want to display in (if you are using frames on the Web page) or the
values “_self”, “_parent”, and “_blank” to refer to either the current frame (default), the
parent frame, or a new window, respectively.

Putting It All Together
Now, try to construct a more complete example using each of the methods you learned about
in this chapter. For this complete example, first display a graphic. Then, each time the mouse
enters the applet, play a sound. When the mouse button is pressed, display a message, and
when the button is released, change pages. Listing 15.8 shows you how to create this applica-
tion; see if you can work through the source code on your own.

Untitled-3 9/22/98, 3:54 PM270

271

P2/VB mp12 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH15 LP#4

15

II
Part

Ch

Listing 15.8 ActiveBanner Displays an Image and Plays a Sound When the
Mouse Enters the Area and Switches Web Pages When It’s Clicked

import java.applet.*;
import java.awt.*;
import java.net.*;

/*
 *
 * ActiveBanner
 *
 */
public class ActiveBanner extends Applet{
 Image banner;
 AudioClip welcome;

 public void init(){
 banner = getImage(getDocumentBase(),”banner.gif”);
 welcome = getAudioClip(getDocumentBase(),”welcome.au”);
 }

 public void paint(Graphics g){
 g.drawImage(banner,0,0,this);
 }

 public void update (Graphics g){
 paint(g);
 }

 public boolean mouseEnter(Event e, int x, int y){
 welcome.play();
 return true;
 }

 public boolean mouseDown(Event e, int x, int y){
 getAppletContext().showStatus(“Release the mouse button to go to
ÂMagnaStar”);
 return true;
 }

 public boolean mouseUp(Event e, int x, int y){
 try{
 getAppletContext().showDocument(new URL(“http://
Âwww.magnastar.com”));
 } catch (MalformedURLException urlException){
 System.out.println(“Sorry but there was an error creating the
ÂURL:”+urlException);
 }
 return true;
 }

}

Putting It All Together

Untitled-3 9/22/98, 3:54 PM271

Untitled-3 9/22/98, 3:54 PM272

273

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

C H A P T E R

JAR Archive Files

Why JAR? 274

When to Use JAR Archives 275

JAR Archives and Security 279

The java.util.zip Package 285

JAR File Format 288

16

In this chapter

Untitled-4 9/22/98, 3:56 PM273

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

274 Chapter 16 JAR Archive Files

Why JAR?
The JAR file format brings several important advantages to applets. These include performance
improvements and enhanced portability. JAR files also implement the Security Model that was
introduced with JDK 1.1, described in detail in Chapter 34, “Java Security in Depth.”

JAR archives are not the first Java archive format to be supported. Since version 1.0, the JDK
has used the uncompressed ZIP file classes.zip to store the JDK system class files as a single
disk file. Netscape Navigator 3.0, following this procedure, allowed the <APPLET> tag to load an
applet from a similar ZIP file. Starting with version 3.0, Microsoft Internet Explorer started
allowing you to load Java applets from Microsoft’s CAB files, like ActiveX controls.

JAR files have been replacing these other mechanisms over time. They offer the following
benefits which make them the preferred choice.

Bundling
A complex applet may consist of dozens or hundreds of Java classes, each stored in a separate
class file (recall that each public class must be stored in a separate file). To run the applet, the
Web browser makes an HTTP connection to load each file, as needed, from the server. Estab-
lishing an HTTP connection entails overhead, and if the class files are small, as they typically
are, much of the time spent loading an applet can be spent establishing the multiple HTTP
connections required to load all the class files.

The first and most obvious benefit of a JAR file is that it combines several class files into one
archive file, which can then be transmitted from the server to the Web browser over a single
HTTP connection. Furthermore, JAR files can contain not only class files but also audio and
image files, allowing an entire applet to be downloaded in one transaction. This is useful not
only for improved performance, but also because it simplifies applet distribution.

Compression
JAR files, like CAB files (but unlike classes.zip), are compressed using a variant of the stan-
dard Lempel-Ziv algorithm. For example, the JDK TicTacToe demo is 20 percent smaller when
archived as a JAR file; the ImageMap demo is 5 percent smaller (it contains more image files,
which are already compressed). By not only aggregating multiple files but also compressing
them, JAR files can greatly reduce the time needed to download an applet.

Backward Compatibility
Because JAR archives preserve the directory hierarchy of their files, and because they can be
loaded through a simple change to the <APPLET> tag, JAR archives can be used transparently
with existing Java applets, with no change to the applet code.

Portability
Portability, in this case, refers to two things: portability between browsers, and portability
between Web servers.

Untitled-4 9/22/98, 3:56 PM274

275

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

Browser incompatibility between Netscape Navigator, Microsoft Internet Explorer, and other
browsers is a familiar bugaboo to anyone who has developed Web pages or Java applets. Prior
to Java 1.1, a Web developer had no portable archiving mechanism.

JAR files solve this problem by providing a single, browser-independent archive file format.
Because JAR support and tools are implemented entirely in Java, any browser supporting the
standard Java 1.1+ library will be able to support JAR files.

The other side of the portability question becomes clear when you try to move an applet from
one Web server to another. For example, imagine that you have developed an applet running
on a Windows 95–based Web server. Your files have descriptive names such as
NavigationBarAnimationPanel.class—a legal filename under Windows 95. Now you need to
move your Web site to a Macintosh-based Web server. Unfortunately, you discover that
Macintosh filenames are limited to 31 characters, and you are forced to rename not only your
Java source files, but also your classes within them (because filenames must match the names
of classes they contain).

(To see this firsthand, try downloading and installing the JDK 1.1 beta 2 documentation files on
a Macintosh. Many of the filenames will be truncated, and your browser won’t be able to navi-
gate links to those files.)

By storing an applet’s various class files and other resource files in a single JAR file, you make
the applet immune to any idiosyncrasies of the Web server’s underlying file system.

Security
As of JDK 1.1, the Java Security Model has been extended. It is now possible, by using authen-
ticated JAR archives, for the user to verify the origin of an applet, mark it as trusted, and give it
additional privileges. This makes it possible for new types of applets to be written, such as word
processors that store files on the local user’s hard disk.

When to Use JAR Archives
You should consider using a JAR archive for your applet if any of the following apply:

■ You wish to decrease your applet’s loading time, especially if your applet consists of
many files.

■ You wish to simplify the distribution of your applet or make it portable to more Web
servers.

■ Your applet needs to be authenticated as trusted code.

JAR files are useful chiefly for applets. If you are developing a Java application, JAR files won’t be as
useful to you, although you may still use them as a general-purpose archiving format.

T I P

When to Use JAR Archives

Untitled-4 9/22/98, 3:56 PM275

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

276 Chapter 16 JAR Archive Files

The jar Tool
The jar tool allows you to create, list, and extract files from JAR archives. It deliberately re-
sembles the UNIX tar tool, both in function and in usage. Like other tools in the JDK, the jar
tool is implemented as a Java application, making it portable to any platform supporting Java.

Creating a New Archive To create a new archive, use the options cvf. The c option tells jar
to create a new archive. The v option tells jar to output verbose diagnostic messages to the
console while it is working so you can see what is being added. The f option tells jar to create
an archive file of the given name. For example, the following

jar cvf Foo.jar *.class images

will create a new JAR archive named Foo.jar in the current directory. The archive will contain
all the class files in the current directory, as well as the complete images directory and all its
contents.

As an example, connect to the directory containing the JDK demo TicTacToe.

A listing of the directory contents reveals a class file and two subdirectories containing audio
and image files:

D:\java\demo\TicTacToe>dir
 Volume in drive D is NTFS20
 Volume Serial Number is 6C98-56B4

 Directory of D:\JDK1.2\demo\TicTacToe

01/13/97 10:04a <DIR> .
01/13/97 10:04a <DIR> ..
12/16/96 11:29a <DIR> audio
11/19/96 12:34p 139 example1.html
12/16/96 11:29a <DIR> images
11/19/96 12:34p 3,454 TicTacToe.class
12/06/96 10:27a 7,593 TicTacToe.java
 7 File(s) 11,186 bytes
 1,575,772,160 bytes free

Create a new subdirectory that will contain the JAR file version of this applet:

D:\JDK1.2\demo\TicTacToe>mkdir jar

Now create the JAR archive:

D:\JDK1.2\demo\TicTacToe>jar cvf jar\TicTacToe.jar *.class audio images
adding: TicTacToe.class
adding: audio/beep.au
adding: audio/ding.au
adding: audio/return.au
adding: audio/yahoo1.au
adding: audio/yahoo2.au
adding: images/cross.gif
adding: images/not.gif

Notice that when directories are listed as input files to the jar tool, their contents are added to
the archive and the directory names are preserved.

Untitled-4 9/22/98, 3:56 PM276

277

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

When the jar tool creates a new archive, it automatically adds a manifest file to the archive. In
most cases, this will suffice. However, should you wish to create your own manifest file, and
have the jar tool use that, you can do so by specifying the m option.

Listing Archive Contents The jar tool can also list the contents of a JAR archive. For
example

jar tvf Foo.jar

will list the contents of Foo.jar.

To continue with the TicTacToe demo applet, connect to the jar subdirectory you created
previously. Use the t option to obtain a listing.

D:\JDK1.2\demo\TicTacToe\jar>jar tf TicTacToe.jar
META-INF/MANIFEST.MF
TicTacToe.class
audio/beep.au
audio/ding.au
audio/return.au
audio/yahoo1.au
audio/yahoo2.au
images/cross.gif
images/not.gif

Notice that a manifest file has been added to the archive automatically. See the section “Mani-
fest File,” later in this chapter, for more information about manifest files. You can obtain more
information by using the v option.

D:\JDK1.2\demo\TicTacToe\jar>jar tvf TicTacToe.jar
 1045 Mon Jan 13 11:52:18 PST 1997 META-INF/MANIFEST.MF
 3454 Tue Nov 19 12:34:26 PST 1996 TicTacToe.class
 4032 Tue Nov 19 12:34:26 PST 1996 audio/beep.au
 2566 Tue Nov 19 12:34:26 PST 1996 audio/ding.au
 6558 Tue Nov 19 12:34:26 PST 1996 audio/return.au
 7834 Tue Nov 19 12:34:26 PST 1996 audio/yahoo1.au
 7463 Tue Nov 19 12:34:26 PST 1996 audio/yahoo2.au
 157 Tue Nov 19 12:34:24 PST 1996 images/cross.gif
 158 Tue Nov 19 12:34:24 PST 1996 images/not.gif

Extracting Files from an Archive Finally, the jar tool can extract files from an archive file.
For example, to extract the TicTacToe.class file, type the following:

D:\JDK1.2\demo\TicTacToe\jar>jar xvf TicTacToe.jar TicTacToe.class
extracted: TicTacToe.class, 3454 bytes

If you are following along on your computer, remove the file you just extracted so that upcom-
ing examples will work:

D:\JDK1.2\demo\TicTacToe\jar>del TicTacToe.class

You cannot use the x option to extract a single file within a subdirectory of the JAR archive. Instead,
specify the entire subdirectory and, after it has been extracted, discard those files that you do not
need.

T I P

When to Use JAR Archives

Untitled-4 9/22/98, 3:56 PM277

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

278 Chapter 16 JAR Archive Files

The APPLET Tag
The APPLET tag embeds a Java applet into an HTML file. It has a number of attributes that
specify the name of the applet to be loaded, the URL to use to locate the applet, and the size of
the applet on the page. In addition to these attributes, any number of parameters can be speci-
fied. For example, in the following

<APPLET CODE=”FooMain.class” WIDTH=100 HEIGHT=120>
<PARAM NAME=”color” VALUE=”red”>
<PARAM NAME=”background” VALUE=”blue”>
</APPLET>

the CODEBASE attribute indicates the URL base from which to load the class file. If no CODEBASE
is specified, the URL of the referring page is used. For example, the browser will try to load the
following applet from http://www.foo.com/applets/FooMain.class:

<APPLET CODE=”FooMain.class” CODEBASE=”http://www.foo.com/applets/” WIDTH=100
➥HEIGHT=120>
...
</APPLET>

Beginning with JDK 1.1, Sun specified changes to the <APPLET> tag which enable the class to
be loaded from a JAR archive that is downloaded before the Java applet class is located.

Loading from a JAR archive can be specified in two ways: using an attribute or using a param-
eter. First, an attribute named ARCHIVES can be used, as follows:

<APPLET ARCHIVES=”Foo.jar” CODE=”FooMain.class”>
...
</APPLET>

When the browser reads this tag, it first downloads the Foo.jar file from the server, then tries
to find the FooMain.class in Foo.jar. If the browser cannot find the class in the archive, it
looks at the location specified by the CODEBASE, as usual.

Alternatively, the JAR archive can be specified as a parameter. This parameter should have the
name ARCHIVES. The parameter’s value is the name of the JAR file, as follows:

<APPLET CODE=”FooMain.class”>
<PARAM NAME=ARCHIVES VALUE=”Foo.jar”>
...
</APPLET>

It’s possible to specify more than one JAR archive to be loaded. To do so, insert the string +
(a plus sign surrounded by spaces) between the archive filenames, as follows:

<APPLET ARCHIVES=”foo.jar + foo_images.jar + foo_sounds.jar”
CODE=”FooMain.class”>
...
</APPLET>

Specifying a JAR archive in an APPLET tag is a performance optimization, instructing the
browser to preload a specified archive and use that archive, if possible, when locating classes.
If the JAR file is not found, or if a required class file is not found in the archive, the usual search

Untitled-4 9/22/98, 3:56 PM278

279

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

procedure, as defined by JDK 1.0, will be followed. Specifying a JAR file to preload does not
prevent the usual search paths from being tried and used if necessary.

As a final example, look at the <APPLET> tag used by the TicTacToe demo in JDK 1.1. The file
example1.html, in Listing 16.1, contains this <APPLET> tag.

LISTING 16.1 example1.html—Without JAR Archive Loading

<title>TicTacToe</title>
<hr>
<applet code=TicTacToe.class width=120 height=120>
</applet>
<hr>
The source.

Copy this to the subdirectory jar that you created previously.

D:\JDK1.2\demo\TicTacToe>copy example1.html jar
 1 file(s) copied.

Now edit it to add the APPLETS attribute. It should look like Listing 16.2 when you’re done.

LISTING 16.2 example1.html—With JAR Archive Loading

<title>TicTacToe</title>
<hr>
<applet code=TicTacToe.class archives=TicTacToe.jar width=120 height=120>
</applet>
<hr>
The source.

Now you should be able to run the TicTacToe applet from the JAR archive created earlier:

D:\java\demo\TicTacToe\jar>appletviewer example1.html
loading d:\jdk1lb2\java\bin\..\lib\awt.properties

Compatible Browsers
To use a JAR file, you must be using a JDK 1.1 browser, which means you can use Navigator
3.0 or Internet Explorer 3.0 if you’ve added the Java Activator. If you’re using a 4.0+ browser
though, worry not—you’re already set.

JAR Archives and Security
The Web allows content to be downloaded, and the Java architecture extends the Web to allow
executable content to be downloaded. Although this opens up tremendous new possibilities, it
also opens up new risks. A static text or image file can do little to harm its receiver (Snow
Crash notwithstanding), but a piece of code can, potentially, do a lot of damage—witness com-
puter viruses.

JAR Archives and Security

Untitled-4 9/22/98, 3:56 PM279

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

280 Chapter 16 JAR Archive Files

In order to protect recipients of downloaded code, Java implements a security model known as
the sandbox. This is a domain within which an untrusted piece of Java code may do whatever it
wishes. By restricting the applet’s activities to a well-defined area, a browser can run an
untrusted applet while still protecting everything outside the sandbox—typically, the local
machine’s memory, files, and disks, and the network.

Running within the sandbox is not a hindrance to an applet that displays a clock, a stock ticker,
or an animated navigation bar. But what about an applet that implements a word processor or a
spreadsheet? For such an applet to be useful, it needs to interact with the user’s local machine
in order to read and write files (unless the applet wants to tackle the formidable task of main-
taining user data files on a remote server). To do this, it needs to leave the sandbox. Under
JDK 1.0, it was difficult for applets to do this. However, using authenticated JAR archives,
applets have a standard way to easily gain trusted status.

The Manifest File
The first entry in any JAR file is a collection of meta-information about the archive. The jar tool
generates this meta-information automatically and stores it in a top-level directory named
META-INF. This directory always contains what is known as the manifest file, META-INF/
MANIFEST.INF (see Listing 16.3).

Normally, if no authentication is applied, the manifest file contains checksums for the other
files in the archive. For example, you can extract the manifest file for the TicTacToe.jar
archive, created previously, as follows:

D:\JDK1.2\demo\TicTacToe\jar>jar xvf TicTacToe.jar META-INF
extracted: META-INF/MANIFEST.MF, 1045 bytes

LISTING 16.3 Manifest File MANIFEST.MF of TicTacToe.jar

Manifest-Version: 1.0

Name: TicTacToe.class
Hash-Algorithms: MD5 SHA
MD5-Hash: TsjcL1vWU7k4/HDkwOnvHg==
SHA-Hash: IGRKfYKD8Cpef7+or5ZKqYp3bh0=

Name: audio\beep.au
Hash-Algorithms: MD5 SHA
MD5-Hash: kZv279ZIA/H6mOw4t8W8XA==
SHA-Hash: JgfdUl4/uzNq5yUy3e07ZXwvNOc=

Name: audio\ding.au
Hash-Algorithms: MD5 SHA
MD5-Hash: 23oJDEp/LqCZC70AEIOsVQ==
SHA-Hash: dpRUB8DKzEP0Grc7DIrXclPMjJ8=

Name: audio\return.au
Hash-Algorithms: MD5 SHA
MD5-Hash: tBUwkF2qeyor/nmPeF81hg==
SHA-Hash: ABV7Ar1gRYQmpp7kSbkH3GN+YOA=

Untitled-4 9/22/98, 3:56 PM280

281

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

Name: audio\yahoo1.au
Hash-Algorithms: MD5 SHA
MD5-Hash: Bq9PhKz6zAWrgQvtGWS8zQ==
SHA-Hash: qUO3jWxRvJWIp25S9XRQk5lbLaY=

Name: audio\yahoo2.au
Hash-Algorithms: MD5 SHA
MD5-Hash: 6lhsclKkFy5iBu+km+DAVQ==
SHA-Hash: Gfc7hOmtTmM31JJlHJZgkMm2elo=

Name: images\cross.gif
Hash-Algorithms: MD5 SHA
MD5-Hash: gTJaDGQtdz1Y4W+hHWxjgA==
SHA-Hash: plA3I8zoS3u8XXj9+vutZupQo0U=

Name: images\not.gif
Hash-Algorithms: MD5 SHA
MD5-Hash: SJspO4DooHqq9ndFnn6S6w==
SHA-Hash: MmqEk9R8pMigNK3xDi2yK1cyyZ8=

The manifest file lists all the files in the archive, together with values labeled MD5-Hash and
SHA-Hash. Listing 16.3 shows a typical manifest file. MD5 and SHA are message digests, also known
as one-way hash functions. A hash function takes an arbitrary piece of input data and produces a
piece of output data of a fixed size. MD5 hashes are 128 bits; SHA hashes are 160 bits. The term
one-way refers to the fact that it is difficult to produce the same hash from two different inputs.

The message digests in this manifest can be used to confirm that the archive has not under-
gone accidental corruption: As a browser reads each file from the archive, it can compute its
MD5 and SHA hash values and check them against those in the file. Deliberate corruption, on the
other hand, cannot be ruled out, because anyone who intentionally corrupts an archive file can
also modify the manifest file’s corresponding hash.

It is possible, however, to detect deliberate corruption of the files in a JAR archive. To do so,
the JAR archive must be “signed.” This is analogous to signing a paper document with a pen. It
indicates, with certainty, that the given JAR archive came from the indicated source. In fact, a
digital signature is stronger than a physical one; it is harder to forge, it cannot be repudiated by
the signer, and the signed document cannot be modified.

Private Keys, Public Keys, and Certificates
In order to sign a JAR archive, you must first create a private key, a public key, and a certificate.
The public and private keys are paired pieces of data used to create digital signatures and to
encrypt data. A certificate is a guarantee by one entity, usually a trusted public organization,
that another entity’s public key is valid. (In this case, more specifically, a certificate conforms to
the X.509 standard published by CCITT.) The combination of a public key and a certificate can
be used to confidently verify a digital signature.

JAR Archives and Security

Untitled-4 9/22/98, 3:56 PM281

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

282 Chapter 16 JAR Archive Files

keytool
The keytool tool handles the creation and management of identities, public and private keys,
and certificates. The details of key and certificate creation and management are beyond the
scope of this chapter, but they are covered in Chapter 34.

Very quickly, the keytool program can create files called keystore databases. These databases
are actually files that reside generally in the root of your JDK installation and contain the cer-
tificates that you have created or used.

keytool itself has a variety of parameters, used to specify the manipulation of a key. However,
for now look at just one scenario, generating a key. To do this, you need to know several things.
First, you need an alias by which this key will be known. For now, let’s use javajoe. Next, you
need a distinguishing name by which you will be known. This name is part of the X.509 stan-
dard for specifying your name and follows this format:

CN=commonName OU=organizationUnit O=organizationName L=locality
➥Name S=stateName C=country

Each of these fields helps spell out who you are; for example, my -dname might be

“CN=Joe Weber, OU=QUE, O=Macmillan Publishing, L=Milwaukee, S=Wisconsin, C=US”

Now you can use both of these values to generate a new key:

keytool -genkey -dname “CN=Joe Weber, OU=QUE, O=Macmillan Publishing,
➥L=Milwaukee, S=Wisconsin, C=US” -alias javajoe

As you probably already guessed, the –genkey command tells keytool that you are generating
a new key, -dname specifies distinguishing name, and –alias specifies the alias you will be
using. Note that the alias is case-sensitive, so javajoe is not the same alias as JavaJoe.

When you run keytool like this, you are prompted to enter a password for the keystore and a
password for your new key. These passwords will be required each time you use the key later
down the road. You could also have specified the key password on the command line using the
–storepass –keypass parameter. If you want to, you can set the -storepass to
mystorepassword and the -keypass to privatekeypassword using the following command:

keytool -genkey -dname “CN=Joe Weber, OU=QUE, O=Macmillan Publishing,
➥ L=Milwaukee, S=Wisconsin, C=US” -alias javajoe –storepass
➥ mystorepassword –keypass privatekeypassword

In general, the parameters for use when generating a key are

keytool -genkey {-alias alias} {-keyalg keyalg} {-keysize keysize}
➥ {-sigalg sigalg} [-dname dname] [-keypass keypass] {-validity valDays}
➥ {-keystore keystore} [-storepass storepass] {-v}

jarsigner
Now that you have generated a key, you can digitally sign your JAR file. Signing a file is useful
so that you and users of the file can be sure that you are the person who sent the file and that it
hasn’t been tampered with.

Untitled-4 9/22/98, 3:56 PM282

283

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

Before you can sign the JAR file, you need to know a couple of details. First, you need to know
the alias for the key you wish to use. Next, you need to know the -keystore password and the
private key password for the key you will be using. Finally, you optionally need to know the
location of the keystore file. If you’ve left it in the default location, you don’t need this, but if
you’ve moved it elsewhere, you need to specify that information.

Using the key that you created under the keytool section, you can now sign the
TicTacToe.jar file using the following command line:

jarsigner –storepass mystorepassword –keypass privatekeypassword
➥ TicTacToe.jar javajoe

When you sign the JAR file, it adds two files to the manifest for the file. The first file is an .SF
file. The .SF file contains information very similar to the manifest file that is always included
with a JAR file. However, the .SF file’s digest includes not the hash of the binary data in the file
(as the manifest’s does) but rather a hash of the data in the manifest. This locks in the manifest
information.

The second file is a .DSA file. The .DSA file contains a signature of the .SF file and also contains,
encoded inside it, a copy of the .SF file and a certificate authenticating the public key corre-
sponding to the private key used for signing.

Wow, that’s a mouthful. Fortunately, you should never have to know any of those details. How-
ever, you should know that both files by default are named via the first eight characters in the
alias (converted to uppercase); so in this case, you would have JAVAJOE.DSA and JAVAJOE.SF.
As this implies, you can sign a JAR file more than once and chain these signatures together,
resulting in an .SF and .DSA file for each person who signed the file.

jarsigner has a number of additional options that you can use, depending on your particular
situation, as outlined in Table 16.1.

TABLE 16.1 jarsigner Options

Option Description

-keystore file Specify the keystore (database file) location. By default, this
file refers to .keystore in the user’s home directory. This
directory is specified by the user.home system property. For
Windows systems, user.home is the path specified by
concatenating the HOMEDRIVE and HOMEPATH environment
variables, if they produce a valid path; otherwise, it is the
root of the JDK installation directory.

-storepass password Specify the keystore password. You need this password only
when signing a JAR file, not when verifying it. If you fail to
specify this command option, you are prompted to enter it.
Normally, you should not specify this password on the
command line for security reasons.

continues

JAR Archives and Security

Untitled-4 9/22/98, 3:56 PM283

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

284 Chapter 16 JAR Archive Files

TABLE 16.1 Continued

Option Description

-keypass password Specify the password for the individual key entry. You need
this password only when signing a JAR file, not when
verifying it. If you fail to specify this command option you
will be prompted to enter it. Normally, you should not specify
this password on the command line for security reasons.

Note: The keypass password can be the same as the
keystore password. If it is, the keypass is not required.

-sigfile file Specifies the base filename for the .SF and .DSA files. If none
is specified, the first eight characters of the alias (converted
to uppercase) are used.

-signedjar file Specifies the name to be used for the signed JAR file
(output). If this is not specified, the new JAR file contains the
same name as its source (and overwrites it).

-verify Specifies that you want to verify the signatures in the file.
This is basically the opposite of signing the file.

Assuming the verification was successful, jar verified will
be displayed.

If an unsigned JAR file is verified, or one is signed with an
unsupported algorithm (for example, RSA when you don’t
have an RSA provider installed), the following is displayed:
jar is unsigned. (signatures missing or not
parsable).

-ids This option can be used only if the –verify and –verbose
options are also used. If it is, the distinguished names of the
JAR file signer(s) and the alias name for the keystore entry
are also displayed.

-verbose idOrSigner Puts jarsigner into verbose mode. In this mode, the signer
outputs additional information as the signing or verification
progresses.

Under JDK 1.1, the functionality of keytool and jarsigner was embedded in a tool
called javakey. If you haven’t upgraded to 1.2, you use javakey instead. However, note

that there is no backward compatibility to javakey with keytool, so you can’t interchange them.

With javakey, when you have a public key, a private key, and a certificate, you need one more thing to
sign an archive. This is the directive file, which specifies the signer, certificate, and the name to be
used for the signature file. The directive file consists of fields of name-value pairs. The required fields
are given in Table 16.2. For a sample directive file, see Listing 16.4.

N O T E

Untitled-4 9/22/98, 3:56 PM284

285

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

TABLE 16.2 Required JAR Directive File Fields

Field Name Field Value

signer Name of the signer. This name must already be registered in the
persistent database maintained by javakey.

cert Certificate number to use for the given signer. The first certificate is
number 1.

chain Chain depth for a chain of certificates. This is currently not supported;
use 0.

signature.file A name, 8 characters or shorter, to assign the signature and certificate
files that will be created in the META-INF directory of the signed JAR
archive.

LISTING 16.4 Example JAR Directive File LiuJDF.txt

signer=liu
cert=1
chain=0
signature.file=LIUSIGN

To sign a JAR file, use the javakey tool with option -gs and two arguments: the name of the directive
file and the name of the JAR archive file. For example, the following command signs the archive
Foo.jar using the directive file LiuJDF.txt:

javakey -gs LiuJDF.txt Foo.jar

In response to this command, javakey creates two entries in the META-INF directory of the archive:
the signature file LIUSIGN.SF and the certificate file LIUSIGN.DSA. ■

Although a purported feature of JAR archives is the capability of signing individual files, the
current release of the jarsigner tool does not seem to support this. ■

The java.util.zip Package
The java.util.zip package contains a number of classes that manipulate JAR archive files.
Although you will typically not need to use these classes, it is helpful to understand them at a
general level. You do not need to use these classes to create or load JAR files; you can use the
jar tool and the APPLET tag for that.

The java.util.zip package defines the Checksum interface. The Checksum interface defines a
protocol for a class that computes the checksum of a stream. java.util.zip provides two
classes that implement the Checksum interface: Adler32 and CRC32.

N O T E

The java.util.zip Package

Untitled-4 9/22/98, 3:56 PM285

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

286 Chapter 16 JAR Archive Files

Classes
The package java.util.zip defines the following 14 classes.

ZipFile The ZipFile class represents a ZIP archive file. It provides methods that read the
file’s entries. This class does not allow you to create a new archive file or to edit an existing
file’s contents. You must use the jar tool for that.

ZipEntry ZipEntry represents an entry in an archive file and has methods that get and set
various attributes of the entry, such as its name, modification time, and CRC checksum. In
addition, by calling the method ZipFile.getInputStream() with a ZipEntry object, you can
obtain an InputStream object that you can use to read the entry’s contents.

Adler32 and CRC32 The Adler32 and CRC32 classes implement the Checksum interface.
They compute two different checksums of a data stream. CRC-32 is a standard industry algo-
rithm; Adler-32 is a checksum developed by one of the ZLIB authors, Mark Adler, with similar
characteristics but lower computational costs. To use these classes, you instantiate them and
pass them to the constructor of CheckedInputStream or CheckedOutputStream. In fact, this is
just what DeflaterOutputStream and InflaterInputStream do, using the Adler32 class.

CheckedInputStream and CheckedOutputStream CheckedInputStream and
CheckedOutputStream extend java.io. FilterInputStream and java.io.
FilterOutputStream. They maintain a checksum of the data being read or written. The con-
structor for each of these classes takes a stream object, and an object implementing the
Checksum interface, which allows the caller to specify different checksum algorithms for differ-
ent streams.

Deflater and Inflater Deflater and Inflater implement general-purpose compression and
decompression using the standard deflate compression algorithm. For more information, see
RFC 1951, available at http://www.internic.net/rfc/rfc1951.txt.

DeflaterOutputStream and InflaterInputStream DeflaterOutputStream and
InflaterInputStream extend java.io. FilterInputStream and java.io.
FilterOutputStream. DeflaterOutputStream compresses its output stream;
InflaterInputStream decompresses its input stream. These classes form the basis for other
compression and decompression streams that use other protocols, including GZIP
(GZIPOutputStream and GZIPInputStream) and ZIP (ZipOutputStream and ZipInputStream).

GZIPOutputStream and GZIPInputStream GZIPOutputStream and GZIPInputStream extend
DeflaterOuputStream and InflaterInputStream. They use the standard GZIP compression
algorithm to compress the output stream and decompress the input stream. For more informa-
tion, see RFC 1952, available at http://www.internic.net/rfc/rfc1951.txt.

ZipOutputStream and ZipInputStream ZipOutputStream and ZipInputStream extend
DeflaterOuputStream and InflaterInputStream. They use the ZIP compression algorithm to
compress the output stream and decompress the input stream.

Untitled-4 9/22/98, 3:56 PM286

287

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

16

II
Part

Ch

Reading a JAR File Programmatically
Typically, you will not use the classes in java.util.zip to read a JAR file; you will specify the
archive to be read in your APPLET tag, and the browser will do the rest. However, should you
need to read a JAR file yourself, this section will get you started.

First, enter Listing 16.5, named DumpJAR.java.

LISTING 16.5 Source Code for DumpJAR.java

import java.util.zip.ZipFile;
import java.util.zip.ZipEntry;
import java.util.Enumeration;

class DumpJAR
{
 public static void main(String[] args)
 {
 String file_name = args[0];
 try
 {
 ZipFile zip = new ZipFile(file_name);
 PrintEntryNames(zip);
 }
 catch (java.io.IOException e)
 {
 System.out.println(“Exception “ + e);
 }
 }

 public static void PrintEntryNames(ZipFile zip)
 {
 for (Enumeration e = zip.entries(); e.hasMoreElements();)
 {
 ZipEntry entry = (ZipEntry)e.nextElement();
 System.out.println(entry.getName());
 }
 }
}

Now compile it:

D:\JDK1.2\demo\TicTacToe\jar>javac DumpJAR.java

If you run this application on the TicTacToe.jar file created earlier, you will see a listing of its
contents. Notice that the entries are not shown in the same order that the jar tool produces.
You should not depend on the order of entries returned by the ZipFile.entries() method:

D:\JDK1.2\demo\TicTacToe\jar>java DumpJAR TicTacToe.jar
audio/return.au
audio/ding.au
TicTacToe.class
audio/yahoo1.au

The java.util.zip Package

Untitled-4 9/22/98, 3:56 PM287

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH16 LP#4

288 Chapter 16 JAR Archive Files

audio/yahoo2.au
images/not.gif
audio/beep.au
images/cross.gif
META-INF/MANIFEST.MF

JAR File Format
The JAR file format is based on the general-purpose, freely usable ZLIB file format, which is
based on the ZIP file format. This is a portable file format designed to store multiple files in a
directory hierarchy. The ZLIB format is not specific to any single compression method; how-
ever, the deflate compression scheme is commonly used. This is the compression method
used in JAR files. The deflate protocol is based on a variant of the Lempel-Ziv algorithm, LZ77,
and features low compression overhead and well-defined runtime memory requirements. This
makes it a good general-purpose compression protocol. For more information about ZLIB,
refer to RFC 1950 and RFC 1951, available at ftp://ds.internic.net/rfc/.

In general, you won’t need to concern yourself with the details of the JAR file format, because
you interact with JAR files through the jar and javakey tools and possibly the java.util.zip
package. ●

Untitled-4 9/22/98, 3:56 PM288

289

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

C H A P T E R

Applets Versus Applications

Applications Explored 290

Advantages of Applications 290

Developing Java Applications 291

Converting an Applet to an Application 296

Packaging Your Applications in Zip Format 310

Converting an Application to an Applet 310

17

In this chapter

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

290 Chapter 17 Applets Versus Applications

Applications Explored
Although Java became famous for its capability to create applets, it is also an equally powerful
language to develop full-fledged applications. In fact, the ability to use Java to create applica-
tions may be the more powerful attribute. Applications written in Java do not suffer from the
numerous pitfalls that traditional programming paradigms present.

It’s almost ironic that the most overlooked portion of Java is the capability to create applica-
tions. When programming in other languages, such as C, C++, or any other traditional lan-
guage, what you always create are standard programs. Oddly enough, the hype surrounding
applets has created an environment where most people interested in Java completely overlook
the possibility of using Java to create applications in addition to applets.

The difference between applications and applets is at once very subtle and at the same time
very profound. In fact, as you will learn later in the chapter, applications can at the same time
be applets and vice versa. The most fundamental difference between applets and applications is
their operating environment. Applets must “live” within a browser such as Netscape Navigator,
Microsoft Internet Explorer, or AppletViewer. Applications can be run directly from the com-
mand prompt with the use of the Java interpreter. (If you’re using the JDK, that would be
java.exe.)

In the future, you will be able to run Java applications directly from your operating system
without having to invoke the Java interpreter. Microsoft, IBM, and Apple have all signed a

letter of intent to embed the Java Virtual Machine into upcoming versions of their operating systems. In
addition, Sun has a project currently code-named Kona, which will be an entirely Java-based OS. When
the JVM becomes part of the OS, Java applications will become even more crucial. ■

Advantages of Applications
The application model offers a number of advantages over the applet. For one thing, applica-
tions can be faster. This is caused by a couple of things. First, an application does not have the
overhead of the browser to deal with. In addition, when run as an applet, the browser generally
has control of the amount of memory an applet may utilize. As an application, you have com-
plete control over the entire environment the program is running in. These items combine to
result in slightly faster execution of Java applications, which are free of some of the burdens of
their applet counterparts.

The Sandbox
The more substantial difference between applications and applets is the lack of what is known
as a sandbox. The sandbox restricts the operation of an applet. Under ordinary circumstances,
an applet is forbidden from trying to write or read from your local file system, for instance, and
the applet cannot open an URL to any host on the Internet that it pleases, only to the host from
which the HTML and class files came. In contrast, an application is under no such restrictions.
When a Java program is run as an application, it has all the rights and capabilities that any
program written in, say C++, would have.

N O T E

291

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

If you read chapters 16 and 34, you will learn how to create signed applets. These applets
can open the security box and allow the applet to perform additional operations.

In addition, the new JDK 1.2 security features allow you to do just the opposite. You can restrict an
application or a part of the application so that it has no more rights than an applet. ■

This means that applications can run what are known as trusted methods. You can find a num-
ber of these methods in the java.lang.RunTime class. However, they also include all native
methods, and a host of others.

So, assuming that you don’t care about the minor performance boost, and you don’t need ac-
cess to elements outside the sandbox, why not just bundle AppletViewer with your applet?
Applications have four additional advantages:

■ Windows generated from an application do not display the Warning applet window,
which can be a source of confusion to inexperienced users.

■ Applications do not require an HTML file to tell them what to load.

■ Applications are much cleaner because they are executed just like normal executable
programs.

■ Your clients undoubtedly will consider applications to be full-fledged programs, and
based on the name alone, they will consider applets to be miniature programs. Generally,
this means that they will be willing to pay more for something that they perceive to be a
complete program as compared to a partial one.

Developing Java Applications
When you learned about writing Java applets in Chapter 14, “Writing an Applet,” one of the
first things you learned is that any applet must extend the java.applet.Applet class. Unlike
applets, applications do not need to extend any other class in order to be usable. In fact, the
reason that applets need to extend the java.applet.Applet class is so that an application
(known as a browser) can use the class through polymorphism.

◊ See “Extending Objects Through Inheritance.” p. 76

Any Java class can be run as an application. There is really only one restriction to this: To run a
class as an application, it must have a main method with the following prototype:

public static void main (String args[])

So an application can be thought of as just a normal class that has one unique feature: a static
public main method. In Java the main() method has the same purpose as the main() function
in C and C++—it’s where the application starts.

HelloWorld—The Application
As you have done in previous chapters and will continue to do throughout this book, take a
look at the infamous “Hello World” program as it would be written as a Java application, as
shown in Listing 17.1.

N O T E

Developing Java Applications

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

292 Chapter 17 Applets Versus Applications

Listing 17.1 The Simplest Application Is HelloWorld

public class Hello{
 public static void main(String args[]){
 System.out.println(“Hello World!”);
 }
}

You can compile the Hello class just as you have the others in this book. From a command
prompt type:

javac Hello.java

Alternatively, on a Macintosh drag the Hello.java file over the javac icon.

As with any standard public class, Hello must be defined within a file that carries its
name followed by the extension .java. Therefore, in this case Hello must be in a file

called Hello.java. ■

To invoke a Java application, you will use the syntax [java ClassName]. Note that you use the
ClassName only, not the ClassName.class or the ClassName.java. java will search the existing
classpath (which includes your current directory [.]) to try to locate the class that you have
indicated. Therefore, to run your Hello application from the command prompt, type the
following:

java Hello

What you should see is the message Hello World appear onscreen. Note that you did not type
Hello.class, only Hello. The Java Virtual Machine implicitly knows that the Hello class is
located within the file Hello.class, and that it should start off right away with the main()
method.

On the Macintosh, things work a bit differently, as you have already learned when you
learned to compile Java programs. In the case of running a Java application, double-click

the Java icon and enter the class name you wish to run. Alternatively, you can drag the class file for the
application over the Java icon.

Also, for users of Windows, to get a command prompt you need to start the program MS-DOS
Prompt. ■

Passing Parameters to an Application
As you saw with the “HelloWorld” application, applications, unlike applets, do not rely on an
HTML file to be loaded. This can be a benefit because it decreases the complexity of the sys-
tem, but how then do you pass parameters into the application?

N O T E

N O T E

293

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

In C/C++ you will typically utilize the values in the arrays of argv and argc. The argv/argc
system tends to be one that is a bit obtuse, and many programmers look up how to utilize the
variables each time they need them. In Java, the parameter set is much simpler.

You will recall from laying out the prototype for the main() method that main has a param-
eter—an array of strings. This array of strings contains the values of the additional parameters
left on the command line. If you are a DOS user, for example, you’re probably familiar with the
/? option. For instance:

dir /?

The /? is an additional parameter to the dir program. Now, take a look at how to do this with
the Hello World program. Instead of having the program say hello to the whole world, change
it so that it only says hello to you. Listing 17.2 shows just how to do this.

Listing 17.2 HelloWorld Using a Command-Line Parameter

public class Hello{
 public static void main(String args[]){
 System.out.println(“Hello “+args[0]+”!”);
 }
}

To compile the program, type:

javac Hello.java

But to run this version of Hello is slightly different because you need to use the additional
parameter:

java Hello Weber

Now, what you should see is:

Hello Weber!

Preventing Null Pointer Exceptions
If you accidentally did not type the additional parameter at the end of the command line, what
you saw was:

java.lang.ArrayIndexOutOfBoundsException:
 at Hello.main(Hello.java):3

To prevent this message, if a user happens to forget to add his or her name at the end of the
line, you need to put in some error checking. Probably the best way to do this is to add an if
statement. Make one more change to the Hello World program, as shown in Listing 17.3.

Developing Java Applications

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

294 Chapter 17 Applets Versus Applications

Listing 17.3 HelloWorld with a Parameter and Some Error Checking

public class Hello{
 public static void main(String args[]){
 if (args.length <1){
 System.out.println(“Syntax for running Hello is:”);
 System.out.println(“ java Hello <Name>”);
 System.out.println(“\n\nWhere <Name> is the person to greet”);
 } else
 System.out.println(“Hello “+args[0]+”!”);
 }
}

Now, if you happen to run the Hello World program without any parameters, what you will see
should look like this:

Syntax for running Hello is:
 java Hello <Name>

Where <Name> is the person to greet

Limitations Imposed Due to the Static Nature of main()
The main method of a class has characteristics very similar to the main() function in C or C++.
Unlike C and C++, however, because the main method must be static, it cannot utilize nonstatic
methods or variables of its class directly. The following code, for instance, would not compile:

public class fooBar {
 int foo;
 public static void main(String args[]){
 foo = 50;
 }
}

The problem, of course, is that the foo variable is not static, and the compiler will refuse to
allow the static method main() to modify it. To understand why this occurs, review what it
means for any method or variable to be static. When a static method is loaded into memory, the
virtual machine looks at it and essentially says: “Okay, well there is only going to be one of
these, regardless of how many instances of the class the user creates, so I’m going to assign it
to a special place in memory. I might as well do that now.” This happens not when the class is
first instantiated, but as soon as the class is loaded. Later, when the fooBar class is actually
instantiated, what would happen if the main method were allowed to access the foo variable?

When the fooBar class is instantiated, the machine allocates space for the foo variable, and
then calls the main method. But wait, the main method was already placed into memory with a
reference to the foo variable…but which foo variable? Of course this is assuming that you had
actually been able to compile this class. So there is no real answer, but you can see why the
compiler won’t let you perform this type of activity.

295

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

You can solve this problem in one of two ways. First, you can declare the foo variable to be
static, as shown in Listing 17.4.

Listing 17.4 fooBar Written so that foo Is Static

public class fooBar {
 static int foo;

 public init(){
 System.out.println(“Init method”);
 }

 public static void main(String args[]){
 foo = 50;
 }
}

The fooBar class will now compile, but what about calling methods, such as the init method
in the preceding example? Because the init() method is not itself static, the compiler would
again refuse to compile the fooBar class. Of course, you could declare the init method to be
static as well, but this can quickly become quite cumbersome, and it would be difficult, if not
impossible, to actually perform many of the useful tasks you want to do as a programmer.
Instead, it is probably a good idea to have the fooBar’s main method instantiate another copy of
fooBar, as shown in Listing 17.5.

Listing 17.5 fooBar Creates an Instance of Itself in the main Method

public class fooBar {
 int foo;

 public init(){
 System.out.println(“Init method”);
 }

 public static void main(String args[]){
 fooBar f = new fooBar();
 f.foo = 50;
 f.init();
 }
}

Now, because the f variable is actually created within the main method, you can perform op-
erations on the f instance. The major difference here is that you are performing operations not
on the this variables, but on the f.this variables, and this distinction helps the compiler un-
derstand how to deal with such methods. In other words, f is actually an instance of fooBar.

Developing Java Applications

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

296 Chapter 17 Applets Versus Applications

Converting an Applet to an Application
Now that you have briefly looked at how to create an application, consider another very impor-
tant aspect of application programming—converting an applet to an application. You see, there
is really no reason why a program you have already written as an applet can’t also be run as an
application. This section provides a step-by-step walkthrough that shows you how to convert
the clock applet (shown in Figure 17.1) into an application.

FIG. 17.1
The clock applet running
in Navigator.

Why Convert an Applet to an Application?
An applet cannot be run from the command prompt without a browser.

So why convert an applet to an application? Well for one thing, believe it or not, not everyone in
the world has realized that the Internet exists. Some people and companies do, but do not yet
have access to the Internet, and many companies have access to the Internet but do not allow
their users to surf the World Wide Web. More important, though, many people do not have
access to the World Wide Web all of the time. For those people who don’t have access to the
World Wide Web all the time, applications on the Web aren’t as useful.

As a result, before long you probably will want to present your applets to people and companies
that are not yet familiar with the Internet, or you may want to present your applets to people
without forcing them to be connected to the Internet. One perfect example of this is when you
want to deliver your applets on a CD-ROM. With Java, there is no reason why the application
you deliver on the CD should be any different from what you display on the Internet. Imagine
being able to develop a single application that will run on every platform and that can work

297

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

over the World Wide Web, Enterprise Network, and CD-ROM, all without changing a single
line of code or performing a single recompilation.

Changing the Applet Code to an Application
For this chapter, you will change the simple clock applet into an application. Listing 17.6 shows
the source code for the applet.

Listing 17.6 A Simple Application That Displays a Clock

/*
*
* Clock
*
*/
import java.applet.Applet;
import java.awt.*;
import java.util.*;

public class Clock extends Applet implements Runnable{
 Thread thisThread;

 Color faceColor,borderColor,minuteColor,hourColor,secondColor;

 public void init(){
 //read in the colors for each of the hands and for the face/border
 faceColor = readColor (getParameter(“faceCol”));
 borderColor = readColor (getParameter(“borderCol”));
 minuteColor = readColor (getParameter(“minuteCol”));
 hourColor = readColor(getParameter(“hourCol”));
 secondColor = readColor(getParameter(“secondCol”));
 }

 // This method creates a color based on a string.
 // The string is assumed to be “red,green,blue” where each
 // of the colors is represented by its integer equivalent.
 public Color readColor(String aColor) {
 if (aColor == null) {
 return Color.black;
 }

 int r;
 int g;
 int b;

 //break the string apart into each number
 StringTokenizer st = new StringTokenizer(aColor, “,”);

 try {
 r = Integer.valueOf(st.nextToken()).intValue();
 g = Integer.valueOf(st.nextToken()).intValue();
 b = Integer.valueOf(st.nextToken()).intValue();
 return new Color(r,g,b);

continues

Converting an Applet to an Application

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

298 Chapter 17 Applets Versus Applications

Listing 17.6 Continued

 }
 catch (Exception e) {
 System.out.println(“An exception occurred trying
➥ to convert a parameter to a color:”+e);
 return Color.black;
 }
 }

 public void start(){
 thisThread = new Thread(this);
 thisThread.start();
 }

 public void run(){
 while(true){
 repaint();
 try{
 thisThread.sleep(1000);
 }catch (Exception e){}
 }
 }

 public void update(Graphics g){
 paint(g);
 }

 public void paint(Graphics g){
 //fill clock face
 g.setColor(faceColor);
 g.fillOval(0,0,100,100);
 g.setColor(borderColor);
 g.drawOval(0,0,100,100);

 //get the current time
 Calendar d = Calendar.getInstance();
 //draw the minute hand
 g.setColor(minuteColor);
 double angle = (((double)(90 - d.get
➥(Calendar.MINUTE)))/60)*2 * Math.PI;
 g.drawLine(50,50,50+(int)(Math.sin(angle)*50),50 +
➥(int)(Math.cos(angle)*50));
 //draw the hour hand
 g.setColor(hourColor);
 angle = ((((double)18 - d.get(Calendar.HOUR_OF_DAY)
➥+(double)d.get(Calendar.MINUTE)/60))/12)*2 * Math.PI;
 g.drawLine(50,50,50+(int)(Math.sin(angle)*40),50 +
➥(int)(Math.cos(angle)*40));
 //draw the second hand
 g.setColor(secondColor);
 angle = (((double)(90 - d.get(Calendar.SECOND)))/60)*2 * Math.PI;
 g.drawLine(50,50,50+(int)(Math.sin(angle)*50),50 +
➥(int)(Math.cos(angle)*50));

299

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

 }

}

The first task is to add a main() method to the Clock class to make it into an application. To do
so, open Clock.java in your favorite text editor. Page all the way down until you reach the
closing brace (}). Directly before that brace, add the code shown in Listing 17.7.

Listing 17.7 New main Method for Clock.java

static boolean inApplet =true;
public static void main(String args[]){
 /*set a boolean flag to show if you are in an applet or not */
 inApplet=false;

 /*Create a Frame to place our application in. */
 /*You can change the string value to show your desired label*/
 /*for the frame */
 Frame myFrame = new Frame (“Clock as an Application”);

 /*Create a clock instance. */
 Clock myApp = new Clock();

 /*Add the current application to the Frame */
 myFrame.add (“Center”,myApp);

 /*Resize the Frame to the desired size, and make it visible */
 myFrame.setSize(100,130);
 myFrame.show();

 /*Run the methods the browser normally would */
 myApp.init();
 myApp.start();
}

Here is a line-by-line breakdown of this code fragment:

inApplet=false;

The first statement in this code creates a status variable, so you can tell if the program is being
run as an applet or as an application. As you will learn later, you often must do a few things
differently when you have an applet that is not actually running in a browser such as
AppletViewer or Netscape. As a result, a Boolean variable (inApplet) has been added to the
class. Technically, for good programming structure, the declaration for this variable should be
placed at the top with the rest of your variables, but it’s easier to see it here. Notice that the
variable is declared to be static. If you miss this keyword, the compiler growls at you about
referencing a nonstatic variable in a static method. main() must be static and public for you to
run the method as an application.

Frame myFrame = new Frame (“Clock as an Application”);

Converting an Applet to an Application

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

300 Chapter 17 Applets Versus Applications

Next, you create a frame in which to put your new clock. The parameter “Clock as an
Application” is placed in the title bar of Frame. Indicating that the program is being run as an
application is good practice; this indication helps eliminate confusion on the part of the user. If
you don’t want to set the title in the Constructor for some reason, you can create an untitled
Frame and change the title later, using setTitle(String), if you prefer.

Clock myApp = new Clock();

The next line indicates that you want to create a new instance of the class Clock. A perfectly
legitimate question at this point is, why not use this? After all, this is an instantiation of the
class Clock already, right? The primary reason to create a new instance of Clock is to avoid
rewriting any of the applet methods to make them static. Just as it is not legitimate to change
the variable inApplet if it is nonstatic, it is not legitimate to try to access a nonstatic method. It
is, however, legitimate to access the nonstatic methods of a variable. Bearing that in mind,
create a new instance variable of the class Clock called myApp and add it to the frame.

myFrame.add (“Center”,myApp);

The next line adds the new Clock variable to the frame. This is important because before you
attach the Clock to something, it can’t be displayed.
◊ See “Layout Managers,” p. 406

Next, you add the lines myFrame.resetSize(100,130) and myFrame.show() to the Clock.java
file. myFrame.setSize(100,130) tells the application to make the frame’s size 100×100, but you
also need to account for a 30-pixel title bar that the frame has vertically. Normally, when you
convert an applet to an application, you know the ideal size for your applet. When in doubt, go
ahead and copy the WIDTH and HEIGHT values from your most commonly used HTML file. On
those rare occasions when you want the size to be adjustable, use the techniques covered later
in this chapter when you learn how to account for parameter data, to read in the size from the
command line.

myFrame.resize(100,100);
myFrame.show();

CAUTION

Technically, when the applet has been added to the frame, you could go through the normal applet methods
init() and start() right there. Contrary to popular belief, however, this procedure is not a good idea. If
your applet uses double buffering or requires any other image that is built with the createImage(x,y)
method, the procedure will not work until the frame has been shown. The drawback is that you will see a
flicker as the frame comes up with nothing in it. Keep this fact in the back of your mind, even if you’re not
using createImage(x,y) now because this minor fact is not documented anywhere and has caused this
author hours of headaches because it’s easy to forget.

301

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

Finally, you add the lines myApp.init() and myApp.start() to your function. Because your
application is not running in the browser, the init() and start() methods are not called auto-
matically, as they would be if the program were running as an applet. As a result, you must
simulate the effect by calling the methods explicitly. It should be pointed out that if your appli-
cation does not appear, you may want to add the line myApp.repaint() to the end of the main()
method.

myApp.init();
myApp.start();

Before you save your new copy of Clock.java, you need to make one more change. Go to the
top of the file in which you are performing your imports and make sure that you are importing
java.awt.Frame. Then go ahead and save the file.

import java.awt.Frame

Accounting for Other Applet Peculiarities
The most difficult problem to deal with when you convert applets to applications has to do with
duplicating the effect of a parameter tag and other applet-specific tasks. You can handle this
situation in many ways; the following sections discuss two of the most common solutions.

Defaulting The first solution is defaulting. In defaulting, the idea is to provide the application
with all the information that it would be getting anyway from the HTML file. In a sense, this
solution is exactly what you did when you told the Frame what size you wanted to use with
resize(x,y). To do this for the <param> items requires rewriting the getParameter method.

Clock has several parameters it receives in <param> tags. Take a look at the number of
<param> tags from the Clock’s HTML file in Listing 17.8.

Listing 17.8 Clock.html

<TITLE>Clock</TITLE>
<H1>Clock </H1>
<hr>
<applet code=”Clock.class” width=100 height=100>
<param name=hourCol value=255,00,00 >
<param name=minuteCol value=00,255,00>
<param name=secondCol value=00,00,255>
<param name=borderCol value=255,255,255>
<param name=faceCol value=125,125,125>
</applet>
<hr>

To mimic these effects in your new application, add the method shown in Listing 17.9 to your
current Clock.java file.

Converting an Applet to an Application

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

302 Chapter 17 Applets Versus Applications

Listing 17.9 getParameter() Method for Clock.java

public String getParameter (String name){
 String ST;
 if (inApplet)
 return super.getParameter(name);
 //If you are not in an applet you default all of the values.
 if (name == “hourCol”)
 return “255,00,00” ;
 if (name == “minuteCol”)
 return “00,255,00”;
 if (name == “secondCol”)
 return “00,00,255”;
 if (name == “borderCol”)
 return “255,255,255”;
 if (name == “faceCol”)
 return “125,125,125”;
 return null;
}

CAUTION

If you are going to have several parameters, you should use a switch statement. A switch requires an
integer, however, which you can get by using the hashCode() of the string. Unfortunately, because multiple
strings can have the same hashCode(), you must then make sure you really have the correct string. This
makes the solution much more involved. Still, if you are working with several <param> tags, consider using
this alternative method.

This method replaces the duties normally performed by the java.applet.Applet class with
your own default values.

Notice that the first thing you do is check to see whether you are in an applet (if (inApplet)).
If so, you use the getParameter(String) method from your super class
(java.applet.Applet). Doing this maintains your normal pattern of operation when you go
back and use Clock as an applet again. The idea is to have one program that can run as both an
application and an applet.

A better way to handle the getParameter() is to implement appletStub. However,
without a complete explanation of interfaces, explaining how to do this would be purely

academic. If you plan to implement several aspects of java.applet.Applet, refer to Chapter 12,
“Interfaces,” for more information. ■

Recompiling the Application
The next step is recompiling the application. Recompiling an application is no different from
compiling an applet. In this case, type the following:

javac Clock.java

N O T E

303

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

Testing the Application
Now you can test your application (see Figure 17.2). To do so, you need to invoke the Java
Virtual Machine, followed by the class name, as follows:

java Clock

FIG. 17.2
The Clock running as
an application

Be sure to maintain proper capitalization at all times.

Second Way to Add <param> Information Defaulting is a quick and easy way to get the
extraneous information into an application that you normally leave in an HTML file. Odds are,
however, that if you took the time to include a parameter tag in the first place, you don’t want
the values to be fixed. After all, you could have hard-coded the values to start with, and then
you never would have had this problem in the first place. How do you get information into your
application from the outside world? The easiest answer is to get it from the command line.

As you recall, the main() method takes an array of strings as an argument. You can use this
array to deliver information to an application at runtime. This section addresses one of the
simplest cases: sending the WIDTH and HEIGHT information to the application from the command
line. Although this section doesn’t also explain how to insert the information for a <param>,
hopefully you can deduce from this example how to do it for <param> tags on your own.

To use the information from the command line, you need to make a few modifications in the
main() method. Listing 17.10 shows the new version.

Listing 17.10 New main() Method

public static void main(String args[]){
 /*set a boolean flag to show if you are in an applet or not */
 inApplet=false;

 /*Create a Frame to place your application in. */
 /*You can change the string value to show your desired label*/
 /*for the frame */
 Frame myFrame = new Frame (“Clock as an Application”);

 /*Create a clock instance. */
 Clock myApp = new Clock();

T I P

continues

Converting an Applet to an Application

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

304 Chapter 17 Applets Versus Applications

Listing 17.10 Continued

 /*Add the current application to the Frame */
 myFrame.add (“Center”,myApp);

 /*Resize the Frame to the desired size, and make it visible */
 /*Resize the Frame to the desired size, and make it visible */
 if (args.length>=2)
 /*resize the Frame based on command line inputs */
 myFrame.setSize(Integer.parseInt(args[0]),Integer.parseInt(args[1]));
 else
 myFrame.setSize(100,130);
 myFrame.show();

 /*Run the methods the browser normally would */
 myApp.init();
 myApp.start();
 }

Make the necessary changes and recompile the program. Now you can run the Clock at any
size you want. Try the following:

java Clock 100 100

At first glance, your new main() method is almost identical to the one in Listing 17.3. The main
difference is a group of six lines:

/*Resize the Frame to the desired size, and make it visible */
if (argv.length>=2)
 /*resize the Frame based on command line inputs */
 myFrame.setSize(Integer.parseInt(args[0]),Integer.parseInt(args[1]));
else
 myFrame.setSize(100,130);

The first line of actual code checks to see whether the user put enough information in the
command line. This check prevents null pointer exceptions caused by accessing information
that isn’t really there. Besides, you probably want the user to be able to run Clock at its normal
size without specifying the actual size.

The next line is the one that does most of the work. It should be fairly obvious to you what is
happening in this code, but you should know why you need to use Integer.parseInt on the
array values. At runtime, the Java machine isn’t aware of what is coming in from the command
line; it just sees a string. To convert a string to an int, you need to use the class Integer’s
parseInt(String) method. (Note, use the Integer class, not int. If you’re confused, refer to
Chapter 7, “Data Types and Other Tokens.”)

CAUTION

To be complete, the parseInt method should be surrounded by a try{} catch{} block, in case
something other than an integer is typed in the command line.

305

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

Making the Window Close Work
By now, you probably have noticed that to close your new Clock application you have to press
Ctrl+C or in some other way cause the operating system to close your application. To allow the
user to close the window the normal way, you need to catch the windowClosing() event that is
generated. You can do this by creating a window listener and performing an exit in the
windowClosing() method.

The WindowListener interface requires you to implement several methods, so it’s not
always the most convenient thing to do. Fortunately, the java.awt.event package includes
several convenience adapters that take care of some of the work for you. In the case of
WindowListener, the class WindowAdapter implements the interface and provides default
behavior for each of the methods. So, now you can extend the WindowAdapter class and just
override whatever method you are interested in.

In the case of the Clock program, now you can create an anonymous class and add a
WindowAdapter to the myFrame variable:

myFrame.addWindowListener(new WindowAdapter(){
 public void windowClosing(WindowEvent event){
 System.exit(0);
 }
});

Finally, the complete Clock applet should look like Listing 17.11.

Listing 17.11 The Final Clock Application with Everything in Place

/*
*
* Clock
*
*/
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Clock extends Applet implements Runnable{
 Thread thisThread;

 Color faceColor ,borderColor,minuteColor,hourColor,secondColor;

 public void init(){
 //read in the colors for each of the hands and for the face/border
 faceColor = readColor (getParameter(“faceCol”));
 borderColor = readColor (getParameter(“borderCol”));
 minuteColor = readColor (getParameter(“minuteCol”));
 hourColor = readColor(getParameter(“hourCol”));
 secondColor = readColor(getParameter(“secondCol”));
 }

continues

Converting an Applet to an Application

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

306 Chapter 17 Applets Versus Applications

Listing 17.11 Continued

 // This method creates a color based on a string.
 // The string is assumed to be “red,green,blue” where each
 // of the colors is represented by it’s integer equivalent.
 public Color readColor(String aColor) {
 if (aColor == null) {
 return Color.black;
 }

 int r;
 int g;
 int b;

 //break the string apart into each number
 StringTokenizer st = new StringTokenizer(aColor, “,”);

 try {
 r = Integer.valueOf(st.nextToken()).intValue();
 g = Integer.valueOf(st.nextToken()).intValue();
 b = Integer.valueOf(st.nextToken()).intValue();
 return new Color(r,g,b);
 }
 catch (Exception e) {
 System.out.println(“An exception occurred trying to
➥ convert a parameter to a color:”+e);
 return Color.black;
 }
 }

 public void start(){
 thisThread = new Thread(this);
 thisThread.start();
 }

 public void run(){
 while(true){
 repaint();
 try{
 thisThread.sleep(1000);
 }catch (Exception e){}
 }
 }

 public void update(Graphics g){
 paint(g);
 }

 public void paint(Graphics g){
 //fill clock face
 g.setColor(faceColor);
 g.fillOval(0,0,100,100);
 g.setColor(borderColor);
 g.drawOval(0,0,100,100);

307

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

 //get the current time
 Calendar d = Calendar.getInstance();
 //draw the minute hand
 g.setColor(minuteColor);
 double angle = (((double)(90 - d.get(Calendar.MINUTE)))/60)*2 * Math.PI;
 g.drawLine(50,50,50+(int)(Math.sin(angle)*50),50 +
➥(int)(Math.cos(angle)*50));
 //draw the hour hand
 g.setColor(hourColor);
 angle = ((((double)18 - d.get(Calendar.HOUR_OF_DAY)+
➥(double)d.get(Calendar.MINUTE)/60))/12)*2 * Math.PI;
 g.drawLine(50,50,50+(int)(Math.sin(angle)*40),50 +
➥(int)(Math.cos(angle)*40));
 //draw the second hand
 g.setColor(secondColor);
 angle = (((double)(90 - d.get(Calendar.SECOND)))/60)*2 * Math.PI;
 g.drawLine(50,50,50+(int)(Math.sin(angle)*50),50 +
➥(int)(Math.cos(angle)*50));
 }

 static boolean inApplet =true;
 public static void main(String args[]){
 /*set a boolean flag to show if you are in an applet or not */
 inApplet=false;

 /*Create a Frame to place your application in. */
 /*You can change the string value to show your desired label*/
 /*for the frame */
 Frame myFrame = new Frame (“Clock as an Application”);
 myFrame.addWindowListener(new WindowAdapter(){
 public void windowClosing(WindowEvent event){
 System.exit(0);
 }
 });

 /*Create a clock instance. */
 Clock myApp = new Clock();

 /*Add the current application to the Frame */
 myFrame.add (“Center”,myApp);

 /*Resize the Frame to the desired size, and make it visible */
 /*Resize the Frame to the desired size, and make it visible */
 if (args.length>=2)
 /*resize the Frame based on command line inputs */
 myFrame.setSize(Integer.parseInt(args[0]),Integer.parseInt(args[1]));
 else
 myFrame.setSize(100,130);
 myFrame.show();

continues

Converting an Applet to an Application

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

308 Chapter 17 Applets Versus Applications

Listing 17.11 Continued

 /*Run the methods the browser normally would */
 myApp.init();
 myApp.start();
 }

 public String getParameter (String name){
 String ST;
 if (inApplet)
 return super.getParameter(name);
 //If you are not in an applet you default all of the values.
 if (name == “hourCol”)
 return “255,00,00” ;
 if (name == “minuteCol”)
 return “00,255,00”;
 if (name == “secondCol”)
 return “00,00,255”;
 if (name == “borderCol”)
 return “0,0,0”;
 if (name == “faceCol”)
 return “125,125,125”;
 return null;
 }

}

Now, recompile and run Clock one last time. If you click the Window Close icon, Clock exits
like a normal program.

Checking All the Applet Methods
When you convert your own applets to applications, you need to perform one final step. You
need to search for all methods in java.applet.Applet that are valid only with respect to a
browser. Most commonly, you need to search for the methods described in the following sec-
tions.

getAppletContext() Fortunately, most of the things you will do with getAppletContext()
you can ignore with applications. showDocument(), for example, has no meaning without a
browser. Attempting to execute getAppletContext().showDocument() produces an error on
System.out, but the application shouldn’t crash because of it.

Similarly, showStatus() usually is not relevant with applications. In applets that use the applet
context to display information, the easiest thing to do usually is to surround the specific code
with an if (inApplet){} block and ignore it if you’re not in an applet.

What do you do if you really have to see that information? You can select the top and bottom 17
lines of the Frame and write into the paint method a section that displays the applet-context
information there. Why do you select the top and the bottom? Due to a strange quirk between
the UNIX version of Frame peer and the Windows 95 version of Frame peer, each system chops

309

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

out a 17-line area in which it can display its Warning applet message. On Windows machines,
this area is the top 17 lines; on UNIX machines, it is the bottom 17 lines.

If you’re not convinced, go to the following URL:

http://www.magnastar.com/ultra_nav

UltraNav is a program by MagnaStar Inc. which aids in the navigation of Web pages. Notice the
yellow “information” line. Its location moves based on your platform.

If you are on a Windows machine, you should see an information bar at the top of the Frame. If
you’re on a UNIX machine, that bar is at the bottom. The bar is being drawn at both the top and
the bottom; you are just seeing only one.

getCodeBase() and getDocumentBase() getCodeBase()and getDocumentBase() are a bit
trickier to deal with. Both of these methods return an URL, and you don’t want to limit yourself
to having the user connected to the Internet. After all, if the user can access your Web site, you
probably have him or her downloading the applet directly from you, so you would have no need
to turn the applet into an application.

You will usually deal with getCodeBase() and getDocumentBase() on a case-by-case basis. If
you can get away without the information, ignore it. If you really need the information from
getCodeBase() or getDocumentBase(), you may have to give it a hard-coded URL or one that
you read from the command line.

Paying Attention to Your Constructor Frequently, when converting applets, you will find
yourself creating a Constructor for your class other than the null Constructor. Creating a
custom Constructor is a perfectly desirable thing to do to pass information from the command
line or other information. If you do this, however, make sure you add the null Constructor
back in manually (the null Constructor is the Constructor that does not take any parameters
on input). If you create another Constructor, Java doesn’t automatically generate a null one for
you. You won’t even notice that you need one until you are working on a project and another
class needs to create an instance of your applet, for a thread or something. When this situation
occurs, the class attempts to access the null Constructor. Now, even though you didn’t actually
delete the null Constructor from the class, it is no longer there. The error message that you
get will look something like this:

java.lang.NoSuchMethodError
 at sun.applet.AppletPanel.run(AppletPanel.java:170)
 at java.lang.Thread(Thread.java)

Notice that nothing in the error message tells you anything about your classes. The error
doesn’t even look like one that involves your class; it looks like a bug in AppletPanel. If you
encounter this situation, the first thing to do is delete *.class and recompile the whole pro-
gram. Then the compiler will be able to catch the missing Constructor call.

createImage If you are using createImage, and the Image variable is being returned as null
when you convert your applet to an application, make sure you have made the Frame visible
first. See the caution under “Changing the Applet Code to an Application,” earlier in this
chapter.

Converting an Applet to an Application

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

310 Chapter 17 Applets Versus Applications

Packaging Your Applications in Zip Format
Now that you have converted your applets to applications, you can send them to your clients.
The best way to deliver the applications is in a single JAR file. To package the file as a JAR, just
follow the directions in Chapter 16, “JAR Archive Files.” Once you have the JAR file, you just
need to add it to the classpath. Then you will be able to run the program just as if all the classes
had been spread about the directory.

Converting an Application to an Applet
Converting an application to an applet is on one side much less complicated than converting an
applet and on another almost impossible. The easy part of converting an application to an
applet is getting the basic functionality of the application running. To do this, you really only
have one design decision. The question at hand is this: Do you want to start and stop your
application when the person leaves your Web page, or do you want to start it once and leave it
at that?

The Simplest Conversion
Assuming that you want to start the application once, all you need to do is extend
java.applet.Applet and call the static main method in the init() method:

public void init(){
 main(null);
}

What do you do if you are already extending another class? Well, unfortunately there’s no
good answer to this question unless you are extending Panel, Container, or

Component. In the case of those three classes, just extend Applet instead (that is, change extends
xxxx to extends Applet). Polymorphism will leave your application virtually unchanged. If you’re not so
lucky, however, you will need to find another way to be able to extend Applet. The two more common
classes which are extended may have fairly easy solutions depending on your situation.

Thread—Change your applet to implement Runnable. If you need access to Thread methods, you
will need to keep an instance variable for your running Thread.

Frame—Depending on what you are doing with the Frame, you may just be able to extend Applet,
but odds are you will need to create an instance Frame and add the Applet to it:

 Frame fr = new Frame();
 fr.add(this);

All Frame calls will then need to be directed at the fr variable. ■

N O T E

311

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

17

II
Part

Ch

Handling Command-Line Parameters
Now, of course, if you accept command-line parameters, you can set up <PARAM> tags to account
for this and pass them into an array which you would then deliver to the application as follows:

public void init(){
 String args[] = new String[2];
 args[1] = getParameter(“param1”);
 args[2]= getParameter(“param2”);
 main(args);
}

Maintaining a Single Instance of the Application
If, instead of starting the application once and letting it go on infinitely, you want to start and
stop your application as the user enters and exits the Web site, you have got some things to
think about. The easy solution is to create a new instance of the application each time in the
start() method by changing the method to start() rather than init(). In the stop()
method, you would perform the exiting procedures you normally have in place for your
application.

On the other hand, if you want to leave the instance of the application up, but you just want to
put it to sleep, you will have to do some extra work. How you do this depends entirely on your
program. If your application is in a Frame(), however, you may just be able to hide and show
the Frame as in the next instance:

public void init(){
 String args[] = new String[2];
 args[1] = getParameter(“param1”);
 args[2]= getParameter(“param2”);
 main(args);
}

public void start(){
 myApp.show();
}

public void stop(){
 myApp.hide();
}

Note that for this to work, you will need to keep an instance method of myApp which you gener-
ate in the main() method.

The More Difficult Problems for Application-to-Applet Conversion
There is, however, a very sticky problem when converting applications to applets that is not so
easily dealt with: replacing security-protected methods in applets. Unfortunately, for some
problems there is just no solution. System.exec(), for example, cannot be called from an
applet.

Converting an Application to an Applet

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH17 LP#4

312 Chapter 17 Applets Versus Applications

The most common problem, however, is accessing files. Unfortunately, there is no real way to
completely replace access to files—especially if you need to write to the file as well as read
from it. A possible replacement does exist for you, however, if all you need to do is read from
the file: the URL class. You see the following two code fragments produce InputStreams (the is
variable) which can both read from a file.

 try{
 FileInputStream fs = new FileInputStream(“myFile.txt”);
 InputStream is = new InputStream (fs);
 }catch (˜

 try{
 URL us = new URL(“http:”//www.magnastar.com/myFile.txt”);
 InputStream is = us.openStream();
 } catch { ˜

One difference here is that the myFile.txt file is located in a different location. In the first
case, it is on the local file system; in the latter, it is on a Web server. For configuration files,
however, this may be okay.

If you need to write to a file too, you’re stuck. Either you can sign the applet and restrict your-
self to 1.1 browsers with support for local files (at the time of this writing only HotJava does),
or you can write a client/server application, with the server side storing the information to a
file. ●

313

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

18

II
Part

Ch

C H A P T E R

Managing Applications

Installing Applications 314

Maintaining Multiple Applications on the Same System 321

18

In this chapter

Untitled-6 9/22/98, 4:09 PM313

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

314 Chapter 18 Managing Applications

Installing Applications
Java applications are a very powerful way to deliver your Java programs. Before you can use
Java applications, however, you have to know how to install them. This chapter discusses how
to install and maintain applications. The chapter also provides directions for turning your
applets into applications.

Java applications come in many forms, but this chapter discusses the two most common: appli-
cations that come packaged as a series of .class files and applications that come as a single .zip
file.

CAUTION

When you install someone else’s Java applications, you are giving up the security protection that you are
guaranteed with an applet. Giving up this security is not necessarily a bad thing; in fact, you may need to
violate it. Just be aware that installing random Java applications can expose you to all the problems you
encounter with traditional software schemes, such as viruses and other malicious software.

Installing Applications from .class Files
Installing applications that come as a set of .class files is a bit less entangling than installing
applications for .zip files. In time, most applications will come with their own installation pro-
grams, but for now you must perform the installation manually. The following sections explain
how to install the Clock application, which is on the CD-ROM that comes with this book, that
you worked with in the previous chapter.

Create a Directory for the Application First, you need to designate a directory in which to
place your Clock. This directory need not be associated with the directory where you put your
Java JDK; however, having a deployment plan for your applications is important. This plan can
be the same one you use for installing more traditional programs, such as Netscape, or some-
thing unique to your Java applications.

CAUTION

Keeping backup copies of applications you value is important, just like with any other program or data that
you value. Don’t expect applications to become corrupted, but don’t ignore that possibility either.

Copy the Files After you create the directory in which you want to place the application, copy
all the .class files to it. You should make sure you maintain any directory structure that has
already been set up for the application. If you have subdirectories for packages, make sure you
keep the classes in them.

Untitled-6 9/22/98, 4:09 PM314

315

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

18

II
Part

Ch

Installing Applications

To copy an entire subdirectory on a Windows machine from a DOS prompt, use the
following command:

xcopy c:\original\directory*.class c:\destination\directory /s

You can also drag-and-drop the whole directory structure within the Windows Explorer system.

On UNIX machines, the command is

cp -r /original/directory /destination/directory ■

CAUTION

If you are deploying an application you have written and you are still updating the program, don’t make your
working copy the same one that you have users accessing. If you happen to be compiling your application at
the same time that a user tries to start it, unexpected and undesirable effects may occur.

Make Sure That Everything Works Now make sure that everything is running the way it
should. Go to the directory in which you placed the Clock application and type java Clock. If
everything is going as planned, a clock window should appear onscreen, as shown in Figure
18.1. If not, something has gone wrong. Make sure that you followed all the procedures cor-
rectly. You should also make sure that you have the java executable in your path. If you have
been following through the rest of the book and you have installed the Java Development Kit,
the java executable should already be in your classpath; if not, refer to Chapter 3, “Installing
the JDK and Getting Started,” for information on installing the JDK.

Finishing the Installation
After you copy all the .class files to the correct directory, the next task is to create a script or
batch file that you will use to run the application.

You can automate this process so your users don’t always have to type java Clock. Your users
will be much happier if they can just type Clock to invoke the Clock program, without having
to also type java. Making this possible, however, takes you in a different direction, depending
on your platform. Ideally, you will be able to follow the same path you would use for UNIX and
Windows 95/NT.

Finishing Installing Applications for UNIX
In explaining how to install an application under UNIX, this section covers specifically how to
do this under Solaris 2.4 using Korn shell. Your implementation may differ slightly, based on
your particular operating system and shell.

FIG. 18.1
The Clock application
as it appears under
Solaris.

N O T E

Untitled-6 9/22/98, 4:10 PM315

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

316 Chapter 18 Managing Applications

Create a Wrapper Script Automating the usage of a Java application under UNIX is done by
creating a wrapper script. The wrapper script is essentially a standard script file that “wraps” all
the commands for a Java application together. The first task is creating the script. You can
create it with vi, nedit, or your favorite text editor. Listing 18.1 shows an example script for
Clock. Note that there are several variables you may need to change for your particular installa-
tion.

Listing 18.1 Clock

#Add the applications directory to the CLASSPATH
#set to the directory you have placed the application
#Note, I insert the application directory first to avoid
#having classes from other applications getting called first

CLASSPATH=/ns-home/docs/que/Clock/:$CLASSPATH

#Set the location in which you hold java.
#This directory is probably the same as below
#If you have java in your global path, this line is
#not really necessary

Java_Home=/optl/java/bin/java

#Specify the name of the application.
#Important: Remember this is the name of the class, not the
#file

App=Clock

#Now run the actual program.
#If you have any additional parameters which you need to
#pass to the application, you can add them here.

$Java_Home $App

Test the Script Copy the text from Listing 18.1 to a file called Clock and make sure that the
script is functioning correctly. To test it, simply type the name of the wrapper script, as follows:

Clock &

Your application should start and look something like Figure 18.2; if it doesn’t, make sure that
you made the script executable. You can make the script executable by typing the following:

chmod a+x Clock

Don’t do this if you don’t want everyone to execute your script. If that is the case, type chmod
u+x Clock, or check with your system administrator to determine the proper parameters to
use with chmod.

Copy the Script to a Common Location It is probably a good idea to place your new wrapper
script in the /usr/bin directory so that anyone who has access to the system can run the new
script.

Untitled-6 9/22/98, 4:10 PM316

317

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

18

II
Part

Ch

Installing Applications

Finishing Installing an Application for Windows
This section discusses how to install applications under Windows 95. Aside from a few particu-
lars, the procedures are the same under Windows NT.

You can install an application under Windows in two ways: by creating a batch file or by using
the .pif file.

Creating a Wrapper Batch File To install the application with a batch file, use your favorite
editor. You can use the Edit command supplied with DOS, Notepad under Windows, or any
other text editor. Create a batch file called Clock.bat that contains the lines shown in Listing
18.2.

If your application does not use the Windows environment, or if you need to be able to see the output
on System.out, use java instead of javaw.

Listing 18.2 Clock.bat

rem add the location where java.exe is located. If it
rem is already in your path don’t add this line.
rem change c:\java\bin to the directory you have
rem installed for the JDK - see chapter 3

set PATH=%PATH%;c:\java\bin

rem Set this line to be the directory where your new
rem application is located.

set CLASSPATH = c:\appdir\;%CLASSPATH%

rem Run the actual application, change the applClass to be
rem the correct class for the application you are installing

javaw applClass

If your application does not run and you see an error message similar to Can’t find
class classname, first make sure that the .zip file is included in your CLASSPATH

variable. Next, make sure that the length of the CLASSPATH variable does not exceed the maximum
limit, which on Windows machines is 128 characters. ■

N O T E

T I P

FIG. 18.2
Testing the Clock
application.

Untitled-6 9/22/98, 4:10 PM317

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

318 Chapter 18 Managing Applications

CAUTION

Unlike Solaris and Macintosh machines, the CLASSPATH on Windows machines is not separated by a colon
(:). The separation between the elements in the CLASSPATH is accomplished with a semicolon (;). In short,
the syntax of CLASSPATH is the same syntax that you use to set your PATH variable.

Incorrect syntax:

set CLASSPATH=c:\java\jre\lib\rt.jar:c:\application\

Correct syntax:

CLASSPATH=c:\java\jre\lib\rt.jar;c:\application\

Under JDK 1.2, either option will technically work; however, do not expect this to be backward-compatible for
users still using JDK 1.0.

If you are using a previous version of the JDK, you must substitute lib\classes.zip for
all instances of jre\lib\rt.jar throughout this chapter. ■

Test the Batch File To run the application, type Clock at a DOS prompt. The application
should start, as shown in Figure 18.3. Pay special attention to any extra parameters you have to
send to the application. Note that because Clock is a DOS batch file, it is actually case insensi-
tive, so you can run the file as Clock, clock, or cLOCK if you would like.

FIG. 18.3
The Clock application
running under Windows.

Add the Application to Windows To add this batch file to your Windows environment, switch
back to the Windows environment, if necessary, and select the folder in which you want to
place the application. Make sure you can actually see the folder’s contents, and not just the
folder icon.

Now create a new shortcut (File, New, Shortcut). Fill in the information for your new batch file
(in this case c:\que\Clock.bat) as shown in Figure 18.4 and specify the name under which you
want the application to appear on your desktop.

When you finish creating the shortcut, double-click it. An MS-DOS window appears and your
Clock should start. Now, if you’re like most people, having a DOS window pop up to start an
application is downright annoying. Normally, you don’t care what is going to System.out and
having a big black obstruction on the screen causes most people just to close it. Here are a few
pointers to make this a bit less obtrusive for you and your users.

N O T E

Untitled-6 9/22/98, 4:10 PM318

319

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

18

II
Part

Ch

Installing Applications

To make the MS-DOS window less obtrusive, first stop the DOS window from appearing on the
screen, and second, have the DOS window exit on its own as soon as the Java application has
started. To make these changes, open the properties for your new application. Move your
mouse over to the Clock icon and use your right mouse button to click the Clock icon. A pop-
up menu should appear; choose Properties. The properties window shown in Figure 18.5
should appear. Now switch to the Program tab. Change the Run option to Minimized; this
makes it so that the DOS Window does not appear. Next, select Close on Exit, which forces the
DOS session to exit automatically after the Java application has started. Finally, click OK.

FIG. 18.4
The Shortcut window.

FIG. 18.5
In the Properties
Window, change the
Run option and select
Close on Exit.

Now, if you double-click the Clock icon, the application starts without the obtrusive DOS win-
dow.

The other method of adding an application to Windows requires that you know the following:

■ Where java.exe is located. Alternatively, java.exe must be in the path.

■ Where the rt.jar file is located.

■ Where your new application is located.

Untitled-6 9/22/98, 4:10 PM319

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

320 Chapter 18 Managing Applications

First, select the folder in which you want your new application to appear. Then create a new
shortcut, as described in the preceding section. When you are prompted to enter the command
line option, however, enter the following line as seen in Figure 18.6:

c:\java\bin\javaw.exe -classpath c:\java\jre\lib\rt.jar;c:\appDir\
applicationClass

FIG. 18.6
In the Shortcut window,
enter the complete
command line.

You want to replace all the directories and the class name with ones that apply to your applica-
tion. If your application does not seem to load, try using java.exe instead of javaw.exe.
javaw.exe is an alternative version of java that returns right away and ignores all the error
messages that ordinarily are generated when an application starts. javaw.exe is great for dis-
tracting your users from what is going on, but it makes it difficult to see what is really happen-
ing when things don’t work correctly.

Installing Applications from a .jar File
With the advent of JDK 1.1, support was added to deliver Java applications with a single .jar file.
This addition makes it easier to deliver an application because only the .jar file and the wrapper
are required.

When you install an application from a .jar file, be aware of the following things:

■ When you run an application from a .jar file, you must include the file in the CLASSPATH
environment variable. You must actually specify the .jar file, not just the path in which the
file is located.

■ When you include multiple applets in your CLASSPATH variable, make sure that the
applications you are installing do not use classes that have the same name but refer to
different classes.

The second point here is important. Suppose that you have the applet SkyTune installed in
CLASSPATH. SkyToon, which calculates the likelihood that the sky will fall today, has a class
called Tune, which deals with the color of the sky. You also have an applet called CDTunes
installed; you use this applet to play music CDs in your CD-ROM drive. CDTunes has a class
called Tune that handles all the audio input and output from the CD. What happens in this
situation where two applications have a class called Tune? When you run CDTunes, the Java

Untitled-6 9/22/98, 4:10 PM320

321

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

18

II
Part

Ch

Maintaining Multiple Applications on the Same System

interpreter looks down your classpath, finds the first instance of the class Tune, finds the class
in SkyToons—and chokes.

You can prevent this problem by carefully naming all your classes or putting them in packages.
The best solution, of course, is to use well-named packages. If you are running someone else’s
program, however, there is no guarantee that this problem won’t occur. You need to be aware
of the possibility in case your applications stop working one day. (You may have this problem
when you run applications that come in .class form, too, but the problem is a bit more obvious
when it occurs.)

Now you are ready to install an application sent in .jar format. Although .jar-distributed classes
are somewhat trickier to deal with in a management sense than .class distributions, you have to
make only one change in your wrapper script or batch file.

If you are using UNIX, refer to the script in Listing 18.1, and change

CLASSPATH=”/ns-home/docs/appDir/:$CLASSPATH”

to

CLASSPATH=”/ns-home/docs/appDir/application.zip:$CLASSPATH”

If you are using Windows, refer to the batch file in Listing 18.2 and change

set CLASSPATH = c:\appdir\;%CLASSPATH%

to

set CLASSPATH = c:\appdir\application.jar;%CLASSPATH%

These examples assume that the .jar file you received with the application is called
application.jar. In reality, the file probably is called classes.jar. The examples simply demon-
strate the fact that the file may have any name.

Maintaining Multiple Applications on the Same
System

Maintaining multiple Java applications on a single system is not as simple as maintaining sev-
eral normal programs compiled in binary code, for the following reasons:

■ Java bytecode depends on the Virtual Machine (see Chapter 1, “What Java Can Do for
You”). As a result, changes in the VM can cause bugs to appear and disappear in all your
Java programs.

■ Java programs are not compiled to a single file. Each class for the program is contained
in its own file. Code is installed based on its class name.

■ Java applications that reuse parts of other programs are affected if those other programs
are changed.

You can solve the last two problems yourself. The first problem, however, will have to be re-
solved by the Virtual Machine vendors.

Untitled-6 9/22/98, 4:10 PM321

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH18 LP#4

322 Chapter 18 Managing Applications

Consider an example situation. You have been using a Java-based word processor for months.
One night, you or your system administrator installs a new version of Java (.exe). This new
version of Java is 300 times faster (which is the minimum that you can expect from the next
generation of VMs), but it has an interesting side effect: It switches the characters a and z. This
switch probably is the result of a bug, but what happens to your word processor? Worse, what
happens if you don’t notice the change for a few days, and you have saved several old docu-
ments in the new format? Only one thing can completely prevent such an event: Don’t upgrade
without making absolutely certain that your new Java machine is 100 percent compatible with
previous versions. Developers, working before the final Java release, went through some grow-
ing pains with each new release of the JDK (from JDK pre-beta to JDK beta 1, and so on; never
mind what happened from alpha to beta, 1.02 to 1.1, or now from 1.1 to 1.2). Lest you be scared
off from upgrading your VM, most of the problems were very minor, but they almost always
required a small code change and, if you don’t have the source code, you may not have this
luxury.

The second problem deals with the fact that Java is compiled to files that bear the name
Something.class. Each class for an applet is contained in its own .class file, and each application
can contain dozens of class files.

With each of your Java applications having dozens of classes, it’s often difficult to avoid the
situation where applications don’t just happen to have classes that bear the same name as a
class from another application, and thus the wrong class gets loaded. One solution is to place
the classes in packages and give each of the packages a unique name. What happens, however,
when package names overlap? This situation should not occur if you follow good programming
practice, but the world isn’t perfect.

To prevent this problem from crashing your applications, you should always place the current
application directory or .jar file at the beginning of the classpath list. In situations where there
is code sharing, make sure that the items you include in the CLASSPATH are correct for the
application you are actually running. If you ever think you are pulling the wrong class, strip
your CLASSPATH down to nothing and rebuild it with only the required directories. Ultimately,
though, you have to put your faith in the programmers. As with upgrading your Virtual Ma-
chine, time will tell if good methods are developed to prevent these situations.

Finally, what do you do about applications that share code with other applications or that load
part of their code from the Internet? When you make changes in one application, you must
ensure that the changes are backward-compatible. Normally, code that is being deployed is not
subject to frequent change. But, when you are installing a new version of an application, you
need to make sure that no other programs depend on the code in the old version.

If some programs do depend on code from the old version, maintain the legacy code, just in
case you need to reinstall the code for other applications.

In all, the procedure is not quite as simple as installing a new version of Microsoft Word, but it
isn’t like reinstalling your operating system, either. The key when installing applications is
being aware of the downwind effects that every change will cause. ●

Untitled-6 9/22/98, 4:10 PM322

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTIII LP#2

IIIP A R T

User Interface

19 java.awt: Components 325

20 Exceptions and Events in Depth 363

21 Containers and Layout Managers 405

22 Graphics 431

23 JFC—Java Foundation Classes 465

24 Advanced JFC 499

25 Images 533

26 Java 2D Graphics 563

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTIII LP#2

325

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

C H A P T E R

java.awt: Components

19

In this chapter

Building GUI with java.awt 326

Buttons 326

Using Buttons with the 1.1 Event Model 330

Labels 331

Check Boxes and Radio Buttons 332

Choices 338

Lists 340

Text Fields and Text Areas 347

Scrollbars 352

Canvases 354

Common Component Methods 356

Untitled-8 9/22/98, 4:22 PM325

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

326 Chapter 19 java.awt: Components

Building GUI with java.awt
Components are the building blocks of the AWT. The end-user interacts directly with these
components. The components provided by the AWT are

■ Buttons

■ Text fields

■ Labels

■ Text areas

■ Check boxes

■ Menus

■ Radio buttons

■ Canvases

■ Lists

■ Scrollbars

■ Choices

Figure 19.1 shows a Java applet with a sample of some of the components of the AWT.

Figure 19.2 shows you a portion of the AWT’s inheritance hierarchy.

Buttons
Although buttons are simple mechanisms, they are some of the workhorses of any graphical
interface. You find buttons on toolbars, dialog boxes, windows, and even in other components,
such as scrollbars.

FIG. 19.1
The AWT features a
number of familiar
components.

Frame

Button

Check box

List

Text Field

Menu Bar
Label

Radio Button

Choice

Text Area

Untitled-8 9/22/98, 4:22 PM326

327

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

Creating Buttons
The only decision you must make when creating a button is whether you want the button to be
labeled. There are no other options for buttons.

To create an unlabeled button, use the empty constructor:

public Button()

Creating a labeled button is an equally simple task:

public Button(String label)

After you have created a button, you need to add it to a container. Because an applet is already
a container, you can add a button directly to an applet:

Button myButton = new Button(“Press Me”);

add(myButton);

To change the label of a button, use setLabel:

public void setLabel(String newLabel)

To get the label for a button, use getLabel:

public String getLabel()

You might notice the lack of image buttons—that is, buttons that contain an image instead
of text. These types of buttons are almost a necessity for creating toolbars. Unfortunately,

they are not supported in the AWT. If you want an image button, you have to implement it yourself or
search one of the Java archives on the Internet for someone else’s implementation of an image button.
Alternatively, if you choose to use the Java Foundation Classes (covered in Chapters 23 and 24) the
JButton does have image support. ■

FIG. 19.2
The AWT inherits all its
user interface
components from
Component.

N O T E

Buttons

Untitled-8 9/22/98, 4:22 PM327

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

328 Chapter 19 java.awt: Components

Using Buttons
Now that you can create a button and add it to your applet, it’s time to learn how to make the
button do something. There are two ways to handle events in Java. Under the Java 1.0 event
model, all the components within the AWT have an action method that is called when an ac-
tion is taken on the component. In the case of the button, action is called when the button is
pressed. The action method is similar to some of the event-handling methods you might have
come across already, such as keyDown or mouseDown.

The AWT does not call the action method directly. Instead, it calls the handleEvent
method, which is responsible for handling all the events for a component. The

handleEvent method acts as an event dispatcher. When it receives an Event.ACTION_EVENT
event, it calls the action method. When it receives a KEY_PRESS event, it calls the keyDown
method. If a method called by handleEvent returns a value of false, the handleEvent method
will pass the event up to the handleEvent method in the parent container, which again performs the
same dispatching duties. This process continues until handleEvent calls a method that returns
true, or until the event reaches the topmost container. ■

The format of the action method in all components is

public boolean action(Event event, Object whatAction)

where event is the event that has occurred in the component, and whatAction indicates what
has occurred.

For buttons, whatAction is the label of the button that has been pressed. The event parameter
contains other information specific to the action, such as the component where (event.target)
and when (event.when) the action occurred.

CAUTION

You should always check the event.target variable using the instanceof operator to make sure that
the action is for the object you expect. For instance, if you expect that the action is for a Button, then you
need to make sure that (event.target instanceof Button) is true.

Now that you know how to create a button and check for an action, you can create a button
applet. A very simple example is an applet with buttons that change its background color. One
way to do this is to put the name of the color in the button label. Then, in the action method,
you look at the label of the button that was pressed and set the applet’s background color
based on the label. For example, the button to turn the background blue could be labeled Blue.
The action method would set the background to blue if the button’s label was Blue. The applet
in Listing 19.1 demonstrates how to do this.

Listing 19.1 Source Code for Button1Applet.java

import java.applet.*;
import java.awt.*;

N O T E

Untitled-8 9/22/98, 4:22 PM328

329

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

// Example 19.1 - Button1Applet
//
// This applet creates two buttons named “Red” and “Blue”. When a
// button is pressed, the background color of the applet is set to
// the color named by that button’s label.
//

public class Button1Applet extends Applet
{
 public void init()
 {
 add(new Button(“Red”));

 add(new Button(“Blue”));

 }

 public boolean action(Event evt, Object whatAction)
 {
// Check to make sure this is a button action. If not,
// return false to indicate that the event has not been handled.
 if (!(evt.target instanceof Button))
 {
 return false;
 }
 String buttonLabel = (String) whatAction;

 if (buttonLabel == “Red”)
 {
 setBackground(Color.red);
 }
 else if (buttonLabel == “Blue”)
 {
 setBackground(Color.blue);
 }
 repaint(); // Make the change visible immediately
 return true;
 }
}

Figure 19.3 shows you the Button1Applet in operation.

When you compile this application with JDK 1.2 (or JDK 1.1, for that matter), you get a
warning that reads

Note: Button1Applet.java uses or overrides a deprecated API.
Recompile with “-d “ for details.
1 warning

This error is caused because JavaSoft has marked the action method to be removed from the API at
some point in the future. For now, action will continue to work, but there is no guarantee that it will
work in future additions of Java. ■

N O T E

Buttons

Untitled-8 9/22/98, 4:22 PM329

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

330 Chapter 19 java.awt: Components

Using Buttons with the 1.1 Event Model
The Java 1.0 event model does not promote good object-oriented design. In the case of the
Button1Applet, all the application logic is in the applet itself. There really isn’t any part of this
example that you can reuse as a compiled unit. You would have to cut and paste pieces out of
the example to reuse any part of it.

Although there is a slightly better way to approach the application under Java 1.0, the Java 1.1
event model (which carries through in Java 1.2) makes it much easier to make a reusable piece
of the application. The 1.1 model relies on a model of Listeners and Adaptors. This allows you
to decentralize your program control. Ideally, your applet should just create some objects and
set them in motion, occasionally handling things that come up.

In Button1Applet, the main action is the setting of the applet’s background color. Under the 1.1
event model, you can create an object that listens for actions, such as the button being pressed,
and responds to those actions by setting the background color of the applet. Because any com-
ponent can have its background color changed, it seems silly to restrict the object to only
changing applets. Listing 19.2 shows the BGSetter object that reacts to an action event by
changing the background color on a specific component.

Listing 19.2 Source Code for BGSetter.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

// This class listens for an action event and then changes the
// background color of a specified component.

public class BGSetter extends Object implements ActionListener
{

FIG. 19.3
The buttons in
Button1Applet
change the applet’s
background color.

Untitled-8 9/22/98, 4:23 PM330

331

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

 Component component;
 Color color;

 public BGSetter(Component component, Color color)
 {
 this.component = component;
 this.color = color;
 }

 public void actionPerformed(ActionEvent evt)
 {
 component.setBackground(color);
 component.repaint();
 }
}

Now all the applet needs to do is create some buttons and some BGSetters. Listing 19.3 shows
the new version of the applet. Notice that an instance of BGSetter is set as an ActionListener
for red.

Listing 19.3 Source Code for Button2Applet.java

import java.applet.*;
import java.awt.*;

public class Button2Applet extends Applet
{
 public void init()
 {
 Button red = new Button(“Red”);
 add(red);
 red.addActionListener(new BGSetter(this, Color.red));

 Button blue = new Button(“Blue”);
 add(blue);
 blue.addActionListener(new BGSetter(this, Color.blue));
 }
}

Labels
Labels are the simplest of the AWT components. They are text strings that are used only for
decoration. Because they are components, labels have an action method, but because they are
display only, they do not generate an action event.

There are three different ways to create a label. The simplest is to create an empty label:

public Label()

Labels

Untitled-8 9/22/98, 4:23 PM331

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

332 Chapter 19 java.awt: Components

Of course, an empty label isn’t going to do you much good because there is nothing to see. You
can create a label with some text by passing the text to the constructor:

public Label(String labelText)

Labels can be left-justified, right-justified, or centered. The variables Label.LEFT, Label.RIGHT,
and Label.CENTER can be used to set the alignment of a label when you create it:

public Label(String labelText, int alignment)

Here is an example of how to create a right-justified label:

Label myLabel = new Label(“This is a right-justified label”, Label.RIGHT);

You can change the text of a label with setText:

public void setText(newLabelText)

You can also get the text of a label with getText:

public String getText()

You can change the alignment of a label with setAlignment:

public void setAlignment(int alignment)
throws IllegalArgumentException

You can also get the alignment of a label with getAlignment:

public int getAlignment()

Figure 19.4 shows you a sample label.

Check Boxes and Radio Buttons
Check boxes are similar to buttons except that they are used as yes/no or on/off switches.
Every time you click a check box, it changes from off to on or from on to off. A close cousin to
the check box is the radio button. Radio buttons are also on/off switches, but they are ar-
ranged in special, mutually exclusive groups where only one button in a group can be on at a
time. Imagine what a radio would sound like if more than one station could be on at a time!

Creating Check Boxes
A check box contains two parts: a label and a state. The label is the text that is displayed next
to the check box itself, while the state is a Boolean variable that indicates whether the box is
checked. By default, the state of a check box is false, or off.

FIG. 19.4
Labels are simply text
strings.

Untitled-8 9/22/98, 4:23 PM332

333

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

The Checkbox class has five constructors:

public Checkbox()

creates a check box with no label.

public Checkbox(String label)

creates a labeled check box.

public Checkbox(String label, boolean state)

creates a check box with the specified label and initial state (if the state is true, the check box
is checked initially).

public Checkbox(String label, boolean initialState, CheckboxGroup group)

and

public Checkbox(String label, CheckboxGroup group, boolean initialState)

create a labeled check box that is checked if initialState is true. The group parameter indi-
cates what check box group this check box belongs to. The CheckboxGroup class allows you to
group check boxes into mutually exclusive radio buttons. If you are creating a check box and
not a radio button, pass null as the group.

Checking and Setting the State of a Check Box
You can check whether a check box has been checked by using getState:

public boolean getState()

For example:

if (myCheckbox.getState()) {
// The box has been checked
} else {
// The box has not been checked
}

On the other hand, you can also set the state of the check box using the setState(boolean)
method. To cause the check box to be checked, you can use the following:

MyCheckBox(true);

Listening to Changes in the Check Box
Like Button, you can monitor changes in Checkbox using the 1.0 event model action methods.
However, the preferred method is to use the ItemListener. Checkbox has two related methods
to add and remove listeners:

addItemListener((ItemListener)

removeItemListner(ItemListener)

Check Boxes and Radio Buttons

Untitled-8 9/22/98, 4:23 PM333

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

334 Chapter 19 java.awt: Components

The java.awt.Event.ItemListener interface has a single method
(itemStateChanged(ItemEvent)). Listing 19.4 shows a simple example of using check boxes.
Note the user of the inner adapter class that implements ItemListener.

Listing 19.4 Source Code for CheckBoxExample.java

/*
 *
 * CheckBoxExample
 *
 */

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class CheckboxExample extends Applet
{
 public void init()
 {

 Checkbox redBlue = new Checkbox(“Red/Blue”);
 add(redBlue);
 //Add an ItemListener to the red checkbox.
 //Note, the ItemListener that is added here is
 //actually an inner class.
 redBlue.addItemListener(new ItemListener(){
 public void itemStateChanged(ItemEvent evt){
 if (evt.getStateChange()==ItemEvent.SELECTED)
 setColor(Color.red);
 else
 setColor(Color.blue);
 }
 });

 }

 public void setColor(Color color){
 setBackground(color);
 repaint();
 }
}

In Listing 19.4, the listener that is added is an inner class. Unlike the Button2Applet example
in Listings 19.3 and 19.4, this does not require two separate .java files. Although this limits the
reuse of the event handling mechanisms, it is often useful to define the event routines with the
components declaration.
◊ See Chapter 11, “Classes,” for more information on inner classes, p. 157.

Untitled-8 9/22/98, 4:23 PM334

335

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

Creating Radio Buttons
A radio button is just a special case of a check box. No RadioButton class exists. Instead, you
create a set of radio buttons by creating check boxes and putting them in the same check box
group. The constructor for CheckboxGroup takes no arguments:

public CheckboxGroup()

After you have created a check box group, you add check boxes to the group by passing the
group to the check box constructor. In other words, instead of adding existing check boxes to
a group explicitly, you create new check boxes that belong to the group.

Listing 19.5 creates a check box group, creates some check boxes that belong to the group,
and then adds them to the applet.

Listing 19.5 RadioExample.java Creates a Group of Check Boxes

import java.awt.*;
import java.applet.*;

public class RadioExample extends Applet{
 public void init(){
 //create the CheckboxGroup, all the checkboxes
 //will be a member of this group
 CheckboxGroup myCheckBoxGroup = new CheckboxGroup();

 //create the checkboxes, making them members of the group
 Checkbox cb1 = new Checkbox(“Favorite language is Java”,
 myCheckboxGroup, true)
 Checkbox cb2 = new Checkbox(“Favorite language is Visual Cobol”,
 myCheckboxGroup, false);
 Checkbox cb3 = new Checkbox(“Favorite language is Backtalk”,
myCheckboxGroup, false);

 //add the checkboxes to the applet
 add(cb1);
 add(cb2);
 add(cb3);
 }
}

When you add check boxes to a checkbox group, the last check box added as true is
the box that is checked when the group is displayed. ■

You can find out which radio button is selected by either calling getState on each check box or
calling getSelectedCheckbox on the CheckboxGroup. The getSelectedCheckbox method re-
turns the check box that is currently selected:

public Checkbox getSelectedCheckbox()

N O T E

Check Boxes and Radio Buttons

Untitled-8 9/22/98, 4:23 PM335

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

336 Chapter 19 java.awt: Components

For users of Java 1.0, you need to use the getCurrent() and setCurrent() methods
instead of getSelectedCheckbox() and setSelectedCheckbox(), respectively. ■

Using Radio Buttons
An item event for a check box or radio button is called whenever it is clicked. As with check
boxes, you must create an object that implements the ItemListener interface to find out when
a radio button has been selected.

The itemStateChanged method, which is called when a check box or radio button is selected
or deselected, is passed an ItemEvent object.

The ItemEvent object can tell you the object where the event occurred, the item selected, and
the kind of selection. The getItemSelectable returns the object where the event occurred:

public ItemSelectable getItemSelectable()

The getItem method in ItemEvent tells you the value of the selected item. In this case, it re-
turns the label of the check box or radio button:

public Object getItem()

As you saw in Listing 19.4, the getStateChange method returns either ItemEvent.SELECTED or
ItemEvent.DESELECTED, depending on whether the object has been selected or deselected:

public int getStateChange()

Listing 19.6 shows how you can receive notification of a change in a radio button and determine
which item was selected. Notice the use of the event variable in the
myItemListener.itemStateChanged method.

Listing 19.6 Source code for RadioExample.java

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class RadioExample extends Applet{
 public void init(){
 //create the CheckboxGroup, all the checkboxes
 //will be a member of this group
 CheckboxGroup myCheckboxGroup = new CheckboxGroup();

 //create the checkboxes, making them members of
 //the group
 Checkbox cb1 = new Checkbox(“Favorite language is
➥Java”, myCheckboxGroup, true);
 Checkbox cb2 = new Checkbox(“Favorite language is
➥Visual Cobol”, myCheckboxGroup, false);
 Checkbox cb3 = new Checkbox(“Favorite language is
➥Backtalk”, myCheckboxGroup, false);

 //add the checkboxes to the applet

N O T E

Untitled-8 9/22/98, 4:23 PM336

337

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

 add(cb1);
 add(cb2);
 add(cb3);

 //create an ItemListner, NOTE: myItemListener is defined
 //in listing 19.6
 ItemListener listener = new myItemListener();

 //add listener to the checkboxes item list
 cb1.addItemListener(listener);
 cb2.addItemListener(listener);
 cb3.addItemListener(listener);
 }
}

class myItemListener implements ItemListener{
 public void itemStateChanged(ItemEvent event)
 {
 if (event.getStateChange() == ItemEvent.SELECTED) {
 System.out.println(event.getItem() + “ has been selected.”);
 } else {
 System.out.println(event.getItem() + “ has been deselected.”);
 }
 }
}

TROUBLE SHOOTING

Remember that the 1.1 events are contained in the java.awt.event package. This means that you must
import both the java.awt and java.awt.event packages when creating a class that implements one of
the listeners. If you fail to do this, you receive an error:

RadioExample.java:31: Interface ItemListener of class myItemListener not found.
class myItemListener implements ItemListener{
 ^
RadioExample.java:21: Class ItemListener not found in type declaration.
 ItemListener listener = new myItemListener();
 ^
2 errors

Under the Java 1.0 event model, the whichAction parameter of the action method is
an instance of a Boolean class that is true if the check box was clicked on or false if

the check box was clicked off.

If you create an action method for a radio button, you should not rely on the whichAction
parameter to contain the correct value. If a radio button is clicked when it is already on, the
whichAction contains a false value, even though the button is still on. You are safer using the
getState method to check the state of the radio button or the check box.

N O T E

continues

Check Boxes and Radio Buttons

Untitled-8 9/22/98, 4:23 PM337

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

338 Chapter 19 java.awt: Components

You can also use the getLabel method to determine which check box has been checked. The
following code fragment shows an action method that responds to a box being checked and retrieves
the current state of the box:

public boolean action(Event evt, Object whichAction)
{
 if (evt.target instanceof Checkbox) // make sure this is a check box
 {
 Checkbox currentCheckbox = (Checkbox)evt.target;
 boolean checkboxState = currentCheckbox.getState();

 if (currentCheckbox.getLabel() == “Check me if you like Java”)
 {
 if (checkboxState)
 {
 // Code to handle “Check me if you like Java” being set to on
 } else {
 // Code to handle “Check me if you like Java” being set to off
 }
 return true; // the event has been handled
 }
 }
 return false; // the event has not been handled
} ■

Figure 19.5 shows you some check boxes and a group of three radio buttons.

continued

Choices
The Choice class provides a pop-up menu of text string choices. The current choice is dis-
played as the menu title.

FIG. 19.5
Check boxes are square
boxes with checks in
them. Radio buttons are
round and checked with
dots.

Untitled-8 9/22/98, 4:23 PM338

339

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

Creating Choices
To create a choice pop-up menu, you must first create an instance of the Choice class. Because
there are no options for the choice constructor, the creation of a choice should always look
something like this:

Choice myChoice = new Choice();

After you have created the choice, you can add string items using the addItem method:

public synchronized void addItem(String item)
throws NullPointerException

For example:

myChoice.addItem(“Moe”);
myChoice.addItem(“Larry”);
myChoice.addItem(“Curly”);

You can also remove items from the choice list by using either of the following methods:

public synchronized void remove(int position)
public synchronized void removeAll()

To change the item that is currently selected programmatically, you can use

public synchronized void select(int pos)
throws IllegalArgumentException

public void select(String str)

If you want Curly to be selected, for instance, you could select him by name:

myChoice.select(“Curly”); // Make “Curly” become selected item

You could also select Curly by his position in the list. Because he was added third and the
choices are numbered starting at 0, Moe would be 0, Larry would be 1, and Curly would be 2:

myChoice.select(2); // Make the third list entry become selected

The getSelectedIndex method returns the position of the selected item:

public int getSelectedIndex()

Again, if Curly was selected, getSelectedIndex would return 2. Similarly, the
getSelectedItem method returns the string name of the selected item:

public String getSelectedItem()

If Curly was selected, getSelectedItem would return Curly.

If you have an index value for an item and you want to find out the name of the item at that
index, you can use getItem:

public String getItem(int index)

Figure 19.6 shows a choice in its usual form, while Figure 19.7 shows a choice with its menu of
choices pulled down.

Choices

Untitled-8 9/22/98, 4:23 PM339

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

340 Chapter 19 java.awt: Components

Using Choices
Like radio buttons, check boxes, and other components that generate item events, you need to
set up an ItemListener object to handle action events from a Choice object. An item event is
generated whenever a choice is selected, even if it is the same choice.

Under the 1.0 event model, the action method for a choice is called whenever a choice
is made, even if it is the same choice. The whatAction parameter contains the name of

the selected item. The following code fragment gives an example action method for a choice where
the selection is stored in a String variable within the applet:

String currentStooge;

public boolean action(Event event, Object whatAction)
{
 // Check to make sure this is a choice object, if not
 // indicate that the event has not been handled.
 if (!(event.target instanceof Choice))
 {
 return false;
 }
 Choice whichChoice = (Choice) event.target;
 // See if this is an action for myChoice
 if (whichChoice == myChoice)
 {
 currentStooge = (String) whatAction;
 return true; // the event has been handled
 }
 return false; // it must have been a different Choice
} ■

Lists
The List class allows you to create a scrolling list of values that can be selected either individu-
ally or many at a time. You can add and delete items from the list at any time, and even change
which items are selected. The AWT handles all the scrolling for you.

FIG. 19.6
The choice box displays
its current selection.

FIG. 19.7
The button on the right
of a choice pops up a
menu of the possible
choices.

N O T E

Untitled-8 9/22/98, 4:23 PM340

341

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

Creating Lists
You have three options when creating a list. The default constructor for the List class allows
you to create a list that does not allow multiple selections:

public List()

You can also set the number of list entries that are visible in the list window at any one time:

public List(int rows)

Finally, you can set the number of rows as well as determine whether to allow multiple selec-
tions:

public List(int rows, boolean multipleMode)

The following code fragment creates a list with 10 visible entries and multiple selections turned
on:

List myList = new List(10, true); // True means allow multiple selections

After you have created the list, you can add new entries with the add method:

public synchronized void add (String item)

For example:

myList.add (“Moe”);
myList.add (“Larry”);
myList.add (“Curly”);

You can also add an item at a specific position in the list:

public synchronized void add (String item, int index)

The list positions are numbered from 0, so if you add an item at position 0, it goes to the front
of the list. If you try to add an item at position –1 or at a position higher than the number of
positions, the item will be added to the end of the list. The following code adds Shemp to the
beginning of the list and Curly Joe to the end:

myList.add (“Shemp”, 0); // Add Shemp at position
myList.add (“Curly Joe”, -1); // Add Curly Joe to the end of the list

If you are using Java 1.0, you need to use the addItem() method instead of add(). ■

List Features
The List class provides a number of different methods for changing the contents of the list.
The replaceItem method replaces an item at a given position with a new item:

public synchronized void replaceItem(String newValue, int position)

myList.replaceItem(“Dr. Howard”, 0);
// Replace the first item in the list with “Dr. Howard”

N O T E

Lists

Untitled-8 9/22/98, 4:23 PM341

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

342 Chapter 19 java.awt: Components

You can delete an item in the list with remove:

public synchronized void remove(int position)

You can delete all of the items in the list with the removeAll method:

public synchronized void removeAll()

Java 1.0 users, use delItem() instead of remove() and use clear() instead of
removeAll(). ■

The getSelectedIndex method returns the index number of the currently selected item or –1
if no item is selected:

public synchronized int getSelectedIndex()

You can also get the selected item directly with getSelectedItem:

public synchronized String getSelectedItem()

For lists with multiple selections turned on, you can get all the selections with
getSelectedIndexes:

public synchronized int[] getSelectedIndexes()

The getSelectedItems returns all the selected items:

public synchronized String[] getSelectedItems()

CAUTION

You should only use getSelectedIndex and getSelectedItem on lists without multiple selections. If
you allow multiple selections, you should always use getSelectedIndexes and getSelectedItems.

You select any item by calling the select method with the index of the item you want selected:

public synchronized void select(int index)

If the list does not allow multiple selections, the previously selected item is deselected.

You can deselect any item by calling the deselect method with the index of the item you want
deselected:

public synchronized void deselect(int index)

The isSelected method tells you whether the item at a particular index is selected:

public synchronized boolean isSelected(int index)

For example:

if (myList.isSelected(0)){
 // the first item in the list is selected
}

N O T E

Untitled-8 9/22/98, 4:23 PM342

343

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

You can turn multiple selections on and off with the setMultipleSelections method:

public void setMultipleSelections(boolean allowMultiples)

The isMultipleMode method returns true if multiple selections are allowed:

public boolean isMultipleMode()

For example:

if (myList.isMultipleMode()){
 // multiple selections are allowed
}

Java 1.0 users, use allowsMultipleSelections instead of isMultipleMode(). ■

Sometimes, you might want to make sure a particular item is visible in the list window. You can
do that by passing the index of the item you want to make visible to makeVisible:

public void makeVisible(int index)

For example, suppose the list was positioned on item 0, but you want to make sure item 15 is
showing in the window instead. You would call

myList.makeVisible(15); // Make item 15 in the list visible

Using Lists
The List object generates an ItemEvent whenever an item is selected or deselected. The
getItem method in the ItemEvent returns the index of the selected item and not the item itself.
The List object generates an action event when you double-click an item. The
getActionCommand method in the ActionEvent returns the string label of the item selected.

Listing 19.7 shows a complete example. Notice the ItemListener inner class, which handles
the events.

Listing 19.7 Using Lists

// This applet creates a scrolling list with several choices and
// informs you of selections and deselections using a label.
//

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class ListExample extends Applet {
 Label listStatus;
 List scrollingList;

 public void init() {

N O T E

continues

Lists

Untitled-8 9/22/98, 4:23 PM343

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

344 Chapter 19 java.awt: Components

 // First, create the List

 scrollingList = new List(3, true);
 // Now add a few items to the list
 scrollingList.add(“Moe”);
 scrollingList.add(“Larry”);
 scrollingList.add(“Curly”);
 scrollingList.add(“Shemp”);
 scrollingList.add(“Curly Joe”);

 // Set Shemp to be selected
 scrollingList.select(3);

 // Finally, add the list to the applet
 add(scrollingList);

 // Now create a label to show the last event that occurred
 listStatus = new Label(“You selected entry Shemp”);
 add(listStatus);

 scrollingList.addItemListener(new ItemListener(){
 public void itemStateChanged (ItemEvent evt){
 String selectionString;
 String selection;
 int selectionNum;

 if (evt.getStateChange() == ItemEvent.SELECTED){
 // selection is the index of the selected item
 selectionNum = ((Integer)evt.getItem()).intValue();
 selection = scrollingList.getItem(selectionNum);
 // use getItem to get the actual item.
 SelectionString = You selected entry “ + selection;
 // Update the label
 listStatus.setText(selectionString);
 } else {
 // If this is a deselection, get the deselected item
 // selection is the index of the selected item
 selectionNum = ((Integer)evt.getItem()).intValue();
 selection = scrollingList.getItem(selectionNum);
 // use getItem to get the actual item.
 SelectionString = “You deselected entry “ + selection;
 // Update the label
 listStatus.setText(selectionString);
 }
 }
 });
 }
}

Listing 19.7 Continued

Untitled-8 9/22/98, 4:23 PM344

345

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

If you are using the 1.0 event model, unlike the previous user interface components you
have encountered in the Java 1.0 event model, the List class does not make use of the

action method. Instead, you must use the handleEvent method to catch list selection and
deselection events. The handleEvent method is called whenever you select or deselect an item in a
list. The format of handleEvent is

public boolean handleEvent(Event event)

When an item on a list is selected, event.id will be equal to Event.LIST_SELECT, and
event.arg will be an instance of an integer whose value is the index of the selected item. The
deselect event is identical to the select event except that event.id is Event.LIST_DESELECT.
LIST_SELECT and LIST_DESELECT are declared in the Event class as static variables, as are all
other event types.

The applet in Listing 19.8 sets up a list containing several values and uses a label to inform you
whenever an item is selected or deselected. ■

Listing 19.8 Source Code for ListApplet.java

// Example 19.8 - ListApplet
//
// This applet creates a scrolling list with several choices and
// informs you of selections and deselections using a label.
//

import java.applet.*;
import java.awt.*;

public class ListApplet extends Applet
{
 Label listStatus;
 List scrollingList;

 public void init()
 {

// First, create the List

 scrollingList = new List(3, true);

// Now add a few items to the list

 scrollingList.addItem(“Moe”);

 scrollingList.addItem(“Larry”);

 scrollingList.addItem(“Curly”);

 scrollingList.addItem(“Shemp”);

 scrollingList.addItem(“Curly Joe”);

N O T E

continues

Lists

Untitled-8 9/22/98, 4:23 PM345

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

346 Chapter 19 java.awt: Components

// Set Shemp to be selected

 scrollingList.select(3);

// Finally, add the list to the applet

 add(scrollingList);
// Now create a label to show the last event that occurred

 listStatus = new Label(“You selected entry Shemp”);
 add(listStatus);

 }

 public boolean handleEvent(Event evt)
 {
 String selectionString;
 Integer selection;

// Since you are handling events in the applet itself,
// you need to check to make sure the event is for the scrollingList.

 if (evt.target == scrollingList)
 {

// Check to see if this is a selection event

 if (evt.id == Event.LIST_SELECT)
 {
// selection is the index of the selected item
 selection = (Integer) evt.arg;
// use getItem to get the actual item.
 selectionString = “You selected entry “+
 scrollingList.getItem(
 selection.intValue());
// Update the label
 listStatus.setText(selectionString);
 }
 else if (evt.id == Event.LIST_DESELECT)
 {
// If this is a deselection, get the deselected item
// selection is the index of the selected item
 selection = (Integer) evt.arg;
// use getItem to get the actual item.
 selectionString = “You deselected entry “+
 scrollingList.getItem(
 selection.intValue());
// Update the label
 listStatus.setText(selectionString);
 }
 }
 return true;
 }
}

Listing 19.8 Continued

Untitled-8 9/22/98, 4:23 PM346

347

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

Figure 19.8 shows the output from ListApplet.

Text Fields and Text Areas
The AWT provides two different classes for entering text data—TextField and TextArea. The
TextField class handles only a single line of text, while the TextArea handles multiple lines.
Both of these classes share many similar methods because both are derived from a common
class called TextComponent.

Creating Text Fields
The easiest way to create a text field is with the empty constructor:

public TextField()

The empty constructor creates an empty text field with an unspecified number of columns. If
you want to control how many columns are in the text field, you can do so with

public TextField(int numColumns)

Sometimes you might want to initialize the text field with some text when you create it:

public TextField(String initialText)

Rounding out these combinations is a method for creating a text field that is initialized with text
and has a fixed number of columns:

public TextField(String initialText, int numColumns)

Creating Text Areas
It should come as no surprise that the methods for creating text areas are similar to those for
text fields. In fact, they are identical, except that when giving a fixed size for a text area, you
must give both columns and rows. You can create an empty text area with an unspecified num-
ber of rows and columns by using the empty constructor:

public TextArea()

You can initialize an area that contains some text with

public TextArea(String initialText)

You can give a text area a fixed number of rows and columns with

public TextArea(int numRows, int numColumns)

Finally, you can create a text area that has some initial text and a fixed size with

public TextArea(String initialText, int numRows, int numColumns)

FIG. 19.8
The ListApplet
program lets you select
and deselect list items.

Text Fields and Text Areas

Untitled-8 9/22/98, 4:23 PM347

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

348 Chapter 19 java.awt: Components

Common Text Component Features
TextArea actually extends a class called TextComponent (along with TextField). The
TextComponent abstract class implements a number of useful methods that can be used on
either TextArea or TextField classes.

You will probably want to put text into the component at some point. You can do that with
setText:

public void setText(String newText)

You will certainly want to find out what text is in the component. You can use getText to do
that:

public String getText()

You can find out what text has been selected (highlighted with the mouse) by using
getSelectedText:

public String getSelectedText()

You can also find out where the selection starts and ends. The getSelectionStart and
getSelectionEnd methods return integers that indicate the position within the entire text
where the selection starts and ends:

public int getSelectionStart()

public int getSelectionEnd()

For instance, if the selection started at the very beginning of the text, getSelectionStart
would return 0:

int selectionStart, selectionEnd;
selectionStart = myTextField.getSelectionStart();
selectionEnd = myTextField.getSelectionEnd();

You can also cause text to be selected with the select method:

public void select(int selectionStart, int selectionEnd)

If you want to select the entire text, you can use selectAll as a shortcut:

public void selectAll()

You can also use setEditable to control whether the text in the component can be edited (if
not, it is read only):

public void setEditable(boolean canBeEdited)

The isEditable method returns true if the component is editable or false if it is not:

public boolean isEditable()

Text Field Features
Text fields have some features that text areas do not. The TextField class allows you to set an
echo character that is printed instead of the character that was typed. Echo characters are

Untitled-8 9/22/98, 4:23 PM348

349

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

useful when making fields for entering passwords where you might make * the echo character.
That way, you don’t see the password on the screen—only a line of asterisks. Setting up an
echo character is as easy as calling setEchoCharacter:

public void setEchoChar(char ch)

One of the most common uses of setEchoChar is printing asterisks for a password. The follow-
ing code fragment sets the echo character to an asterisk:

myTextField.setEchoCharacter(‘*’); // Print *s in place of what was typed

You can find out the echo character for a field with getEchoChar:

public char getEchoChar()

The echoCharIsSet method returns true if an echo character is set for the field or false if not:

public boolean echoCharIsSet()

Finally, you can find out how many columns are in the text field (how many visible columns,
not how much text is there) by using the getColumns method:

public int getColumns()

Text Area Features
Text areas also have their own special features. Text areas are usually used for editing text, so
they contain some methods for inserting, appending, and replacing text. You can add text to
the end of the text area with appendText:

public void appendText(String textToAdd)

You can also insert text at any point in the current text with insertText. For instance, if you
add text at position 0, you add it to the front of the area:

public void insertText(String newText, int position)

You can also use replaceText to replace portions of the text:

public void replaceText(String str, int start, int end)

Here is an example that uses the getSelectionStart and getSelectionEnd functions from
TextComponent to replace selected text in a TextArea with “[CENSORED]”:

myTextArea.replaceText(“[CENSORED]”, myTextArea.getSelectionStart(),
myTextArea.getSelectionEnd());

Finally, you can find out the number of columns and the number of rows in a text area with
getColumns and getRows:

public int getColumns()
public int getRows()

Using Text Fields and Text Areas
Like the List class, the TextArea class does not use the action method. However, in this case,
you probably do not need to use the handleEvent method, either. The events you would get for

Text Fields and Text Areas

Untitled-8 9/22/98, 4:23 PM349

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

350 Chapter 19 java.awt: Components

the TextArea would be keyboard and mouse events, and you want the TextArea class to handle
those itself. What you should do instead is create a button for users to press when they have
finished editing the text. Then you can use getText to retrieve the edited text.

The TextField class either generates an ActionEvent or uses the action method (depending
on whether you’re using the Java 1.1 or Java 1.0 event model) only when the user presses Re-
turn. You may find this useful, but again, you could create a button for the user to signal that he
or she finished entering the text (especially if a number of text fields must be filled out).

Listing 19.9 creates two text fields—a text area with an echo character defined, and a text area
that displays the value of the text entered in one of the text fields.

Listing 19.9 Two Text Fields

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

// TextFieldExample
// This applet creates some text fields and a text area
// to demonstrate the features of each.
//

public class TextFieldExample extends Applet
{
 protected TextField passwordField;

 protected TextArea textArea;

 public void init()
 {
 passwordField = new TextField(10); // 10 columns
 passwordField.setEchoChar(‘*’); // print ‘*’ for input
 add(passwordField);

 textArea = new TextArea(5, 40); // 5 rows, 40 cols
 textArea.append(“This is some initial text for the text area.”);
 textArea.select(5, 12); // select “is some”

 add(textArea);

 passwordField.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent event){
 // Now, change the text in the textArea to “Your password is: “
 // followed by the password entered in the passwordField
 textArea.setText(“Your password is: “+ event.getActionCommand());
 }
 });
 }
}

Listing 19.10 shows how to create Listing 19.9 with the 1.0 event model. ■N O T E

Untitled-8 9/22/98, 4:23 PM350

351

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

Listing 19.10 Source Code for TextApplet.java

import java.awt.*;
import java.applet.*;

// TextApplet
// This applet creates some text fields and a text area
// to demonstrate the features of each.
//

public class TextApplet extends Applet
{
 protected TextField inputField;
 protected TextField passwordField;

 protected TextArea textArea;

 public void init()
 {
 inputField = new TextField(); // unspecified size
 add(inputField);

 passwordField = new TextField(10); // 10 columns
 passwordField.setEchoCharacter(‘*’); // print ‘*’ for input
 add(passwordField);

 textArea = new TextArea(5, 40); // 5 rows, 40 cols
 textArea.appendText(
 “This is some initial text for the text area.”);
 textArea.select(5, 12); // select “is some”

 add(textArea);
 }

// The action method looks specifically for something entered in the
// password field and displays it in the textArea

 public boolean action(Event evt, Object whichAction)
 {
// Check to make sure this is an event for the passwordField
// if not, signal that the event hasn’t been handled
 if (evt.target != passwordField)
 {
 return false; // Event not handled
 }

// Now, change the text in the textArea to “Your password is: “
// followed by the password entered in the passwordField

 textArea.setText(“Your password is: “+
 event.getText());
 return true; // Event has been handled
 }
}

Text Fields and Text Areas

Untitled-8 9/22/98, 4:23 PM351

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

352 Chapter 19 java.awt: Components

If, at some point, you want to receive notification of all keyboard activity, you can use another
type of event listener: the TextListener. TextListener’s method is
textValueChanged(TextEvent), and because addTextListener() is a TextComponent method,
you can add TextListeners to either TextFields or TextAreas.

Scrollbars
The Scrollbar class provides a basic interface for scrolling that can be used in a variety of
situations. The controls of the scrollbar manipulate a position value that indicates the
scrollbar’s current position. You can set the minimum and maximum values for the scrollbar’s
position as well as its current value. The scrollbar’s controls update the position in three ways:

■ line

■ page

■ absolute

The arrow buttons at either end of the scrollbar update the scrollbar position with a line up-
date. You can tell the scrollbar how much to add to the position (or subtract from it). For a line
update, the default is 1.

A page update is performed whenever the mouse is clicked on the gap between the slider
button and the scrolling arrows. You may also tell the scrollbar how much to add to the posi-
tion for a page update.

The absolute update is performed whenever the slider button is dragged in one direction or
another. You have no control over how the position value changes for an absolute update, ex-
cept that you can control the minimum and maximum values.

An important aspect of the Scrollbar class is that it is only responsible for updating its own
position. It is unable to cause any other component to scroll. If you want the scrollbar to scroll a
canvas up and down, you must add code to detect when the scrollbar changes and update the
canvas as needed.

Creating Scrollbars
You can create a simple vertical scrollbar with the empty constructor:

public Scrollbar()

You can also specify the orientation of the scrollbar as either Scrollbar.HORIZONTAL or
Scrollbar.VERTICAL:

public Scrollbar(int orientation)

You can create a scrollbar with a predefined orientation, position, page increment, minimum
value, and maximum value:

public Scrollbar(int orientation, int position, int pageIncrement,
int minimum, int maximum)

Untitled-8 9/22/98, 4:23 PM352

353

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

The following code creates a vertical scrollbar with a minimum value of 0, a maximum value of
100, a page size of 10, and a starting position of 50:

Scrollbar myScrollbar = new Scrollbar(Scrollbar.VERTICAL, 50, 10, 0, 100);

Scrollbar Features
You can set the scrollbar’s line increment with setUnitIncrement:

public void setUnitIncrement(int increment)

You can query the current line increment with getUnitIncrement:

public int getUnitIncrement()

You can set the page increment with setBlockIncrement:

public void setBlockIncrement()

You can also query the page increment with getBlockIncrement.

public int getBlockIncrement()

You can find out the scrollbar’s minimum and maximum position values with getMinimum and
getMaximum:

public int getMinimum()

public int getMaximum()

The setValue method sets the scrollbar’s current position:

public void setValue()

You can query the current position with getValue:

public int getValue()

The getOrientation method returns Scrollbar.VERTICAL if the scrollbar is vertical or
Scrollbar.HORIZONTAL if it is horizontal:

public int getOrientation()

You can also set the position, page increment, minimum value, and maximum value with
setValues:

public void setValue(int position, int pageIncrement,
int minimum, int maximum)

FIG. 19.9
Text fields and text
areas allow the entry of
text.

Scrollbars

Untitled-8 9/22/98, 4:24 PM353

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

354 Chapter 19 java.awt: Components

The following code sets the position to 75, the page increment to 25, the minimum value to 0,
and the maximum value to 500:

myScrollbar.setValues(75, 25, 0, 500);

Using Scrollbars
The Scrollbar class generates AdjustmentEvents and sends them to an AdjustmentListener
object. The lone method defined by the AdjustmentListener interface is
adjustmentValueChanged:

public void adjustmentValueChanged(AdjustmentEvent event)

A scrollbar can change three ways—in single units, in block units, or by absolute positioning
(tracking). A single unit adjustment occurs when you click the arrows at either end of the
scrollbar. A block adjustment occurs when you click the area between an arrow and the slider.
An absolute adjustment occurs when you drag the slider around.

The getAdjustmentType in the AdjustmentEvent object returns either
AdjustmentEvent.UNIT_INCREMENT, AdjustmentEvent.UNIT_DECREMENT,
AdjustmentEvent.BLOCK_INCREMENT, AdjustmentEvent.BLOCK_DECREMENT, or
AdjustmentEvent.Track:

public int getAdjustmentType()

Like the List class, the Scrollbar class does not make use of the action method under the
Java 1.0 event model. You must use the handleEvent method to determine when a scrollbar has
moved. The possible values of evt.id for events generated by the Scrollbar class are

■ Event.SCROLL_ABSOLUTE when the slider button is dragged

■ Event.SCROLL_LINE_DOWN when the up arrow or left arrow button (depending on the
scrollbar’s orientation) is pressed

■ Event.SCROLL_LINE_UP when the down arrow or right arrow button (depending on the
scrollbar’s orientation) is pressed

■ Event.SCROLL_PAGE_DOWN when the user clicks in the area between the slider and the
bottom or left arrow

■ Event.SCROLL_PAGE_UP when the user clicks in the area between the slider and the top
or right arrow

You may not care which of these events is received. In many cases, you may only need to know
that the scrollbar position is changed. You would call the getValue method to find out the new
position.

Canvases
The Canvas class is a component with no special functionality. It is mainly used for creating
custom graphic components. You create an instance of a Canvas with

Canvas myCanvas = new Canvas();

Untitled-8 9/22/98, 4:24 PM354

355

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

However, you will almost always want to create your own special subclass of Canvas that does
whatever special function you need. You should override the Canvas paint method to make
your Canvas do something interesting.

By default, a Canvas has no size. This is very inconvenient when you are using a layout
manager that needs to have some idea of a component’s required size. At the minimum,

you should implement your own size method in a canvas. It is even nicer to implement minimumSize
and preferredSize. ■

Listing 19.11 creates a CircleCanvas class that draws a filled circle in a specific color.

Listing 19.11 Source Code for CircleCanvas.java

import java.awt.*;

// Example 29.6 CircleCanvas class
//
// This class creates a canvas that draws a circle on itself.
// The circle color is given at creation time, and the size of
// the circle is determined by the size of the canvas.
//

public class CircleCanvas extends Canvas
{
 Color circleColor;

// When you create a CircleCanvas, you tell it what color to use.

 public CircleCanvas(Color drawColor)
 {
 circleColor = drawColor;
 }

 public void paint(Graphics g)
 {
 int circleDiameter, circleX, circleY;
Dimension currentSize = getSize();

// Use the smaller of the height and width of the canvas.
// This guarantees that the circle will be drawn completely.

 if (currentSize.width < currentSize.height)
 {
 circleDiameter = currentSize.width;
 }
 else
 {
 circleDiameter = currentSize.height;
 }

N O T E

continues

Canvases

Untitled-8 9/22/98, 4:24 PM355

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

356 Chapter 19 java.awt: Components

 g.setColor(circleColor);

// The math here on the circleX and circleY may seem strange. The x and y
// coordinates for fillOval are the upper-left coordinates of the rectangle
// that surrounds the circle. If the canvas is wider than the circle, for
// instance, we want to find out how much wider (i.e. width - diameter)
// and then, since we want equal amounts of blank area on both sides,
// we divide the amount of blank area by 2. In the case where the diameter
// equals the width, the amount of blank area is 0.

 circleX = (currentSize.width - circleDiameter) / 2;
 circleY = (currentSize.height - circleDiameter) / 2;

 g.fillOval(circleX, circleY, circleDiameter, circleDiameter);
 }
}

The CircleCanvas is only a component, not a runnable applet. In the next chapter, in the sec-
tion “Grid Bag Layouts,” you use this new class in an example of using the GridBagLayout
layout manager.

Common Component Methods
The Component class defines a large number of methods that are common to all AWT compo-
nents and containers. Almost all of the methods deal with either displaying the component or
receiving input events.

Component Display Methods
You can control many simple things in a component, such as the foreground and background
colors, the font, and whether the component is even shown. The setForeground and
setBackground methods change the foreground and background colors of the component:

public void setForeground(Color c)

public void setBackground(Color c)

Although setForeground and setBackground are defined for all components, they may not
always work at the moment as advertised under some Java implementations. Many Java imple-
mentations actually rely on the underlying windowing system to draw the components, and
they may not be able to change the foreground and background colors for components easily.

You can query the foreground and background colors of any component with getForeground
and getBackground:

public Color getForeground()

public Color getBackground()

Listing 19.11 Continued

Untitled-8 9/22/98, 4:24 PM356

357

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

The hide and show methods control whether or not a component is visible on the screen.

public void hide()

keeps a component from being displayed. The component still exists, however.

public void show()

makes a component display itself. This method is important for frames because they are hid-
den by default:

public void setVisable(boolean showComponent)

For Java 1.0, the setVisable() method should be replaced with show(). ■

If showComponent is true, the component is displayed. If showComponent is false, the compo-
nent is hidden.

The setFont method changes a component’s font. This method is only useful for components
that display text:

public void setFont(Font f)

You can query a component’s current font with getFont:

public Font getFont()

The Component class also gives you access to the font metrics for a font:

public FontMetrics getFontMetrics(Font font)

Component Positioning and Sizing
The size and position are usually dictated to a component by the layout manager. The compo-
nent can return its preferred and minimum size, but the layout manager still makes the deci-
sion on the actual size. The layout manager also decides a component’s position (its x and y
coordinates). After the layout manager decides the position and size of a component, it invokes
methods in the component to resize and position it.

The getMinimumSize method returns the minimum width and height a component must be
given, while preferredSize returns the preferred width and height:

public Dimension getMinimumSize()

public Dimension preferredSize()

The getSize method returns a component’s actual width and height:

public Dimension getSize()

The setLocation method sets the x and y coordinates for the upper-left corner of the
component’s display area:

public void setLocation(int x, int y)

N O T E

Common Component Methods

Untitled-8 9/22/98, 4:24 PM357

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

358 Chapter 19 java.awt: Components

These coordinates are relative to the parent component’s space. For example, if a component
was moved to 0,0 and its parent was located on the screen at 100,150, the component would
really be drawn at 100,150. Figure 19.10 illustrates the relationship between a component’s
coordinates, the parent’s coordinates, and the real screen coordinates.

Screen location
50,50 Parent Container

90 pixels

70 pixels

Relative location is 70,90
Actual location is 120,140

Child component

If you want to query a component’s position relative to its parent’s display area, use the loca-
tion method:

public Point location()

The getComponentAt method finds the component that contains a particular x,y point:

public Component getComponentAt(int x, int y)

If the point is not within this component, the locate method returns null. If the point is within
this component and the component contains subcomponents, it looks for a child component
that contains the point. If one is found, locate returns that component. If not, it returns the
current component. Note that locate only searches one level deep into the children. After you
get a child component, you can repeat the search.

The following method finds the component on the screen that occupies a particular x,y coordi-
nate. If locate returns a container, it searches through that container’s components until it
finds the correct component.

 public Component findComponent(int x, int y)
 {

 // Find out which component this x,y is inside
 Component whichComp = getComponentAt(x, y);

FIG. 19.10
A component’s
coordinates are relative
to its parent container.

Untitled-8 9/22/98, 4:24 PM358

359

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

 // If the component is a container, descend into the container and
 // find out which of its components contains this x,y

 while (whichComp instanceof Container) {
 // If you have to search within a container, adjust
➥ the x,y to be relative
 // to the container.
 x -= whichComp.getLocation().x;
 y -= whichComp.getLocation().y;
 Component nextComp = whichComp.getComponentAt(x, y);

 // if locate returns the component itself, we’re done
 if (nextComp == whichComp) break;
 whichComp = nextComp;
 }
 return whichComp;
}

If you are using Java 1.0, the methods listed above need to be replaced according to the
following table:

Java 1.1 & 1.2 Java 1.0

getSize size

getMinimumSize minimumSize

getComponentAt locate

setLocation move

This substitution should result in the following method:

public Component findComponent(int x, int y)
{

// Find out which component this x,y is inside
Component whichComp = locate(x, y);

// If the component is a container, descend into the container and
// find out which of its components contains this x,y

while (whichComp instanceof Container) {

// If you have to search within a container, adjust the x,y to be relative
// to the container.
x -= whichComp.location().x;
y -= whichComp.location().y;
Component nextComp = whichComp.locate(x, y);

// if locate returns the component itself, we’re done
if (nextComp == whichComp) break;
whichComp = nextComp;
}
return whichComp;
} ■

N O T E

Common Component Methods

Untitled-8 9/22/98, 4:24 PM359

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

360 Chapter 19 java.awt: Components

Component Layout and Rendering Methods
You may already be familiar with the key methods for component rendering (drawing on the
screen). They are repaint, update, and paint.

public void repaint()

requests that this image be repainted as soon as possible. This results in an eventual call to
update, but maybe not immediately.

public void repaint(int x, int y, int width, int height)

repaints only the portion of the component within the rectangle specified by the parameters.

public void repaint(long tm)

requests that the component be repainted within tm milliseconds.

public void repaint(long tm, int x, int y, int width, int height)

requests that a specific portion of the component be repainted within tm milliseconds.

public void update(Graphics g)

initiates a repaint of the component onto graphics context g. The default update method
erases the graphics context and calls the paint method.

public void paint(Graphics g)

redraws the component onto graphics context g.

When components are laid out by a layout manager, they are marked as being valid. That is,
they have been examined and laid out. If a component changes size or some other aspect that
requires the current layout to be altered, the component can be marked invalid by the invali-
date method:

public void invalidate()

Invalidating a component marks it as changed. The next time the validate method in the
component or its parent is called, the component layout is performed again. The format of the
validate method is

public void validate()

The validate method also makes use of the doLayout method in each child component of this
component:

public void doLayout()

The default layout method for a component does nothing. In a container, however, the layout
method causes the layout manager to recompute the position of each contained component.

You can get a reference to the parent container of your component by using the getParent
method:

public Container getParent()

Untitled-8 9/22/98, 4:24 PM360

361

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

19

III
Part

Ch

You can get a reference to the parent frame of an applet by tracing back through the applet’s
parent containers until you find a frame. You can get unpredictable results this way, but some-
times you can have fun with it. The following loop tries to find an applet’s parent frame:

Container parent = getParent();

// Trace back up getting parents until there
// are no more parents or we hit a Frame
//
while ((parent != null) && !(parent instanceof Frame))
{
parent = parent.getParent();
}

// At this point, parent will either be null or it will
// be the parent frame for the applet

Component Input Events
Components can receive a large number of actions, so component has a number of methods to
add event listeners. These include each of the following:

public void addComponentListener(ComponentListener)
public void addFocusListener(FocusListener)
public void addKeyListener(KeyListener)
public void addMouseListener(MouseListener)
public void addMouseMotionListener(MouseMotionListener)
As you may have already guessed, FocusListeners listen for focus changes (either gained or
lost), KeyListeners listen for keyboard input, MouseListeners listen for the mouse to enter,
exit, or click on an area, and MouseMotionListeners listen for the mouse to move. But what
does the ComponentListener do?

ComponentListeners listen for changes to the component’s position, size, or for the component
to be shown or hidden. With all these different listeners, you can monitor just about any activ-
ity with any component.

Under the 1.0 event model, the handleEvent method notifies a component of incoming
input. The handleEvent method is actually part of a longer chain of event-handling

methods.

public void deliverEvent(Event evt)

sends an event to this component. This is the initial entry point for an event in the event-handling
chain. This method passes the event on to the postEvent method.

public boolean postEvent(Event evt)

passes the event on to the handleEvent method. If the handleEvent method returns false, this
method passes the event on to the parent component using the parent’s postEvent method. If
postEvent returns true, the event has been handled successfully.

public boolean handleEvent(Event evt)

examines the event and calls one of the following methods based on the event type: mouseEnter,
continues

Common Component Methods

N O T E

Untitled-8 9/22/98, 4:24 PM361

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter19 LP#4

362 Chapter 19 java.awt: Components

mouseExit, mouseMove, mouseDrag, mouseDown, mouseUp, keyDown, keyUp, action,
gotFocus, or lostFocus. ■

You can keep a component from receiving input events by disabling it with the disable
method:

public void disable()

To enable it again, call the enable method:

public void enable()

The isEnabled method returns true if a component is enabled:

public boolean isEnabled() ●

continued

Untitled-8 9/22/98, 4:24 PM362

363

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

C H A P T E R

Exceptions and Events in Depth

Java’s Exceptions 364

Java’s Error Classes 380

Java’s Events 381

Event-Handling Techniques 381

Keyboard and Mouse Events 387

The 1.0 Event Model 392

20

In this chapter

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

364 Chapter 20 Exceptions and Events in Depth

Java’s Exceptions
When you write applets or applications using Java, sooner or later (and probably much sooner)
you’re going to run into exceptions. An exception is a special type of object that is created when
something goes wrong in a program. After Java creates the exception object, it sends it to your
program, an action called throwing an exception, and it’s up to your program to catch the ex-
ception. Catching the exception is done in what is known as exception-handling code. In this
chapter, you get the inside information on these important error-handling objects.

Another important type of activity in Java is an event. Events represent actions that the user
performs while running your program, such as clicking a button or moving the mouse. As you
will soon see, there are several ways your programs can handle events. This chapter gives you
an in-depth look at the Event class and how it’s used in your Java projects.

In some of the previous chapters, you’ve gotten a quick look at exceptions and how they are
handled in a program. Exceptions are thrown because the method call may not be able to com-
plete successfully (such as when trying to put a thread to sleep). In this case, Java throws an
exception object called InterruptedException (see Listing 20.1).

Listing 20.1 Handling an Exception

try
{
 Thread.sleep(500);
}
catch (InterruptedException e)
{
 String err = e.toString();
 System.out.println(err);
}

As you can see in Listing 20.1, you place the code that may cause the exception in a try block,
and the exception-handling code goes into a catch program block. In this case, the first line of
the try block attempts to put the current thread to sleep for 500 milliseconds. If the Thread
sleep is unsuccessful, the sleep() method throws an InterruptedException. When this hap-
pens, Java ignores the rest of the code in the try block and jumps to the catch block, where
the program handles the exception. On the other hand, if the sleep goes okay, Java executes all
the code in the try block and skips the catch block.

The catch block does more than direct program execution. It actually catches the
exception object thrown by Java. In Listing 20.1, you can see the exception object

being caught inside the parentheses following the catch keyword. This is very similar to a parameter
being passed to a method. In this case, the type of the “parameter” is InterruptedException, and
the name of the parameter is e. If you need to, you can access the exception object’s methods
through the e object. In this example, the program calls e’s toString() method in order to get a
string representing the exception object. ■

N O T E

365

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Java defines many exception objects that may be thrown by the methods in Java’s classes.
How do you know which exceptions you have to handle? If you try to call a method that explic-
itly states that it may throw an exception, Java insists that you handle the exception in one way
or another. If you fail to do so, your class does not compile. Instead, you receive an error mes-
sage indicating where your program may generate the exception (see Figure 20.1).

FIG. 20.1
Java’s compiler gives
you an error message if
you fail to handle an
exception in your
applet.

Although the compiler’s error messages are a clue that something is amiss, the clever pro-
grammer will look up a method in Java’s documentation before using the method. Then the
programmer will know in advance whether that method requires exception-handling code.
If you’re interested in seeing the exceptions that are defined by a package, find the package’s
section in Java’s online documentation where the classes and exceptions are listed (see
Figure 20.2).

FIG. 20.2
Java’s online documen-
tation lists the
exception objects that
may be thrown by
methods in a class.

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

366 Chapter 20 Exceptions and Events in Depth

The online documentation on Sun’s Web site is constantly being updated. To stay up to date, set a
bookmark in your browser for http://www.javasoft.com/products/JDK/ and visit the site often.

The online documentation also lists all the methods that comprise a particular package. By
looking up the method in the documentation (see Figure 20.3), you can see what types of argu-
ments the method expects, the type of value the method returns, and whether the method may
throw an exception. If the method shows that it can throw an exception, your code must handle
the right type of exception or the program will not compile.

FIG. 20.3
The online documenta-
tion for a method shows
the exception the
method may throw.

Throwing an Exception
One handy thing about exceptions is that you don’t have to handle them in the same method in
which the exception is generated. For example, when the program in Listing 20.1 tries to put
the thread to sleep, if the sleep fails, the method throws an exception that the program handles
in its catch block.

But what if, for some reason, you don’t want to catch the exception the same way you did with
the read() method? If you don’t know what to do with the exception, you may not want to catch
it. In that case, Java enables you to simply pass the buck, so to speak, by throwing the excep-
tion up the method hierarchy. Listing 20.2 shows one way you might do this with the
IOException exception.

T I P

367

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Listing 20.2 LST20-02.TXT—Throwing an Exception

protected void MyMethod(){
 try
 {
 DoRead();
 }
 catch (IOException e)
 {
 String err = e.toString();
 System.out.println(err);
 }
}

protected void DoRead() throws IOException
{
 System.in.read(buffer, 0, 255);
}

The read() method throws an IOException, so you could have called it within a try/catch
block. However, in Listing 20.2, the call to the read() method has been moved to a method
called DoRead() that doesn’t directly handle the IOException exception. Instead, DoRead()
states that it can throw an IOException and passes the exception back to the calling method.
Java knows that DoRead() wants to pass the exception, because DoRead() adds the phrase
throws IOException to its signature. Throwing the exception, however, doesn’t relieve you
from handling it eventually. Notice that in Listing 20.2, the exception still gets handled in the
myMethod() calling method.

In short, you can handle an exception in two ways:

■ Write try and catch program blocks exactly where you call the function that may
generate the exception.

■ Declare the method as throwing the exception, in which case you must write the try and
catch program blocks in the method that calls the “throwing” method, as shown in
Listing 20.2.

A Combined Approach
There may be times in your programs when you want to both handle an exception in your code
and pass it on to the calling function. Java enables you to construct your code this way so that
different parts of a program can handle an exception as is appropriate for that part of the pro-
gram. To use this combined approach to exception handling, include both try/catch program
blocks and a throws clause in the method. Listing 20.3 shows an example of this handy tech-
nique.

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

368 Chapter 20 Exceptions and Events in Depth

Listing 20.3 LST20-03.TXT—Code That Both Handles and Passes

on an Exception

protected void MyMethod() throws IOException{
 try
 {
 DoRead();
 }
 catch (IOException e)
 {
 String err = e.toString();
 System.out.println(err);
 throw e;
 }
}

As you’ve seen in the last few examples, exception objects can do a lot of traveling. They jump
from method to method, up the hierarchy of method calls until someone finally deals with
them. If the exception makes its way up to the Java system, the system handles it in some
default manner, usually by generating an error message. However, when running applets in a
browser, the user may not get a chance to see the error messages. Worse, some Java-
compatible browsers handle exceptions differently from others. One browser may just ignore
the exception and keep on chugging, whereas another may be driven to its digital knees. The
best approach is to handle any exceptions that may occur in your program. That way, you can
be pretty sure that the browser will remain unaffected by the error.

Types of Exceptions
Java defines many different exception objects. Some of them you must always handle in your
code if you call a function that may throw the exception. Others are generated by the system
when something like memory allocation fails, an expression tries to divide by zero, a null value
is used inappropriately, and so on. You can choose to watch for this second kind of exception or
let the VM deal with them. All of these types of exceptions are derived from the
RuntimeException class.

Just as with programming before exceptions existed, you should always be on the lookout for
places in your program where an exception could be generated. These places are usually as
sociated with user input, which is infamously unpredictable. However, programmers also have
been known to make mistakes in their programs that lead to exception throwing. Some
common exceptions you may want to watch out for at appropriate places in your applet are
listed in Table 20.1.

369

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Table 20.1 Common Java Exceptions

Exception Caused By

ArithmeticException Math errors, such as division by zero

ArrayIndexOutOfBoundsException Bad array indexes

ArrayStoreException A program trying to store the wrong type of
data in an array

FileNotFoundException An attempt to access a nonexistent file

IOException General I/O failures, such as inability to read
from a file

NullPointerException Referencing a null object

NumberFormatException A failed conversion between strings and
numbers

OutOfMemoryException Too little memory to allocate a new object

SecurityException An applet trying to perform an action not
allowed by the browser’s security setting

StackOverflowException The system running out of stack space

StringIndexOutOfBoundsException A program attempting to access a nonexistent
character position in a string

You can catch all exceptions by setting up your catch block for exceptions of type Exception, like
this:

catch (Exception e)

Call the exception’s getMessage() method (inherited from the Throwable superclass) to get
information about the specific exception that you’ve intercepted.

All Java’s exceptions are really just classes that are extended from the Throwable class, to
which all exception and error objects can trace their ancestry. (You learn about error objects
later in this chapter in the section “Java’s Error Classes.”) The Throwable class defines three
useful methods that you can call to get information about an exception:

■ getMessage() Gets a string that details information about the exception

■ toString() Converts the object to a string that you can display onscreen

■ printStackTrace() Displays the hierarchy of method calls that leads to the exception

Listing 20.4 shows a catch clause that calls these various methods, whereas Figure 20.4 shows
the output from the catch clause. (Notice that in the case of NumberFormatException, the
getMessage() method returns an empty string.)

T I P

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

370 Chapter 20 Exceptions and Events in Depth

Listing 20.4 LST20-04.TXT—Calling a throwable Object’s Methods

catch (NumberFormatException e)
{
 System.out.println();
 System.out.println(“Here’s getMessage()’s string:”);
 System.out.println(“----------------------------”);
String str = e.getMessage();
 System.out.println(str);
 System.out.println();
 System.out.println(“Here’s toString()’s string:”);
 System.out.println(“--------------------------”);
 str = e.toString();
 System.out.println(str);
 System.out.println();
 System.out.println(“Here’s the stack trace:”);
 System.out.println(“----------------------”);
 e.printStackTrace();
}

FIG. 20.4
Here’s the output
generated by the catch
block in Listing 20.4.

Exceptions are divided into three main categories:

■ Exception classes that are directly derived from Exception

■ Runtime exception classes

■ I/O exception classes

Java’s many exception classes are listed as they appear in the class hierarchy. The package in
which a class is defined is shown in parentheses after the class name.

Throwable (java.lang)
Exception (java.lang)
AWTException (java.awt)
NoSuchMethodException (java.lang)
InterruptedException (java.lang)
InstantiationException (java.lang)
ClassNotFoundException (java.lang)
CloneNotSupportedException (java.lang)

371

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

IllegalAccessException (java.lang)
IOException (java.io)
EOFException (java.io)
FileNotFoundException (java.io)
InterruptedIOException (java.io)
UTFDataFormatException (java.io)
MalformedURLException (java.net)
ProtocolException (java.net)
SocketException (java.net)
UnknownHostException (java.net)
UnknownServiceException (java.net)
RuntimeException (java.lang)
ArithmeticException (java.lang)
ArrayStoreException (java.lang)
ClassCastException (java.lang)
IllegalArgumentException (java.lang)
IllegalThreadStateException (java.lang)
NumberFormatException (java.lang)
IllegalMonitorStateException (java.lang)
IndexOutOfBoundsException (java.lang)
ArrayIndexOutOfBoundsException (java.lang)
StringIndexOutOfBoundsException (java.lang)
NegativeArraySizeException (java.lang)
NullPointerException (java.lang)
SecurityException (java.lang)
EmptyStackException (java.util)
NoSuchElementException(java.util)

The list of exceptions shown here was created from the original Java classes. The latest
version of Java adds many new classes and therefore adds many new exceptions as well. ■

Determining the Exceptions to Handle
Experienced programmers usually know when their code may generate an exception of some
sort. However, when you first start writing applets with exception-handling code, you may not
be sure what type of exceptions to watch out for. One way to discover this information is to see
what exceptions are generated as you test your applet.

Listing 20.5, for example, is an applet called ExceptionApplet that divides two integer numbers
obtained from the user and displays the integer result (dropping any remainder). Because the
applet must deal with user input, the probability of disaster is high. ExceptionApplet, however,
contains no exception-handling code.

Listing 20.5 ExceptionApplet.java—An Applet with No Exception Handling

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class ExceptionApplet extends Applet
{

N O T E

continues

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

372 Chapter 20 Exceptions and Events in Depth

 TextField textField1, textField2;
 String answerStr;
 public void init()
 {
 textField1 = new TextField(15);
 add(textField1);
 textField2 = new TextField(15);
 add(textField2);
 answerStr = “Undefined”;

 //create an inner ActionListener class
 ActionListener listener = new ActionListener(){
 public void actionPerformed(ActionEvent evt){
 performAction();
 }
 };

 textField1.addActionListener(listener);
 textField2.addActionListener(listener);
 }

 public void paint(Graphics g)
 {
 Font font = new Font(“TimesRoman”, Font.PLAIN, 24);
 g.setFont(font);
 g.drawString(“The answer is:”, 50, 100);
 g.drawString(answerStr, 70, 130);
 }

 public void performAction()
 {
 String str1 = textField1.getText();
 String str2 = textField2.getText();
 int int1 = Integer.parseInt(str1);
 int int2 = Integer.parseInt(str2);
 int answer = int1 / int2;
 answerStr = String.valueOf(answer);
 repaint();
 }
}

Users of the 1.0 event model need to eliminate the inner class and replace the
performAction method with the following:

public boolean action(Event evt, Object arg)

 {

 String str1 = textField1.getText();

 String str2 = textField2.getText();

 int int1 = Integer.parseInt(str1);

 int int2 = Integer.parseInt(str2);

Listing 20.5 Continued

N O T E

373

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

 int answer = int1 / int2;

 answerStr = String.valueOf(answer);

 repaint();

 return true;

 } ■

You’ll use this applet as the starting point for a more robust applet. When you run the applet
using AppletViewer, you see the window shown in Figure 20.5. Enter a number into each of the
two text boxes and then press Enter. The program then divides the first number by the second
number and displays the result (see Figure 20.6).

As long as the user enters valid numbers into the text boxes, the program runs perfectly.

What happens, though, if the user presses Enter when either or both of the text boxes are
empty? Java immediately throws a NumberFormatException when the action() method at-
tempts to convert the contents of the text boxes to integer values. You can see this happening
by watching the command-line window from which you ran AppletViewer, as shown in Figure
20.7. As you can see in the figure, Java has displayed quite a few lines that trace the exception.
The first line (the one that starts with the word Exception) tells you the type of exception
you’ve encountered.

FIG. 20.5
ExceptionApplet is
running under
AppletViewer.

FIG. 20.6
ExceptionApplet
divides the first number
by the second.

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

374 Chapter 20 Exceptions and Events in Depth

As you now know, you don’t have to catch every exception that Java can produce. When you
fail to provide code for an exception that doesn’t require catching, Java catches the

exception internally. When this happens to an applet running under AppletViewer, you see an exception
error appear in the command-line window. However, if an applet generates an exception while running
in a Web browser, the user is probably never aware of it because the applet doesn’t usually crash or
display errors; it just fails to perform the command that generated the exception. ■

Catching a Runtime Exception
You now know that users can cause a NumberFormatException if they leave one or more text
boxes blank or enter an invalid numerical value, such as the string one. In order to ensure that
your applet is not caught by surprise, you now need to write the code that will handle this ex-
ception. Follow these steps to add this new code:

1. Load ExceptionApplet into your text editor.

2. Replace the action() method with the new version shown in Listing 20.6.

Listing 20.6 LST20-06.TXT—Handling the NumberFormatException
Exception

public boolean action(Event evt, Object arg)
{
 String str1 = textField1.getText();
 String str2 = textField2.getText();
 try
 {
 int int1 = Integer.parseInt(str1);
 int int2 = Integer.parseInt(str2);
 int answer = int1 / int2;
 answerStr = String.valueOf(answer);
 }
 catch (NumberFormatException e)
 {
 answerStr = “Bad number!”;

FIG. 20.7
Here, Java reports a
NumberFormatException.

N O T E

375

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

 }
 repaint();
 return true;
}

3. In the class declaration line, change the name of the class to ExceptionApplet2.

4. Save the new applet under the name ExceptionApplet2.java.

5. Load the EXCEPTIONAPPLET.HTML file.

6. Change all occurrences of ExceptionApplet to ExceptionApplet2.

7. Save the file as EXCEPTIONAPPLET2.HTML.

In Listing 20.6, the action() method now uses try and catch program blocks to handle the
NumberFormatException gracefully. Figure 20.8 shows what happens now when the user leaves
the text boxes blank. When the program gets to the first call to String.valueOf(), Java gener-
ates the NumberFormatException exception, which causes program execution to jump to the
catch block. In the catch block, the program sets the display string to Bad number!. The call to
repaint() ensures that this message to the user is displayed onscreen.

FIG. 20.8
ExceptionApplet2
handles the
NumberFormatException
gracefully.

Handling Multiple Exceptions
So, here you are, having a good time entering numbers into ExceptionApplet2’s text boxes
and getting the results. Without thinking, you enter a zero into the second box, Java tries to
divide the first number by the zero, and pow!—you’ve got yourself an ArithmeticException
exception. What to do? You’re already using your catch block to grab NumberFormatException;
now, you’ve got yet another exception to deal with.

The good news is that you’re not limited to only a single catch block. You can, in fact, create
catch blocks for any exceptions you think the program may generate. To see how this works
with your new applet, follow these steps:

1. Load ExceptionApplet2 into your text editor.

2. Replace the action() method with the new version shown in Listing 20.7.

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

376 Chapter 20 Exceptions and Events in Depth

Listing 20.7 LST20-07.TXT—Handling Multiple Exceptions

public boolean action(Event evt, Object arg)
{
 String str1 = textField1.getText();
 String str2 = textField2.getText();
 try
 {
 int int1 = Integer.parseInt(str1);
 int int2 = Integer.parseInt(str2);
 int answer = int1 / int2;
 answerStr = String.valueOf(answer);
 }
 catch (NumberFormatException e)
 {
 answerStr = “Bad number!”;
 }
 catch (ArithmeticException e)
 {
 answerStr = “Division by 0!”;
 }
 repaint();
 return true;
}

3. In the class declaration line, change the name of the class to ExceptionApplet3.

4. Save the new applet under the name ExceptionApplet3.java.

5. Load the EXCEPTIONAPPLET.HTML file.

6. Change all occurrences of ExceptionApplet to ExceptionApplet3.

7. Save the file as EXCEPTIONAPPLET3.HTML.

If you examine Listing 20.7, you can see that the action() method now defines two catch
program blocks, one each for the NumberFormatException and ArithmeticException excep-
tions. In this way, the program can watch for both potential problems from within a single try
block. Figure 20.9 shows what ExceptionApplet3 looks like when the user attempts a division
by zero. If you discover another exception that your program may cause, you can add yet an-
other catch block.

It’s important to make sure that you catch the most specific exception first. For instance, if you
want to catch the exception FileNotFoundException, you should do so before catching the
more generic IOException.

Although handling exceptions is a powerful tool for creating crash-proof programs, you
should use them only in situations in which you have little control over the cause of the

exception, such as when dealing with user input. If your applet causes an exception because of a
program bug, you should track down and fix the problem rather than try to catch the exception. ■

N O T E

377

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

There may be times when you want to be sure that a specific block of code gets executed whether or
not an exception is generated. You can do this by adding a finally program block after the last
catch. The code in the finally block gets executed after the try block or catch block finishes its
thing. Listing 20.8 shows an example.

Listing 20.8 LST20-08.TXT—Using the finally Program Block

try
{
 // The code that may generate an exception goes here.
}
catch (Exception e)
{
 // The code that handles the exception goes here.
}
finally
{
 // The code here is executed after the try or
 // catch blocks finish executing.
}

Creating Your Own Exception Classes
Although Java provides exception classes for just about every general error you can imagine,
the designers of the language couldn’t possibly know what type of code you’re going to write
and what kinds of errors that code may experience. For example, you may write a method that
sums two numbers within a specific range. If the user enters a value outside the selected range,
your program could throw a custom exception called something like NumberRangeException.

To create and throw your own custom exceptions, you must first define a class for the excep-
tion. Usually, you derive this class from Java’s Exception class. Listing 20.9 shows how you
might define the aforementioned NumberRangeException class.

FIG. 20.9
ExceptionApplet3
catches division-by-zero
errors.

T I P

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

378 Chapter 20 Exceptions and Events in Depth

Listing 20.9 NumberRangeException.java—The NumberRangeException Class

public class NumberRangeException extends Exception
{
 public NumberRangeException(String msg)
 {
super(msg);
 }
}

As you can see, defining a new exception requires little work. In fact, you can get by with just
creating a constructor for the class. Notice that the NumberRangeException class’s constructor
receives a String parameter. This string is the detail message that the class returns if you call
its getMessage() method (which the class inherits from Throwable through Exception). Inside
the constructor, this string is passed on up to NumberRangeException’s superclass (Exception),
which itself passes the string on up to the Throwable class, where it is stored as a data member
of the class. Now, inside your program, wherever you determine that your custom-exception
condition has occurred, you can create and throw an object of your exception class.

Listing 20.10 is an applet that puts the new NumberRangeException to the test. When you run
the applet, type a number into each text box. If you follow the directions, typing two numbers
within the range 10–20, the applet sums the numbers and displays the results. Otherwise, the
applet generates a NumberRangeException exception and displays an error message, as shown
in Figure 20.10.

When you compile the ExceptionApplet4 applet, make sure the NumberRangeException.java
file is in the same directory as the applet’s source code. Otherwise, the Java compiler may not be able
to find it. You may also need to add the applet’s path to the CLASSPATH environment variable.

Listing 20.10 ExceptionApplet4.java—An Applet That Incorporates
a Custom Exception Class

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class ExceptionApplet4 extends Applet
{
 TextField textField1, textField2;
 String answerStr;
 public void init()
 {
 textField1 = new TextField(15);
 add(textField1);
 textField2 = new TextField(15);
 add(textField2);

 //create an ActionListener. This will be registered with
 //the TextFields and when ‘enter’ is pressed the actionPerformed()

T I P

379

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

 //method will be called.
 ActionListener listener = new ActionListener(){
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 int answer = CalcAnswer();
 answerStr = String.valueOf(answer);
 }
 catch (NumberRangeException e)
 {
 answerStr = e.getMessage();
 }
 repaint();
 return true;
 }
 };

 //register the listener with the TextFields
 textField1.addActionListener(listener);
 textField2.addActionListener(listener);

 answerStr = “Undefined”;
 resize(500, 200);
 }

 public void paint(Graphics g)
 {
 Font font = new Font(“TimesRoman”, Font.PLAIN, 24);
 g.setFont(font);
 g.drawString(“Enter numbers between”, 40, 70);
 g.drawString(“10 and 20.”, 70, 90);
 g.drawString(“The answer is:”, 40, 130);
 g.drawString(answerStr, 70, 150);
 }

 public int CalcAnswer() throws NumberRangeException
 {
 int int1, int2;
 int answer = -1;
 String str1 = textField1.getText();
 String str2 = textField2.getText();
 try
 {
 int1 = Integer.parseInt(str1);
 int2 = Integer.parseInt(str2);

 //check to make sure both integers are within the range
 if ((int1 < 10) || (int1 > 20) ||
 (int2 < 10) || (int2 > 20))
 {
 //since they are not, throw our custom exception

continues

Java’s Exceptions

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

380 Chapter 20 Exceptions and Events in Depth

 NumberRangeException e = new NumberRangeException
 (“Numbers not within the specified range.”);
 throw e;
 }
 answer = int1 + int2;
 }
 catch (NumberFormatException e)
 {
 answerStr = e.toString();
 }
 return answer;
 }
}

Listing 20.10 Continued

FIG. 20.10
The applet catches
NumberRangeException.

In the ExceptionApplet4 applet’s action() method, the program calls the local CalcAnswer()
method. The action() method must enclose this method call in try and catch program blocks
because CalcAnswer() throws a NumberRangeException exception (the exception class you just
created). In CalcAnswer(), the program extracts the strings the user typed into the text boxes
and converts the returned strings to integers. Because the parseInt() method calls can throw
NumberFormatException exceptions, CalcAnswer() encloses the calls to parseInt() within a
try program block. In the try block, the program not only converts the strings to integers, but
also checks whether the integers fall within the proper range of values. If they don’t, the pro-
gram creates and throws an object of the NumberRangeException class.

Java’s Error Classes
So far, you’ve had a look at the exception classes you can handle in your own programs. Java
also defines a set of Error classes that are really little more than special types of exceptions.
Like the class Exception, the class Error is derived from Throwable. However, the more spe-
cific error classes that are derived from Error represent serious errors, such as internal errors
or problems with a class, that your program shouldn’t fool with. The Java system handles these
errors for you.

381

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

The following is a list of the error classes organized into their inheritance hierarchy. The pack-
age in which a class is defined is shown in parentheses after the class’s name (all but one are
defined in java.lang).

Throwable (java.lang)
Error (java.lang)
AWTError (java.awt)
ThreadDeath (java.lang)
LinkageError (java.lang)
ClassCircularityError (java.lang)
ClassFormatError (java.lang)
NoClassDefFoundError (java.lang)
UnsatisfiedLinkError (java.lang)
VerifyError (java.lang)
IncompatibleClassChangeError (java.lang)
AbstractMethodError (java.lang)
IllegalAccessError (java.lang)
InstantiationError (java.lang)
NoSuchFieldError (java.lang)
NoSuchMethodError (java.lang)
VirtualMachineError (java.lang)
InternalError (java.lang)
OutOfMemoryError (java.lang)
StackOverflowError (java.lang)
UnknownError (java.lang)

Java’s Events
As you’ve already learned, events represent all the activity that goes on between a program, the
system, and the program’s user. When the user does something with the program, such as
click the mouse in the program’s window, the system creates an event representing the action
and ships it off to your program’s event-handling code. This code determines how to handle
the event so that the user gets the appropriate response.

For example, when the user clicks a button, he expects the command associated with that
button to be executed. In Chapter 15, “Advanced Applet Code,” you got a quick look at how you
can use events in your applets. Now, it’s time to examine Java’s events in depth by exploring
the classes that deal with events and how to create and handle events.

Event-Handling Techniques
Java has two different event-handling systems. Java 1.1 introduced a Listener-Adapter system,
which is included in Java 1.2. Later in this chapter, you will learn about the Java 1.0 event
model, under which the Component class is where most event-handling occurs. This means that
any Java 1.0 class that needs to handle events has to be able to trace its ancestry back to the
Component class. Version 1.1 revised the event model so that any class can receive and manage
events, regardless of whether that class has Component as a superclass.

Event-Handling Techniques

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

382 Chapter 20 Exceptions and Events in Depth

The 1.1 event model makes the important observation that an event is often handled by an-
other object. For instance, when you press a button, you want to perform the processing for
the action event in some object other than the button. In order to support this, the event model
supports the notion of event listeners as defined in java.util.EventListener.

An event listener is any object that implements one or more listener interfaces. There are differ-
ent listeners for each category of AWT event. For instance, the MouseListener interface defines
methods such as mouseClicked, mousePressed, and MouseReleased. In order to receive events
from a component, an object adds itself as a listener for that component’s events. If an object
implements the MouseListener interface, it listens for a component’s mouse events by calling
addMouseListener on that component. This enables you to handle a component’s events with-
out having to create a subclass of the component, and without handling the events in the parent
container.

The MusicalButton object, for instance, would implement the ActionListener interface, which
would receive ActionEvent objects through the actionPerformed method. Because
MusicalButton is no longer a subclass of button, you can hook it up to any type of button with-
out adding additional code. All buttons support the addActionListener method to add
listeners.

For each type of listener in the Java 1.1 event model, there is also an adapter object. The adapt-
ers are very simple objects that implement a specific interface, containing empty methods for
each method defined in the interface. If you are creating an object specifically to implement the
KeyListener interface, you can just create an object that is a subclass of KeyAdapter and then
override whichever methods you are interested in. The same is true for all listener interfaces.

One of the other complaints against the Java 1.0 event model was that there was one big Event
object that contained attributes for all possible events. Under Java 1.2, there are different event
objects for different events. Keyboard events are delivered in a KeyEvent object, while actions
are delivered in an ActionEvent object. This enables the events to stay relatively small, be-
cause they don’t have to contain all possible variations of events.

CAUTION

Although the Java 1.0 event model is supported in the current Java release, you should not intermix the 1.0
event model with the 1.1 event model in the same program. They are not guaranteed to work at the same
time.

Event Listeners
In Java 1.2, events are managed by event listeners. Event listeners are classes that have been
registered with the Java system to receive specific events. Only the types of events that are
registered with an event listener will be received by that listener.

In this section, you modify the EventApplet applet so that it uses the Java 1.1 event model. The
original version of the program, developed in the previous section, used the more familiar Java
1.0 event model.

383

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

The first step in changing EventApplet into EventApplet2 is to add the following line to the top
of the source-code file:

import java.awt.event.*;

This line gives the program access to the new classes defined in the event package. If you fail
to include this package, a program using the Java 1.1 event model will not compile.

Next, you must determine which events your program handles and which components gener-
ate those events. To keep things simple, write EventApplet2 so that it responds only to action
events, which are the most common events handled in an applet. Table 20.2 provides the infor-
mation you need to convert any applet to the Java 1.1 event model. The table lists all the events,
showing which components generate those events and which interface to use for the Java 1.1
event model.

Table 20.2 Summary of the Java 1.1 Event Model

Event Components Interface

ACTION_EVENT Button, List, MenuItem ActionListener

ACTION_EVENT CheckBox, Choice ItemListener

ACTION_EVENT TextField ActionListener

GOT_FOCUS Component FocusListener

KEY_ACTION Component KeyListener

KEY_ACTION_RELEASE Component KeyListener

KEY_PRESS Component KeyListener

KEY_RELEASE Component KeyListener

LIST_DESELECT Checkbox, ItemListener
CheckboxMenuItem

LIST_DESELECT Choice, List ItemListener

LIST_SELECT Checkbox, ItemListener
CheckboxMenuItem

LIST_SELECT Choice, List ItemListener

LOST_FOCUS Component FocusListener

MOUSE_DOWN Canvas, Dialog, Frame MouseListener

MOUSE_DOWN Panel, Window MouseListener

MOUSE_DRAG Canvas, Dialog, Frame MouseMotionListener

MOUSE_DRAG Panel, Window MouseMotionListener

MOUSE_ENTER Canvas, Dialog, Frame MouseListener

continues

Event-Handling Techniques

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

384 Chapter 20 Exceptions and Events in Depth

MOUSE_ENTER Panel, Window MouseListener

MOUSE_EXIT Canvas, Dialog, Frame MouseListener

MOUSE_EXIT Panel, Window MouseListener

MOUSE_MOVE Canvas, Dialog, Frame MouseMotionListener

MOUSE_MOVE Panel, Window MouseMotionListener

MOUSE_UP Canvas, Dialog, Frame MouseListener

MOUSE_UP Panel, Window MouseListener

SCROLL_ABSOLUTE Scrollbar AdjustmentListener

SCROLL_BEGIN Scrollbar AdjustmentListener

SCROLL_END Scrollbar AdjustmentListener

SCROLL_LINE_DOWN Scrollbar AdjustmentListener

SCROLL_LINE_UP Scrollbar AdjustmentListener

SCROLL_PAGE_DOWN Scrollbar AdjustmentListener

SCROLL_PAGE_UP Scrollbar AdjustmentListener

WINDOW_DEICONIFY Dialog, Frame WindowListener

WINDOW_DESTROY Dialog, Frame WindowListener

WINDOW_EXPOSE Dialog, Frame WindowListener

WINDOW_ICONIFY Dialog, Frame WindowListener

WINDOW_MOVED Dialog, Frame ComponentListener

So you can see that the ACTION_EVENT produced by the Button component should be handled
by the ActionListener interface. This means that you must declare EventApplet2 as imple-
menting the ActionListener interface, like this:

public class EventApplet2 extends Applet
implements ActionListener

Now, in order to receive events from the Button component, the program must create the
button, register the button as an ActionListener, and add the button to the applet. All this is
done in the init() method, like this:

button1 = new Button(“Test Button”);
button1.addActionListener(this);
add(button1);

Table 20.2 Continued

Event Components Interface

385

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

As you can see, the Button class now has a method called addActionListener() that registers
the button as an ActionListener. Other components have similar new methods. For example,
the Scrollbar class now has a method called addAdjustmentListener() that registers the
scrollbar as an AdjustmentListener.

Because the applet implements the ActionListener interface, it must also implement every
method declared in the interface. Luckily, ActionListener declares only a single method:
actionPerformed(). This method replaces the old action() method as the place where the
program handles the action events. Listing 20.11 shows the old action() method, whereas
Listing 20.12 shows the new actionPerformed() method.

Listing 20.11 lst20-16.txt—The Old action() Method

public boolean action(Event evt, Object arg)
{
 if (arg == “Test Button”)
 {
 if (color == Color.black)
 color = Color.red;
 else
 color = Color.black;
 repaint();
 return true;
 }
 return false;
}

Listing 20.12 lst20-17.txt—The New actionPerformed() Method

public void actionPerformed(ActionEvent event)
{
 String arg = event.getActionCommand();
 if (arg == “Test Button”)
 {
 if (color == Color.black)
 color = Color.red;
 else
 color = Color.black;
 repaint();
 }
}

If you examine the two listings closely, you discover that there are really only two main differ-
ences. First, action() returns a Boolean value, whereas actionPerformed() returns no value.
Second, the arg variable that holds the button’s text label is passed to action() as a parameter,
whereas in actionPerformed(), you get the text label by calling the ActionEvent object’s
getActionCommand() method. Listing 20.13 shows the complete EventApplet2, which handles
its button component using the Java 1.1 event model.

Event-Handling Techniques

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

386 Chapter 20 Exceptions and Events in Depth

Listing 20.13 EventApplet2.java—An Applet That Incorporates the

Java 1.1 Event Model

import java.awt.event.*;
import java.awt.*;
import java.applet.*;

public class EventApplet2 extends Applet
 implements ActionListener
{
 Button button1;
 Color color;

 public void init()
 {
 button1 = new Button(“Test Button”);
 button1.addActionListener(this);
 add(button1);
 color = Color.black;
 resize(400, 200);
 }

 public void paint(Graphics g)
 {
 Font font = new Font(“TimesRoman”, Font.PLAIN, 48);
 g.setFont(font);
 g.setColor(color);
 g.drawString(“TEST COLOR”, 55, 120);
 }

 //**
 // Here is the method implementation for the
 // ActionListener interface.
 //**

 public void actionPerformed(ActionEvent event)
 {
 String arg = event.getActionCommand();
 if (arg == “Test Button”)
 {
 if (color == Color.black)
 color = Color.red;
 else
 color = Color.black;
 repaint();
 }
 }
}

To determine what methods your Java program must implement for a listener interface, load
the interface’s source code and copy the method declarations into your own program. Then,

finish implementing the methods by writing code for the methods you need and changing the
remaining declarations into empty methods. ■

N O T E

387

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Keyboard and Mouse Events
Let’s continue looking at the 1.1 event model. As you know, you can be notified when a key is
pressed and when it is released; when the mouse enters the applet window and when it leaves
the applet window; when the mouse button is pressed and when it is released; and when the
mouse moves and when it is dragged (moved with the button held down).

Keyboard Events
To listen for keyboard events from an object under Java 1.2, you need to implement the
KeyListener interface. The KeyListener interface contains three methods: keyPressed,
keyReleased, and keyTyped. The keyPressed method is called whenever a key is pressed, and
the keyReleased method is called whenever a key is released. The keyTyped method is a com-
bination of keyPressed and keyReleased. When a key is pressed and then released (as in nor-
mal typing), the keyTyped method is called. Here are the method declarations for the
KeyListener interface:

public abstract void keyTyped(KeyEvent event)
public abstract void keyPressed(KeyEvent event)
public abstract void keyReleased(KeyEvent event)

Every keyboard event has an associated key code, which is returned by the getKeyCode
method in KeyEvent:

public int getKeyCode()

A keycode can be the character typed, in the case of a normal letter, or it can be a special key
(function keys, cursor movement keys, keyboard control keys, and so on). Certain keys are
also considered action keys. The action keys are the cursor movement keys (arrows, Home,
End), the function keys F1–F12, the Print Screen key, and the Lock keys (Caps Lock, Num
Lock, and Scroll Lock). The isActionKey method in KeyEvent returns true if the key involved
is an action key:

public boolean isActionKey()

Because keycodes vary from system to system, the AWT defines its own codes for common
keys. The keycodes defined in the KeyEvent class are shown in the following table. Note that
the values in the table can be single keys or combination of keys.

Key Codes Key

KeyEvent.F1–KeyEvent.F12 Function keys F1–F12

KeyEvent.VK_LEFT Left-arrow key

KeyEvent.VK_RIGHT Right-arrow key

KeyEvent.VK_LEFT Up-arrow key

KeyEvent.VK_DOWN Down-arrow key

VK_KP_UP Up key on the keypad

VK_KP_DOWN Down key on the keypad

continues

Keyboard and Mouse Events

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

388 Chapter 20 Exceptions and Events in Depth

VK_KP_LEFT Left key on the keypad

VK_KP_RIGHT Right key on the keypad

VK_END End key

VK_HOME Home key

VK_PAGE_DOWN Page Down key

VK_PAGE_UP Page Up key

VK_PRINTSCREEN Print Screen key

VK_SCROLL_LOCK Scroll Lock key

VK_CAPS_LOCK Caps Lock key

VK_NUM_LOCK Num Lock key

PAUSE Pause key

VK_INSERT Insert key

VK_DELETE Delete key

VK_ENTER Enter key

VK_TAB Tab key

VK_BACK_SPACE Backspace key

VK_ESCAPE Escape key

VK_CANCEL Cancel key

VK_CLEAR Clear key

VK_SHIFT Shift key

VK_CONTROL Control key

VK_ALT Alt key

VK_PAUSE Pause key

VK_SPACE Space key

VK_COMMA Comma key

VK_SEMICOLON Semicolon key

VK_COLON : key

VK_AMPERSAND & key

VK_EXCLAMATION_MARK ! key

VK_INVERTED_EXCLAMATION_MARK The inverted exclamation key

Key Codes Key

continued

389

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Key Codes Key

VK_AT @ key

VK_CIRCUMFLEX ^ key

VK_NUMBER_SIGN # key

VK_DOLLAR $ key

VK_UNDERSCORE _ key

VK_PLUS + key

VK_EURO_SIGN Constant for Euro currency

VK_EQUALS = key

VK_LESS < key

VK_GREATER > key

VK_PERIOD . key

VK_SLASH / key

VK_BACK_SLASH \ key

VK_0-VK_9 0 through 9 keys

VK_A–VK_Z A–Z keys(equivalent to ASCII values)

VK_OPEN_BRACKET [key

VK_CLOSE_BRACKET] key

VK_BRACELEFT { key

VK_BRACERIGHT } key

VK_LEFT_PARENTHESIS (key

VK_RIGHT_PARENTHESIS) key

VK_NUMPAD0-VK_NUMPAD9 0 through 9 keys on keypad

VK_MULTIPLY Multiply key

VK_ADD Add key

VK_SUBTRACT Subtraction key

VK_DIVIDE Divide key

VK_DECIMAL . key

VK_SEPARATER Separator key

VK_HELP Help key

VK_META Meta key

Keyboard and Mouse Events

continues

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

390 Chapter 20 Exceptions and Events in Depth

Key Codes Key

VK_QUOTE ‘ key

VK_BACK_QUOTE Back quote key

VK_QUOTEDBL “ key

VK_CUT Cut key

VK_COPY Copy key

VK_PASTE Paste key

VK_UNDO Undo key

VK_AGAIN Again key

VK_FIND Find key

VK_PROPS Props key

VK_STOP Stop key

VK_COMPOSE Compose key

VK_ALT_GRAPH AltGraph key

VK_UNDEFINED Key typed did not have keycode value

Many of the constants in KeyEvent changed their name in JDK 1.2, so if you’re using a
previous JDK you will need to refer to the API to get the correct values. ■

Because many keycodes are really just normal characters, you can retrieve the character code
for a keystroke with getKeyChar():

public char getKeyChar()

Modifier Keys in Java 1.2
You might think that the modifier keys (Control, Alt, Shift, Meta) are keyboard events, but they
aren’t. Under most windowing systems, you can use these keys in conjunction with the mouse
as well. The Java 1.2 event hierarchy contains an InputEvent class, which is the superclass of
both KeyEvent and MouseEvent. The getModifiers() method in InputEvent returns a bitmap
indicating which modifier keys were active when the event occurred:

public int getModifiers()

You can use the SHIFT_MASK, CTRL_MASK, META_MASK, and ALT_MASK attributes of InputEvent to
examine the modifier bits returned by getModifiers(). For example, the following code snip-
pet checks an event to see if the Alt key was pressed when the event occurred:

InputEvent evt;
if ((evt.getModifiers() & InputEvent.ALT_MASK) != 0) {

continued

N O T E

391

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

// the alt key was down
}

Because this can be a cumbersome way to check for modifiers, the InputEvent class also de-
fines the following shortcuts:

public boolean isShiftDown()
public boolean isControlDown()
public boolean isMetaDown()

The mouse buttons are also considered modifier keys. The BUTTON1_MASK, BUTTON2_MASK, and
BUTTON3_MASK attributes of InputEvent enable you to check whether any buttons were pressed
when the event occurred. There are no shortcuts for these methods, however.

In addition to the modifier information, you can also find out when an input event occurred by
calling getWhen(), which returns a timestamp similar to the one returned by
System.currentTimeMillis:

public long getWhen()

Mouse Events in Java 1.2
There are two different listener interfaces in Java 1.2 that listen to mouse events. Most of the
time, you only need the MouseListener interface, which defines methods that are not related to
the motion of the mouse.

The mousePressed and mouseReleased methods indicate that a mouse button has been pressed
or released:

public abstract void mousePressed(MouseEvent event)
public abstract void mouseReleased(MouseEvent event)

If you don’t want to keep track of when a button is pressed and then released, you can use the
mouseClicked() method, which is called when a button is pressed and then released:

public abstract void mouseClicked(MouseEvent event)

The getClickCount() method in the MouseEvent object tells you how many times the button
was clicked, so you can detect double-clicks:

public int getClickCount()

The mouseEntered() and mouseExited() methods are called whenever the mouse enters a
component and when it leaves the component:

public abstract void mouseEntered(MouseEvent event)
public abstract void mouseExited(MouseEvent event)

At any time, you can get the x,y coordinate where the event occurred (relative to the
component’s x,y) by calling the getPoint() method in the MouseEvent object, or by calling
getX() and getY():

public synchronized Point getPoint()
public int getX()
public int getY()

Keyboard and Mouse Events

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

392 Chapter 20 Exceptions and Events in Depth

Because most applications do not need to track mouse motion, the mouse motion methods
have been placed in a separate listener interface. This enables you to listen for simple button
presses without getting an event every time someone sneezes near the mouse. The
MouseListenerInterface implements two methods for tracking mouse movement. The
mouseMoved() method is called whenever the mouse is moved but no buttons have been
pressed, while mouseDragged() is called when the mouse is moved while a button is pressed:

public abstract void mouseMoved(MouseEvent event)
public abstract void mouseDragged(MouseEvent event)

The 1.0 Event Model
Prior to JDK 1.1, the event model was quite different from what you’ve seen so far in this chap-
ter. This model is maintained in JDK 1.1 and 1.2, but it is deprecated (meaning it may be re-
moved in the future). Unfortunately, older browsers (Netscape 2.0–4.0 and Internet Explorer
2.0–3.0) do not support the 1.1 event model. For this reason it’s often necessary to code to the
1.0 event model, so I will cover it here.

The Event Class
Under Java 1.0, events are actually objects of a class. This class—called, appropriately enough,
Event—defines all the events to which a program can respond, as well as defining default meth-
ods for extracting information about the event. When all is said and done, Event is a fairly
complex class, as you will soon see.

The first thing the Event class does is define constants for the many keys that can either consti-
tute an event (such as a key-down event) or be used to modify an event (such as holding down
Shift when mouse-clicking). Table 20.3 lists these constants and their descriptions.

Table 20.3 Keyboard Constants of the Event Class in 1.0

Constant Key

ALT_MASK Alt (Alternate) key

CTRL_MASK Ctrl

DOWN Down arrow

END End

F1 F1

F10 F10

F11 F11

F12 F12

F2 F2

393

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Constant Key

F3 F3

F4 F4

F5 F5

F6 F6

F7 F7

F8 F8

F9 F9

HOME Home

LEFT Left arrow

META_MASK Meta

PGDN Page Down

PGUP Page Up

RIGHT Right arrow

SHIFT_MASK Shift

UP Up arrow

Next, the Event class defines constants for all the events that can be handled in a Java program.
These events include everything from basic mouse and keyboard events to the events gener-
ated by moving, minimizing, or closing windows. Table 20.4 lists these event constants, which
are used as IDs for Event objects.

Table 20.4 Event Constants of the Event Class in 1.0

Constant Description

ACTION_EVENT Used in support of the action() method

GOT_FOCUS Generated when a window (or component) gets the
input focus

KEY_ACTION Similar to KEY_PRESS

KEY_ACTION_RELEASE Similar to KEY_RELEASE

KEY_EVENT A general keyboard event

KEY_PRESS Generated when a key is pressed

KEY_RELEASE Generated when a key is released

The 1.0 Event Model

continues

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

394 Chapter 20 Exceptions and Events in Depth

Table 20.4 Continued

Constant Description

LIST_DESELECT Generated by deselecting an item in a list

LIST_EVENT A general list box event

LIST_SELECT Generated by selecting an item in a list

LOAD_FILE Generated when a file is loaded

LOST_FOCUS Generated when a window (or component) loses
focus

MISC_EVENT A miscellaneous event

MOUSE_DOWN Generated when the mouse button is pressed

MOUSE_DRAG Generated when the mouse pointer is dragged

MOUSE_ENTER Generated when the mouse pointer enters a
window

MOUSE_EVENT A general mouse event

MOUSE_EXIT Generated when the mouse pointer exits a window

MOUSE_MOVE Generated when the mouse pointer is moved

MOUSE_UP Generated when the mouse button is released

SAVE_FILE Generated when a file is saved

SCROLL_ABSOLUTE Generated by moving the scroll box

SCROLL_EVENT A general scrolling event

SCROLL_LINE_DOWN Generated by clicking the scrollbar’s down arrow

SCROLL_LINE_UP Generated by clicking the scrollbar’s up arrow

SCROLL_PAGE_DOWN Generated by clicking below the scroll box

SCROLL_PAGE_UP Generated by clicking above the scroll box

WINDOW_DEICONIFY Generated when a window is restored

WINDOW_DESTROY Generated when a window is destroyed

WINDOW_EVENT A general window event

WINDOW_EXPOSE Generated when a window is exposed

WINDOW_ICONIFY Generated when a window is minimized

WINDOW_MOVED Generated when a window is moved

395

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Like most classes, the Event class declares a number of data members that it uses to store
information about an event object. You might examine one or more of these data members
when responding to an event. For example, when responding to most mouse events, you usu-
ally want to know the x and y coordinates of the mouse when the event occurred. Table 20.5
lists the data members and their descriptions.

Table 20.5 Data Members of the Event Class

Data Member Description

arg Additional information about the event

clickCount Number of mouse clicks associated with the event

evt Next event in the list

id Event’s ID (refer to Table 20.4)

key Keyboard event’s key

keyChar Character key that was pressed

modifiers Event’s modifier keys (refer to Table 20.3)

target Component that generated the event

when Event’s timestamp

x Event’s x coordinate

y Event’s y coordinate

Last, but surely not least, the Event class defines a number of methods that you can use to
retrieve information about the event. Table 20.6 lists these methods and their descriptions.

Table 20.6 Methods of the Event Class

Method Description

controlDown() Gets the status of the Ctrl key

metaDown() Gets the status of a Meta key

paramString() Gets the event’s parameter string

shiftDown() Gets the status of the Shift key

toString() Gets a string representing the object’s status

translate() Translates the event so that its x and y
positions are increased or decreased

The 1.0 Event Model

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

396 Chapter 20 Exceptions and Events in Depth

An Event’s Genesis
You may wonder exactly where the events that arrive at your program come from. An operat-
ing system such as Microsoft Windows or Macintosh’s System 7 tracks all the events occurring
in the system. The system routes these events to the appropriate target objects. For example, if
the user clicks your applet’s window, the system constructs a mouse-down event and sends it
off to the window for processing. The window can then choose to do something with the event
or just pass it back to the system for default processing.

In the case of Java, the Java 1.0 event model intercepts events that are meant for Java compo-
nents, translating and routing them as appropriate. Because all of this event-handling stuff is
dependent on the current windowing system being used, Java deals with events in the classes
defined in the java.awt package. Specifically, the Component class receives and processes
events for any class derived from Component. Because virtually every visible object (buttons,
panels, text boxes, canvases, and more) in a Java 1.0 application or applet can trace its ancestry
back to Component, Component is the event-handling granddaddy of them all. As such, the
Component class defines many event-related methods. Table 20.7 lists these methods and
their descriptions.

Table 20.7 Event-Handling Methods of the Component Class

Method Description

action() Responds to components that have action events

deliverEvent() Sends an event to the component

handleEvent() Routes events to the appropriate handler

keyDown() Responds to key-down events

keyUp() Responds to key-up events

mouseDown() Responds to mouse-down events

mouseDrag() Responds to mouse-drag events

mouseEnter() Responds to mouse-enter events

mouseExit() Responds to mouse-exit events

mouseMove() Responds to mouse-move events

mouseUp() Responds to mouse-up events

postEvent() Similar to deliverEvent()

If you use the 1.0 event model under JDK 1.1 or JDK 1.2, the compiler will issue warnings
that these methods are deprecated. These warnings are not actually problems but let you

know these methods may not be supported in the future. ■

N O T E

397

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

In the Component class, event-handling methods such as action(), mouseDown(), and
keyDown() don’t actually do anything except return false, which indicates to Java that the
event hasn’t yet been handled. These methods are meant to be overridden in your programs so
that the program can respond to the event as is appropriate. For example, if you haven’t over-
ridden mouseDown() in an applet, the default version of mouseDown() returns false, which tells
Java that the message needs to be handled further on down the line. In the case of a mouse-
down event, Java probably returns the unhandled event to the system for default handling
(meaning that the event is effectively ignored).

The applet in Listing 20.11 responds to mouse clicks by printing the word Click! wherever the
user clicks in the applet. It does this by overriding the mouseDown() method and storing the
coordinates of the mouse click in the applet’s coordX and coordY data fields. The paint()
method then uses these coordinates to display the word. Listing 20.14 shows MouseApplet
running under AppletViewer.

Listing 20.14 MouseApplet.java—Using Mouse Clicks in an Applet

import java.awt.*;
import java.applet.*;
public class MouseApplet extends Applet
{
 int coordX, coordY;
 public void init()
 {
 coordX = -1;
 coordY = -1;
 Font font =
 ➥ new Font(“TimesRoman”, Font.BOLD, 24);
 setFont(font);
 resize(400, 300);
 }
 public void paint(Graphics g)
 {
 if (coordX != -1)
 g.drawString(“Click!”, coordX, coordY);
 }
 public boolean mouseDown(Event evt, int x, int y)
 {
 coordX = x;
 coordY = y;
 repaint();
 return true;
 }
}

When you run MouseApplet, you discover that the applet window gets erased each time
the paint() method is called. That’s why only one Click! ever appears in the

window. ■

The 1.0 Event Model

N O T E

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

398 Chapter 20 Exceptions and Events in Depth

The Keyboard
The keyboard has been around even longer than the mouse, and has been the primary inter-
face between humans and their computers for decades. Given the keyboard’s importance,
obviously there may be times when you want to handle the keyboard events at a lower level
than you can with something like a TextField component. Java responds to two basic key
events, which are represented by the KEY_PRESS and KEY_RELEASE constants. As you will soon
see, Java defines methods that make it just as easy to respond to the keyboard as it is to re-
spond to the mouse. You received an introduction to keyboard events in Chapter 15. In this
section, you learn even more about how to deal with the keyboard in your Java programs.

Whenever the user presses a key while an applet is active, Java sends the applet a KEY_PRESS
event. In your Java program, you can respond to this event by overriding the keyDown()
method, whose signature looks like this:

public boolean keyDown(Event evt, int key)

As you can see, this method receives two arguments, which are an Event object and an integer
representing the key that was pressed. This integer is actually the ASCII representation of the
character represented by the key. In order to use this value in your programs, however, you
must first cast it to a char value, like this:

char c = (char)key;

Some of the keys on your keyboard issue commands rather than generate characters. These
keys include all the F keys, as well as keys like Shift, Ctrl, Page Up, Page Down, and so on. In
order to make these types of keys easier to handle in your applets, Java’s Event class defines a
set of constants that represent these keys’ values (refer to Table 20.3).

The Event class also defines a number of constants for modifier keys that the user might press
along with the basic key. These constants, which are also listed in Table 20.3, include ALT_MASK,
SHIFT_MASK, and CTRL_MASK, which represent the Alt (or Alternate), Shift, and Ctrl (or Control)
keys on your keyboard. The SHIFT_MASK and CTRL_MASK constants are used in the Event class’s
methods shiftDown() and controlDown(), each of which returns a Boolean value indicating
whether the modifier key is pressed. (There currently is no altDown() method.) You can also
examine the Event object’s modifiers field to determine whether a particular modifier key was
pressed. For example, if you want to check for the Alt key, you might use a line of Java code
like this:

boolean altPressed = (evt.modifiers & Event.ALT_MASK) != 0;

By using AND on the mask with the value in the modifiers field, you end up with a non-zero
value if the Alt key was pressed and a 0 if it wasn’t. You convert this result to a Boolean value
by comparing the result with 0.

399

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

Handling Events Directly
All of the events received by your applet using the Java 1.0 event model are processed by the
handleEvent() method, which is inherited from the Component class. When this method is not
overridden in your program, the default implementation is responsible for calling the many
methods that respond to events. Listing 20.15 shows how the handleEvent() method is imple-
mented in the Component class. By examining this listing, you can easily see why you only have
to override methods like mouseDown() to respond to events. In the next section, you see how to
customize handleEvent() in your own programs.

Listing 20.15 LST20-12.TXT—The Default Implementation of handleEvent()

public boolean handleEvent(Event evt) {
switch (evt.id) {
 case Event.MOUSE_ENTER:
 return mouseEnter(evt, evt.x, evt.y);
 case Event.MOUSE_EXIT:
 return mouseExit(evt, evt.x, evt.y);
 case Event.MOUSE_MOVE:
 return mouseMove(evt, evt.x, evt.y);
 case Event.MOUSE_DOWN:
 return mouseDown(evt, evt.x, evt.y);
 case Event.MOUSE_DRAG:
 return mouseDrag(evt, evt.x, evt.y);
 case Event.MOUSE_UP:
 return mouseUp(evt, evt.x, evt.y);
 case Event.KEY_PRESS:
 case Event.KEY_ACTION:
 return keyDown(evt, evt.key);
 case Event.KEY_RELEASE:
 case Event.KEY_ACTION_RELEASE:
 return keyUp(evt, evt.key);

 case Event.ACTION_EVENT:
 return action(evt, evt.arg);
 case Event.GOT_FOCUS:
 return gotFocus(evt, evt.arg);
 case Event.LOST_FOCUS:
 return lostFocus(evt, evt.arg);
}
return false;
}()

Overriding the handleEvent() Method
Although the default implementation of handleEvent() calls special methods that you can
override in your program for each event, you might want to group all your event handling into
one method to conserve on overhead, change the way an applet responds to a particular event,
or even create your own events. To accomplish any of these tasks (or any others you might
come up with), you can forget the individual event-handling methods and override
handleEvent() instead.

The 1.0 Event Model

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

400 Chapter 20 Exceptions and Events in Depth

In your version of handleEvent(), you must examine the Event object’s id field in order to
determine which event is being processed. You can just ignore events in which you’re not
interested. However, be sure to return false whenever you ignore a message so that Java
knows that it should pass the event on up the object hierarchy. Listing 20.16 is an applet that
overrides the handleEvent() method in order to respond to events.

Listing 20.16 DrawApplet2.java—Using the handleEvent() Method

import java.awt.*;
import java.applet.*;
public class DrawApplet2 extends Applet
{
 Point startPoint;
 Point points[];
 int numPoints;
 boolean drawing;
 public void init()
 {
 startPoint = new Point(0, 0);
 points = new Point[1000];
 numPoints = 0;
 drawing = false;
 resize(400, 300);
 }
 public void paint(Graphics g)
 {
 int oldX = startPoint.x;
 int oldY = startPoint.y;
 for (int x=0; x<numPoints; ++x)
 {
 g.drawLine(oldX, oldY, points[x].x, points[x].y);
 oldX = points[x].x;
 oldY = points[x].y;
 }
 }
 public boolean handleEvent(Event evt)
 {
 switch(evt.id)
 {
 case Event.MOUSE_DOWN:
 drawing = true;
 startPoint.x = evt.x;
 startPoint.y = evt.y;
 return true;
 case Event.MOUSE_MOVE:
 if ((drawing) && (numPoints < 1000))
 {
 points[numPoints] = new Point(evt.x, evt.y);
 ++numPoints;
 repaint();
 }
 return true;

401

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

default:
 return false;
 }
 }
}

In Listing 20.13, the program overloads handleEvent() in order to be able to handle
events at a lower level. However, one side effect of this technique is that events other than

those explicitly handled in the new version of handleEvent() are ignored. If you still want to respond
normally to all other events, you have to be sure to include them in your version of handleEvent(),
or, even easier, just call the original version of handleEvent() from your new version, using the line
super.handleEvent(evt) in place of the return false. ■

Sending Your Own Events
There may be times when the events created and routed by Java don’t completely fit your
program’s needs. In those cases, you can create and send your own events. For example, you
may want the user to be able to select a command both by clicking a button or pressing a key.
One way you could handle this need is to have almost exactly the same event-handling code in
your action() and keyDown() methods. The code in action() would handle the button click,
and the code in keyDown() would handle the key press, as shown in Listing 20.17.

Listing 20.17 LST20-14.TXT—Handling Events with Duplicate Code

public boolean action(Event evt, Object arg)
{
 if (arg == “Test Button”)
 {
 if (color == Color.black)
 color = Color.red;
 else
 color = Color.black;
 repaint();
 return true;
 }
 return false;
}
public boolean keyDown(Event evt, int key)
{
 if ((key == LOWERCASE_T) || (key == UPPERCASE_T))
 {
 if (color == Color.black)
 color = Color.red;
 else
 color = Color.black;
 repaint();
 return true;
 }
 return false;
}

The 1.0 Event Model

N O T E

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

402 Chapter 20 Exceptions and Events in Depth

A more elegant solution to the problem presented in Listing 20.14 is to create your own event
in response to a key press and then deliver that event to the button component. You can create
your own event by calling the Event class’s constructor, like this:

Event event = new Event(button1, Event.ACTION_EVENT, “Test Button”);

The three required arguments are the event’s target component, the event ID, and the addi-
tional information that’s appropriate for the type of event. For a button action event, the third
argument should be the button’s label.

After you have the event constructed, sending it is as easy as calling the deliverEvent()
method, like this:

deliverEvent(event);

This method’s single argument is the event object you want to deliver.

Listing 20.18 is an applet that creates and sends its own events in order to link key presses to
button clicks. In the applet, when you click the button, the text color changes. The color also
changes when you press the keyboard’s T key. This is because the keyDown() method watches
for T key presses (both upper- and lowercase). When keyDown() gets a T key press, it creates
an ACTION_EVENT event and delivers it. This causes Java to call the action() method with the
event, same as if the user had clicked the button. Figure 20.11 shows EventApplet running
under AppletViewer.

Listing 20.18 EventApplet.java—Creating and Delivering Events

import java.awt.*;
import java.applet.*;
public class EventApplet extends Applet
{
 Button button1;
 String str;
 Color color;
 final int LOWERCASE_T = 116;
 final int UPPERCASE_T = 84;
 public void init()
 {
 button1 = new Button(“Test Button”);
 add(button1);
 str = “TEST COLOR”;
 color = Color.black;
 resize(400, 200);
 }
 public void paint(Graphics g)
 {
 Font font = new Font(“TimesRoman”, Font.PLAIN, 48);
 g.setFont(font);
 g.setColor(color);
 g.drawString(str, 55, 120);
 }
 public boolean action(Event evt, Object arg)

403

P2/VB mp12 SEU Java #1529-5 8.7.98 ayanna ch20 LP#3

20

III
Part

Ch

FIG. 20.11
EventApplet creates
and delivers its own
events.

 {
 if (arg == “Test Button”)
 {
 if (color == Color.black)
 color = Color.red;
 else
 color = Color.black;
 repaint();
 return true;
 }
 return false;
 }
 public boolean keyDown(Event evt, int key)
 {
 if ((key == LOWERCASE_T) || (key == UPPERCASE_T))
 {
 Event event = new Event(button1,
 Event.ACTION_EVENT, “Test Button”);
 deliverEvent(event);
 return true;
 }
 return false;
 }
}

The 1.0 Event Model

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xxxii Special Edition Using Java 1.2, Fourth Edition

Untitled-1 9/22/98, 9:46 AM32

405

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

C H A P T E R

Containers and Layout Managers

Organizing Components 406

Containers 406

Layout Managers 406

Containers 407

Container Basics 407

Panels 408

Frames 409

Dialogs 416

ScrollPanes 420

Layout Managers 421

Insets 428

The Null Layout Manager 429

Future Extensions from Sun 429

21

In this chapter

Untitled-10 9/22/98, 4:31 PM405

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

406 Chapter 21 Containers and Layout Managers

Organizing Components
AWT components implement the basic interface widgets you expect to find in a windowing
system. Containers and layout managers handle the difficult task of organizing the components
into a reasonable structure. In order to display a component, you must place it in a container.
An applet, for instance, is a container because it is a subclass of the Panel container.

A layout manager is like a set of instructions for placing a component within a container. When-
ever you add a component to a container, the container consults its layout manager to find out
where it should put the new component. While it may be difficult to abandon the old tech-
niques of placing components by absolute coordinates, you need to adapt to this new model,
because your applets may be running on screens with unusual layouts in the future. It is better
to leave the placement to the container and layout manager.

Containers
You need more than just components to create a good user interface; the components need to
be organized into manageable groups. That’s where containers come in. Containers contain
components. You cannot use a component in the AWT unless it is contained within a container.
A component without a container is like a refrigerator magnet without a refrigerator. The con-
tainers defined in the AWT are:

■ Windows

■ Panels

■ Frames

■ Dialogs

Even if you don’t create a container in your applet, you are still using one. The Applet class is a
subclass of the Panel class.

Containers not only contain components; they are components themselves. This means that a
container can contain other containers.

Layout Managers
Even though a container is a place where your user interface (UI) components can be stored
neatly, you still need a way to organize the components within a container. That’s where the
layout managers come in. Each container is given a layout manager that decides where each
component should be displayed. The layout managers in the AWT are:

■ Flow layout

■ Border layout

■ Grid layout

T I P

Untitled-10 9/22/98, 4:32 PM406

407

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Container Basics

■ Card layout

■ Grid bag layout

Containers
In addition to all of these wonderful components, the AWT provides several useful containers:

■ Panel A pure container. It is not a window in itself. Its sole purpose is to help you
organize your components in a window.

■ Frame A fully functioning window with its own title and icon. Frames may have pull-
down menus and may use a number of different cursor shapes.

■ Dialog A pop-up window that is not quite as fully functioning as the frame. Dialogs are
used for things such as “Are you sure you want to quit?” pop-ups.

■ ScrollPane A window with optional scrollbars to enable you to display areas too large
to fit on the screen.

Container Basics
All containers perform the same basic function, which is that they contain other components.
You place a component in a container by calling one of the add methods in the container. For
example, the statement

public synchronized Component add(Component newComponent)

adds newComponent to the end of the container. A container is like an array or a vector in that
each component contained in it has a specific position or index value. On the other hand,

public synchronized Component add(Component newComponent, int pos)

adds newComponent at position pos in the container. The components from position pos to the
end are all shifted up in position. In other words, this method does not replace the component
at pos; it inserts the new component right before it.

public synchronized Component add(String name, Component newComponent)

adds newComponent to the end of the container. The component is also added to the container’s
layout manager as a component named name. Some layout managers, such as the
BorderLayout, require each component to have a specific name in order to be visible. Other
layout managers ignore the name if they do not require it.

The remove method removes a component from a container, as shown in the following snippet:

public synchronized void remove(Component comp)

The removeAll method removes all of the components from a container:

public synchronized void removeAll()

You can get the nth component in the container using the getComponent method:

Untitled-10 9/22/98, 4:32 PM407

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

408 Chapter 21 Containers and Layout Managers

public synchronized Component getComponent(int n)
throws ArrayIndexOutOfBoundsException

Or, you can get all of the components with getComponents:

public synchronized Component[] getComponents()

The countComponents method returns the total number of components stored in this container:

public int countComponents()

Panels
Because panels are only used for organizing components, there are very few things you can
actually do to a panel. You create a new panel with the following:

Panel myPanel = new Panel();

You can then add the panel to another container. For instance, you might want to add it to your
applet:

add(myPanel);

You can also nest panels—one panel containing one or more other panels:

Panel mainPanel, subPanel1, subPanel2;
subPanel1 = new Panel(); // create the first sub-panel
subPanel2 = new Panel(); // create the second sub-panel
mainPanel = new Panel(); // create the main panel

mainPanel.add(subPanel1); // Make subPanel1 a child (sub-panel) of mainPanel
mainPanel.add(subPanel2); // Make subPanel2 a child of mainPanel

You can nest panels as many levels deep as you like. For instance, in the previous example, you
could have made subPanel2 a child of subPanel1 (obviously with different results).

Listing 21.1 shows how to create panels and nest sub-panels within them.

Listing 21.1 Source code for PanelApplet.java

import java.awt.*;
import java.applet.*;

// PanelApplet
//
// The PanelApplet applet creates a number of panels and
// adds buttons to them to demonstrate the use of panels
// for grouping components.

public class PanelApplet extends Applet
{
 public void init()
 {
// Create the main panels

Untitled-10 9/22/98, 4:32 PM408

409

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Frames

 Panel mainPanel1 = new Panel();
 Panel mainPanel2 = new Panel();

// Create the sub-panels
 Panel subPanel1 = new Panel();
 Panel subPanel2 = new Panel();

// Add a button directly to the applet
 add(new Button(“Applet Button”));

// Add the main panels to the applet
 add(mainPanel1);
 add(mainPanel2);

// Give mainPanel1 a button and a sub-panel
 mainPanel1.add(new Button(“Main Panel 1 Button”));
 mainPanel1.add(subPanel1);

// Give mainPanel2 a button and a sub-panel
 mainPanel2.add(new Button(“Main Panel 2 Button”));
 mainPanel2.add(subPanel2);

// Give each sub-panel a button
 subPanel1.add(new Button(“Sub-panel 1 Button”));

 subPanel2.add(new Button(“Sub-panel 2 Button”));
 }
}

Figure 21.1 shows the output from PanelApplet.

Frames
Frames are powerful features of the AWT. They enable you to create separate windows for your
application. For instance, you might want your application to run outside the main window of a
Web browser. You can also use frames to build stand-alone graphical applications.

Creating Frames
You can create a frame that is initially invisible and has no title with the empty constructor:

public Frame()

FIG. 21.1
Panels, like other
containers, help group
components together.

Untitled-10 9/22/98, 4:32 PM409

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

410 Chapter 21 Containers and Layout Managers

You can give the frame a title when you create it, but it will still be invisible:

public Frame(String frameTitle)

Frame Features
After you create a frame, you will probably want to see it. Before you can see the frame, you
must give it a size. Use the resize method to set the size:

myFrame.resize(300, 100); // Make the frame 300 pixels wide, 100 high

Then you can use the show method to make it visible:

myFrame.show(); // Show yourself, Frame!

You can send a frame back into hiding with the hide method. Even though the frame is invis-
ible, it still exists:

myFrame.hide();

As long as a frame exists, invisible or not, it is consuming some of the resources in the
windowing system it is running on. If you are finished with a frame, you should get rid of it
with the dispose method:

public synchronized void dispose()

You can change the title displayed at the top of the frame with setTitle:

public void setTitle(String newTitle)

For example:

myFrame.setTitle(“With Frames like this, who needs enemies?”);

The getTitle method will return the frame’s title:

public String getTitle()

The Frame class has a number of different cursors. You can change the frame’s cursor with
setCursor:

public void setCursor(int cursorType)

The available cursors are:

Frame.DEFAULT_CURSOR

Frame.CROSSHAIR_CURSOR

Frame.TEXT_CURSOR

Frame.WAIT_CURSOR

Frame.HAND_CURSOR

Frame.MOVE_CURSOR

Frame.N_RESIZE_CURSOR

Frame.NE_RESIZE_CURSOR

Frame.E_RESIZE_CURSOR

Untitled-10 9/22/98, 4:32 PM410

411

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Frames

Frame.SE_RESIZE_CURSOR

Frame.S_RESIZE_CURSOR

Frame.SW_RESIZE_CURSOR

Frame.W_RESIZE_CURSOR

Frame.NW_RESIZE_CURSOR

The getCursorType method will return one of these values indicating the current cursor type:

public int getCursorType()

If you do not want to allow your frame to be resized, you can call setResizable to turn resizing
on or off:

public void setResizable(boolean allowResizing)

The isResizable method will return true if a frame can be resized:

public boolean isResizable()

You can change a frame’s icon with setIconImage:

public setIconImage(Image image)

Using Frames to Make Your Applet Run Standalone
You can create applets that can run either as an applet or as a standalone application. All you
need to do is write a main method in the applet that creates a frame and then an instance of the
applet that belongs to the frame. Listing 21.2 shows an applet that can run either as an applet or
as a standalone application.

Listing 21.2 Source code for StandaloneApplet.java

import java.awt.*;
import java.applet.*;

// StandaloneApplet is an applet that runs either as
// an applet or a standalone application. To run
// standalone, it provides a main method that creates
// a frame, then creates an instance of the applet and
// adds it to the frame.

public class StandaloneApplet extends Applet
{
 public void init()
 {
 add(new Button(“Standalone Applet Button”));
 }

 public static void main(String args[])
 {
// Create the frame this applet will run in
 Frame appletFrame = new Frame(“Some applet”);

continues

Untitled-10 9/22/98, 4:32 PM411

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

412 Chapter 21 Containers and Layout Managers

// Create an instance of the applet
 Applet myApplet = new StandaloneApplet();

// Initialize and start the applet
 myApplet.init();
 myApplet.start();

// The frame needs a layout manager
 appletFrame.setLayout(new FlowLayout());

// Add the applet to the frame
 appletFrame.add(myApplet);

// Have to give the frame a size before it is visible
 appletFrame.resize(300, 100);

// Make the frame appear on the screen
 appletFrame.show();
 }
}

Adding Menus to Frames
You can attach a MenuBar class to a frame to provide drop-down menu capabilities. You can
create a menu bar with:

MenuBar myMenuBar = new MenuBar();

After you create a menu bar, you can add it to a frame by using the setMenuBar method:

myFrame.setMenuBar(myMenuBar);

Once you have a menu bar, you can add menus to it by using the add method:

public synchronized Menu add(Menu newMenu)

The following code fragment creates a menu called “File” and adds it to the menu bar:

Menu fileMenu = new Menu(“File”);
myMenuBar.add(fileMenu);

Some windowing systems enable you to create menus that stay up after you release the mouse
button. These are referred to as tear-off menus. You can specify that a menu is a tear-off menu
when you create it by using the following syntax:

public Menu(String menuLabel, boolean allowTearoff)

In addition to adding submenus, you will want to add menu items to your menus. Menu items
are the parts of a menu that the user actually selects. Menus, on the other hand, are used to
contain menu items as well as submenus. For instance, the File menu on many systems con-
tains menu items such as New, Open, Save, and Save As. If you created a menu structure with
no menu items, the menu structure would be useless. There would be nothing to select. You
may add menu items to a menu in two ways. You can simply add an item name:

Listing 21.2 Continued

Untitled-10 9/22/98, 4:32 PM412

413

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Frames

fileMenu.add(“Open”); // Add an “Open” option to the file menu

You can also add an instance of a MenuItem class to a menu:

MenuItem saveMenuItem = new MenuItem(“Save”);
 // Create a “Save” menu item
fileMenu.add(saveMenuItem); // Add the “Save” option to the file menu

You can enable and disable menu items by using enable and disable. When you disable a
menu item, it still appears on the menu, but it usually appears in gray (depending on the
windowing system). You cannot select menu items that are disabled. The format for enable and
disable is:

saveMenuItem.disable(); // Disables the save option from the file menu
saveMenuItem.enable(); // Enables the save option again

In addition to menu items, you can add submenus and menu separators to a menu. A separator
is a line that appears on the menu to separate sections of the menu. To add a separator, just call
the addSeparator method:

public void addSeparator()

To create a submenu, just create a new instance of a menu and add it to the current menu:

Menu printSubmenu = new Menu(“Print”);
fileMenu.add(printSubmenu);
printSubmenu.add(“Print Preview”);
 // Add print preview as option on Print menu
printSubmenu.add(“Print Document”);
 // Add print document as option on Print menu

You can also create special check box menu items. These items function like the check box
buttons. The first time you select one, it becomes checked, or on. The next time you select it, it
becomes unchecked, or off. To create a check box menu item:

public CheckboxMenuItem(String itemLabel)

The getState method returns true if a check box menu item is checked:

public boolean getState()

You can set the current state of a check box menu item with setState:

public void setState(boolean newState)

Normally, menus are added to a menu bar in a left-to-right fashion. Many windowing systems,
however, create a special Help menu that is on the far right of a menu bar. You can add such a
menu to your menu bar with the setHelpMenu method:

public synchronized void setHelpMenu(Menu helpMenu)

Using Menus
Whenever a menu item is selected, it either generates an action event or it calls its action
method, depending on the event model you are using (Java 1.1 versus Java 1.0). Under Java 1.0,
the whichAction parameter to the action method will be the name of the item selected:

Untitled-10 9/22/98, 4:32 PM413

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

414 Chapter 21 Containers and Layout Managers

public boolean action(Event evt, Object whichAction)
{

// First, make sure this event is a menu selection

 if (evt.target instanceof MenuItem)
 {
 if ((String)whichAction == “Save”)
 {
 // Handle save option
 }
 }
 return true;
}

Under Java 1.1, the event model was changed (and it stays this way in 1.2); under the 1.1 event
model, you must create an ActionListener for the menu. An object that implements
ActionListener must support the actionPerformed() method to receive notification that an
action has occurred:

public void actionPerformed(ActionEvent event)
{
 if (event.getSource() instanceOf MenuComponent)
 {
 if (event.getSource() == saveMenuComponent)
 {
 // Handle save option
 }
 }
}

Listing 21.3 shows the code for an application that sets up a simple File menu with New, Open,
and Save menu items; a check box called Auto-Save; and a Print submenu with two menu
items.

Listing 21.3 Source code for MenuApplication.java

import java.awt.*;
import java.applet.*;

public class MenuApplication extends Object
{
 public static void main(String[] args)
 {
// Create the frame and the menubar
 Frame myFrame = new Frame(“Menu Example”);
 MenuBar myMenuBar = new MenuBar();

// Add the menubar to the frame
 myFrame.setMenuBar(myMenuBar);

// Create the File menu and add it to the menubar
 Menu fileMenu = new Menu(“File”);
 myMenuBar.add(fileMenu);

Untitled-10 9/22/98, 4:32 PM414

415

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Frames

// Add the New and Open menuitems
 fileMenu.add(new MenuItem(“New”));
 fileMenu.add(new MenuItem(“Open”));

// Create a disabled Save menuitem
 MenuItem saveMenuItem = new MenuItem(“Save”);
 fileMenu.add(saveMenuItem);
 saveMenuItem.disable();

// Add an Auto-Save checkbox, followed by a separator
 fileMenu.add(new CheckboxMenuItem(“Auto-Save”));
 fileMenu.addSeparator();

// Create the Print submenu
 Menu printSubmenu = new Menu(“Print”);
 fileMenu.add(printSubmenu);
 printSubmenu.add(“Print Preview”);
 printSubmenu.add(“Print Document”);

// Must resize the frame before it can be shown
 myFrame.resize(300, 200);

// Make the frame appear on the screen
 myFrame.show();
 }
}

Figure 21.2 shows the output from the MenuApplication program with the Print Document
option in the process of being selected.

Pop-Up Menus
It is frequently desirable to create a pop-up menu for a component that enables you to click the
component with the right or middle mouse button and bring up a menu specific to that compo-
nent. Under Java 1.1, you can create such a menu.

You create a pop-up menu the same way you create a regular menu. You first instantiate a pop-
up menu using either of the following constructors:

public PopupMenu()

public PopupMenu(String title)

FIG. 21.2
The AWT provides a
number of popular
menu features
including checked
menu items, disabled
menu items, and
separators.

Untitled-10 9/22/98, 4:32 PM415

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

416 Chapter 21 Containers and Layout Managers

Next, you add MenuItem objects to the pop-up menu, just like a regular menu. After you add all
the items you want, add the pop-up menu to a component using the component’s add method,
as shown in the following snippet:

PopupMenu popup = new PopupMenu(“Button Stuff”);
popup.add(“Winken”);
popup.add(“Blinken”);
popup.add(“Nodd”);
Button myButton = new Button(“Push Me”);
myButton.add(popup);

Dialogs
Dialogs are pop-up windows that are not quite as flexible as frames. You can create a dialog as
either modal or non-modal. The term modal means that the dialog box blocks input to other
windows while it is being shown. This is useful for dialogs where you want to stop everything
and get a crucial question answered, such as, “Are you sure you want to quit?” An example of a
non-modal dialog box might be a control panel that changes settings in an application while the
application continues to run.

Creating Dialogs
You must first have a frame in order to create a dialog. A dialog cannot belong to an applet.
However, an applet may create a frame to which the dialog can then belong. You must specify
whether a dialog is modal or non-modal at creation time, and you cannot change its “modality”
once it has been created.

public Dialog(Frame parentFrame, boolean isModal)

The following example creates a modal dialog whose parent is myFrame:

Dialog myDialog = new Dialog(myFrame, true); // true means modal dialog

You can also create a dialog with a title:

public Dialog(Frame parentFrame, String title, boolean isModal)

Because dialogs cannot belong to applets, your use of dialogs can be somewhat limited.
One solution is to create a dummy frame as the dialog’s parent. Unfortunately, you cannot

create modal dialogs this way, because only the frame and its children would have their input
blocked—the applet would continue on its merry way. A better solution is to use the technique
discussed in the “Frames” section earlier in this chapter. In this case, you create a stand-alone
application using frames, have a small startup applet create a frame, and then run the real applet in
that frame. ■

Once you have created a dialog, you can make it visible using the show method:

myDialog.show();

N O T E

Untitled-10 9/22/98, 4:32 PM416

417

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Dialogs

Dialog Features
The Dialog class has several methods in common with the Frame class:

 void setResizable(boolean);
 boolean isResizable();
 void setTitle(String);
 String getTitle();

In addition, the isModal method will return true if the dialog is modal:

public boolean isModal()

A Reusable OK Dialog Box
Listing 21.4 shows the OKDialog class, which provides an OK dialog box that displays a mes-
sage and waits for you to click OK. You normally must supply a frame for the dialog box, but
you don’t create a frame when running an applet. To enable applets to use the dialog box, this
class provides a static createOKDialog method that first creates a frame for the dialog box. The
frame is then saved as a static variable, so other dialog boxes can use the same frame.

Listing 21.4 Source code for OKDialog.java

import java.awt.*;

//
// OKDialog - Custom dialog that presents a message and waits for
// you to click on the OK button.
//
// Example use:
// Dialog ok = new OKDialog(parentFrame, “Click OK to continue”);
// ok.show(); // Other input will be blocked until OK is pressed
// As a shortcut, you can use the static createOKDialog that will
// create its own frame and activate itself:
// OKDialog.createOKDialog(“Click OK to continue”);
//

public class OKDialog extends Dialog
{
 protected Button okButton;
 protected static Frame createdFrame;

 public OKDialog(Frame parent, String message)
 {
 super(parent, true); // Must call the parent’s constructor

// This Dialog box uses the GridBagLayout to provide a pretty good layout.

 GridBagLayout gridbag = new GridBagLayout();
 GridBagConstraints constraints = new GridBagConstraints();

// Create the OK button and the message to display
 okButton = new Button(“OK”);

continues

Untitled-10 9/22/98, 4:32 PM417

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

418 Chapter 21 Containers and Layout Managers

 Label messageLabel = new Label(message);

 setLayout(gridbag);

// The message should not fill, it should be centered within this area, with
// some extra padding. The gridwidth of REMAINDER means this is the only
// thing on its row, and the gridheight of RELATIVE means there should only
// be one thing below it.
 constraints.fill = GridBagConstraints.NONE;
 constraints.anchor = GridBagConstraints.CENTER;
 constraints.ipadx = 20;
 constraints.ipady = 20;
 constraints.weightx = 1.0;
 constraints.weighty = 1.0;
 constraints.gridwidth = GridBagConstraints.REMAINDER;
 constraints.gridheight = GridBagConstraints.RELATIVE;

 gridbag.setConstraints(messageLabel, constraints);
 add(messageLabel);

// The button has no padding, no weight, takes up minimal width, and
// Is the last thing in its column.

 constraints.ipadx = 0;
 constraints.ipady = 0;
 constraints.weightx = 0.0;
 constraints.weighty = 0.0;
 constraints.gridwidth = 1;
 constraints.gridheight = GridBagConstraints.REMAINDER;

 gridbag.setConstraints(okButton, constraints);
 add(okButton);

// Pack is a special window method that makes the window take up the minimum
// space necessary to contain its components.

 pack();

 }

// The action method just waits for the OK button to be clicked and
// when it is it hides the dialog, causing the show() method to return
// back to whoever activated this dialog.

 public boolean action(Event evt, Object whichAction)
 {
 if (evt.target == okButton)
 {
 hide();
 if (createdFrame != null)
 {
 createdFrame.hide();
 }
 }

Listing 21.4 Continued

Untitled-10 9/22/98, 4:32 PM418

419

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Dialogs

 return true;
 }

// Shortcut to create a frame automatically, the frame is a static variable
// so all dialogs in an applet or application can use the same frame.

 public static void createOKDialog(String dialogString)
 {
// If the frame hasn’t been created yet, create it
 if (createdFrame == null)
 {
 createdFrame = new Frame(“Dialog”);
 }
// Create the dialog now
 OKDialog okDialog = new OKDialog(createdFrame, dialogString);

// Shrink the frame to just fit the dialog
 createdFrame.resize(okDialog.size().width,
 okDialog.size().height);

// Show the dialog
 okDialog.show();

 }
}

The DialogApplet in Listing 21.5 pops up an OK dialog whenever a button is pressed.

Listing 21.5 Source code for DialogApplet.java

import java.awt.*;
import java.applet.*;

// DialogApplet
//
// Dialog applet creates a button, and when you press
// the button it brings up an OK dialog. The input
// to the original button should be blocked until
// the OK button in the dialog is pressed.

public class DialogApplet extends Applet
{
 protected Button launchButton;

 public void init()
 {
 launchButton = new Button(“Give me an OK”);
 add(launchButton);
 }

 public boolean action(Event event, Object whichAction)
 {

continues

Untitled-10 9/22/98, 4:32 PM419

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

420 Chapter 21 Containers and Layout Managers

// Make sure this action is for the launchButton
 if (event.target != launchButton)
 {
 return false;
 }

// Create and display the OK dialog
 OKDialog.createOKDialog(
 “Press OK when you are ready”);

// Signal that you’ve handled the event
return true;
 }
}

Figure 21.3 shows the DialogApplet with the OK dialog popped up.

Listing 21.5 Continued

ScrollPanes
A ScrollPane is a special container that contains scrollbars to enable you to scroll the contents
of the container. This allows you to create very large containers that don’t have to be displayed
all at once. A common use for a ScrollPane is to display a large image. You can create a canvas
that displays the image and then place it in a ScrollPane container to provide automatic scroll-
ing of the image.

You can control the scroll pane’s use of scrollbars. By default, a scroll pane uses scrollbars only
if necessary. You can specify that it should always use scrollbars, or never use scrollbars (in
which case it is no different from a Panel object). If you use the default constructor, the scroll
pane uses scrollbars if needed, otherwise you can pass either ScrollPane.SCROLLBARS_ALWAYS,
ScrollPane.SCROLLBARS_NEVER, or ScrollPane.SCROLLBARS_AS_NEEDED to the constructor:

public ScrollPane()

public ScrollPane(int scrollbarOption)

You add components to a scroll pane the same way you do with any other container. You can
set the position of the viewing area by calling setScrollPosition with either a Point object or
x and y coordinates:

public void setScrollPosition(Point point)

FIG. 21.3
The OKDialog class
creates a pop-up dialog
box with an OK button.

Untitled-10 9/22/98, 4:32 PM420

421

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Layout Managers

public void setScrollPosition(int x, int y)

The setScrollPosition method only controls the upper-left corner of the viewing area. The
rest is determined by the size of the scroll pane.

If you want to listen for events from the scroll pane’s scrollbars, you can call getHAdjustable
and getVAdjustable to get Adjustable interfaces for the horizontal and vertical scrollbars:

public Adjustable getHAdjustable()

public Adjustable getVAdjustable()

The Adjustable interface, in turn, enables you to listen for events with
setAdjustableListener.

You can also determine the width and height of the viewing area with getViewport:

public Dimension getViewport()

Layout Managers
If you haven’t noticed already, when you add components to a container you don’t have to tell
the container where to put a component. By using layout managers, you tell the AWT where
you want your components to go relative to the other components. The layout manager figures
out exactly where to put them. This helps you make platform-independent software. When you
position components by absolute coordinates, it can cause a mess when someone running
Windows 95 in 640×480 resolution tries to run an applet that is designed to fit on a 1280×1024
X-terminal.

The AWT provides five different types of layout managers:

■ FlowLayout Arranges components from left to right until no more components will fit
on a row. It then moves to the next row and continues going left to right.

■ GridLayout Treats a container as a grid of identically sized spaces. It places compo-
nents in the spaces in the grid, starting from the top left and continuing in left to right
fashion, just like the FlowLayout. The difference between GridLayout and FlowLayout is
that GridLayout gives each component an equal-sized area to work in.

■ BorderLayout Treats the container like a compass. When you add a component to the
container, you ask the BorderLayout to place it in one of five areas: “North,” “South,”
“East,” “West,” or “Center.” It figures out the exact positioning based on the relative sizes
of the components.

■ CardLayout Treats the components added to the container as a stack of cards. It places
each component on a separate card, and only one card is visible at a time.

■ GridBagLayout The most flexible of the layout managers. It is also the most confusing.
GridBagLayout treats a container as a grid of cells, but unlike GridLayout, a component
may occupy more than one cell. When you add a component to a container managed by
GridBagLayout, you give it a GridBagConstraint, which has placement and sizing
instructions for that component.

Untitled-10 9/22/98, 4:32 PM421

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

422 Chapter 21 Containers and Layout Managers

Flow Layouts
A FlowLayout class treats a container as a set of rows. The heights of the rows are determined
by the height of the items placed in the rows. The FlowLayout starts adding new components
from left to right. If it cannot fit the next component onto the current row, it drops down to the
next row and starts again from the left. It also tries to align the rows using either left justifica-
tion, right justification, or centering. The default alignment for a FlowLayout is centered, which
means that when it creates a row of components, it will try to keep it centered with respect to
the left and right edges.

The FlowLayout layout manager is the default layout manager for all applets.

The empty constructor for the FlowLayout class creates a flow layout with a centered align-
ment:

public FlowLayout()

You may also specify the alignment when you create the flow layout:

public FlowLayout(int alignment)

The different types of FlowLayout alignment are FlowLayout.LEFT, FlowLayout.RIGHT, and
FlowLayout.CENTER.

You may also give the FlowLayout horizontal and vertical gap values. These values specify the
minimum amount of horizontal and vertical space to leave between components. These gaps
are given in units of screen pixels:

public FlowLayout(int alignment, int hgap, int vgap)

The following snippet creates a right-justified FlowLayout with a horizontal gap of 10 pixels and
a vertical gap of five pixels:

myFlowLayout = new FlowLayout(FlowLayout.RIGHT, 10, 5);

Figure 21.4 shows five buttons arranged in a flow layout.

T I P

FIG. 21.4
The flow layout places
components from left to
right.

Grid Layouts
The GridLayout class divides a container into a grid of equally sized cells. When you add com-
ponents to the container, the GridLayout places them from left to right starting in the top left
cells. When you create a GridLayout class, you must tell it how many rows or columns you
want. If you give it a number of rows, it will compute the number of columns needed.

Untitled-10 9/22/98, 4:32 PM422

423

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Layout Managers

If, instead, you give it a number of columns, it will compute the number of rows needed. If you
add six components to a GridLayout with two rows, it will create three columns. The format of
the GridLayout constructor is

public GridLayout(int numberOfRows, int numberOfColumns)

If you create a GridLayout with a fixed number of rows, you should use 0 for the number of
columns. If you have a fixed number of columns, use 0 for the number of rows.

If you pass non-zero values to GridLayout for both the number of rows and the number
of columns, it will only use the number of rows. The number of columns will be computed

based on the number of components and the number of rows. GridLayout(3, 4) is exactly the
same as GridLayout(3, 0). ■

You may also specify a horizontal and vertical gap:

public GridLayout(int rows, int cols, int hgap, int vgap)

The following code creates a GridLayout with four columns, a horizontal gap of eight, and a
vertical gap of 10:

GridLayout myGridLayout = new GridLayout(0, 4, 8, 10);

Figure 21.5 shows five buttons arranged in a grid layout.

N O T E

Border Layouts
The BorderLayout class divides a container into five areas named “North,” “South,” “East,”
“West,” and “Center.” When you add components to the container, you must use a special form
of the add method that includes one of these five area names. These five areas are arranged
like the points on a compass. A component added to the “North” area is placed at the top of the
container, while a component added to the “West” area is placed on the left side of the con-
tainer.

FIG. 21.5
The grid layout allocates
equally sized areas for
each component.

Untitled-10 9/22/98, 4:32 PM423

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

424 Chapter 21 Containers and Layout Managers

The BorderLayout class does not allow more than one component in an area. You may option-
ally specify a horizontal and vertical gap. To create a BorderLayout without specifying a gap,
use the empty constructor:

public BorderLayout()

You can also specify the horizontal and vertical gap:

public BorderLayout(int hgap, int vgap)

The following line adds myButton to the “West” area of the BorderLayout:

myBorderLayout.add(“West”, myButton);

CAUTION

The BorderLayout class is very picky about how and where you add components. It requires you to use
the add method that takes a string name along with the component. If you try to add a component using
the regular add method (without the area name), you will not see your component. If you try to add two
components to the same area, you will only see the last component added.

Listing 21.6 shows a BorderLayoutApplet that creates a BorderLayout, attaches it to the cur-
rent applet, and adds some buttons to the applet.

Listing 21.6 Source code for BorderLayoutApplet.java

import java.applet.*;
import java.awt.*;

//
// This applet creates a BorderLayout and attaches it
// to the applet. Then it creates buttons and places
// in all possible areas of the layout.

public class BorderLayoutApplet extends Applet
{
 public void init()
 {

// First create the layout and attach it to the applet

 setLayout(new BorderLayout());

// Now create some buttons and lay them out

 add(“North”, new Button(“Larry”));
 add(“South”, new Button(“Curly Joe”));
 add(“East”, new Button(“Curly”));
 add(“West”, new Button(“Shemp”));
 add(“Center”, new Button(“Moe”));
 }

}

Figure 21.6 shows five buttons arranged in a border layout.

Untitled-10 9/22/98, 4:32 PM424

425

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Grid Bag Layouts
The GridBagLayout class, like the GridLayout, divides a container into a grid of equally sized
cells. Unlike the GridLayout, however, the GridBagLayout class decides how many rows and
columns it will have and allows a component to occupy more than one cell, if necessary. The
total area that a component occupies is called its display area. Before you add a component to a
container, you must give the GridBagLayout a set of “suggestions” on where to put the compo-
nent. These suggestions are in the form of a GridBagConstraints class. The
GridBagConstraints class has a number of variables to control the placement of a component:

■ gridx and gridy The coordinates of the cell where the next component should be
placed (if the component occupies more than one cell, these coordinates are for the
upper-left cell of the component). The upper-left corner of the GridBagLayout is at 0, 0.
The default value for both gridx and gridy is GridBagConstraints.RELATIVE, which for
gridx means the cell just to the right of the last component that was added. For gridy, it
means the cell just below the last component added.

■ gridwidth and gridheight Tell how many cells wide and tall a component should be.
The default for both gridwidth and gridheight is 1. If you want this component to be
the last one on a row, use GridBagConstraint.REMAINDER for the gridwidth (use this
same value for gridheight if this component should be the last one in a column). Use
GridBagConstraint.RELATIVE if the component should be the next-to-last component in
a row or column.

■ fill Tells the GridBagLayout what to do when a component is smaller than its display
area. The default value, GridBagConstraint.NONE, causes the component size to remain
unchanged. GridBagConstraint.HORIZONTAL causes the component to be stretched
horizontally to take up its whole display area horizontally while leaving its height
unchanged. GridBagConstraint.VERTICAL causes the component to be stretched
vertically while leaving the width unchanged. GridBagConstraint.BOTH causes the
component to be stretched in both directions to fill its display area completely.

FIG. 21.6
The border layout
places components at
the “North,” “South,”
“East,” and “West”
compass points, as well
as in the “Center.”

Layout Managers

Untitled-10 9/22/98, 4:32 PM425

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

426 Chapter 21 Containers and Layout Managers

■ ipadx and ipady Tell the GridBagLayout how many pixels to add to the size of the
component in the x and y direction. The pixels will be added on either side of the
component, so an ipadx of 4 would cause the size of a component to be increased by four
on the left and also four on the right. Remember that the component size will grow by
two times the amount of padding because the padding is added to both sides. The default
for both ipadx and ipady is 0.

■ insets An instance of an Insets class. It indicates how much space to leave between
the borders of a component and the edges of its display area. In other words, insets
creates a “no-man’s land” of blank space surrounding a component. The Insets class
(discussed later in this chapter in the section “Insets”) has separate values for the top,
bottom, left, and right insets.

■ anchor Used when a component is smaller than its display area. It indicates where the
component should be placed within the display area. The default value is
GridBagConstraint.CENTER, which indicates that the component should be in the center
of the display area. The other values are all compass points:

GridbagConstraints.NORTH

GridBagConstraints.NORTHEAST

GridBagConstraints.EAST

GridBagConstraints.SOUTHEAST

GridBagConstraints.SOUTH

GridBagConstraints.SOUTHWEST

GridBagConstraints.WEST

GridBagConstraints.NORTHWEST

As with the BorderLayout class, NORTH indicates the top of the screen, while EAST is to
the right.

■ weightx and weighty Used to set relative sizes of components. For instance, a compo-
nent with a weightx of 2.0 takes up twice the horizontal space of a component with a
weightx of 1.0. Because these values are relative, there is no difference between all
components in a row having a weight of 1.0 or 3.0. You should assign a weight to at least
one component in each direction, otherwise the GridBagLayout will squeeze your
components toward the center of the container.

When you want to add a component to a container using a GridBagLayout, you create the com-
ponent, then create an instance of GridBagConstraints, and set the constraints for the compo-
nent. For example:

GridBagLayout myGridBagLayout = new GridBagLayout();
setLayout(myGridBagLayout);
 // Set the applet’s Layout Manager to myGridBagLayout

Button myButton = new Button(“My Button”);
GridBagConstraints constraints = new GridBagConstraints();
constraints.weightx = 1.0;
constraints.gridwidth = GridBagConstraints.RELATIVE;
constraints.fill = GridBagConstraints.BOTH;

Untitled-10 9/22/98, 4:32 PM426

427

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

Next, you set the component’s constraints in the GridBagLayout:

myGridLayout.setConstraints(myButton, constraints);

Now you may add the component to the container:

add(myButton);

The applet in Listing 21.7 uses the GridBagLayout class to arrange a few instances of
CircleCanvas (created in the section “Canvases” earlier in this chapter).

Listing 21.7 Source code for CircleApplet.java

import java.applet.*;
import java.awt.*;

//
// This circle demonstrates the CircleCanvas class we
// created. It also shows you how to use the GridBagLayout
// to arrange the circles.

public class CircleApplet extends Applet
{
 public void init()
 {
 GridBagLayout gridbag = new GridBagLayout();
 GridBagConstraints constraints = new GridBagConstraints();
 CircleCanvas newCircle;

 setLayout(gridbag);

// You’ll use the weighting to determine relative circle sizes. Make the
// first one just have a weight of 1. Also, set fill for both directions
// so it will make the circles as big as possible.

 constraints.weightx = 1.0;
 constraints.weighty = 1.0;
 constraints.fill = GridBagConstraints.BOTH;

// Create a red circle and add it

 newCircle = new CircleCanvas(Color.red);
 gridbag.setConstraints(newCircle, constraints);
 add(newCircle);

// Now, you want to make the next circle twice as big as the previous
// one, so give it twice the weight.

 constraints.weightx = 2.0;
 constraints.weighty = 2.0;

// Create a blue circle and add it

 newCircle = new CircleCanvas(Color.blue);

continues

Layout Managers

Untitled-10 9/22/98, 4:32 PM427

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

428 Chapter 21 Containers and Layout Managers

 gridbag.setConstraints(newCircle, constraints);
 add(newCircle);

// You’ll make the third circle the same size as the first one, so set the
// weight back down to 1.

 constraints.weightx = 1.0;
 constraints.weighty = 1.0;

// Create a green circle and add it.

 newCircle = new CircleCanvas(Color.green);
 gridbag.setConstraints(newCircle, constraints);
 add(newCircle);

 }
}

Figure 21.7 shows the three circle canvases from the GridBagApplet.

Listing 21.7 Continued

FIG. 21.7
The GridBagApplet
creates three circle
canvases.

Insets
Insets are not layout managers. They are instructions to the layout manager about how much
space to leave around the edges of the container. In other words, insets define an empty area
between the edge of a container and the components it contains. If you have an inset of 20
pixels on the left side of a container, no component will be placed closer than 20 pixels to the
left edge of the container.

Insets are described by an instance of the Insets class. This class has instance variables for the
left, top, right, and bottom inset values. The layout manager determines the inset values for a
container by calling the container’s insets method, which returns an instance of an Insets
class. For example, if you want to leave a 20-pixel gap between the components in your applet
and the applet border, you should create an insets method in your applet:

public Insets insets()
{
 return new Insets(20, 20, 20, 20);

Untitled-10 9/22/98, 4:32 PM428

429

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

21

III
Part

Ch

 // Inset by 20 pixels all around
}

The constructor for the Insets class takes four inset values in the order top, left, bottom, and
right.

Figure 21.8 shows what the GridBagApplet would look like if it used the above insets method.
The gap between the circles is not from the Insets class but from the fact that the circles are
smaller. The gaps on the top, bottom, left, and right are created by the Insets class.

The Null Layout Manager
You aren’t required to use a layout manager at all, although it is recommended. There are
cases where you need to place components explicitly at certain coordinates. If you set the
layout manager in a container to null, you can explicitly set the sizes and positions of the com-
ponents using the move and resize methods in each component.

Future Extensions from Sun
Sun is developing a complete development environment for Java applications called Solstice
Workshop, which includes a robust set of class libraries. These libraries will include a set of
classes called the Admin View Module (AVM), which will address some of the shortcomings of
the AWT. It does not replace the AWT; it complements the AWT. The AVM will include such
useful features as:

■ Image buttons

■ Multicolumn lists

■ Scrolling windows

■ Toolbars

■ Image canvases

■ Many common dialogs

These features will be fully integrated with the rest of Solstice Workshop to enable you to de-
velop robust applications very quickly without writing too much code. For more information on

FIG. 21.8
Insets create a gap
between components
and the edges of their
containers.

Future Extensions from Sun

Untitled-10 9/22/98, 4:32 PM429

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH21 LP#4

430 Chapter 21 Containers and Layout Managers

the AVM, consult the Java Management API (JMAPI) Web site at http://www.javasoft.com/
products/JavaManagement/index.html. ●

Untitled-10 9/22/98, 4:32 PM430

431

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

C H A P T E R

Graphics

22

In this chapter

Java Graphics 432

paint, Update, and repaint 432

The Graphics Class 433

The Polygon Class 439

Drawing Text 440

Drawing Modes 447

Drawing Images 449

The MediaTracker Class 451

Graphics Utility Classes 454

The Color Class 457

Clipping 459

Animation Techniques 461

Printing 462

Untitled-11 9/22/98, 4:37 PM431

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

432 Chapter 22 Graphics

Java Graphics
The Abstract Windowing Toolkit (AWT) provides an Application Programming Interface (API)
for common User Interface components, such as buttons and menus.

One of the main goals of Java is to provide a platform-independent development environment.
The area of Graphical User Interfaces has always been one of the stickiest parts of creating
highly portable code. The Windows API is different from the OS/2 Presentation Manager API,
which is different from the X-Windows API, which is different from the Mac API. The most
common solution to this problem is to look at all the platforms you want to use, identify the
components that are common to all of them (or would be easy to implement on all of them),
and create a single API you can use for all of them. On each different platform, the common
API would interface with the platform’s native API. Applications using the common API would
then have the same look and feel as applications using the native API.

The opposite of this approach is to create a single look and feel, and then implement that look
and feel on each different platform. For Java, Sun chose the common API approach, which
allows Java applications to blend in smoothly with their surroundings. Sun called this common
API the Abstract Windowing Toolkit, or AWT for short.

The AWT addresses graphics from two different levels. At the lower level, it handles the raw
graphics functions and the different input devices such as the mouse and keyboard. At the
higher level, it provides a number of components like pushbuttons and scroll bars you would
otherwise have to write yourself.

This chapter discusses the low-level graphics and printing features of the AWT. Chapter 28
discusses the low-level input handling, while Chapters 29 and 30 discuss the higher-level por-
tions of the AWT.

paint, Update, and repaint
As you saw in the simple HelloWorld applet, Java applets can redraw themselves by overriding
the paint method. Because your applet never explicitly calls the paint method, you may have
wondered how it is called. Your applet actually has three different methods that are used in
redrawing the applet, as follows:

■ repaint can be called any time the applet needs to be repainted (redrawn).

■ Update is called by repaint to signal that it is time to update the applet. The default
update method clears the applet’s drawing area and calls the paint method.

■ paint actually draws the applet’s graphics in the drawing area. The paint method is
passed an instance of a Graphics class that it can use for drawing various shapes and
images.

Untitled-11 9/22/98, 4:37 PM432

433

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

The Graphics Class
The Graphics class provides methods for drawing a number of graphical figures, including the
following:

■ Lines

■ Circles and Ellipses

■ Rectangles and Polygons

■ Images

■ Text in a variety of fonts

In addition, Graphics is extended by the Graphics2D and Graphics3D classes. To learn more
about the new 2D features refer to Chapter 26, “Java 2D Graphics.”

The Coordinate System
The coordinate system used in Java is a simple Cartesian (x, y) system where x is the number
of screen pixels from the left-hand side, and y is the number of pixels from the top of the
screen. The upper-left corner of the screen is represented by (0, 0). This is the coordinate
system used in almost all graphics systems. Figure 22.1 gives you an example of some coordi-
nates.

Drawing Lines
The simplest Figure you can draw with the Graphics class is a line. The drawLine method
takes two pairs of coordinates—x1,y1 and x2,y2—and draws a line between them:

public abstract void drawLine(int x1, int y1, int x2, int y2)

The applet in Listing 22.1 uses the drawLine method to draw some lines. The output from this
applet is shown in Figure 22.2.

FIG. 22.1
Unlike math coordi-
nates, where y
increases from bottom
to top, the y coordi-
nates in Java increase
from the top down.

FIG. 22.2
Line drawing is one of
the most basic graphics
operations.

The Graphics Class

Untitled-11 9/22/98, 4:37 PM433

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

434 Chapter 22 Graphics

Listing 22.1 Source Code for DrawLines.java

import java.awt.*;
import java.applet.*;

//
// This applet draws a pair of lines using the Graphics class
//

public class DrawLines extends Applet
{
 public void paint(Graphics g)
 {
// Draw a line from the upper-left corner to the point at (200, 100)
 g.drawLine(0, 0, 200, 100);

// Draw a horizontal line from (20, 120) to (250, 120)
 g.drawLine(20, 120, 250, 120);
 }
}

Drawing Rectangles
Now that you know how to draw a line, you can progress to rectangles and filled rectangles.
To draw a rectangle, you use the drawRect method and pass it the x and y coordinates of the
upper-left corner of the rectangle, the width of the rectangle, and its height:

public abstract void drawRect(int x, int y, int width, int height)

To draw a rectangle at (150, 100) that is 200 pixels wide and 120 pixels high, your call would be:

g.drawRect(150, 100, 200, 120);

The drawRect method draws only the outline of a box. If you want to draw a solid box, you can
use the fillRect method, which takes the same parameters as drawRect:

public abstract void fillRect(int x, int y, int width, int height)

You may also clear out an area with the clearRect method, which also takes the same param-
eters as drawRect:

public abstract void clearRect(int x, int y, int width, int height)

Figure 22.3 shows you the difference between drawRect, fillRect, and clearRect. The
rectangle on the left is drawn with drawRect, and the center one is drawn with fillRect. The
rectangle on the right is drawn with fillRect, but the clearRect is used to make the empty
area in the middle.

FIG. 22.3
Java provides several
flexible ways of drawing
rectangles.

Untitled-11 9/22/98, 4:37 PM434

435

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

Drawing 3D Rectangles
The Graphics class also provides a way to draw “3D” rectangles similar to buttons that you
might find on a toolbar. Unfortunately, the Graphics class draws these buttons with very little
height or depth, making the 3D effect difficult to see. The syntax for the draw3DRect and
fill3DRect is similar to drawRect and fillRect, except they have an extra parameter at the
end—a Boolean indicator as to whether the rectangle is raised or not:

public void draw3dRect(int x, int y, int width, int height, boolean raised)
public void fill3dRect(int x, int y, int width, int height, boolean raised)

The raising/lowering effect is produced by drawing light and dark lines around the borders of
the rectangle.

Imagine a light coming from the upper-left corner of the screen. A raised 3D rectangle would
catch light on its top and left sides, while the bottom and right sides would have a shadow. A
lowered 3D rectangle would have a shadow on the top and left sides, while the bottom and
right sides would catch light. Both the draw3DRect and fill3DRect methods draw the top and
left sides in a lighter color for raised rectangles while drawing the bottom and right sides in a
darker color. They draw the top and left darker and the bottom and right lighter for lowered
rectangles. In addition, the fill3DRect method will draw the entire button in a darker shade
when it is lowered. The applet in Listing 22.2 draws some raised and lowered rectangles, both
filled and unfilled.

Listing 22.2 Source Code for Rect3d.java

import java.awt.*;’
import java.applet.*;

//
// This applet draws four varieties of 3-D rectangles.
// It sets the drawing color to the same color as the
// background because this shows up well in HotJava and
// Netscape.

public class Rect3d extends Applet
{
 public void paint(Graphics g)
 {
// Make the drawing color the same as the background
 g.setColor(getBackground());

// Draw a raised 3-D rectangle in the upper-left
 g.draw3dRect(10, 10, 60, 40, true);
// Draw a lowered 3-D rectangle in the upper-right
 g.draw3dRect(100, 10, 60, 40, false);

// Fill a raised 3-D rectangle in the lower-left
 g.fill3dRect(10, 80, 60, 40, true);
// Fill a lowered 3-D rectangle in the lower-right
 g.fill3dRect(100, 80, 60, 40, false);
 }
}

The Graphics Class

Untitled-11 9/22/98, 4:37 PM435

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

436 Chapter 22 Graphics

Figure 22.4 shows the output from the Rect3d applet. Notice that the raised rectangles appear
the same for the filled and unfilled. This is only because the drawing color is the same color as
the background. If the drawing color were different, the filled button would be filled with the
drawing color, while the unfilled button would still show the background color.

Drawing Rounded Rectangles
In addition to the regular and 3D rectangles, you can also draw rectangles with rounded cor-
ners. The drawRoundRect and fillRoundRect methods are similar to drawRect and fillRect
except that they take two extra parameters:

public abstract void drawRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)
public abstract void fillRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)

The arcWidth and arcHeight parameters indicate how much of the corners will be rounded.
For instance, an arcWidth of 10 tells the Graphics class to round off the left-most five pixels
and the right-most five pixels of the corners of the rectangle. An arcHeight of 8 tells the class
to round off the top-most and bottom-most four pixels of the rectangle’s corners.

Figure 22.5 shows the corner of a rounded rectangle. The arcWidth for the Figure is 30, while
the arcHeight is 10. The Figure shows an imaginary ellipse with a width of 30 and a height of
29 to help illustrate how the rounding is done.

FIG. 22.4
The draw3DRect and
fill3DRect methods
use shading to produce
a 3D effect.

10 pixels

15 pixels

The applet in Listing 22.3 draws a rounded rectangle and a filled, rounded rectangle. Figure
22.6 shows the output from this applet.

FIG. 22.5
Java uses an ellipse to
determine the amount
of rounding.

Untitled-11 9/22/98, 4:37 PM436

437

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

Listing 22.3 Source Code for RoundRect.java

import java.awt.*;
import java.applet.*;

// Example 22.3-RoundRect Applet
//
// This applet draws a rounded rectangle and then a
// filled, rounded rectangle.

public class RoundRect extends Applet
{
 public void paint(Graphics g)
 {
// Draw a rounded rectangle with an arcWidth of 20, and an arcHeight of 20
 g.drawRoundRect(10, 10, 40, 50, 20, 20);

// Fill a rounded rectangle with an arcWidth of 10, and an arcHeight of 8
 g.fillRoundRect(10, 80, 40, 50, 10, 6);
 }
}

Drawing Circles and Ellipses
If you are bored with square shapes, you can try your hand at circles. The Graphics class does
not distinguish between a circle and an ellipse, so there is no drawCircle method. Instead, you
use the drawOval and fillOval methods:

public abstract void drawOval(int x, int y, int width, int height)
public abstract void fillOval(int x, int y, int width, int height)

To draw a circle or an ellipse, first imagine that the Figure is surrounded by a rectangle that
just barely touches the edges. You pass drawOval the coordinates of the upper-left corner of
this rectangle. You also pass the width and height of the oval. If the width and height are the
same, you are drawing a circle. Figure 22.7 illustrates the concept of the enclosing rectangle.

FIG. 22.6
Java’s rounded
rectangles are a
pleasant alternative to
sharp-cornered
rectangles.

FIG. 22.7
Circles and ellipses are
drawn within the
bounds of an imaginary
enclosing rectangle.

The Graphics Class

Untitled-11 9/22/98, 4:37 PM437

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

438 Chapter 22 Graphics

The applet in Listing 22.4 draws a circle and a filled ellipse. Figure 22.8 shows the output from
this applet.

Listing 22.4 Source Code for Ovals.java

import java.awt.*;
import java.applet.*;

//
// This applet draws an unfilled circle and a filled ellipse

public class Ovals extends Applet
{
 public void paint(Graphics g)
 {

// Draw a circle with a diameter of 30 (width=30, height=30)
// With the enclosing rectangle’s upper-left corner at (0, 0)
 g.drawOval(0, 0, 30, 30);

// Fill an ellipse with a width of 40 and a height of 20
// The upper-left corner of the enclosing rectangle is at (0, 60)
 g.fillOval(0, 60, 40, 20);
 }
}

Drawing Polygons
You can also draw polygons and filled polygons by using the Graphics class. You have two
options when drawing polygons. You can either pass two arrays containing the x and y coordi-
nates of the points in the polygon, or you can pass an instance of a Polygon class:

public abstract void drawPolygon(int[] xPoints, int[] yPoints, int numPoints)

public void drawPolygon(Polygon p)

The applet in Listing 22.5 draws a polygon using an array of points. Figure 22.9 shows the
output from this applet.

FIG. 22.8
Java doesn’t know the
difference between
ellipses and circles;
they’re all just ovals.

FIG. 22.9
Java allows you to draw
polygons of almost any
shape you can imagine.

Untitled-11 9/22/98, 4:38 PM438

439

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

Listing 22.5 Source Code for DrawPoly.java

import java.applet.*;
import java.awt.*;

//
// This applet draws a polygon using an array of points

public class DrawPoly extends Applet
{
// Define an array of X coordinates for the polygon
 int xCoords[] = { 10, 40, 60, 30, 10 };

// Define an array of Y coordinates for the polygon
 int yCoords[] = { 20, 0, 10, 60, 40 };

 public void paint(Graphics g)
 {
 g.drawPolygon(xCoords, yCoords, 5); // 5 points in polygon
 }
}

CAUTION

Notice that in this example, the polygon is not “closed off.” In other words, there is no line between the last
point in the polygon and the first one. If you want the polygon to be closed, you must repeat the first point at
the end of the array.

The Polygon Class
The Polygon class provides a more flexible way to define polygons. You can create a Polygon
by passing it an array of x points and an array of y points:

public Polygon(int[] xPoints, int[] yPoints, int numPoints)

You can also create an empty polygon and add points to it one-at- a-time:

public Polygon()
public void addPoint(int x, int y)

Once you have created an instance of a Polygon class, you can use the getBounds method to
determine the area taken up by this polygon (the minimum and maximum x and y coordi-
nates):

public Rectangle getBounds()

The Rectangle class returned by getBounds() contains variables indicating the x and y coordi-
nates of the rectangle and its width and height. You can also determine whether a point is
contained within the polygon or outside it by calling inside with the x and y coordinates of the
point:

public boolean contains(int x, int y)

The Polygon Class

Untitled-11 9/22/98, 4:38 PM439

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

440 Chapter 22 Graphics

For example, you can check to see if the point (5,10) is contained within myPolygon by using
the following code fragment:

 if (myPolygon.contains(5, 10))
 {
 // the point (5, 10) is inside this polygon
 }

You can use this Polygon class in place of the array of points for either the drawPolygon or
fillPolygon methods. The applet in Listing 22.6 creates an instance of a polygon and draws a
filled polygon. Figure 22.10 shows the output from this applet.

Listing 22.6 Source Code for Polygons.java

import java.applet.*;
import java.awt.*;

//
// This applet creates an instance of a Polygon class and then
// uses fillPoly to draw the Polygon as a filled polygon.

public class Polygons extends Applet
{
// Define an array of X coordinates for the polygon
 int xCoords[] = { 10, 40, 60, 30, 10 };

// Define an array of Y coordinates for the polygon
 int yCoords[] = { 20, 0, 10, 60, 40 };

 public void paint(Graphics g)
 {
// Create a new instance of a polygon with 5 points
 Polygon drawingPoly = new Polygon(xCoords, yCoords, 5);

// Draw a filled polygon
 g.fillPolygon(drawingPoly);
 }
}

Drawing Text
The Graphics class also contains methods to draw text characters and strings. As you have
seen in the “Hello World” applet, you can use the drawString method to draw a text string on
the screen. Before plunging into the various aspects of drawing text, you should be familiar
with some common terms for fonts and text, as follows:

FIG. 22.10
Polygons created with
the Polygon class look
just like those created
from an array of points.

Untitled-11 9/22/98, 4:38 PM440

441

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

■ Baseline. Imaginary line the text is resting on.

■ Descent. How far below the baseline a particular character extends. Some characters,
such as g and j, extend below the baseline.

■ Ascent. How far above the baseline a particular character extends. The letter d would
have a higher ascent than the letter x.

■ Leading. Amount of space between the descent of one line and the ascent of the next
line. If there was no leading, such letters as g and j would almost touch such letters as M
and H on the next line.

CAUTION

The term ascent in Java is slightly different from the same term in the publishing world. The publishing term
ascent refers to the distance from the top of the letter x to the top of a character, where the Java term
ascent refers to the distance from the baseline to the top of a character.

Figure 22.11 illustrates the relationship between the descent, ascent, baseline, and leading.

You may also hear the terms proportional and fixed associated with fonts. In a fixed font,
every character takes up the same amount of space. Typewriters (if you actually remember

those) wrote in a fixed font. Characters in a proportional font only take up as much space as they
need. You can use this book as an example.

The text of the book is in a proportional font, which is much easier on the eyes. Look at some of the
words and notice how the letters only take up as much space as necessary. (Compare the letters i and
m, for example.) The code examples in this book, however, are written in a fixed font (this preserves the
original spacing). Notice how each letter takes up exactly the same amount of space. ■

To draw a string using the Graphics class, you call drawString, give it the string you want to
draw, and give it the x and y coordinates for the beginning of the baseline (that’s why you
needed the terminology brief ing):

public abstract void drawString(String str, int x, int y)

You may recall the “Hello World” applet used this same method to draw its famous message:

public void paint(Graphics g)
{

FIG. 22.11
Java’s font terminology
originated in the
publishing field, but
some of the meanings
have been changed.

N O T E

Drawing Text

Untitled-11 9/22/98, 4:38 PM441

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

442 Chapter 22 Graphics

 g.drawString(“Hello World”, 10, 30);
}

You can also draw characters from an array of characters or an array of bytes. The format for
drawChars and drawBytes is:

void drawChars(char charArray[], int offset, int numChars, int x, int y)
void drawBytes(byte byteArray[], int offset, int numChars, int x, int y)

The offset parameter refers to the position of the first character or byte in the array to draw.
This will most often be zero because you will usually want to draw from the beginning of the
array. The applet in Listing 22.7 draws some characters from a character array and from a byte
array.

Listing 22.7 Source Code for DrawChars.java

import java.awt.*;
import java.applet.*;

//
// This applet draws a character array and a byte array

public class DrawChars extends Applet
{
 char[] charsToDraw = { ‘H’, ‘i’, ‘ ‘, ‘T’, ‘h’, ‘e’, ‘r’, ‘e’, ‘!’ };

 byte[] bytesToDraw = { 65, 66, 67, 68, 69, 70, 71 }; // “ABCDEFG”

 public void paint(Graphics g)
 {
 g.drawChars(charsToDraw, 0, charsToDraw.length, 10, 20);

 g.drawBytes(bytesToDraw, 0, bytesToDraw.length, 10, 50);
 }
}

The Font Class
You may find that the default font for your applet is not very interesting. Fortunately, you can
select from a number of different fonts. These fonts have the potential to vary from system to
system, which may lead to portability issues in the future; but for the moment, HotJava and
Netscape support the same set of fonts.

In addition to selecting between multiple fonts, you may also select a number of font styles:
Font.PLAIN, Font.BOLD, and Font.ITALIC. These styles can be added together, so you can use
a bold italic font with Font.BOLD + Font.ITALIC.

When choosing a font, you must also give the point size of the font. Point size is a printing term
that relates to the size of the font. There are 100 points to an inch when printing on a printer,
but this does not necessarily apply to screen fonts. Microsoft Windows defines the point size
as being about the same height in all different screen resolutions. In other words, a letter in a

Untitled-11 9/22/98, 4:38 PM442

443

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

14-point font in the 640×480 screen resolution should be about the same height on your moni-
tor as a 14-point font in 1,024×768 resolution on the same monitor. Java does not conform to
this notion, however. In Java, a font’s height varies directly with the number of pixels. A 14-
point font in 1,280×960 resolution would be twice as tall as a 14-point font in 640×480 mode. The
point sizing is done this way in Java because many applets use absolute screen coordinates,
especially when drawing raw graphics. Lines and squares have a fixed pixel height. If you draw
text with these figures, make the text have a fixed height as well.

You create an instance of a font by using the font name, the font style, and the point size:

public Font(String fontName, int style, int size)

The following declaration creates the Times Roman font that is both bold and italic and has a
point size of 12:

Font myFont = new Font(“TimesRoman”, Font.BOLD + Font.ITALIC, 12);

You can also retrieve fonts that are described in the system properties using the getFont
methods:

public static Font getFont(String propertyName)

Returns an instance of Font described by the system property named propertyName. If the
property name is not set, it will return null.

public static Font getFont(String propertyName, Font defaultValue)

Returns an instance of Font described by the system property named propertyName. If the
property name is not set, it will return defaultValue.

The getFont method allows the fonts described in the system properties to have a style and a
point size associated with them in addition to the font name. The format for describing a font in
the system properties is

font-style-pointsize

The style parameter can be bold, italic, bolditalic, or not present. If the style parameter
is not present, the format of the string is

font-pointsize

You might describe a bold 16-point TimesRoman font in the system properties as

TimesRoman-bold-16

This mechanism is used for setting specific kinds of fonts. For instance, you might write a Java
VT-100 terminal emulator that used the system property defaultVT100Font to find out what
font to use for displaying text. You could set such a property on the command line:

java -DdefaultVT100Font=courier-14 emulators.vt100

You can get information about a font using the following methods:

public String getFamily()

Drawing Text

Untitled-11 9/22/98, 4:38 PM443

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

444 Chapter 22 Graphics

The family of a font is a platform-specific name for the font. It will often be the same as the
font’s name.

public String getName()
public int getSize()
public int getStyle()

You can also examine the font’s style by checking for bold, italic, and plain individually:

public boolean isBold()
public boolean isItalic()
public boolean isPlain()

The getFontList method in the Toolkit class returns an array containing the names of the
available fonts:

public abstract String[] getFontList()

You can use the getDefaultToolkit method in the Toolkit class to get a reference to the
current toolkit:

public static synchronized ToolKit getDefaultToolkit()

The applet in Listing 22.8 uses getFontList to display the available fonts in a variety of styles.
Figure 22.12 shows the results of Listing 22.8.

Listing 22.8 Source Code for ShowFonts.java

import java.awt.*;
import java.applet.*;

//
// This applet uses the Toolkit class to get a list
// of available fonts, then displays each font in
// PLAIN, BOLD, and ITALIC style.

public class ShowFonts extends Applet
{
 public void paint(Graphics g)
 {
 String fontList[];

FIG. 22.12
Java provides a number
of different fonts and
font styles.

Untitled-11 9/22/98, 4:38 PM444

445

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

 int i;
 int startY;

// Get a list of all available fonts
 fontList = getToolkit().getFontList();

 startY = 15;

 for (i=0; i < fontList.length; i++)
 {
// Set the font to the PLAIN version
 g.setFont(new Font(fontList[i], Font.PLAIN, 12));
// Draw an example
 g.drawString(“This is the “+
 fontList[i]+” font.”, 5, startY);
// Move down a little on the screen
 startY += 15;

// Set the font to the BOLD version
 g.setFont(new Font(fontList[i], Font.BOLD, 12));
// Draw an example
 g.drawString(“This is the bold “+
 fontList[i]+” font.”, 5, startY);
// Move down a little on the screen
 startY += 15;

// Set the font to the ITALIC version
 g.setFont(new Font(fontList[i], Font.ITALIC, 12));
// Draw an example
 g.drawString(“This is the italic “+
 fontList[i]+” font.”, 5, startY);

// Move down a little on the screen with some extra spacing
 startY += 20;
 }
 }
}

The FontMetrics Class
The FontMetrics class lets you examine the various character measurements for a particular
font. The getFontMetrics method in the Graphics class returns an instance of FontMetrics for
a particular font:

public abstract FontMetrics getFontMetrics(Font f)

You can also get the font metrics for the current font:

public FontMetrics getFontMetrics()

An instance of FontMetrics is always associated with a particular font. To find out what font an
instance of FontMetrics refers to, use the getFont method:

public Font getFont()

Drawing Text

Untitled-11 9/22/98, 4:38 PM445

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

446 Chapter 22 Graphics

The getAscent, getDescent, getLeading, and getHeight methods return the various height
aspects of a font.

public int getAscent()

returns the typical ascent for characters in the font. It is possible for certain characters in this
font to extend beyond this ascent.

public int getDescent()

returns the typical descent for characters in the font. It is possible for certain characters in this
font to extend below this descent.

public int getLeading()

returns the leading value for this font.

public int getHeight()

returns the total font height, calculated as ascent + descent + leading.

Because some characters may extend past the normal ascent and descent, you can get the
absolute limits with getMaxAscent and getMaxDescent:

public int getMaxAscent()
public int getMaxDescent()

The width of a character is usually given in terms of its “advance.” The advance is the amount
of space the character itself takes up plus the amount of white space that comes after the char-
acter. The width of a string as printed on the screen is the sum of the advances of all its charac-
ters. The charWidth method returns the advance for a particular character:

public int charWidth(char ch)
public int charWidth(int ch)

You can also get the maximum advance for any character in the font with the getMaxAdvance
method:

public int getMaxAdvance()

One of the most common uses of the FontMetrics class is to get the width, or advance, of a
string of characters. The stringWidth method returns the advance of a string:

public int stringWidth(String str)

You can also get the width for an array of characters or an array of bytes.

public int charsWidth(char[] data, int offset, int len)

returns the width for len characters stored in data starting at position offset.

public int bytesWidth(char[] data, int offset, int len)

returns the width for len bytes stored in data starting at position offset.

The getWidths method returns an array of widths for the first 256 characters in a font:

public int[] getWidths()

Untitled-11 9/22/98, 4:38 PM446

447

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

Drawing Modes
The Graphics class has two different modes for drawing figures: paint and XOR. Paint mode
means that when a Figure is drawn, all the points in that Figure overwrite the points that were
underneath it. In other words, if you draw a straight line in blue, every point along that line will
be blue. You probably just assumed that would happen anyway, but it doesn’t have to. There is
another drawing mode called XOR, short for exclusive-OR.

The XOR drawing mode dates back several decades. You can visualize how the XOR mode
works by forgetting for a moment that you are dealing with colors and imagining that you are
drawing in white on a black background. Drawing in XOR involves the combination of the pixel
you are trying to draw and the pixel that is on the screen where you want to draw. If you try to
draw a white pixel where there is currently a black pixel, you will draw a white pixel. If you try
to draw a white pixel where there is already a white pixel, you will instead draw a black pixel.

This may sound strange, but it was once very common to do animation using XOR. To under-
stand why, you should first realize that if you draw a shape in XOR mode and then draw the
shape again in XOR mode, you erase whatever you did in the first draw. If you were moving a
Figure in XOR mode, you would draw it once; then to move it, you’d draw it again in its old
position (thus erasing it); then XOR draws it in its new position. Whenever two objects over-
lapped, the overlapping areas looked like a negative: black was white and white was black. You
probably won’t have to use this technique for animation, but at least you have some idea where
it came from.

When using XOR on a color system, think of the current drawing color as the white from the
above example and identify another color as the XOR color—or the black. Because there are

more than two colors, the XOR mode makes interesting combinations with other colors, but you can
still erase any shape by drawing it again. ■

To change the drawing mode to XOR, just call the setXORMode and pass it the color you want to
use as the XOR color. The applet in Listing 22.9 shows a simple animation that uses XOR mode
to move a ball past a square.

Listing 22.9 Source Code for BallAnim.java

import java.awt.*;
import java.applet.*;
import java.lang.*;

//
// The BallAnim applet uses XOR mode to draw a rectangle
// and a moving ball. It implements the Runnable interface
// because it is performing animation.

public class BallAnim extends Applet implements Runnable
{
 Thread animThread;

N O T E

continues

Drawing Modes

Untitled-11 9/22/98, 4:38 PM447

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

448 Chapter 22 Graphics

 int ballX = 0; // X coordinate of ball
 int ballDirection = 0; // 0 if going left-to-right, 1 otherwise

// Start is called when the applet first cranks up. It creates a thread for
// doing animation and starts up the thread.

 public void start()
 {
 if (animThread == null)
 {
 animThread = new Thread(this);
 animThread.start();
 }
 }

// Stop is called when the applet is terminated. It halts the animation
// thread and gets rid of it.

 public void stop()
 {
 animThread.stop();
 animThread = null;
 }

// The run method is the main loop of the applet. It moves the ball, then
// sleeps for 1/10th of a second and then moves the ball again.

 public void run()
 {
 Thread.currentThread().setPriority(Thread.NORM_PRIORITY);

 while (true)
 {
 moveBall();
 try {
 Thread.sleep(100); // sleep 0.1 seconds
 } catch (Exception sleepProblem) {
// This applet ignores any exceptions if it has a problem sleeping.
// Maybe it should take Sominex
 }
 }
 }

 private void moveBall()
 {
// If moving the ball left-to-right, add 1 to the x coord
 if (ballDirection == 0)
 {
 ballX++;

// Make the ball head back the other way once the x coord hits 100

 if (ballX > 100)
 {

Listing 22.9 Continued

Untitled-11 9/22/98, 4:38 PM448

449

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

 ballDirection = 1;
 ballX = 100;
 }
 }
 else
 {

// If moving the ball right-to-left, subtract 1 from the x coord
 ballX—;

// Make the ball head back the other way once the x coord hits 0
 if (ballX <= 0)
 {
 ballDirection = 0;
 ballX = 0;
 }
 }

 repaint();
 }

 public void paint(Graphics g)
 {
 g.setXORMode(getBackground());
 g.fillRect(40, 10, 40, 40);
 g.fillOval(ballX, 0, 30, 30);
 }
}

Figure 22.13 is a snapshot of the BallAnim applet in action. Notice that the ball changes color
as it passes over the square. This is due to the way the XOR mode works.

Drawing Images
The Graphics class provides a way to draw images with the drawImage method:

public abstract boolean drawImage(Image img, int x,
➥ int y, ImageObserver observer)

public abstract boolean drawImage(Image img, int x,
➥ int y, int width, int height,
 ImageObserver observer)
public abstract boolean drawImage(Image img, int x,
➥ int y, Color bg, ImageObserver ob)
public abstract boolean drawImage(Image img, int x,
➥ int y, int width, int height, Color
 bg, ImageObserver ob)

FIG. 22.13
XOR drawing produces
an inverse effect when
objects collide.

Drawing Images

Untitled-11 9/22/98, 4:38 PM449

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

450 Chapter 22 Graphics

public abstract boolean drawImage(Image img, int dx1,
➥ int dy1, int dx2, int dy2, int
 sx1, int sy1, int sx2, int sy2, Color bg,
 ImageObserver ob)
public abstract boolean drawImage(Image img, int dx1, int dy1, int dx2,
➥ int dy2, int
 sx1, int sy1, int sx2, int sy2,
➥ ImageObserver ob)

The observer parameter in the drawImage method is an object that is in charge of watching to
see when the image is actually ready to draw. If you are calling drawImage from within your
applet, you can pass this as the observer because the Applet class implements the
ImageObserver interface. The bg parameter, if present, indicates the color of the background
area of the rectangle into which the image is drawn. This is often used if the image has trans-
parent pixels where the bg color indicates the color used for the transparent pixels.

The drawImage method can draw a portion of an image and scale it as it draws. The sx,sy
parameters indicate the top-left and bottom-right corners of the region of the original image
that is to be drawn. The dx,dy parameters indicate the top-left and bottom-right corners of the
region where the image is to be drawn. If the size of the sx and ‘ rectangles is different, the
image is scaled appropriately.

To draw an image, however, you need to get the image first. That is not provided by the Graph-
ics class. Fortunately, the Applet class provides a getImage method that you can use to re-
trieve images. The applet in Listing 22.10 retrieves an image and draws it. Figure 22.14 shows
the output from this applet.

Listing 22.10 Source Code for DrawImage.java

import java.awt.*;
import java.applet.*;

//
// This applet uses getImage to retrieve an image
// and then draws it using drawImage

public class DrawImage extends Applet
{
 private Image samImage;

 public void init()

FIG. 22.14
You can draw any GIF or
JPEG in a Java applet
with the drawImage
method.

Untitled-11 9/22/98, 4:38 PM450

451

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

 {
 samImage = getImage(getDocumentBase(), “samantha.gif”);
 }

 public void paint(Graphics g)
 {
 g.drawImage(samImage, 0, 0, this);
 }
}

The MediaTracker Class
One problem you may face when trying to display images is that the images may be coming
over a slow network link (for instance, a 14.4Kbps modem). When you begin to draw the im-
age, it may not have arrived completely. You can use a helper class called the MediaTracker to
determine whether an image is ready for display.

To use the MediaTracker, you must first create one for your applet.

public MediaTracker(Component comp)

creates a new media tracker for a specific AWT component. The comp parameter is typically the
applet using the media tracker.

For example, to create a media tracker within an applet:

MediaTracker myTracker = new MediaTracker(this); // “this” refers to the applet

Next, try to retrieve the image you want to display:

Image myImage = getImage(“samantha.gif”);

Now you tell the MediaTracker to keep an eye on the image. When you add an image to the
MediaTracker, you also give it a numeric id:

public void addImage(Image image, int id)

The id value can be used for multiple images so when you want to see if an entire group of
images is ready for display, you can check it with a single ID. If you intend to scale an image
before displaying it, you should specify the intended width and height in the addImage call:

public synchronized void addImage(Image image, int id, int width, int height)

As a simple case, you can just give an image an ID of zero:

myTracker.addImage(myImage, 0); // Track the image, give an id of 0

Once you have started tracking an image, you can load it and wait for it to be ready by using
the waitForID method.

public void waitForID(int id)

waits for all images with an ID number of id.

The MediaTracker Class

Untitled-11 9/22/98, 4:38 PM451

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

452 Chapter 22 Graphics

public void waitForID(int id, long ms)

waits up to a maximum of ms milliseconds for all images with an ID number of id.

You can also wait for all images using the waitForAll method:

public void waitForAll()

As with the waitForID method, you can give a maximum number of milliseconds to wait:

public void waitForAll(long ms)

You may not want to take the time to load an image before starting your applet. You can use the
statusID method to initiate a load, but not to wait for it. When you call statusID, you pass the
ID you want to status and a Boolean flag to indicate whether it should start loading the image.
If you pass it true, it will start loading the image:

public int statusID(int id, boolean startLoading)

A companion to statusID is statusAll, which checks the status of all images in the
MediaTracker:

public int statusAll(boolean startLoading)

The statusID and statusAll methods return an integer that is made up of the following flags:

■ MediaTracker.ABORTED if any of the images have aborted loading

■ MediaTracker.COMPLETE if any of the images have finished loading

■ MediaTracker.LOADING if any images are still in the process of loading

■ MediaTracker.ERRORED if any images encountered an error during loading

You can also use checkID and checkAll to see if an image has been successfully loaded. All the
variations of checkAll and checkID return a Boolean value that is true if all the images
checked have been loaded.

public boolean checkID(int id)

returns true if all images with a specific ID have been loaded. It does not start loading the
images if they are not loading already.

public synchronized boolean checkID(int id, boolean startLoading)

returns true if all images with a specific ID have been loaded. If startLoading is true, it will
initiate the loading of any images that are not already being loaded.

public boolean checkAll()

returns true if all images being tracked by this MediaTracker have been loaded, but does not
initiate loading if an image is not being loaded.

public synchronized boolean checkAll(boolean startLoading)

returns true if all images being tracked by this MediaTracker have been loaded. If
startLoading is true, it will initiate the loading of any images that have not started loading yet.

Untitled-11 9/22/98, 4:38 PM452

453

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

The applet in Listing 22.11 uses the MediaTracker to watch for an image to complete loading. It
will draw text in place of the image until the image is complete; then it will draw the image.

Listing 22.11 Source Code for ImageTracker.java

import java.awt.*;
import java.applet.*;
import java.lang.*;
//
// The ImageTracker applet uses the media tracker to see if an
// image is ready to be displayed. In order to simulate a
// situation where the image takes a long time to display, this
// applet waits 10 seconds before starting to load the image.
// While the image is not ready, it displays the message:
// “Image goes here” where the image will be displayed.

public class ImageTracker extends Applet implements Runnable
{
 Thread animThread; // Thread for doing animation
 int waitCount; // Count number of seconds you have waited
MediaTracker myTracker; // Tracks the loading of an image
 Image myImage; // The image you are loading

 public void init()
 {
// Get the image you want to show
 myImage = getImage(getDocumentBase(), “samantha.gif”);

// Create a media tracker to track the image
 myTracker = new MediaTracker(this);

// Tell the media tracker to track this image
 myTracker.addImage(myImage, 0);
 }

 public void run()
 {
 Thread.currentThread().setPriority(Thread.NORM_PRIORITY);

 while (true)
 {
// Count how many times you’ve been through this loop
 waitCount++;

// If you’ve been through 10 times, call checkID and tell it to start
// loading the image
 if (waitCount == 10)
 {
 myTracker.checkID(0, true);
 }

 repaint();
 try {

continues

The MediaTracker Class

Untitled-11 9/22/98, 4:38 PM453

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

454 Chapter 22 Graphics

// Sleep 1 second (1000 milliseconds)
 Thread.sleep(1000); // sleep 1 second
 } catch (Exception sleepProblem) {
 }
 }
 }

 public void paint(Graphics g)
 {
 if (myTracker.checkID(0))
 {
// If the image is ready to display, display it
 g.drawImage(myImage, 0, 0, this);
 }
 else
 {
// Otherwise, draw a message where you will put the image
 g.drawString(“Image goes here”, 0, 30);
 }
 }

 public void start()
 {
 animThread = new Thread(this);
 animThread.start();
 }

 public void stop()
 {
 animThread.stop();
 animThread = null;
 }

}

Graphics Utility Classes
The AWT contains several utility classes that do not perform any drawing, but represent vari-
ous aspects of geometric figures. The Polygon class introduced earlier is one of these. The
others are Point, Dimension, and Rectangle.

The Point Class
A Point represents an x-y point in the Java coordinate space. Several AWT methods return
instances of Point. You can also create your own instance of point by passing the x and y coor-
dinates to the constructor:

public Point(int x, int y)

Listing 22.11 Continued

Untitled-11 9/22/98, 4:38 PM454

455

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

You can also create an uninitialized point, or initialize a point using another Point object:

public Point()
public Point(Point p)

The x and y coordinates of a Point object are public instance variables:

public int x
public int y

This means you may manipulate the x and y values of a Point object directly. You can also
change the x and y values using either the move or translate methods:

public void move(int newX, int newY)

sets the point’s x and y coordinates to newX and newY.

public void translate(int xChange, yChange)

adds xChange to the current x coordinate, and yChange to the current y.

The Dimension Class
A dimension represents a width and height, but not at a fixed point. In other words, two rect-
angles can have identical dimensions without being located at the same coordinates. The
empty constructor creates a dimension with a width and height of 0:

public Dimension()

You can also specify the width and height in the constructor:

public Dimension(int width, int height)

If you want to make a copy of an existing Dimension object, you can pass that object to the
Dimension constructor:

public Dimension(Dimension oldDimension)

The width and height of a dimension are public instance variables, so you can manipulate them
directly:

public int width
public int height

The Rectangle Class
A rectangle represents the combination of a Point and a Dimension. The Point represents the
upper-left corner of the rectangle, while the Dimension represents the rectangle’s width and
height. You can create an instance of a Rectangle by passing a Point and a Dimension to the
constructor:

public Rectangle(Point p, Dimension d)

Rather than creating a Point and a Dimension, you can pass the x and y coordinates of the
point and the width and height of the dimension:

public Rectangle(int x, int y, int width, int height)

Graphics Utility Classes

Untitled-11 9/22/98, 4:38 PM455

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

456 Chapter 22 Graphics

If you want x and y to be 0, you can create the rectangle using only the width and height:

public Rectangle(int width, int height)

If you pass only a Point to the constructor, the width and height are set to 0:

public Rectangle(Point p)

Similarly, if you pass only a Dimension, the x and y are set to 0:

public Rectangle(Dimension d)

You can use another Rectangle object as the source for the new rectangle’s coordinates and
size:

public Rectangle(Rectangle r)

If you use the empty constructor, the x, y, width, and height are all set to 0:

public Rectangle()

The x, y, width, and height variables are all public instance variables, so you can manipulate
them directly:

public int x
public int y
public int width
public int height

Like the Point class, the Rectangle class contains move and translate methods which modify
the upper-left corner of the rectangle:

public void move(int newX, int newY)
public void translate(int xChange, yChange)

The setSize and grow methods change the rectangle’s dimensions in much the same way that
move and translate change the upper-left corner point:

public void setSize(int newWidth, int newHeight)
public void grow(int widthChange, int heightChange)

The setBounds method changes the x, y, width, and height all in one method call:

public void setBounds(int newX, int newY, int newWidth, int newHeight)

The contains method returns true if a rectangle contains a specific x, y point:

public boolean contains(int x, int y)

The intersection method returns a rectangle representing the area contained by both the
current rectangle and another rectangle:

public Rectangle intersection(Rectangle anotherRect)

You can determine if two rectangles intersect at all using the intersects method:

public boolean intersects(Rectangle anotherRect)

Untitled-11 9/22/98, 4:38 PM456

457

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

The union method is similar to the intersection, except that instead of returning the area in
common to the two rectangles, it returns the smallest rectangle that is contained by the rect-
angles:

public Rectangle union(Rectangle anotherRect)

The add method returns the smallest rectangle containing both the current rectangle and
another point:

public void add(Point p)
public void add(int x, int y)

If the point is contained in the current rectangle, the add method will return the current rect-
angle. The add method will also take a rectangle as a parameter, in which case it is identical to
the union method:

public void add(Rectangle anotherRect)

The Color Class
You may recall learning about the primary colors when you were younger. There are actually
two kinds of primary colors. When you are drawing with a crayon, you are actually dealing with
pigments. The primary pigments are red, yellow, and blue. You probably know some of the
typical mixtures, such as red + yellow = orange, yellow + blue = green, and blue + red = purple.
Black is formed by mixing all the pigments together; while white is the absence of pigment.

Dealing with the primary colors of light is slightly different. The primary colors of light are
red, green, and blue. Some common combinations are red + green = brown (or yellow, depend-
ing on how bright it is), green + blue = cyan (light blue), and red + blue = magenta (purple).
For colors of light, the concept of black and white are the reverse of the pigments. Black is
formed by the absence of all light, while white is formed by the combination of all the primary
colors. In other words, red + blue + green (in equal amounts) = white. Java uses a color model
called the RGB color model.

You define a color in the RGB color model by indicating how much red light, green light, and
blue light is in the color. You can do this either by using numbers between zero and 255 or by
using floating point numbers between 0.0 and 1.0. Table 22.1 indicates the red, green, and blue
amounts for some common colors.

Table 22.1 Common Colors and Their RGB Values

Color Name Red Value Green Value Blue Value

White 255 255 255

Light Gray 192 192 192

Gray 128 128 128

Dark Gray 64 64 64

continues

The Color Class

Untitled-11 9/22/98, 4:38 PM457

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

458 Chapter 22 Graphics

Black 0 0 0

Red 255 0 0

Pink 255 175 175

Orange 255 200 0

Yellow 255 255 0

Green 0 255 0

Magenta 255 0 255

Cyan 0 255 255

Blue 0 0 255

You can create a custom color three ways:

Color(int red, int green, int blue)

creates a color using red, green, and blue values between zero and 255.

Color(int rgb)

creates a color using red, green, and blue values between 0 and 255, but all combined into a
single integer. Bits 16–23 hold the red value, 8–15 hold the green value, and 0–7 hold the blue
value. These values are usually written in hexadecimal notation, so you can easily see the color
values. For instance, 0x123456 would give a red value of 0x12 (18 decimal), a green value of 34
(52 decimal), and a blue value of 56 (96 decimal). Notice how each color takes exactly 2 digits
in hexadecimal.

Color(float red, float green, float blue)

creates a color using red, green, and blue values between 0.0 and 1.0.

Once you have created a color, you can change the drawing color using the setColor method
in the Graphics class:

public abstract void setColor(Color c)

For instance, suppose you wanted to draw in pink. A nice value for pink is 255 red, 192 green,
and 192 blue. The following paint method sets the color to pink and draws a circle:

public void paint(Graphics g)
{
 Color pinkColor = new Color(255, 192, 192);
 g.setColor(pinkColor);
 g.drawOval(5, 5, 50, 50);
}

Table 22.1 Continued

Color Name Red Value Green Value Blue Value

Untitled-11 9/22/98, 4:38 PM458

459

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

You don’t always have to create colors manually. The Color class provides a number of pre-
defined colors:

■ Color.white

■ Color.lightGray

■ Color.gray

■ Color.darkGray

■ Color.black

■ Color.red

■ Color.pink

■ Color.orange

■ Color.yellow

■ Color.green

■ Color.magenta

■ Color.cyan

■ Color.blue

Given a color, you can find out its red, green, and blue values by using the getRed, getGreen,
and getBlue methods:

public int getRed()

public int getGreen()

public int getBlue()

The following code fragment creates a color and then extracts the red, green, and blue values
from it:

int redAmount, greenAmount, blueAmount;
Color someColor = new Color(0x345678); // red=0x34, green = 0x56, blue = 0x78

redAmount = someColor.getRed(); // redAmount now equals 0x34
greenAmount = someColor.getGreen(); // greenAmount now equals 0x56
blueAmount = someColor.getBlue(); // blueAmount now equals 0x78

You can darken or lighten a color using the darker and brighter methods:

public Color darker()
public Color brighter()

These methods return a new Color instance that contains the darker or lighter version of the
original color. The original color is left untouched.

Clipping
Clipping is a technique in graphics systems that prevents one area from drawing over another.
Basically, you draw in a rectangular area, and everything you try to draw outside the area gets

Clipping

Untitled-11 9/22/98, 4:38 PM459

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

460 Chapter 22 Graphics

“clipped off.” Normally, your applet is clipped at the edges. In other words, you cannot draw
beyond the bounds of the applet window. You cannot increase the clipping area; that is, you
cannot draw outside the applet window, but you can further limit where you can draw inside
the applet window. To set the boundaries of your clipping area, use the clipRect method in the
Graphics class:

public abstract void clipRect(int x, int y, int width, int height)

You can query the current clipping area of a Graphics object with the getClipBounds method:

public abstract Rectangle getClipBounds()

The applet in Listing 22.12 reduces its drawing area to a rectangle whose upper-left corner is at
(10, 10) and is 60 pixels wide and 40 pixels high, and then tries to draw a circle. Figure 22.15
shows the output from this applet.

Listing 22.12 Source Code for Clipper.java

import java.applet.*;
import java.awt.*;

//
// This applet demonstrates the clipRect method by setting
// up a clipping area and trying to draw a circle that partially
// extends outside the clipping area.
// I want you to go out there and win just one for the Clipper...

public class Clipper extends Applet
{
 public void paint(Graphics g)
 {
// Set up a clipping region
 g.clipRect(10, 10, 60, 40);

// Draw a circle
 g.fillOval(5, 5, 50, 50);
 }
}

The clipRect method will only reduce the current clipping region. Prior to Java 1.1, there was
no way to expand the clipping region once you reduced it. Java 1.1 adds the setClip method
that can either expand or reduce the clipping area:

public abstract void setClip(int x, int y, int width, int height)

FIG. 22.15
The clipRect method
reduces the drawing
area and cuts off
anything that extends
outside it.

Untitled-11 9/22/98, 4:38 PM460

461

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

In preparation for the possibility of non-rectangular clipping areas, Sun has added a Shape
interface and a method to use a Shape object as a clipping region. The Shape interface cur-
rently has only one method:

public abstract Rectangle getBounds()

You can set the clipping region with any object that implements the Shape interface using this
variation of setClip:

public abstract void setClip(Shape region)

Since the clipping region may one day be non-rectangular, the getClipBounds method will not
be sufficient for retrieving the clipping region. The getClip method returns the current clip-
ping region as a Shape object:

public abstract Shape getClip()

Although the Shape interface might allow you to create non-rectangular clipping regions, you
cannot do it yet. The only method defined in the Shape interface returns a rectangular area.
The Shape interface will need to be expanded to support non-rectangular regions.

Animation Techniques
You may have noticed a lot of screen flicker when you ran the ShapeManipulator applet. It was
intentionally written to not eliminate any flicker so you could see just how bad flicker can be.
What causes this flicker? One major cause is that the shape is redrawn on the screen right in
front of you. The constant redrawing catches your eye and makes things appear to flicker. A
common solution to this problem is a technique called double-buffering.

The idea behind double-buffering is that you create an offscreen image, and do all your draw-
ing to that offscreen image. Once you are finished drawing, you copy the offscreen image to
your drawing area in one quick call so the drawing area updates immediately.

The other major cause of flicker is the update method. The default update method for an
applet clears the drawing area, then calls your paint method. You can eliminate the flicker
caused by the screen clearing by overriding update to simply call the paint method:

public void update(Graphics g)
{
 paint(g);
}

CAUTION

There is a danger with changing update this way. Your applet must be aware that the screen has not been
cleared. If you are using the double-buffering technique, this should not be a problem because you are
replacing the entire drawing area with your offscreen image anyway.

Animation Techniques

Untitled-11 9/22/98, 4:38 PM461

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

462 Chapter 22 Graphics

The ShapeManipulator applet can be modified easily to support double-buffering and eliminate
the screen-clear. In the declarations at the top of the class, you add an Image that will be the
offscreen drawing area:

private Image offScreenImage;

Next, you add a line to the init method to initialize the offscreen image:

offScreenImage = createImage(size().width, size().height);

Finally, you create an update method that does not clear the real drawing area, but makes your
paint method draw to the offscreen area and then copies the offscreen area to the screen (see
Listing 22.13).

Listing 22.13 An Update Method to Support Double-Buffering

public void update(Graphics g)
{
// This update method helps reduce flicker by supporting off-screen drawing
// and by not clearing the drawing area first. It enables you to leave
// the original paint method alone.

// Get the graphics context for the off-screen image
 Graphics offScreenGraphics = offScreenImage.getGraphics();

// Now, go ahead and clear the off-screen image. It is O.K. to clear the
// off-screen image, because it is not being displayed on the screen.
// This way, your paint method can still expect a clear area, but the
// screen won’t flicker because of it.

 offScreenGraphics.setColor(getBackground());

// You’ve set the drawing color to the applet’s background color, now
// fill the entire area with that color (i.e. clear it)
 offScreenGraphics.fillRect(0, 0, size().width,
 size().height);

// Now, because the paint method probably doesn’t set its drawing color,
// set the drawing color back to what was in the original graphics context.
 offScreenGraphics.setColor(g.getColor());

// Call the original paint method
 paint(offScreenGraphics);

// Now, copy the off-screen image to the screen
 g.drawImage(offScreenImage, 0, 0, this);
}

Printing
The ability to send information to a printer was one of the most glaring omissions in the 1.0
release of Java. Fortunately, Java 1.1 addresses that problem with the PrintJob class.

Untitled-11 9/22/98, 4:38 PM462

463

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

22

III
Part

Ch

The first thing you need to do in order to print something is to create an instance of a PrintJob
object. You can do this with the getPrintJob method in java.awt.Toolkit:

public abstract PrintJob getPrintJob(Frame parent, String jobname,
 Properties props)

As you can see, a print job must be associated with a Frame object. If you are printing from an
applet, you must first create a Frame object before calling getPrintJob. Once you have a
PrintJob object, you print individual pages by calling getGraphics in the PrintJob object,
which creates a Graphics object that you can then draw on:

public abstract Graphics getGraphics()

Every new instance of Graphics represents a separate print page. Once you have printed all the
pages you want, you call the end method in PrintJob to complete the job:

public abstract void end()

The Graphics object returned by getGraphics is identical to the Graphics object passed to
your paint method. You can use all the drawing methods normally available to your paint
method. In fact, you can print an image of your current screen by manually calling your paint
method with the Graphics object returned by getGraphics. Once you finish drawing on a
Graphics object, you invoke its dispose method to complete the page.

When printing, you often want to know the resolution of the page, or how many pixels per inch
are on the page. The getResolution method in a PrintJob object returns this information:

public abstract int getPageResolution()

The getPageDimension method returns the page width and height in pixels:

public abstract Dimension getPageDimension()

Some systems and some printers print the last page first. You can find out if you will be printing
in last-page-first order by calling lastPageFirst:

public abstract boolean lastPageFirst()

Listing 22.14 shows the printing equivalent of the famous “Hello World” program.

Listing 22.14 Source Code for PrintHelloWorld.java

import java.awt.*;
import java.applet.*;

public class PrintHelloWorld extends Applet
{
 public void init()
 {

// First create a frame to be associated with the print job
 Frame myFrame = new Frame();

continues

Printing

Untitled-11 9/22/98, 4:38 PM463

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter22 LP#4

464 Chapter 22 Graphics

// Start a new print job
 PrintJob job = Toolkit.getPrintJob(myFrame, “Hello”, NULL);

// Get a graphics object for drawing
 Graphics g = job.getGraphics();

// Print the famous message to the graphics object
 g.drawString(“Hello World!”, 50, 100);

// Complete the printing of this page by disposing of the graphics object
 g.dispose();

// Complete the print job
 job.end();
 }
}

The drawing functions provided by the Graphics object are fairly primitive by modern stan-
dards. These functions will eventually be superseded by the Java 2D API, which will provide a
much more robust drawing model. ●

Listing 22.14 Continued

Untitled-11 9/22/98, 4:38 PM464

465

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

C H A P T E R

JFC—Java Foundation Classes

Java Foundation Classes 466

JFC: A First Look 468

HelloWorld 468

Improving HelloWorld 471

Adding Buttons with JFC 473

Adding ToolTips and Icons 475

Using Pop-Up Menus 476

Borders 479

Check Boxes and Radio Buttons 481

Applying CheckBoxPanel to Change Text Alignment 484

Tabbed Panes 486

Sliders 488

Progress Bars 490

23

In this chapter

27 1529-5 CH23 9/23/98, 3:15 PM465

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

466 Chapter 23 JFC—Java Foundation Classes

Java Foundation Classes
The first questions you’re probably asking are “Why do I even need a foundation class? What
good is it going to do me?”

To understand this, you need to take a brief look at the history of Java. When Java was first
created, user interfaces were developed using the AWT classes you learned about in Chapter
19, “java.awt: Components,” and Chapter 20, “Exceptions and Events in Depth.” However, the
AWT design has many limitations.

To understand why, let’s go back a bit and look at the decisions the original developers of Java
faced. They needed a way to create screen components such as buttons on many different
kinds of computers. It’s reasonably easy to make two computers add one and one and get both
of them to come up with two, but to get two computers to place two buttons on the screen in
the same place with the same size and shape requires a fair amount of work.

Why is this the case? Well, graphics are a funny thing. If you’re a Windows user, you’re familiar
with screen configurations such as 640×480 and 800×600. But if you’re on a Macintosh, you’re
just as likely to be familiar with 1180×900, or on a Solaris machine 1600×1280. Now, this is just
scratching the surface, but consider how you would create a button on a Macintosh and have it
look the same on a Windows machine? Add to that the difference in how buttons look on vari-
ous platforms. Look at Netscape 4.0 for Macintosh in Figure 23.1 and Netscape 4.0 for PC in
Figure 23.2.

If you look at the buttons on the various machines, they actually appear different. Why is this?
Well, it’s a concept called look and feel. The people who write software for the Macintosh are
used to buttons looking a certain way, and Windows users are used to buttons looking a differ-
ent way.

To reconcile this confusion, the designers of Java decided to use a design pattern that would
give Java programmers access to the button but would use the system’s own buttons for the
look and feel. That means that when you put a java.awt.Button component on your screen,
you’re actually using a native button for the look and feel. So, on a Windows machine, a
Windows button is created and on a Macintosh, a Macintosh button is created. Seems to make
sense, right?

FIG. 23.1
Netscape 4.0 on a
Macintosh.

27 1529-5 CH23 9/23/98, 3:15 PM466

467

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Well, unfortunately it’s not quite that easy, and before long Java’s implementation began to
differ greatly from one computer system to another.

You see, it’s also very difficult to create a truly abstract system and expect it to work the same
on all systems. For instance, not all systems report mouse movements the same, or at the same
time. Not all systems display characters the same, and from platform to platform individual
characteristics of things such as TextAreas change. Because of all these variations, it’s very
difficult to actually write an AWT system for one platform that will look and behave the same as
an AWT system on another.

Because not all AWT systems are alike, people like you and me who are creating applications
are forced to run a lot of tests on a lot of different types of computers in order to truly achieve
Sun’s promise of Write Once Run Anywhere.

Unfortunately, all that testing can completely eat away all the shorter development time ben-
efits of Java. So, several developers decided to build a different kind of system. The new sys-
tems relied on only one fairly common component—a Container (a parent of Panel). Because a
Container is fairly uniform for all systems, you can paint (or draw) on one without encountering
platform dependencies. Microsoft’s solution of this form was AFC (Application Foundation
Classes), Netscape’s was IFC (Internet Foundation Classes), and there were a half dozen inde-
pendent solutions. Each of these solutions had one very large limiting factor however: size. To
create an entirely new windowing system takes up just too much size. 600k might not be too
bad if it were on your hard drive, but it’s a nasty bump if you have to download it over the
Internet. In addition, without a standards body supporting one foundation class or another,
many developers were left wondering which solution to adapt. So, in the spring of 1997, Sun

FIG. 23.2
Netscape 4.0 on a PC.

Java Foundation Classes

27 1529-5 CH23 9/23/98, 3:15 PM467

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

468 Chapter 23 JFC—Java Foundation Classes

teamed up with Netscape to offer JFC. Unfortunately, as of right now, Microsoft has decided
not to adopt JFC in favor of its own WFC solution, but hopefully, in time, they too will adopt
JFC.

JFC: A First Look
The JFC system is based on two primary things: first, the Container and Frame components
from AWT and second, the JDK 1.1 event model. Unfortunately, because of the latter, IFC users
will find the switch to JFC much more difficult than users of AWT.

Setting Up for JFC
JFC is part of the core of JDK 1.2, but it can be added to JDK 1.1 implementations by download-
ing the JFC package from Sun at this address:

http://www.javasoft.com/products/jfc/

After you download the JFC API, you need to unzip the file. Inside you will find several .jar files.
In addition to the swing.jar file that contains the core swing classes, you will also find several
look and feel–specific .jar files such as windows.jar and jlf.jar.

To make it easier to use all these .jar files, Sun has added another environment variable. The
swing_home variable needs to be set to point to the directory where you have installed the
swing package. For instance, on a Windows machine, you might type the following:

set swing_home=c:\swing

HelloWorld
As we have done throughout this book, we will start our look at JFC by creating the simplest
application possible. In Listing 23.1, you will find the source for HelloWorldJFC.java. After you
compile and run HelloWorldJFC, you should see the results in Figure 23.3.

Listing 23.1 HelloWorldJFC.java—Hello World Written Using JFC

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class HelloWorldJFC extends JComponent {
 static JFrame myFrame;

 public void paint(Graphics g){
 g.setColor(Color.black);
 g.drawString (“HelloWorld”,20,15);
 }

27 1529-5 CH23 9/23/98, 3:15 PM468

469

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

 public static void main(String args[]){
 myFrame = new JFrame(“Hello World!”);
 HelloWorldJFC jt = new HelloWorldJFC();
 myFrame.getContentPane().add(“Center”,jt);
 myFrame.setSize(100,50);
 myFrame.setVisible(true);
 }
}

HelloWorld

FIG. 23.3
The HelloWorldJFC
application.

Compiling HelloWorldJFC
You can compile HelloWorldJFC just like you compile any other Java program, so long as
swing.jar is included in your classpath. If you use an IDE and not the JDK, you need to add
swing.jar to the systems list of classes. For some IDEs, you might have to unjar the file in order
to compile with it.

Running HelloWorldJFC
At first guess, you might think that running HelloWorldJFC is identical to running any other
Java program, so long as swing.jar was in your class path. Simply type the following:

java HelloWorldJFC

However, in order for this to work, you must perform one additional step: Include the look and
feel .jar file for your platform. Later, in Chapter 24, “Advanced JFC,” we talk more about JFC’s
pluggable look and feel, but for now you need to know that you must include an additional .jar
file in your classpath. Under Windows, this means that windows.jar must be included because
on most UNIX machines, motif.jar will do the trick—and on Macintosh, include mac.jar. Alter-
natively, you can use the SwingAll.jar file. This file contains all the standard look-and-feels. If
you fail to include the look-and-feel .jar file, you will get an error like the following:

java.lang.Error: can’t load com.sun.java.swing.windows.WindowsLookAndFeel
 at com.sun.java.swing.UIManager.
 ➥initializeDefaultLookAndFeel(UIManager.java:318)
 at com.sun.java.swing.UIManager.initialize(UIManager.java:386)
 at com.sun.java.swing.UIManager.maybeInitialize(UIManager.java:395)
 at com.sun.java.swing.UIManager.getDefaults(UIManager.java:146)
 at com.sun.java.swing.UIManager.getColor(UIManager.java:155)
 at com.sun.java.swing.JPanel.<init>(JPanel.java:50)
 at com.sun.java.swing.JPanel.<init>(JPanel.java:83)
 at com.sun.java.swing.JRootPane.createGlassPane(JRootPane.java:145)
 at com.sun.java.swing.JRootPane.<init>(JRootPane.java:112)
 at com.sun.java.swing.JFrame.createRootPane(JFrame.java:105)
 at com.sun.java.swing.JFrame.frameInit(JFrame.java:99)
 at com.sun.java.swing.JFrame.<init>(JFrame.java:93)
 at HelloWorldJFC.main(HelloWorldJFC.java:41)

27 1529-5 CH23 9/23/98, 3:15 PM469

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

470 Chapter 23 JFC—Java Foundation Classes

If you do see this, you have failed to add the Windows look and feel (or whichever one you’re
having problems with) to the classpath. Because the individual look-and-feels are packaged in
separate JAR files, all you need to do is add the required JAR file to your classpath.

Understanding HelloWorldJFC
As you can see, HelloWorldJFC contains really only two methods: paint() and main(). If you
look at the paint() method, it looks nearly identical to the one in Chapter 15, “Advanced
Applet Code.”

The main() method, however, contains a few different functions.

The frame created is not a java.awt.Frame as it would be in an AWT application, but instead is a
JFrame. JFrame differs from Frame in one major way: It provides several layered panes instead
of one flat panel.

Pane Layering
JFC uses multiple layers upon which it can layer components. This layering enables you to
overlap components and paint on top of components. Because the layering model is built into
the JFC system, unlike AWT, you can do this without getting inconsistent results. For instance,
if you want to put a pop-up ToolTip on a button, and you want that ToolTip to appear directly
below that button, even if something else is there, you can simply paint on the glass pane.
Under AWT, this is not possible because when a button (or any component) occupies a place
on the screen, it generally does not allow you to paint over it.

JFC includes a number of view layers; Figure 23.4 shows the panel views and their order.

Content Pane

Menubar Pane

Layered Pane

Glass Pane

FIG. 23.4
JFC layers several
panes on top of one
another.

All this means is that in our HelloWorld example’s main method, instead of simply adding the
panel, we add the panel to the content pane:

myFrame.getContentPane().add(“Center”,jt);

Generally speaking, most of the time when you add a component to any JFC Container, you will
add it to the content pane. However, if the component has a specific need to overlay other com-
ponents, you need to add it to either the layered pane or the glass pane.

27 1529-5 CH23 9/23/98, 3:16 PM470

471

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Improving HelloWorld
There are two things that you might have noticed about our original version of HelloWorld that
need to be improved. First, if you actually ran the program, you have noticed that the program
does not actually exit when you press the Close Window button (under Windows this is the X
button in the upper-right corner). Just like with standard AWT, you need to create a
WindowAdapter that listens for the windowClosing event and exits the program.

The second thing for you to be concerned with is that instead of using a component (Label) to
display the “Hello World” text, the program currently draws the string directly to the screen in
the paint() method. Although this is useful from the standpoint of an analogy with the applet’s
HelloWorld, it’s not the best practice. In Listing 23.2, you find the code for an improved
HelloWorldJFC application. HelloWorldJFC2 displays like Figure 23.5 when you run it.

Listing 23.2 HelloWorldJFC2.java—Hello World Improved

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class HelloWorldJFC2 extends JPanel {
 static JFrame myFrame;
 public HelloWorldJFC2(){
 JLabel label = new JLabel (“Hello World!”);
 add(label);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Hello World!”);
 HelloWorldJFC2 hello = new HelloWorldJFC2();
 myFrame.getContentPane().add(“Center”,hello);
 myFrame.setSize(200,100);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Improving HelloWorld

FIG. 23.5
The HelloWorldJFC2
application.

Like AWT Container classes, the HelloWorldJFC2 adds components using the add() method.
In this case, the component being added in the constructor is a JLabel.

27 1529-5 CH23 9/23/98, 3:16 PM471

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

472 Chapter 23 JFC—Java Foundation Classes

JLabel
The JLabel in HelloWorldJFC2’s constructor is used to display the “Hello World!” text. As it is
used in Listing 23.2, JLabel does not provide any additional functionality over its AWT counter-
part. However, JLabel does have a couple of differences between it and Label.

First, JLabel, like most JFC components, can support not only text but also images (or both).
So, although we did not use it in the HelloWorld example, we could have also added an icon
that would have been displayed along with the text. There are two ways to do this:

■ Use one of the constructors that accommodates the icon.

■ Add the icon using the setIcon() method.

Adding Icons
An icon is a graphical representation in JFC. The icon can be an image but might also be a
drawing created programmatically. To add an icon to almost any component in the JFC set, you
can use one of the following two techniques:
◊ See Chapter 24: “Advanced JFC,” to learn more about creating an icon programatically. p. 499

■ Specify the icon in the constructor.

■ Set the icon later using the setIcon() method.

In the case of our HelloWorldJFC2 example, if we had an image called feet.gif and wanted to
use it alongside the “Hello World!” text, we could have added it using the ImageIcon class. To
do so, modify the constructor in Listing 23.2 like this:

public HelloWorldJFC2(){
 Icon icon = new ImageIcon (“feet.gif”);
 JLabel label = new JLabel (“Hello World!”, icon, SwingConstants.RIGHT);
 add(label);
}

Figure 23.6 shows the results of this change.

N O T E

FIG. 23.6
Labels can have both
icons and text.

Note that in addition to specifying the label text and the icon, JLabel also needs to know
how to align the two items. Later in Listing 23.7, we will go into more depth on how to use

this alignment. ■

27 1529-5 CH23 9/23/98, 3:16 PM472

473

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Alternatively, if you decide to specify the icon after creating the icon, you can set the icon using
the setIcon method, in which case you can modify the constructor call to look like this:

public HelloWorldJFC2(){
 Icon icon = new ImageIcon (“feet.gif”);
 JLabel label = new JLabel (“Hello);
 label.setIcon(icon);
 add(label);
}

Closing the Window
HelloWorldJFC2 includes the additional code necessary to have the window close. Like AWT’s
Frame class, the JFrame class can generate events when things happen to the window, such as
the window being closed, activated, iconified, or opened. These events can be sent to a
WindowListener if one is registered with the frame.

In HelloWorldJFC2’s main() method, you can see the following code, which adds a nested
class, which is created on the spot. In this case, when the window Close button is pressed, we
simply exit the application.

myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
});

Adding Buttons with JFC
Like JLabel, buttons are among the components that JFC has improved. JFC’s buttons
(JButton) have the added capability to know their accelerator key, programmatically simulate
clicking, use both strings and icons, and have many more states than their AWT counterparts.

Listing 23.3 shows an example with two JButtons (see Figure 23.7).

Listing 23.3 ButtonExample.java—Two Buttons in JFC

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class ButtonExample extends JPanel {
 static JFrame myFrame;
 JLabel label;

 public ButtonExample(){
 label = new JLabel (“Hello World!”);
 JButton hello = new JButton(“Hello”);
 hello.setMnemonic(‘h’);
 hello.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){

continues

Adding Buttons with JFC

27 1529-5 CH23 9/23/98, 3:16 PM473

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

474 Chapter 23 JFC—Java Foundation Classes

 System.out.println(“Hello World!”);
 label.setText(“Hello World!”);
 }
 });
 JButton bye = new JButton(“Bye”);
 bye.setMnemonic(‘b’);
 bye.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 System.out.println(“Bye World!”);
 label.setText(“Good Bye World!”);
 }
 });
 add(bye);
 add(hello);
 add(label);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Button Example”);
 ButtonExample jt = new ButtonExample();
 myFrame.getContentPane().add(“Center”,jt);
 myFrame.setSize(300,70);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Listing 23.3 Continued

Understanding ButtonExample
ButtonExample’s main method is nearly identical to the ones in Listings 23.1 and 23.2. There
should not be any surprises there.

The interesting code in this example is in the constructor for ButtonExample. In this case, we
have added two buttons and a label that is changed based on which button is pressed.

With the HelloWorldJFC2 example in Listing 23.2, you already saw how the JLabel works, so
for this example, we will look just at one of the two buttons: the Hello button. The code to creat-
ing the JButton looks very similar to the code creating a java.awt.Button.

JButton hello = new JButton(“Hello”);

FIG. 23.7
ButtonExample, running
with the Java L&F.

27 1529-5 CH23 9/23/98, 3:16 PM474

475

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Setting a Shortcut Key or Mnemonic
The next line of code in HelloWorldJFC 2 establishes the mnemonic for the button. The mne-
monic is the equivalent of the shortcut key. This means that the user of this application can use
his mouse to press the Hello button, or he can press a combination of keys to press the button.
In this case, that combination is Alt-H. All buttons can set their mnemonic using the
setMnemonic() method:

hello.setMnemonic(‘h’);

Listening for Actions from the Button
When a button is pressed, or its mnemonic is keyed, the button can produce an ActionEvent.
To “hear” the action, add an ActionListener to the button and create an inner class that per-
forms the actions you want to occur when the button is pressed.

hello.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 System.out.println(“Hello World!”);
 label.setText(“Hello World!”);
 }
});

Adding ToolTips and Icons
One of the advantages of having a layered view is that it affords JFC enhancements such as
ToolTips. ToolTips can be added to any JComponent, JButtons included.

The label of a button is usually an abbreviation for what the button will actually do. This is the
case with the ButtonExample in Listing 23.3.

Also, like JLabel, JButtons can use icons as part of its label, so in Listing 23.4, you see the
ButtonExample modified to add the ToolTip to the buttons, and the feet.gif has been added to
the Hello button (see Figure 23.8).

Listing 23.4 TipButtons.java—Adding ToolTips to JFC Buttons

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class TipButtons extends JPanel {
 static JFrame myFrame;
 protected JLabel label;

 public TipButtons(){
 label = new JLabel (“Hello World!”);
 label.setOpaque(true);

continues

Adding ToolTips and Icons

27 1529-5 CH23 9/23/98, 3:16 PM475

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

476 Chapter 23 JFC—Java Foundation Classes

 JButton hello = new JButton(“Hello”);
 hello.setMnemonic(‘h’);
 hello.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Hello World!”);
 }
 });
 //Set the ToolTip for the hello button
 hello.setToolTipText(“Select to change label to Hello World”);

 JButton bye = new JButton(“Bye”);
 bye.setMnemonic(‘b’);
 bye.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Good Bye World!”);
 }
 });
 //Set the ToolTip for the bye button
 bye.setToolTipText(“Select to change label to Good Bye World”);

 add(bye);
 add(hello);
 add(label);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Tooltiped Buttons”);
 TipButtons tb = new TipButtons();
 myFrame.getContentPane().add(“Center”,tb);
 myFrame.setSize(300,75);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Listing 23.4 Continued

FIG. 23.8
When you mouse over a
button that has a ToolTip
set, the text for the tip
shows up to help the
user.

Using Pop-Up Menus
Like ToolTips, another one of the advantages of JFC’s design is an advanced pop-up menu
capability. Often it’s useful to enable the user to click with the mouse and pop up an extra
menu, as shown in Figure 23.9. Listing 23.5 shows just such an example.

27 1529-5 CH23 9/23/98, 3:16 PM476

477

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Listing 23.5 PopupExample.java—Adding Pop-Up Menus to a JFC Panel

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class PopupExample extends JPanel {
 static JFrame myFrame;
 protected JLabel label;
 JPopupMenu popup;

 public PopupExample(){
 label = new JLabel (“Hello World!”);
 label.setOpaque(true);
 add(label);

 popup = new JPopupMenu();

 //create the first menu item
 JMenuItem menuItem1 = new JMenuItem(“Hello World!”);
 menuItem1.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Hello World!”);
 }
 });

 //create the second menu item
 JMenuItem menuItem2 = new JMenuItem(“Good Bye World!”);
 menuItem2.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Good Bye World!”);
 }
 });
 //add the menu items to the popup menu
 popup.add(menuItem1);
 popup.add(menuItem2);

 addMouseListener(new MouseAdapter(){
 public void mouseReleased(MouseEvent evt){
 //Pop up the menu at the location where the mouse was pressed
 if (evt.isPopupTrigger()){
 popup.show(evt.getComponent(),evt.getX(),evt.getY());
 }
 }
 });
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Popup Example”);
 PopupExample example = new PopupExample();
 myFrame.getContentPane().add(“Center”,example);
 myFrame.setSize(300,75);
 myFrame.addWindowListener(new WindowAdapter() {

continues

Using Pop-Up Menus

27 1529-5 CH23 9/23/98, 3:16 PM477

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

478 Chapter 23 JFC—Java Foundation Classes

 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Listing 23.5 Continued

Understanding PopupExample
There are three primary steps to creating and showing a pop-up menu under JFC. The first
step is to create the pop-up menu itself.

popup = new JPopupMenu();

The next step is creating the menu items that will be on the pop-up. These menu items are the
same items that you add to a menu on a menu bar. In the case of PopupExample, you add two
menu items. Each of these menu items has an ActionListener added and created for it.

JMenuItem menuItem1 = new JMenuItem(“Hello World!”);
menuItem1.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Hello World!”);
 }
});

JMenuItem is a JComponent (by virtue of the fact that it extends from JComponent), so like
all other JComponents, JMenuItem can have ToolTips added. So, if you want, you can add a

ToolTip to each of the items as well. ■

The final step is to actually pop up the menu. In this case, we want to pop up the menu when-
ever the pop-up trigger button is pressed (the right mouse button on most platforms). The
processMouseEvent() method handles the work of popping up the menu.

addMouseListener(new MouseAdapter(){
 public void mouseReleased(MouseEvent evt){
 //Popup the menu at the location where the mouse was pressed
 if (evt.isPopupTrigger()){
 popup.show(evt.getComponent(),evt.getX(),evt.getY());
 }
 }
});

FIG. 23.9
PopupMenu—If you
press the right mouse
button, the pop-up
appears.

N O T E

27 1529-5 CH23 9/23/98, 3:16 PM478

479

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Borders
One of the unique characteristics that JFC has added to all components is the capability to have
an adjustable border. What’s unique about this is that any object can have an arbitrary border
placed on it. So if you want a button to have a flower border or a label to have an etched border,
you can do so.

Included with the JFC set, you will find a package called com.java.swing.border
(java.swing.border in the 1.2 core). This package contains a number of different borders, each
of which can be applied to a wide variety of swing components.

Listing 23.6 shows the two buttons from Listing 23.3 with different borders (see Figure 23.10).

Listing 23.6 BorderedButtons.java—Example with Bordered Components

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

public class BorderedButtons extends JPanel {
 static JFrame myFrame;
 protected JLabel label;
 JPopupMenu pm;

 public BorderedButtons(){
 label = new JLabel (“Hello World!”);
 label.setBorder(new EtchedBorder());

 JButton hello = new JButton(“Hello”);
 hello.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Hello World!”);
 }
 });

 //set the border to an image. Note: the image will be tiled.
 Icon icon = new ImageIcon (“feet.gif”);
 hello.setBorder(new MatteBorder(10, 10, 10, 10, icon));

 JButton bye = new JButton(“Bye”);
 bye.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Good Bye World!”);
 }
 });
 bye.setBackground (SystemColor.control);
 bye.setBorder(new LineBorder(Color.green));

 add(bye);
 add(hello);
 add(label);

continues

Borders

27 1529-5 CH23 9/23/98, 3:16 PM479

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

480 Chapter 23 JFC—Java Foundation Classes

 }

 public static void main(String args[]){
 myFrame = new JFrame(“Border Example”);
 BorderedButtons jt = new BorderedButtons();
 myFrame.getContentPane().add(“Center”,jt);
 myFrame.setSize(300,75);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Listing 23.6 Continued

Understanding BorderedButtons
As you can see, Listing 23.6 is very similar to the other examples in this chapter. The key detail
is that the label and each of the buttons have their own border. Each of them has a different
kind of border attached to it. In the case of the label, the etched border was used.

label.setBorder(new EtchedBorder());

Because JComponent sports the setBorder() method, any JComponent can have its border set
using the setBorder() method.

More Borders
Beyond being able to set specific borders, some borders can even be cascaded. As you saw in
the BorderedButton example in Figure 23.6, the hello button uses the MatteBorder.

hello.setBorder(new MatteBorder(10, 10, 10, 10, icon));

The MatteBorder takes the icon image and tiles it for the border. The problem, however, is that
the MatteBorder runs a bit too close to the text for most people.

You can fix this problem by using the CompoundBorder. The CompoundBorder can cascade
two borders together, like this:

hello.setBorder(new CompoundBorder(new MatteBorder
➥(10, 10, 10, 10, icon),new EmptyBorder(10,10,10,10)));

FIG. 23.10
Buttons and labels with
borders.

27 1529-5 CH23 9/23/98, 3:16 PM480

481

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Some of the other borders also enable you to cascade them. In other words, you can combine
the capabilities of certain borders. Another good example of this is the TitledBorder. The
TitledBorder displays text within the border itself. So for instance, if you want to add the title
“hi” to the border for the Hello button, you can change the set border lines:

LineBorder lb = new LineBorder(Color.green);
hello.setBorder(new TitledBorder(lb,”hi”));

There are quite a few borders in the borders package. Each of the borders has a slightly differ-
ent look to it. Figure 23.12 shows several of the borders in the package.

FIG. 23.11
The BorderButtons with
more room around the
border.

Check Boxes and Radio Buttons
Under JFC, check boxes and radio buttons are very similar. The only real difference between
the two is how they look. As with AWT, JFC check boxes and radio buttons come in two differ-
ent forms. A single check box by itself is effectively a toggle button. However, used with a
check box group, the check boxes become a selection “pool,” as shown in Figure 23.13. The
group class under JFC is called ButtonGroup (as opposed to AWT’s CheckBoxGroup). This
more generic group actually works with AbstractButton, which means it can be used with just
about any button in the JFC API. Listing 23.7 shows the use of five check boxes in a group.

FIG. 23.12
JFC comes standard
with many borders you
can choose from.

Check Boxes and Radio Buttons

In this case, the border set on the button is a CompoundBorder. The CompoundBorder is
composed of two separate borders, one inside the other. The EmptyBorder is basically just a
blank space. Applying this new type of border to the buttons in Listing 23.6 gives more room,
as shown in Figure 23.11.

27 1529-5 CH23 9/23/98, 3:16 PM481

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

482 Chapter 23 JFC—Java Foundation Classes

Listing 23.7 CheckBoxPanel.java—Using JFC Check Boxes

public class CheckBoxPanel extends JPanel implements SwingConstants{
 public CheckBoxPanel(ActionListener al){

 Box vertBox = Box.createVerticalBox();

 Box topBox = Box.createHorizontalBox();
 Box middleBox = Box.createHorizontalBox();
 Box bottomBox = Box.createHorizontalBox();

 ButtonGroup group = new ButtonGroup();

 //Create the checkboxes
 JCheckBox north = new JCheckBox(“North”);
 north.addActionListener(al);
 north.setActionCommand(“north”);
 group.add(north);
 topBox.add(north);

 JCheckBox west = new JCheckBox(“West”);
 west.addActionListener(al);
 west.setActionCommand(“west”);
 group.add(west);
 middleBox.add(west);

 JCheckBox center = new JCheckBox(“Center”);
 center.addActionListener(al);
 center.setActionCommand(“center”);
 group.add(center);
 middleBox.add(center);

 JCheckBox east = new JCheckBox(“East”);
 east.addActionListener(al);
 east.setActionCommand(“east”);
 group.add(east);
 middleBox.add(east);

 JCheckBox south = new JCheckBox(“South”);
 south.addActionListener(al);
 south.setActionCommand(“south”);
 group.add(south);
 bottomBox.add(south);

 vertBox.add (topBox);
 vertBox.add (middleBox);
 vertBox.add (bottomBox);

 add(vertBox);
 }
}

27 1529-5 CH23 9/23/98, 3:16 PM482

483

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

ChUnderstanding CheckBoxPanel
Listing 23.7, CheckBoxPanel.java, shows how to build a group of check boxes. Notice that each
of the check boxes is added to group the GroupBox variable.

Using ActionListeners and Setting Action Events
The constructor for CheckBoxPanel takes as a parameter an ActionListener. Note that this
action listener has been registered for each of the CheckBoxes in Listing 23.7 using the
addActionListener() method. This registration is identical to how you registered the
ActionListener with the JButton in Listing 23.3, only in this case, you use an ActionListener
object that has been passed into the method.

In addition, note that in this example, we have explicitly specified what the ActionCommand
will be, using the setActionCommand() method, rather than relying on the default action.

Using the BoxLayout and Boxes
You might have noticed that in this example we used a new class: Box. With JFC, you get a new
LayoutManager called the BoxLayout. BoxLayout is somewhat similar to the GridLayout class,
but unlike GridLayout, the BoxLayout aligns things either horizontally or vertically but does
not have support for multiple columns and rows. However, BoxLayout also does not assume
that all components will be the same size in the major axis.

The Box class that we use in this example is a panel that uses the BoxLayout. It’s a convenient
way to create a vertical or horizontal “strip” upon which we can place components.

In this example, three horizontal strips have been created, one for each “row,” and these strips
have then been added to one vertical strip (see Figure 23.14).

FIG. 23.13
Five check boxes in a
group.

• North

• Center • East• West

• South

Vertical
Strip

Horizontal
Strip

FIG. 23.14
An illustration of how
each of the boxes is
used.

Check Boxes and Radio Buttons

27 1529-5 CH23 9/23/98, 3:16 PM483

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

484 Chapter 23 JFC—Java Foundation Classes

You will notice that each of the check boxes is added to one of these boxes—for example,

topBox.add(north);

Applying CheckBoxPanel to Change Text Alignment
When you read about the JLabel earlier in this chapter, you learned that when you use both an
icon and a text label, you can specify the alignment of the icon to the text. Now, let’s look at
how you can change that alignment.

JLabel and JButton both include two methods for specifying the position of the text, as it relates
to the icon:

setVerticalTextPosition()

setHorizontalTextPosition()

Both of these methods take a parameter from the SwingConstants interface. SwingConstants
contains a number of constant values such as: TOP, BOTTOM, LEFT, RIGHT, and CENTER. As you
might already have guessed, setting the vertical text position to say TOP causes the text to
appear above the icon.

In Listing 23.7, you saw how a group of check boxes could be placed on a panel in a group.
When each button is pressed, it creates an ActionEvent that gives a direction. Now use the
CheckBoxPanel to change the alignment of the text and icon on a button, as shown in Listing
23.8 and Figure 23.15.

Listing 23.8 CheckBoxPanel—Altering Alignment

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

public class CheckBoxExample extends JPanel implements
➥ActionListener,SwingConstants{
 static JFrame myFrame;
 protected JLabel label;
 JButton theButton;

 public CheckBoxExample(){
 Icon icon = new ImageIcon (“feet.gif”);
 theButton = new JButton(“My Feet”,icon);
 add (theButton);
 add (new CheckBoxPanel(this));
 }

 public void actionPerformed(ActionEvent ae){
 String action = ae.getActionCommand();

27 1529-5 CH23 9/23/98, 3:16 PM484

485

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

 if (action.equals(“north”)){
 theButton.setVerticalTextPosition(TOP);
 theButton.setHorizontalTextPosition(CENTER);
 }
 else if (action.equals(“south”)){
 theButton.setVerticalTextPosition(BOTTOM);
 theButton.setHorizontalTextPosition(CENTER);
 }
 else if (action.equals(“east”)){
 theButton.setHorizontalTextPosition(RIGHT);
 theButton.setVerticalTextPosition(CENTER);
 }
 else if (action.equals(“west”)){
 theButton.setHorizontalTextPosition(LEFT);
 theButton.setVerticalTextPosition(CENTER);
 }
 else if (action.equals(“center”)){
 theButton.setHorizontalTextPosition(CENTER);
 theButton.setVerticalTextPosition(CENTER);
 }
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Checkbox Example”);
 CheckBoxExample jt = new CheckBoxExample();
 myFrame.getContentPane().add(“Center”,jt);
 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Understanding CheckBoxPanel
The constructor for CheckBoxPanel should look very similar to some of the earlier examples
in this book. The only real difference is that here you see that you can also add classes that
extend from JPanel (CheckBoxPanel) like you would expect.

FIG. 23.15
Each time you select a
different setting, the
alignment of the label
changes.

Applying CheckBoxPanel to Change Text Alignment

27 1529-5 CH23 9/23/98, 3:16 PM485

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

486 Chapter 23 JFC—Java Foundation Classes

Changing the Alignment
As you will recall from Listing 23.7, CheckBoxPanel.java, the constructor required you to pass
in an ActionListener. You will also note that CheckBoxExample implements ActionListener. So,
when the CheckBoxPanel is created, you effectively automatically register your class to receive
the ActionEvents from the check boxes.

That being said, what you are really interested in here is how you go about changing the text
alignment of the button. The actionPerformed() method first gets the actions command, pro-
ceeds to compare it to each of the known results, and then proceeds to change the alignment.
So, if the command was “north”, you would be concerned only with the following snippet:

if (action.equals(“north”)){
 theButton.setVerticalTextPosition(TOP);
 theButton.setHorizontalTextPosition(CENTER);
}

Notice that both the horizontal and vertical position are set because you don’t know whether
either was set before. You might have already figured out that if we had wanted to allow con-
figurations such as North-West and South-East, we could have done that as well.

At this point, you might be wondering where the TOP and CENTER variables came from. After all,
earlier we mentioned that they were in the SwingConstants interface. The answer to this is
quite simple: To use SwingConstants, you can either implement the interface, or as you saw
earlier in the section, “Adding Icons,” you can call out the qualified names such as
SwingConstants.TOP. In this case, CheckBoxExample implements the SwingConstants
interface, so the variables are directly available to us.

Tabbed Panes
Tabbed views have been a staple of GUI designs almost since the inception of the concept of
GUI. AWT includes a layout manager called CardLayout, which many people have used to
create their own equivalent of a tabbed layout. However, AWT is not equipped with any com-
plete solution for tabs. JFC has added a class called JTabbedPane for just this purpose.

The JTabbedPane automatically handles the graphical side of creating the tabs. Like
CardLayout, it also enables you to hide and show various pages each time you click on a tab.
One of the great features of the graphic tabs themselves is that they can be placed at any of the
four standard sizes (top, bottom, left, or right). Listing 23.9 shows how to create two tabs at the
top.

Listing 23.9 JTabbedPane Provides a Facility to Handle Tabs in Your

Interfaces

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

27 1529-5 CH23 9/23/98, 3:16 PM486

487

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

public class TabExample extends JPanel {
 static JFrame myFrame;
 public TabExample(){
 JTabbedPane tabs = new JTabbedPane(SwingConstants.BOTTOM);
 Icon icon = new ImageIcon (“feet.gif”);
 JButton button = new JButton(icon);
 JLabel label = new JLabel (“Hello World!”);
 tabs.addTab(“Hello World”,label);
 tabs.addTab(“Feet”,icon,button);
 setLayout(new BorderLayout());
 add(tabs,”Center”);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Tab Example”);
 TabExample tabExample = new TabExample();
 myFrame.getContentPane().add(“Center”,tabExample);
 myFrame.setSize(400,200);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Understanding JTabbedPane
Fig 23.16 shows the results of running JTabbedPane. As with our other examples, the main()
method should be easy for you to figure out on your own.

In this example, two tabs have been added to the tabs object, using an addTab() method.
There are three variations on the addTab() allowing you to label the tab with a string, an icon,
or both. Here are the three methods:

addTab(String title, Component component);
addTab(String title, Icon icon, Component component);
addTab(String title, Icon icon, Component component, String toolTip);

Listing 23.9 shows the use of two of these options:

tabs.addTab(“Hello World”,label);
tabs.addTab(“Feet”,icon,button);

FIG. 23.16
Change the tabs to get
to the various
components.

Tabbed Panes

27 1529-5 CH23 9/23/98, 3:16 PM487

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

488 Chapter 23 JFC—Java Foundation Classes

The component object is the item to be used as the body of the tab area. In the case of this
example, we used a button on one tab and a label on the other. However, you can just as easily
add a JPanel or other compound object.

Other JTabbedPane Abilities
Under CardLayout, you’re stuck with the insert order for the order of the cards. Unlike
CardLayout, using JTabbedPane you can also specify the order of the cards. What this means
is that with JTabbedPane, if you choose to put an extra tab into the system at any time, it
doesn’t necessarily have to be the last tab. To do so, you can use the insertTab() method:

public void insertTab(String title, Icon icon, Component
➥ component, String tip, int index)

Sliders
Sliders are similar to scrollbars in that they enable a user to drag a marker across the screen.
However, sliders are typically used to help specify a quantity, as opposed to moving a screen
view. Unfortunately, sliders were missing among the components included with AWT. JFC,
however, has remedied this gap, with the JSlider class.

JSlider can display major ticks, minor ticks, both, or neither as guides for the user. In addition,
the slider can be displayed either vertically or horizontally. Listing 23.10 shows several differ-
ent variations on the vertical variation of the slider (see Figure 23.17).

Listing 23.10 SliderExample.java—Five Different Sliders

import com.sun.java.swing.*;
import com.sun.java.swing.border.*;
import com.sun.java.swing.event.*;
import java.awt.BorderLayout;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

public class SliderExample extends JPanel{
 JLabel slider5Value;
 static JFrame myFrame;
 public SliderExample() {
 Box horizBox = Box.createHorizontalBox();
 JSlider slider1 = new JSlider (JSlider.VERTICAL, 0, 50, 25);
 slider1.setPaintTicks(true);
 slider1.setMajorTickSpacing(10);
 slider1.setMinorTickSpacing(2);
 slider1.setSnapToTicks(true);
 horizBox.add(slider1);
 horizBox.add(horizBox.createHorizontalStrut(15));

 JSlider slider2 = new JSlider (JSlider.VERTICAL, 0, 50,25);
 slider2.setPaintTicks(true);
 slider2.setMinorTickSpacing(5);

27 1529-5 CH23 9/23/98, 3:16 PM488

489

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

 horizBox.add(slider2);
 horizBox.add(horizBox.createHorizontalStrut(15));

 JSlider slider3 = new JSlider (JSlider.VERTICAL, 0, 50,25);
 slider3.setPaintTicks(true);
 slider3.setMajorTickSpacing(10);
 horizBox.add(slider3);
 horizBox.add(horizBox.createHorizontalStrut(15));

 JSlider slider4 = new JSlider (JSlider.VERTICAL, 0, 50,25);
 slider4.setBorder(LineBorder.createBlackLineBorder());
 horizBox.add(slider4);
 horizBox.add(horizBox.createHorizontalStrut(15));

 JSlider slider5 = new JSlider (JSlider.VERTICAL, 0, 50,25);
 slider5.setBorder(LineBorder.createBlackLineBorder());
 slider5.setMajorTickSpacing(10);
 slider5.setPaintLabels(true);
 horizBox.add(slider5);
 horizBox.add(horizBox.createHorizontalStrut(15));

 slider5Value = new JLabel(“Slider5 value = 25”);
 horizBox.add(slider5Value);

 slider5.addChangeListener(new ChangeListener(){
 public void stateChanged(ChangeEvent event){
 slider5Value.setText(“Slider5 value = “
 ➥+((JSlider)event.getSource()).getValue());
 }
 });

 setLayout(new BorderLayout());
 add(horizBox,”Center”);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Slider Example”);
 SliderExample sliderExample = new SliderExample();
 myFrame.getContentPane().add(“Center”,sliderExample);
 myFrame.setSize(300,300);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Understanding SliderExample
SliderExample uses the same box panel you saw in CheckBoxPanel. Each of the different
sliders is added to this horizontal panel. Now, to create the various sliders, we used a construc-
tor that takes four different values, like this:

JSlider slider1 = new JSlider (JSlider.VERTICAL, 0, 50, 25);

Sliders

27 1529-5 CH23 9/23/98, 3:16 PM489

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

490 Chapter 23 JFC—Java Foundation Classes

The first parameter for the constructor is obviously the direction, which can be either
SwingConstants.VERTICAL or SwingConstants.HORIZONTAL. Note, that because JSlider imple-
ments the SwingConstants interface, we can also use the value like JSlider.VERTICAL.

The next two parameters for the constructor are the minimum and maximum values for the
slider. So, can you guess what the last parameter is? It’s the initial value of the slider.

Configuring the Tick Marks
By default, a slider doesn’t display its tick marks (like slider5). However, you can turn on
either the major or minor tick marks independently, using either setMajorTickSpacing() or
setMinorTickSpacing() respectively. Both of these methods take an int parameter. This pa-
rameter specifies the number of elements between each tick.

Capturing Changes in the Slider
To capture the changes in a slider, you can use a new event in the JFC set:
xxx.swing.event.ChangeEvent. The ChangeEvent occurs any time the slider is moved, so in
Listing 23.10, when slider5 is moved, the label at the far right is changed to include the value
from the slider.

Progress Bars
When an activity is going to take a long time to complete, many applications use progress bars
to show the current status, and to help the user know that the process is continuing. AWT does
not include progress bars, but like sliders, JFC has filled this gap. The JProgressBar compo-
nent is JFC’s solution for the gap.

ProgressBarExample in Listing 23.11 demonstrates how a JProgressBar can be used. It creates
a thread that progresses along and updates the bar, as shown in Figure 23.18.

FIG. 23.17
Sliders can be used to
set values in a program.

27 1529-5 CH23 9/23/98, 3:16 PM490

491

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Listing 23.11 ProgressBarExample with a Thread-Controlled ProgressBar

import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import java.awt.*;
import java.awt.event.*;

public class ProgressExample extends JPanel {
 ProgressThread progressThread;
 JProgressBar progressBar;
 static JFrame myFrame;

 public ProgressExample() {
 setLayout(new BorderLayout());
 progressBar = new JProgressBar();
 add(progressBar,”Center”);

 JPanel buttonPanel = new JPanel();
 JButton startButton = new JButton(“Start”);
 buttonPanel.add(startButton);
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 startRunning();
 }
 });

 JButton stopButton = new JButton(“Stop”);
 buttonPanel.add(stopButton);
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 stopRunning();
 }
 });
 add(buttonPanel, BorderLayout.SOUTH);
 }

 public void startRunning() {
 if(progressThread == null|| !progressThread.isAlive()) {
 progressThread = new ProgressThread(progressBar);
 progressThread.start();
 }
 }

 public void stopRunning() {
 progressThread.setStop(true);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Hello World!”);
 ProgressExample progressExample = new ProgressExample();
 myFrame.getContentPane().add(“Center”,progressExample);
 myFrame.setSize(200,100);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);

continues

Progress Bars

27 1529-5 CH23 9/23/98, 3:16 PM491

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

492 Chapter 23 JFC—Java Foundation Classes

 }
 });
 myFrame.setVisible(true);
 }
}

class ProgressThread extends Thread {
 JProgressBar progressBar;
 boolean stopStatus = false;
 boolean aliveStatus = false;

 public ProgressThread(JProgressBar progressBar){
 this.progressBar = progressBar;
 }

 public void setStop(boolean value){
 stopStatus = value;
 }

 public void run () {
 int min = 0;
 int max = 50;
 progressBar.setMinimum(min);
 progressBar.setMaximum(max);
 progressBar.setValue(min);
 for (int x=min;x<=max;x++) {
 if(stopStatus){
 break;
 }else{
 progressBar.setValue(x);
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 // Ignore Exceptions
 }
 }
 }
 aliveStatus = false;
 }
}

Listing 23.11 Continued

FIG. 23.18
Once the
ProgressThread is
started, the progress bar
will begin to travel
across the screen.

27 1529-5 CH23 9/23/98, 3:16 PM492

493

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

Understanding ProgressBarExample
In order to demonstrate a progress bar with any real meaning, it’s necessary to have some-
thing that is actually progressing. As a result, ProgressBarExample in Listing 23.11 might
seem unnecessarily complicated. However, after you take the time to digest the example, it
won’t seem so difficult after all.

Creating and Controlling the Progress Bar
To see all the work done with the progress bar in this example, you need to look in a couple of
places. First, to see how the progress bar is created, you can look in the same place that you’ve
seen many of the other components throughout this chapter—the constructor. You’ll seen two
lines that look like the following:

progressBar = new JProgressBar();
add(progressBar,”Center”);

Not surprisingly, this looks very similar to the rest of the examples in this chapter. The second
place to look is inside the ProgressThread’s run() method, which is where you will find all the
calls for configuring and updating the progress bar. The first set of method calls simply config-
ures the initial state of the progress bar.

progressBar.setMinimum(min);
progressBar.setMaximum(max);
progressBar.setValue(min);

If you recall the discussion of scrollbars from Chapter 19, these methods should look very
similar. Effectively what this does is set the smallest and largest value the progress bar will
know about, and then it sets the initial value. The usefulness of setting min/max values might
not be immediately obvious, but the implication is that you can configure your bar for whatever
scale you need. For instance, if instead of counting from 0 to 50, you wanted to show the status
as you read from a file, and you were going to start at the 10k mark and read 5Mb, you could
set the min to 10240 and the max to 5242880. Then as you read from the file, you can just up-
date the progress bar with your current location; the progress bar handles figuring out all the
percentages and so on.

ProgressThread
The majority of the extra code in this example is dedicated to the thread that actually updates
the progress bar. Obviously, the thread’s sole purpose is to call setValue() on the progress bar
every so often.

A warning is necessary at this point though. ProgressThread calls a thread safe method—
setValue. However, most of the methods in the JFC API are not thread safe. This means that,
in general, you should not call directly to one of these methods from an independent thread. To
do so can result in some unexpected, and generally undesirable, results. Instead you should
make most of your calls in the Swing thread.

Progress Bars

27 1529-5 CH23 9/23/98, 3:16 PM493

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

494 Chapter 23 JFC—Java Foundation Classes

If for some reason you need to call a nonthread safe method, you can have Swing process that
thread for you using one of two techniques. In the SwingUtilities class are two methods:
invokeAndWait() and invokeLater(). Both of these methods require a Runnable object to be
passed into them (just like a Thread), but they will process the run() method within Swing’s
event thread. The difference between the two methods, by the way, is that invokeAndWait()
forces the Runnable to be processed immediately, and your code will block at the
invokeAndWait() method until it finishes. invokeLater() will queue the Runnable, and pro-
cess it at the next opportunity, but independent of your current code process. Normally you
will use invokeLater().

ProgressMonitor
Because it’s so common to display a progress bar in a window all its own while a particular
process is running, and display the status of that process, JFC also has a convenience class that
combines everything you need to do this. This class is called the ProgressMonitor.

ProgressMonitors are actually self-intelligent in that they can figure out if they will ever be
needed. If within two seconds of their creation, the status of the task has already completed,
the ProgressMonitor won’t even bother to pop up. You can configure the time it waits before
popping up if you need to, but generally speaking, two seconds is a good time.

Listing 23.12 shows how our ProgressBarExample from Listing 23.11 would be modified to use
the monitor. Notice how Listing 23.12 differs from Listing 23.11. You can see the results in
Figure 23.19.

Listing 23.12 ProgressMonitor Shows the Status in a Subwindow

import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import java.awt.*;
import java.awt.event.*;

public class ProgressMonitorExample extends JPanel {
 ProgressThread progressThread;
 static JFrame myFrame;

 public ProgressMonitorExample() {
 setLayout(new BorderLayout());
 JPanel buttonPanel = new JPanel();
 JButton startButton = new JButton(“Start”);
 buttonPanel.add(startButton);
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 startRunning();
 }
 });

 JButton stopButton = new JButton(“Stop”);
 buttonPanel.add(stopButton);
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 stopRunning();

27 1529-5 CH23 9/23/98, 3:16 PM494

495

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

 }
 });
 add(buttonPanel, BorderLayout.SOUTH);
 }

 public void startRunning() {
 if(progressThread == null|| !progressThread.isAlive()) {
 progressThread = new ProgressThread(this);
 progressThread.start();
 }
 }

 public void stopRunning() {
 progressThread.setStop(true);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Hello World!”);
 ProgressMonitorExample progressMonitorExample = new
 ➥ProgressMonitorExample();
 myFrame.getContentPane().add(“Center”,progressMonitorExample);
 myFrame.setSize(200,100);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 myFrame.setVisible(true);
 }
}

class ProgressThread extends Thread {
 ProgressMonitor monitor;
 boolean stopStatus = false;
 int min = 0;
 int max = 50;

 public ProgressThread(Component parent){
 monitor = new ProgressMonitor(parent,”Progress of Thread”,”Not Started”,
 ➥min,max);
 }

 public void setStop(boolean value){
 stopStatus = value;
 }

 public void run () {
 monitor.setNote(“Started”);
 for (int x=min;x<=max;x++) {
 if(stopStatus){
 monitor.close();
 break;
 }else{
 monitor.setProgress(x);

continues

Progress Bars

27 1529-5 CH23 9/23/98, 3:16 PM495

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

496 Chapter 23 JFC—Java Foundation Classes

 monitor.setNote(“”+(x*2)+”%”);
 try {
 sleep(100);
 } catch (InterruptedException e) {
 // Ignore Exceptions
 }
 }
 }
 }
}

Listing 23.12 Continued

Understanding ProgressMonitorBar Unlike our ProgressBarExample program, Listing 23.12
doesn’t split the work with ProgressMonitor into two classes. The ‘Start’ and ‘Stop’ buttons are
used simply to trigger the creation of the ProgressMonitor in the ProgressThread object.

The ProgressThread Class The ProgressThread class is the one that is really interesting in
this example. Let’s start by looking at the constructor and how the monitor object is created.

 public ProgressThread(Component parent){
 monitor = new ProgressMonitor(parent,”Progress of Thread”,
 ➥”Not Started”,min,max);
 }

ProgressMonitor has one constructor, and it requires some items from you:

■ A parent window, just like a Dialog or modal JDialog

■ A label for the window

■ An initial status note

■ A minimum and a maximum value for the scrollbar

As you would guess, you can change any of these values after you construct the
ProgressMonitor, except one: the parent. This value is used to construct the dialog and really
wouldn’t make sense to change later.

The run() Method The run() method in this example is where the bulk of the work is done.

As you look through the run() method, you will notice that you actually use more methods
with the ProgressMonitor than we did with our ProgressExample.

First, in ProgressExample when the stopStatus was set, you simply ended the run() method.
However, with this example, you tell the monitor to close. Ordinarily the ProgressMonitor will
automatically close as soon as you reach or go past the maximum value. But if you want to

FIG. 23.19
ProgressMonitor
produces a child
window and shows the
status in that window.

27 1529-5 CH23 9/23/98, 3:16 PM496

497

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

23

III
Part

Ch

close it before that happens, you must call the close() method. Of course, you can also set the
progress to max and accomplish basically the same task.

if(stopStatus){
 monitor.close();
 break;
}

Next, notice that each time the thread updates, you update not one but two values for the moni-
tor. The first just updates the progress status, like you did in Listing 23.11, except that
ProgressMonitor’s method is setProgress(), whereas JProgressBar’s was setValue().

The next method is a bit more interesting; it sets the ProgressMonitor’s note. You can use the
note to display updated information beyond what the progress bar shows. In this case, you’ll
see the completion percentage, but you can show anything you like. So if you were reading a
bunch of files, you might want to show the current file you’re working with.

ProgressMonitorInputStream
Another very common use of the progress bar is to show your status as you read from a
stream, such as a FileInputStream. Like ProgressMonitor, as a convenience to you, JFC also
adds a monitor for reading from a stream. The new class is called
ProgressMonitorInputStream, and it works similarly to the ProgressMonitor in that it creates
its own dialog window.

Because ProgressMonitorInputStream is so similar to ProgressMonitor, you can use the same
base class you did in Listing 23.12 and substitute just the ProgressThread class shown in List-
ing 23.13 to see how ProgressMonitorInputStream works.

Listing 23.13 Changing the ProgressThread to Use a
 ProgressMonitorInputStream Instead of a ProgressMonitor

class ProgressThread extends Thread {
 boolean stopStatus = false;
 BufferedInputStream in;

 public ProgressThread(Component parent,String fileName){
 try{
 in = new BufferedInputStream(
 new ProgressMonitorInputStream(
 parent,
 “Reading “+fileName,
 new FileInputStream(fileName)
)
);
 }catch (FileNotFoundException exception){
 System.out.println(“File not found:”+fileName);
 }
 }

 public void setStop(boolean value){

continues

Progress Bars

27 1529-5 CH23 9/23/98, 3:16 PM497

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter23 LP#4

498 Chapter 23 JFC—Java Foundation Classes

Listing 23.13 Continued

 stopStatus = value;
 }

 public void run () {
 int readVal;
 try{
 while (!stopStatus &&((readVal = in.read())!=-1)){
 //if this was for real, you’d do something here
 }
 }catch (IOException ioe){
 System.out.println(“Exception while reading”);
 }
 System.out.println(“done”);
 }

}

Understanding ProgressMonitorInputStream The real work of Listing 23.13 comes in the
constructor of the class. Before we dig into that, however, it’s important to note that
ProgressMonitorInputStream extends from InputStream, and because it does,
ProgressMonitorInputStream can generally be used just like most of the custom input streams
such as BufferedInputStream or ObjectInputStream.

The constructor for ProgressThread creates the ProgressMonitorInputStream based on a
FileInputStream. In effect, it wraps the FileInputStream. Then, just to show that
ProgressMonitorInputStream is no different, it is wrapped in a BufferedInputStream.

in = new BufferedInputStream(
 new ProgressMonitorInputStream(
 parent,
 “Reading “+fileName,
 new FileInputStream(fileName)
)
);

The constructor for the ProgressMonitorInputStream, which is contained in the middle lines,
requires three components:

■ The parent Container, just like the ProgressMonitor

■ The message for the monitor

■ The InputStream to wrap, which will provide the source of the data

Unlike ProgressMonitor, ProgressMonitorInputStream does not enable you to directly change
the message it displays. However, if you need to do this, you can request the ProgressMonitor
using the getProgressMonitor() method.

The run() Method The run() method for the ProgressThread then simply reads from the
stream until it reaches the end. To make this example interesting, you need to provide the
body for the while() loop. ●

27 1529-5 CH23 9/23/98, 3:16 PM498

499

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

C H A P T E R

Advanced JFC

24

In this chapter

Model-View-Control—JFC’s Design 500

Menus and Toolbars 507

Lists and Combo Boxes 511

Using Tables 514

Trees 519

Displaying HTML with JEditor 525

Creating Icons 528

JFC Applets 530

28 1529-5 CH24 9/23/98, 4:01 PM499

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

500 Chapter 24 Advanced JFC

Model-View-Control—JFC’s Design
JFC’s entire system is based on a design concept called Model View Control, or MVC. The
MVC system separates the various portions of each interface component into three separate
segments, as shown in Figure 24.1.

Model View

Control

This design has been used very successfully in the past by other systems, but it first makes its
debut in Java in JFC. Each of these components has its own set of requirements and responsi-
bilities. Following are the three segments of MVC:

Model: The model is responsible for knowing and maintaining the state of the compo-
nent. For instance, a button’s model must know whether the button has been pressed, or
whether the button has been armed. On the flip side, when the button is pressed, the
model is responsible for notifying all the event listeners of the change.

View: The view is responsible for all display aspects of the component. This primarily
involves the paint() method, but it also means that the view must know exactly what
should be painted. So if a component has a different look when the mouse is over the
component, the view must be able to display both the normal view and the view when the
mouse is over the component.

Control: The control manages the actual events that are received by the component.
These events can be either from the user (such as a mouse click) or from the system
(such as a timer event). The control must figure out what to do with this event and in-
form the model, the view, and any other appropriate listeners.

Because the communication between the view and the control is very complicated, for the
most part JFC has combined them into a single component called a delegate, resulting in a
diagram more like Figure 24.2 than Figure 24.1.

FIG. 24.1
Model View Control
designs split the
interface into three
sections.

28 1529-5 CH24 9/23/98, 4:01 PM500

501

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

Comparing MVC to AWT’s Design
At first glance, you might think that MVC is a radical departure for Java, but in reality, AWT’s
design had many of the same aspects. Under AWT, components have objects called peers. The
peer is actually a native component, so for example, if you run a Java app under Windows and
you create a java.awt.Button, the button gets a button peer from Windows, which is a native
Windows API button. The peer effectively has all the same features that JFC’s delegate has.
The primary difference between how the AWT model works and how the MVC system works
is that the design of the peer makes it very difficult to change the way the button works, or
how it looks. You are, after all, dependent on the button that the (Windows) system gives you.

The other major difference is that under the AWT design, the model portions of the MVC were
embedded within the component itself. So if, for whatever reason, you wanted to change the
way the model worked, you had to go through a fairly involved process, and your new model
was generally tightly coupled to the original.

So Where Is the Component in This Model?
Perhaps the most confusing thing to try to understand about JFC’s MVC design is figuring out
exactly where the component fits. For instance, if you look at JButton, which part does
JButton itself play? It is not the model, the view, or the controller; JButton is the component.
Take a look at the two views shown in Figure 24.3. On the left you see a model similar to 24.2,
except that the MVC is shown living inside of the component. On the right of Figure 24.3, you
see an object diagram that shows that the model, the view, and the control all exist in a “has a”
relationship to the component.

Digging a Bit Deeper, How Does an MVC Component Actually
Work?

To understand better how the three pieces (component, model, and delegate) work together, it
helps to see examples. You are probably wondering how all of these items fit together in prac-
tice, so take a look at a couple of examples and how they work in practice.

FIG. 24.2
By combining the view
and the control, JFC
simplifies the design.

Model

Delegate

View

Control

Model-View-Control—JFC’s Design

28 1529-5 CH24 9/23/98, 4:01 PM501

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

502 Chapter 24 Advanced JFC

Painting to the Screen If you are an experienced Java developer and have been creating
interesting applets, or if you read the earlier chapters that dealt with AWT, you will remember
that java.awt.Component has a method called paint(). This method is called each time the
component needs to be displayed onscreen. In fact, if you look back to the first example on how
to use JFC in Chapter 23, “JFC—Java Foundation Classes” (Listing 23.1), you will see that the
paint() method is used to display hello world. The same is true for the applet’s “Hello World”
(see Listing 14.5).

How does the paint() method work for a JFC component like JButton? You learned just mo-
ments ago that the view is responsible for painting the button. However, you also learned that
the view is a “part” of the button, but it isn’t actually the button. So you’re probably wondering
how all this works. After all, you are calling add() with the JButton, not the JButton’s view.
The paint thread will want to paint the added component—it doesn’t know anything about the
delegate object.

Whenever any component in the Java system needs to be displayed onscreen, or it is instructed
to update(), the screen-repainter thread proceeds to call the paint() method on the object.
This is true for all AWT components, not just JFC ones (note: JFC JComponent does extend
from AWT’s Component class). Under JFC, the JComponent handles making sure that all the
painting for the component is done correctly, including any children of the component. When it
comes time for it to paint itself, the paint() method passes the Graphics object off to the view
and instructs the view to paint. Effectively, you can think of JComponent’s paint() method as if
its code looked like this:

public void paint(Graphics g){
 ui.paint(g);
}

Now, in reality, JComponent’s paint() method is much more complicated due to the require-
ments to paint all the child objects and accommodate the layered views in JFC, but for the
purposes of understanding how the view fits in, it works perfectly.

FIG. 24.3
The component “has a”
model and a delegate
(view and controller).

Model

Delegate

Component

Component

Model

Delegate

1

1

28 1529-5 CH24 9/23/98, 4:01 PM502

503

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

Changing Values So now you understand how the paint() method makes its way out to the
view, but you’re still wondering how values are changed. For instance, if a button is pressed,
how does that information get relayed?

The first part of the task is for the Controller to receive the events in the first place. This is
done through the standard java.awt.events, such as MouseListener and
MouseMotionListener. As you saw earlier, the controller is typically bundled with the view. So
what happens is that the view (or more probably, an inner class of the view) receives the
mousePressed() event.

Inside of the mousePressed() method, the Controller informs the model of the change in state,
which performs the necessary changes, and then it might also tell the component to do some-
thing.

Take a look at how the JButton handles this sequence. When the mousePressed() event oc-
curs, it is handled in the button’s Controller. For the Basic UI, this class is called
BasicButtonListener. Inside of the mousePressed() method, the controller performs two
tasks. First, it tells the model to set its “pressed” state to true. Then it tells the component
(JButton) to request focus. Notice that the model does not actually directly handle the event,
but rather is informed of the appropriate change from the Controller.

When the model receives the change command from the Controller, it sets the flag for the
pressed state, then tells the view that it needs to repaint (to reflect the new change). By having
the model be responsible for calling the repaint() method, you have multiple sources chang-
ing the state of the button, and in all cases the view will get appropriately updated. So, for in-
stance, you could change the button state by pressing the button (as you just saw), or you
could call JButton’s setSelected() or doClick() methods. In either case, because the model
updates the view, the change is apparent onscreen.

Obtaining Value Information Finally, you should examine what happens when you decide
that you want to request some information from the component. As you’ve seen, the model is
responsible for coming up with this information. So when you interrogate the component for its
information, it will actually ask the model.

Once again, take a look at JButton. If you have followed the scenario set up in the preceding
section, you will recall that you have pressed the mouse button on the button. Now you want to
know the state of the JButton.

Normally, you would obtain the state of the button by querying JButton’s isSelected() method.
Now, as you have probably already guessed, if you look at the internals of the JButton class’s
isSelected() method, it actually requests the state from the model and returns that value.

Why Understand MVC?
In many applications, you might not need to ever know how the Model-View-Controller model
works. In fact, in Chapter 23 you learned about JFC without ever having to do anything with
either the model or the delegate. This is not uncommon. However, for complex components
such as Trees and Tables, which are discussed later in this chapter, understanding MVC is
critical.

Model-View-Control—JFC’s Design

28 1529-5 CH24 9/23/98, 4:01 PM503

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

504 Chapter 24 Advanced JFC

Using JFC’s Pluggable Look-and-Feel
Beyond being able to tweak the system’s individual pieces, one other truly fascinating side
effect of JFC’s Model-View-Control design comes out. The effect is that it allows JFC designs to
mutate their look, and seamlessly change how they feel (react) to something completely differ-
ent. This means that the entire look of the application can change without a single changed line
of code, even at runtime. This whole concept is called a “pluggable look-and-feel.” Figures 24.4
through 24.6 show a single application in three completely different views: the Java view, the
Macintosh view, the Windows view, and the Motif view.

FIG. 24.4
An application rendered
using the Java look-and-
feel.

FIG. 24.5
An application rendered
using the Windows
look-and-feel.

28 1529-5 CH24 9/23/98, 4:01 PM504

505

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

Changing the Look-and-Feel
Changing the look-and-feel of an application can be very painless. To change it, you really need
to know just one thing: what is the name of the look-and-feel class responsible for providing
each of the various UI components for that look-and-feel. You can think of the look-and-feel
class as the driver for the look-and-feel. Various look-and-feels are bundled with JFC, and their
look-and-feel classes are listed in Table 24.1.

Table 24.1 Various Look-and-Feel Drivers Shipped with JFC

Look-and-Feel Name Class

Basic—The core to most com.sun.java.swing.plaf.basic.BasicLookAndFeel
look-and-feels.

FIG. 24.6
An application rendered
using the Motif
look-and-feel.

continues

Model-View-Control—JFC’s Design

28 1529-5 CH24 9/23/98, 4:01 PM505

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

506 Chapter 24 Advanced JFC

Java look-and-feel—A cool new com.sun.java.swing.plaf.metal.MetalLookAndFeel
age look-and-feel. Most of the
figures in this chapter and
Chapter 23 have been shot
using the Java look-and-feel.

Macintosh—A look-and-feel that com.sun.java.swing.plaf.mac.MacLookAndFeel
resembles the way a Macintosh
works. Note: By default, this look
and feel is not available on any
platform other than a Macintosh,
for trademark reasons.

Motif—A look-and-feel that com.sun.java.swing.plaf.motif.MotifLookAndFeel
resembles the view from many
graphical UNIX machines.

Multiplexing look-and-feel— com.sun.java.swing.plaf.multi.MultiLookAndFeel
A look-and-feel designed to
allow more than one UI to be
associated with a component
at a time.

Windows—A look-and-feel com.sun.java.swing.plaf.windows.Windows
designed to simulate the look
and feel of Windows 95/NT.
Note: By default, this look and
feel is not available on any platform
other than a Windows machine, for
trademark reasons.

After you have found the look-and-feel you are looking for in Table 24.1, you can now proceed
to change your application. Listing 24.1 shows just how to do this using the Window’s look-and-
feel.

Table 24.1 Continued

Look-and-Feel Name Class

28 1529-5 CH24 9/23/98, 4:01 PM506

507

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

Listing 24.1 JFC Allows You to Change the Look-and-Feel

try{
 UIManager.setLookAndFeel(“com.sun.java.swing.plaf.windows.
WindowsLookAndFeel”);
} catch (java.lang.ClassNotFoundException e){
 System.out.pritln(“Look and feel not found”);
}

Now, obviously you would substitute the string “com.sun.java.swing.plaf.windows.
WindowsLookAndFeel” with the class from Table 24.1 that matches your desired look-and-feel.
And, technically speaking, that’s all you need to do. However, if you want to change the look-
and-feel on the fly (that is, at runtime you want to support more than one L&F), you also need
to notify the components that are already visible to update. You can do this in two ways. First,
you can manually call the updateUI() method on each component in your program.
updateUI() forces the component to reobtain its delegate and repaint itself. Obviously, going
through every component could be a fairly big task if you had a lot of components in your
system, and it would create a fair amount of coupling. So the SwingUtilities class has a way to
make the task much easier. However, before you can use the swing utilities, you must know the
component that is at the root of all your other views. Typically, this is either the JFrame or a
JApplet your program started with. When you know this, you can call

SwingUtilities.updateComponentTreeUI(rootComponent);

In the next section, Listing 24.2 will put this all together in a complete example.

Menus and Toolbars
Menus and toolbars are common UI components in many systems. AWT provides menus, but
left out toolbars. JFC has provided both. The classes in question are JMenuBar and JToolBar.
Both of them are standard JComponents. The interesting thing about this is that it means you
can put them into your UI in any location you would like. You are not bound to putting them in
the standard locations. So if you want a menu bar to be located below a text field, you can do
just that.

You’ll create a toolbar that will allow you to change the look-and-feel of the JTabbed pane in
Listing 24.2, and Figure 24.7. The example adds a menu bar that has a File menu and an L&F
menu. The File menu won’t actually do anything at this point, but it does make it look nice.

Listing 24.2 Tab Example Can Be Expanded to Support Multiple Views

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

public class MenuBarExample extends JPanel implements ItemListener{
 static JFrame myFrame;

continues

Menus and Toolbars

28 1529-5 CH24 9/23/98, 4:01 PM507

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

508 Chapter 24 Advanced JFC

 Font myFont = new Font(“Dialog”, Font.PLAIN, 12);

 public MenuBarExample(){
// setFont(myFont);
 JTabbedPane tabs = new JTabbedPane(SwingConstants.BOTTOM);
 Icon icon = new ImageIcon (“feet.gif”);
 JButton button = new JButton(icon);
 JLabel label = new JLabel (“Hello World!”);
 tabs.addTab(“Hello World”,label);
 tabs.addTab(“Feet”,icon,button);
 setLayout(new BorderLayout());
 add(tabs,”Center”);
 add(createMenu(),”North”);
 }

 public JMenuBar createMenu(){
 JMenuBar menuBar = new JMenuBar();
 // File Menu - create this so we have at least two menu options
 JMenu file = (JMenu) menuBar.add(new JMenu(“File”));
 file.setMnemonic(‘F’);
 JMenuItem mi; //Temporary place holder
 //Add several items under ‘File’ these won’t do anything.
 mi = (JMenuItem) file.add(new JMenuItem(“Open”));
 mi.setMnemonic(‘O’);
 mi = (JMenuItem) file.add(new JMenuItem(“Save”));
 mi.setMnemonic(‘S’);
 mi = (JMenuItem) file.add(new JMenuItem(“Save As...”));
 mi.setMnemonic(‘A’);
 file.add(new JSeparator());
 mi = (JMenuItem) file.add(new JMenuItem(“Exit”));

 // Look and Feel Menu
 JMenu options = (JMenu) menuBar.add(new JMenu(“L&F”));
 options.setMnemonic(‘L’);

 // Look and Feel Radio control
 ButtonGroup group = new ButtonGroup();
 mi = options.add(new JRadioButtonMenuItem(“Windows Style Look and
➥Feel”));
 mi.setActionCommand(“java.swing.plaf.windows.WindowsLookAndFeel”);
 //If the current look and feel is windows, select this item.
 mi.setSelected(UIManager.getLookAndFeel().getName().equals
➥(“Windows”));
 group.add(mi);
 mi.addItemListener(this);
 // mi.setAccelerator(KeyStroke.getKeyStroke
➥(KeyEvent.VK_1, ActionEvent.ALT_MASK));

 mi = options.add(new JRadioButtonMenuItem(“Motif Look and Feel”));
 mi.setActionCommand(“java.swing.plaf.motif.
➥MotifLookAndFeel”);
 mi.setSelected(UIManager.getLookAndFeel().getName().equals
➥(“CDE/Motif”));
 group.add(mi);

Listing 24.2 Continued

28 1529-5 CH24 9/23/98, 4:01 PM508

509

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

 mi.addItemListener(this);
 // mi.setAccelerator(
➥KeyStroke.getKeyStroke(KeyEvent.VK_2, ActionEvent.ALT_MASK));

 mi = options.add(new JRadioButtonMenuItem(“Metal Look and Feel”));
 mi.setActionCommand(
➥“java.swing.plaf.metal.MetalLookAndFeel”);
 mi.setSelected(UIManager.getLookAndFeel().getName().equals
➥(“Metal”));
 // metalMenuItem.setSelected(true);
 group.add(mi);
 mi.addItemListener(this);
 // metalMenuItem.setAccelerator(
➥KeyStroke.getKeyStroke(KeyEvent.VK_3, ActionEvent.ALT_MASK));
 return menuBar;
 }

 public void itemStateChanged(ItemEvent e) {
 Component root = myFrame;
 //Bump the cursor into a wait mode while we make this change
 root.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 //Get the source of the event.
 JRadioButtonMenuItem button = (JRadioButtonMenuItem) e.getSource();
 try {
 if(button.isSelected()) {
 UIManager.setLookAndFeel(button.getActionCommand());
 button.setEnabled(true);
 SwingUtilities.updateComponentTreeUI(myFrame);
 }
 } catch (UnsupportedLookAndFeelException exc) {
 // Error - unsupported L&F
 button.setEnabled(false);
 System.err.println(“Unsupported LookAndFeel: “ +
➥button.getText());
 }catch (Exception exc2){
 System.err.println(“Couldn’t load Look and feel” +
➥button.getText());
 }

 root.setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
 }

 public static void main(String args[]){
 myFrame = new JFrame(“MenuBar Example”);
 MenuBarExample menuExample = new MenuBarExample();
 myFrame.getContentPane().add(“Center”,menuExample);
 myFrame.setSize(400,200);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Menus and Toolbars

28 1529-5 CH24 9/23/98, 4:01 PM509

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

510 Chapter 24 Advanced JFC

Understanding the MenuBar Example
The two primary methods you’ll want to look at in this example are createMenu() and the
itemStateChanged() event method. The createMenu() method produces the JMenuBar, which
is then added to the “North” portion of the JPanel.

createMenu() To understand the createMenu() method, it’s first important to understand
the basics of JMenuBar. A JMenuBar is really just a container that runs horizontally. It contains
menus that are the typical items you see on a menu bar, such as File and Edit. The menus
themselves are also containers that contain MenuItems. MenuItems are the actual items that
appear when you select a menu like Open or Save. Of course, if you’ve been building menu
bars with AWT, all of this should come as old hand.

Creating Menus The first task is for you to create the MenuBar. The menu bar will hold two
menus, File and L&F. To the menu bar you will add each of the JMenus. Now, the interesting
part comes when you start adding MenuItems. The JMenuItem works very similar to a JButton.
It can have Mnemonics, ActionEvents and ItemEvents. Take a look at the first couple of lines of
createMenu(), in which the first menu (File) is created and its first item (Open) is added.

JMenu file = (JMenu) menuBar.add(new JMenu(“File”));
file.setMnemonic(‘F’);
JMenuItem mi; //Temporary place holder
mi = (JMenuItem) file.add(new JMenuItem(“Open”));

In addition to menu items, you might want to add a separation between items, as is the case
between the Save As and the Exit.

file.add(new JSeparator());

Adding Check Box Menu Items Later in the method, you start adding the L&F menu. In this
case, you don’t use the regular MenuItem class. Since you only want a single item to be selected
at a time, and also because it would be nice to have a visual cue to show which of the options
has been selected, you use the JCheckBoxMenuItem. This class extends the normal JMenuItem
class and adds the capability to display both a check box and the label. This is the code for the
first item:

ButtonGroup group = new ButtonGroup();
mi = lnf.add(new JCheckBoxMenuItem(“Windows Style Look and Feel”));
mi.setActionCommand(“java.swing.plaf.windows.
WindowsLookAndFeel”);
//If the current look and feel is windows, select this item.
mi.setSelected(UIManager.getLookAndFeel().getName().equals(“Windows”));
group.add(mi);

FIG. 24.7
Using the menu options,
you can change the
look-and-feel.

28 1529-5 CH24 9/23/98, 4:01 PM510

511

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

Notice that the ButtonGroup class has been applied to make sure that only one of each of the
options is selected at any time, by adding all the check box menu items to the group.

KeyAccelerators with KeyStroke
You have already seen how the Mnemonic works with many JFC components. The menu items
in Listing 24.2 each have a Mnemonic of their own. However, Mnemonics are triggered only when
the components are visible. In the case of the MenuItem, it’s convenient to use the Mnemonic so
that as soon as the pop-up menu is shown, the user can hot-key to that selection. But what if
you want to be able to press a key combination at any time?

Because the pop-up is not visible all the time, the Mnemonic will not work. However, you can use
another trick to allow the user to press the key combination regardless of the menu’s visibility.
The trick is using a KeyAccelerator. The KeyAccelerator captures any keys that are pressed
but that are not used by some other device. (This means that if you have an active Mnemonic
that clashes with the accelerator, the Mnemonic will win.)

The setAccelerator() method is used for setting such a capture. setAccelerator() requires
a KeyStroke object as its parameter. KeyStroke is yet another new class in JFC, which is used
to represent a key combination, including a character and any key mask, such as Shift or Alt.
So you can support a combination like Ctrl+b. The masks come from the
awt.event.ActionEvent class. As you will recall, they are bit masks, and they include the
following:

■ java.awt.ActionEvent.SHIFT_MASK

■ java.awt.ActionEvent.CTRL_MASK

■ java.awt.ActionEvent.META_MASK

■ java.awt.ActionEvent.ALT_MASK

So if you want to capture Alt+1, you can set the menu item with this:

mi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_1, ActionEvent.
ALT_MASK));

Because the masks are bit flags, you can combine them using bitwise ANDs (&). As an ex-
ample, if you want to have a combination like Shift+Ctrl+B, you can do so by combining the
masks like this:

mi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_1,
 ActionEvent.CTRL_MASK&ActionEvent.SHIFT_MASK));

Lists and Combo Boxes
Lists are probably one of the single-most-used UI components for displaying several items.
Combo boxes are another variation on a list. AWT includes a list and a combo box (which is
represented by the Choice class), but both are limited to displaying only strings. JFC adds
JList, which is a completely different type of list box. JComboBox is different from AWT’s
Choice in several ways, and it actually uses the JList class for its pop-up display. Instead of

Lists and Combo Boxes

28 1529-5 CH24 9/23/98, 4:01 PM511

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

512 Chapter 24 Advanced JFC

displaying just strings, JList can display any kind of object and can include not only a string
but also an associated icon. Further, the view for the list can change based on a large number
of conditions. So if you want to have a different view when the item is selected, it’s easy to do.
First, you’ll create a simple list and combo box. Often you want to just have a list from a fixed
list. Listing 24.3 shows a list and a JComboBox, each with a fixed set of items (see Figure 24.8).

Listing 24.3 ListComboExample.java Shows a List of People

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.wing.border.*;

public class ListComboExample extends JPanel{
 static JFrame myFrame;

 String values[] = {“Joe”,”Shawn”,”Gabe”,”Jim”,”Bill”,”Jeremy”};
 public ListComboExample(){
 setLayout(new GridBagLayout());
 JList list = new JList(values);
 list.setVisibleRowCount(4);
 JScrollPane pane = new JScrollPane();
 pane.setViewportView(list);
 add(pane);

 JComboBox combobox = new JComboBox(values);
 add(combobox);
 }

 public static void main(String args[]){
 myFrame = new JFrame(“List and ComboBox Example”);
 ListComboExample jt = new ListComboExample();
 myFrame.getContentPane().add(“Center”,jt);
 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

FIG. 24.8
A JList and
JComboBox side by
side.

28 1529-5 CH24 9/23/98, 4:01 PM512

513

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

Understanding ListComboExample
By now, most of Listing 24.3 should be intuitive to you. The most interesting part of the list is
the use of the JScrollPane. JList doesn’t implement scrolling on its own. It’s an interesting
design that allows you to do many interesting things with the JList without being bound to
standard scrolling. However, for most uses you will simply create the JScrollPane and set its
viewport view to the list. Notice that it’s the pane, not the list, that is actually added to the
panel.

List View Models
Although creating a list from a default list is useful, dynamic lists are far more interesting. As
you will recall from the discussion of the Model-View-Controller earlier in this chapter, the
model provides the data for a component. So to use dynamic data with a list, it makes sense
that you will want to change the model. Lists use a basic list called a ListModel. ListModel is
an interface that contains four methods, but it is often easier to simply extend the
AbstractListModel class and define just two methods: getElementAt() and getSize().

The combo box’s model is slightly more complicated, however. First, it extends from
ListModel, which means that you can base a ComboBoxModel on an existing ListModel, but
after that you must define two additional methods: setSelectedItem() and
getSelectedItem(). Listing 24.4 demonstrates how to modify Listing 24.3 to use models
instead of a fixed list of data.

Listing 24.4 Add ListModels and ComboBoxModels to Support Dynamic Data

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

public class ListComboExample2 extends JPanel{
 static JFrame myFrame;

 public ListComboExample2(){
 setLayout(new GridLayout(2,2));
 JList list = new JList(new ListModelExample());
 list.setVisibleRowCount(4);
 JScrollPane pane = new JScrollPane();
 pane.setViewportView(list);
 add(pane);

 JComboBox combobox = new JComboBox(new ComboModelExample());
 add(combobox);

 public static void main(String args[]){
 myFrame = new JFrame(“List and ComboBox Example”);
 ListComboExample2 jt = new ListComboExample2();
 myFrame.getContentPane().add(“Center”,jt);

continues

Lists and Combo Boxes

28 1529-5 CH24 9/23/98, 4:01 PM513

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

514 Chapter 24 Advanced JFC

 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }

 class ListModelExample extends AbstractListModel{
 String values[] = {“Joe”,”Shawn”,”Gabe”,”Jim”,”Bill”,”Jeremy”};
 public Object getElementAt(int index){
 return values[index];
 }

 public int getSize(){
 return values.length;
 }
 }

 class ComboModelExample extends ListModelExample
➥ implements ComboBoxModel{
 Object item;
 public void setSelectedItem(Object anItem){
 item = anItem;
 }
 public Object getSelectedItem(){
 return item;
 }

 }
}

Using Tables
It has been argued that the invention of the spreadsheet was the single innovation that caused
computers to come into the mainstream. One of the key features of a spreadsheet is the capa-
bility to display two-dimensional data in a table. Although not as functional as a full-fledged
spreadsheet, JFC has an extremely extensible table component called JTable.

You’ll start by looking at the simplest version of a JTable, one in which you define a static set of
data (Figure 24.9). Listing 24.5 shows just such an example, with a table that lists the first
several chapters in this book.

Listing 24.5 TableExample.java—JTable Allows You to Display
Two-Dimensional Data

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

Listing 24.4 Continued

28 1529-5 CH24 9/23/98, 4:01 PM514

515

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

public class TableExample extends JPanel{
 static JFrame myFrame;
 String data[][] ={{“1”,”Introduction”},
 {“2”,”What Java can Do for You”},{“3”,”JAVA Design”}
➥,{“4”,”Installing JAVA”},
 {“5”,”JDK tools”},{“6”,”Object-Oriented Programming”}
➥,{“7”,”Hello world”},
 {“8”,”Data Types”},{“9”,”Methods”},{“10”,”Using Expressions”}};
 String columnNames[] ={“Chapter Number”,”Chapter Title”};

 public TableExample(){
 setLayout(new BorderLayout());
 JTable table = new JTable(data,columnNames);
 JScrollPane pane = JTable.createScrollPaneForTable(table);
 add(pane);
 }
 public static void main(String args[]){
 myFrame = new JFrame(“Table Example”);
 TableExample tableExample = new TableExample();
 myFrame.getContentPane().add(“Center”,tableExample);
 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Understanding TableExample
TableExample takes advantage of one of JTable’s simplest constructors. The constructor takes
a set of two-dimensional data, and a set of labels for the column heads. In TableExample, you
see the data and column heads represented as arrays of strings. The data is by no means lim-
ited to strings, but for this example, that technique just was simplest. You can also use various
components.

Also, note that like JList, JTable does not implement its own scrolling. However, unlike JList,
JTable has a convenience method for creating the scroll pane and placing the table and the
table header in the proper locations. Like JList, it’s the pane, not the table itself, that gets
added to the panel.

FIG. 24.9
The JTable displays
two-dimensional data
elegantly.

Using Tables

28 1529-5 CH24 9/23/98, 4:01 PM515

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

516 Chapter 24 Advanced JFC

Table Models
Although a complete coverage of all the JTable options is unfortunately beyond the scope of
this book, this text would fall short if it did not talk about using the models for tables. You see,
it’s often not convenient to create the data for the table at the time you create it. Beyond that, it
might well be a problematic programming process to create the data as a two-dimensional
array. However, the MVC model for the JTable is perfect for this situation. By defining the
model separately, the model can take on a life of its own without affecting the table code.

Normally, you will create a table model by extending the AbstractTableModel class. The
AbstractTableModel has a few methods that need to be implemented:

■ public int getRowCount();

■ public int getColumnCount();

■ public Object getValueAt(int row, int column);

You should be able to guess exactly how to implement these methods. Another table model,
DefaultTableModel, extends AbstractTableModel but adds the capability to edit the table.
Listing 24.6 modifies the earlier example with a class that extends the DefaultTableModel.
Notice that the JTable uses the new class (TableModel) instead of the fixed strings.

Listing 24.6 TableExample2.java—JTable Using a TableModel Instead of
Fixed Arrays

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;
import com.sun.java.swing.event.*;

public class TableExample2 extends JPanel{
 static JFrame myFrame;

 public TableExample2(){
 setLayout(new BorderLayout());
 JTable table = new JTable(new TableModel());
 JScrollPane pane = JTable.createScrollPaneForTable(table);
 add(pane);
 }
 public static void main(String args[]){
 myFrame = new JFrame(“Table Example #2”);
 TableExample2 tableExample = new TableExample2();
 myFrame.getContentPane().add(“Center”,tableExample);
 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

28 1529-5 CH24 9/23/98, 4:01 PM516

517

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

class TableModel extends DefaultTableModel{
 String data[][] ={{“1”,”Introduction”}
➥,{“2”,”What Java can Do for You”},{“3”,”JAVA Design”}
➥,{“4”,”Installing JAVA”},{“5”,”JDK tools”}
➥,{“6”,”Object-Oriented Programming”},{“7”,”Hello world”}
➥,{“8”,”Data Types”},{“9”,”Methods”},{“10”,”Using Expressions”}};
 String columnNames[] ={“Chapter Number”,”Chapter Title”};

 public int getRowCount(){
 return data.length;
 }

 public int getColumnCount(){
 return data[0].length;
 }

 public Object getValueAt(int row,int column){
 return data[row][column];
 }

 public String getColumnName(int column){
 return columnNames[column];
 }

 public void setValueAt(Object value, int row, int column){
 if (value instanceof String){
 data[row][column] = (String)value;
 }
 //Make sure you fire the table changed data so the view etc.
➥ will get notified of the change
 fireTableChanged(new TableModelEvent(this,row,row,column));
 }
}

Cell Editors
When you run TableExample2, you will notice that if you try to type in one of the fields, it
changes to a text field and you are able to change the value. This can be very useful, but what if
you want to offer the users a couple of options, like with a combo box? Well, tables support the
concept of a cell editor just for this purpose. The cell editor provides you incredibly finite con-
trol over all aspects of the editing of a cell. For the scope of this chapter, though, the text will
just cover how to add two columns. One will use a combo box; the other, a check box.

Listing 24.7 shows how to set one new column to be editable as a combo box. In addition, it
demonstrates the fact that a Boolean can be represented as a check box.

Using Tables

28 1529-5 CH24 9/23/98, 4:01 PM517

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

518 Chapter 24 Advanced JFC

Listing 24.7 Adding a Separate Cell Editor to the TableExample

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;
import com.sun.java.swing.event.*;

public class TableExample3 extends JPanel{
 static JFrame myFrame;

 public TableExample3(){
 setLayout(new BorderLayout());
 JTable table = new JTable(new TableModel());
 JScrollPane pane = JTable.createScrollPaneForTable(table);
 add(pane);

 JComboBox comboBox = new JComboBox(new String[]{“Low”,”Medium”,”High”});
 TableColumn priorityColumn = table.getColumn(“Priority”);
 priorityColumn.setCellEditor(new DefaultCellEditor(comboBox));

 }
 public static void main(String args[]){
 myFrame = new JFrame(“Table Example #3”);
 TableExample3 tableExample = new TableExample3();
 myFrame.getContentPane().add(“Center”,tableExample);
 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

class TableModel extends AbstractTableModel{
 String data[][] ={{“1”,”Introduction”,”High”},
 {“2”,”What Java can Do for You”,”Low”},
 {“3”,”JAVA Design”,”Low”},{“4”,”Installing JAVA”,”Low”},
 {“5”,”JDK tools”,”Low”},
 {“6”,”Object-Oriented Programming”,”Low”},
 {“7”,”Hello world”,”Low”},{“8”,”Data Types”,”Low”},
 {“9”,”Methods”,”Low”},{“10”,”Using Expressions”,”Low”}};
 Boolean doneFlags[] = {new Boolean(false),new Boolean(false),
 new Boolean(false),new Boolean(false),new Boolean(false),
 new Boolean(false),new Boolean(false),
 new Boolean(false),new Boolean(false),new Boolean(false)};
 String columnNames[] ={“Chapter Number”,”Chapter Title”,
 ”Priority”,”Done?”};

 public int getRowCount(){
 return data.length;
 }

 public int getColumnCount(){

28 1529-5 CH24 9/23/98, 4:01 PM518

519

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

 return columnNames.length;
 }

 public Object getValueAt(int row,int column){
 if (column<3)
 return data[row][column];
 else
 return doneFlags[row];
 }

 public String getColumnName(int column){
 return columnNames[column];
 }

 public void setValueAt(Object value, int row, int column){
 if (value instanceof String){
 data[row][column] = (String)value;
 }else if (value instanceof Boolean){
 doneFlags[row] =(Boolean) value;
 }
 fireTableChanged(new TableModelEvent(this,row,row,column));
 }
 public boolean isCellEditable(int row, int col) {return true;}
 public Class getColumnClass(int c) {return getValueAt
➥(0, c).getClass();}
}

Trees
Tree displays have been a huge hit with GUI designs for years. Trees allow you to display n-
dimensional data with relative ease. They are extremely popular for file listings, but they are
useful in various situations. JFC’s new tree class, called JTree, has many of the same facilities
that JTable and JList have for controlling data.

Unlike with tables, it’s not usual to create a tree from something as simple as an array of
strings. If you want to do so, the facility is there, but what you will end up with is nothing more
than a glorified list. If you want to predefine the root headers, this method might be perfect for
you, but because it’s not usual, we won’t cover it here.

Tree Nodes
Trees are made up of nodes. Each node represents either a leaf or a branch. A leaf is a distinct
element that has no sub elements or children. In other words, a leaf would not have the capabil-
ity to “open” and “close” or, as it’s put in tree terms, the capability to “expand” and “collapse.” A
branch, on the other hand, does have children and can expand or collapse to show the children.
The children can be either branches or leafs. In reality, both branches and leafs are standard
nodes, and there is not much difference between the two, except that a leaf has no children.

Generally speaking, you will probably find that the DefaultMutableTreeNode class will provide
all the facilities you need for creating your tree nodes. Listing 24.8 shows how you could build a
tree using just DefaultMutableTreeNodes. Figure 24.10 shows the results of this code.

Using Tables

28 1529-5 CH24 9/23/98, 4:01 PM519

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

520 Chapter 24 Advanced JFC

Listing 24.8 TreeExample.java—You Can Build a Tree from a Set of Tree Nodes

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.tree.DefaultMutableTreeNode;

public class TreeExample extends JPanel{
 static JFrame myFrame;

 public TreeExample(){
 setLayout(new BorderLayout());
 DefaultMutableTreeNode rootNode = createNodes();
 JTree tree = new JTree(rootNode);
 tree.setRootVisible(true);
 JScrollPane pane = new JScrollPane();
 pane.setViewportView(tree);
 add(pane);
 }

 public DefaultMutableTreeNode createNodes(){
 DefaultMutableTreeNode rootNode =
➥ new DefaultMutableTreeNode (“Java Stuff”);
 DefaultMutableTreeNode resources =
➥ new DefaultMutableTreeNode (“Resources”);
 DefaultMutableTreeNode tools =
➥ new DefaultMutableTreeNode (“Tools”);
 rootNode.add(resources);
 rootNode.add(tools);
 DefaultMutableTreeNode webSites =
➥ new DefaultMutableTreeNode (“Web Sites”);
 DefaultMutableTreeNode books =
➥ new DefaultMutableTreeNode (“Books”);
 resources.add(webSites);
 resources.add(books);

 DefaultMutableTreeNode magazines =
➥ new DefaultMutableTreeNode (“Magazines”);
 webSites.add(new DefaultMutableTreeNode (“JavaSoft”));
 webSites.add(new DefaultMutableTreeNode (“Gamelan”));
 webSites.add(magazines);
 magazines.add(new DefaultMutableTreeNode (“Javology”));
 magazines.add(new DefaultMutableTreeNode (“JavaWorld”));

 books.add(
➥ new DefaultMutableTreeNode (“Special Edition Using Java 1.2”));

 tools.add(new DefaultMutableTreeNode (“JBuilder”));
 tools.add(new DefaultMutableTreeNode (“Visual J++”));
 tools.add(new DefaultMutableTreeNode (“Visual Age for Java”));
 tools.add(new DefaultMutableTreeNode (“Apptivity”));

 return rootNode;
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Tree Example”);

28 1529-5 CH24 9/23/98, 4:01 PM520

521

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

 TreeExample treeExample = new TreeExample();
 myFrame.getContentPane().add(“Center”,treeExample);
 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Understanding TreeExample First, take a look at the constructor. The tree is created using
the rootNode object. You’ll take a look at how the rootNode is created later, but the important
thing to realize is that you are passing in just the root node of the tree.

The next line of code that you’ll see sets the root node to be visible. This is actually the default
value, but it’s shown here to make the point. You see, the root node cannot have any siblings,
and often this means that you will create a root node that doesn’t really offer any additional
information. So you can set the root to be nonvisible by using tree.setRootVisible (false).

The last interesting portion of the constructor is the fact that like JList and JTable, JTree
does not handle the scrolling on its own. Instead, like JList and JTable, it implements the
Scrollable interface. So you create a scroll pane and add the tree to it.

Creating the Nodes The createNodes() method is where the nodes for the tree are actually
created. Effectively, what you are doing is layering out each branch. You first create the
rootNode, and then its children. Then the nodes for each of the children are created, and added
to the parent node, and so on.

Tree Models
Building a tree out of a set of nodes as in Listing 24.8 works great when you know the data at
the time you create the tree. However, it’s not enough when you will be inserting or removing
nodes after you first create the tree. The reason is that although you can still call the add()
method on a visible node, the tree doesn’t know about this information, and the visual portion
of the tree is not updated.

Like the models for tables, the tree models can be manipulated at any time and can store vari-
ous values. All the details of handling TreeModels is unfortunately beyond the scope of this
book, so we will cover only how to add and remove nodes.

FIG. 24.10
You can expand and
close the tree at will.

Using Tables

28 1529-5 CH24 9/23/98, 4:01 PM521

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

522 Chapter 24 Advanced JFC

Listing 24.9 demonstrates the use of the model. It has a TextField at the top of the window,
which allows you to add a new node with the TextField’s value to the item selected in the tree.
On the bottom of the window is a button that removes the selected node from the tree (Figure
24.11).

Listing 24.9 Trees Can Be Manipulated Through Their Models

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.tree.DefaultMutableTreeNode;
import com.sun.java.swing.tree.DefaultTreeModel;
import com.sun.java.swing.tree.TreePath;

public class TreeExample extends JPanel{
 static JFrame myFrame;
 JTextField tf;
 JTree tree;

 public TreeExample(){
 setLayout(new BorderLayout());
 tf= new JTextField();
 tf.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 addTextFieldValue();
 }
 });
 add(tf,”North”);

 DefaultMutableTreeNode rootNode = createNodes();
 tree = new JTree(rootNode);
 tree.setRootVisible(true);
 JScrollPane pane = new JScrollPane();
 pane.setViewportView(tree);
 add(pane,”Center”);

 JButton remove = new JButton(“Remove”);
 remove.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae2){
 removeSelectedNode();
 }
 });
 add(remove,”South”);
 }

 public void removeSelectedNode(){
 TreePath selectionPath = tree.getSelectionPath();
 DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode)
➥selectionPath.getLastPathComponent();
 ((DefaultTreeModel)tree.getModel()).removeNodeFromParent
➥(selectedNode);
 }

 public void addTextFieldValue(){

28 1529-5 CH24 9/23/98, 4:01 PM522

523

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

 DefaultMutableTreeNode newNode = new DefaultMutableTreeNode
➥ (tf.getText());
 TreePath selectionPath = tree.getSelectionPath();
 DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode)
➥selectionPath.getLastPathComponent();
 ((DefaultTreeModel)tree.getModel()).insertNodeInto(newNode,
➥ selectedNode, selectedNode.getChildCount());
 }

 public DefaultMutableTreeNode createNodes(){
 DefaultMutableTreeNode rootNode = new DefaultMutableTreeNode
➥ (“Java Stuff”);
 DefaultMutableTreeNode resources = new DefaultMutableTreeNode
➥ (“Resources”);
 DefaultMutableTreeNode tools = new DefaultMutableTreeNode
➥ (“Tools”);
 rootNode.add(resources);
 rootNode.add(tools);
 DefaultMutableTreeNode webSites =new DefaultMutableTreeNode
➥ (“Web Sites”);
 DefaultMutableTreeNode books = new DefaultMutableTreeNode
➥ (“Books”);
 resources.add(webSites);
 resources.add(books);

 DefaultMutableTreeNode magazines = new DefaultMutableTreeNode
➥ (“Magazines”);
 webSites.add(new DefaultMutableTreeNode (“JavaSoft”));
 webSites.add(new DefaultMutableTreeNode (“Gamelan”));
 webSites.add(magazines);
 magazines.add(new DefaultMutableTreeNode (“Javology”));
 magazines.add(new DefaultMutableTreeNode (“JavaWorld”));

 books.add(new DefaultMutableTreeNode
➥ (“Special Edition Using Java 1.2”));

 tools.add(new DefaultMutableTreeNode (“JBuilder”));
 tools.add(new DefaultMutableTreeNode (“Visual J++”));
 tools.add(new DefaultMutableTreeNode (“Visual Age for Java”));
 tools.add(new DefaultMutableTreeNode (“Apptivity”));

 return rootNode;
 }

 public static void main(String args[]){
 myFrame = new JFrame(“Tree Example”);
 TreeExample treeExample = new TreeExample();
 myFrame.getContentPane().add(“Center”,treeExample);
 myFrame.setSize(400,250);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

Using Tables

28 1529-5 CH24 9/23/98, 4:01 PM523

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

524 Chapter 24 Advanced JFC

Understanding new TreeExample
Most of this example is left for you to look through and figure out on your own. The two key
methods we need to explore, however, are removeSelectedNode() and addTextFieldValue().

removeSelectedNode()
The removeSelectedNode() method is designed to delete the node that has been selected in
the tree. To do this, it must first obtain the node that’s been selected. The tree can provide you
with the path to this node via the getSelectionPath() method. This method does not return
the node itself, but instead returns a new class called a TreePath. The TreePath includes all the
nodes from the root down to the node that has been selected. This is convenient because you
can store the path and later make sure that all the folders have been opened to expose the node
using tree’s expandPath() method, or it can be used in various other ways.

In this case, the tree path is used to obtain the node that has been selected, but requesting the
path’s last component. GetLastPathComponent() actually returns an Object, so you will notice
that the result has been casted to a DefaultMutableTreeNode.

Now that you know the node, you can delete it. As was mentioned earlier, the part of the tree
that you want to have delete the node is the tree’s model. The model will then inform all the
other necessary component pieces. Fortunately, DefaultTreeModel has a method just for the
purpose of removing the node called removeNodeFromParent that does the trick.

In this case, because you haven’t used a special model and are using just the default, you
can safely cast the getModel() to a DefaultTreeModel. If you had changed it to a

custom model, though, you’d need to adjust this code.

You might also want to know that when you remove the node from the tree, the node itself is not
actually deleted. If you wanted to put it somewhere else, or on another tree, you could safely do just
that. ■

addTextFieldValue()
The other method you’re interested in with this class is the addTextFieldValue() method.
This method creates a new node with the text in the text field and adds it as a child of the se-
lected node.

FIG. 24.11
Using the TextField,
you can add values to
the tree; using the
remove button, you can
delete from it.

N O T E

28 1529-5 CH24 9/23/98, 4:01 PM524

525

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

The first task in adding the node is to obtain its parent node. In the preceding section, you
already saw how most of the code for this task works. What’s different is the last line of the
method. DefaultTreeModel’s insertNodeInto() method takes three parameters. The first one
is the new node. The second is the new parent of the node, and the last is the location in the list
to add the node. In this case, you will add it as the last child to the node, but you can also add it
as the first element or in any other order you like. Play with this on your own to see the effect.

Displaying HTML with JEditor
Another one of the great innovations added to JFC was what is known as an editor. JEditor
allows you to display formatted text, with tags that make parts of the text have special at-
tributes, such as centering and italics. Standard with JFC are editor kits for HTML and RTF.
Even better, you can define your own implementation of a class known as EditorKit and
specify your own file format.

In Listing 24.10, you see JEditor being used to create what you might call a basic Web
browser.Figure 24.12 shows the result of this code.

Listing 24.10 HTMLView.java—Using JEditor to Create a Browser

import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.io.IOException;
import java.util.Date;
import java.net.URL;
import java.net.MalformedURLException;

public class HTMLView extends JPanel{
 // The initial width and height of the frame
 public static int WIDTH = 600;
 public static int HEIGHT = 400;

 protected JEditorPane _view;
 protected JTextField _commandLine;

 public HTMLView(){
 _view = new JEditorPane();
 _view.setEditable(false);
 _view.addHyperlinkListener(new HyperlinkListener(){
 //This is called if a hyperlink is clicked on
 public void hyperlinkUpdate(HyperlinkEvent event){
 setURL(event.getURL());
 }
 });

 setLayout(new BorderLayout());
 add(_view,”Center”);

continues

Displaying HTML with JEditor

28 1529-5 CH24 9/23/98, 4:01 PM525

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

526 Chapter 24 Advanced JFC

 //Add the location line
 _commandLine = new JTextField();
 add(_commandLine,”North”);
 _commandLine.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 try{
 URL newURL = new URL(ae.getActionCommand());
 setURL(newURL);
 }catch (MalformedURLException mue){
 System.out.println
➥(“The URL you clicked on appears incorrect:”+mue);
 }
 }
 });
 }

 public void setURL(URL newURL){
 try{
 _view.setPage(newURL);
 _commandLine.setText(newURL.toExternalForm());
 }catch (IOException ioe){
 System.out.println(“Error :”+ioe);
 }
 }

 public static void main(String s[]) {
 HTMLView panel = new HTMLView();

 JFrame frame = new JFrame(“HTML Example”);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 frame.getContentPane().add(“Center”, panel);
 frame.pack();
 frame.setVisible(true);
 frame.setSize(WIDTH,HEIGHT);
 }
}

Understanding HTMLView
HTMLView has two different components, the JEditor and a JTextField. The editor displays the
current Web site and allows you to click on any standard hypertext link. The text field is used
to let the user specify a Web page, just like the location field is used in Netscape Navigator or
Internet Explorer.

Listing 24.10 Continued

28 1529-5 CH24 9/23/98, 4:01 PM526

527

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

ChListening for Hyperlink Events
When the user clicks on a hypertext link on the JEditor, the JEditor will produce an event
called a HyperlinkEvent. Generally speaking, when this happens in a browser, you want to
change the editor page to the URL pointed to by the hyperlink. Before you can achieve this
effect with your little browser, you first need to capture the event. As with all events, you can
capture the event with a listener, and the listener you need to implement is the
HyperlinkListener. As you can see from the following snippet from Listing 24.10,
HyperlinkListener has one method: hyperlinkUpdate().

_view.addHyperlinkListener(new HyperlinkListener(){
 //This is called if a hyperlink is clicked on
 public void hyperlinkUpdate(HyperlinkEvent event){
 setURL(event.getURL());
 }
});

Setting a New Page
To set the new page for the JEditor, you need to use the setPage() method. The trick in doing
this, however, is that the setPage() method can throw an IOException, so you need to catch
the IOException as shown in the next code snippet from Listing 24.10:

public void setURL(URL newURL){
 try{
 _view.setPage(newURL);
 _commandLine.setText(newURL.toExternalForm());
 }catch (IOException ioe){
 System.out.println(“Error :”+ioe);
 }
 }

FIG. 24.12
The HTMLView can
show Web pages such
as Yahoo.com.

Displaying HTML with JEditor

28 1529-5 CH24 9/23/98, 4:01 PM527

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

528 Chapter 24 Advanced JFC

JTextField
JFC’s TextFields – JTextFields work extremely similar to their AWT counterparts. As shown in
Listing 24.10, ActionListeners can receive notification when the user presses the Enter key,
and you can use this to change the Web page by calling the same setURL method we used for
the HyperlinkListener.

Creating Icons
Throughout this chapter and Chapter 23 you have used icons. However, so far you have used
only icons created from graphics files. As you can probably guess, graphics icons are not al-
ways as efficient as image files. This is true from the standpoints of both size and performance.
In addition, it is difficult to adjust to changing needs such as size and color. Though both
changes can be accommodated using images, the results are nearly impossible to generate
without losing quality, and these methods are never fast.

The preferred machanism for creating simple icons is to implement the Icon interface. Icon
has three methods:

public abstract void paintIcon(Component c, Graphics g, int x, int y)

Which must draw the icon onto the Graphics object at the x,y coordiante.

public abstract int getIconWidth()

Which needs to return the width of the icon. Note: this value is fixed and cannot change later.

public abstract int getIconHeight()

Which needs to return the height of the icon. Note: this value is fixed and cannot change later.

The ImageIcon that you have become familiar with over the last two chapters simply paints the
image when the paintIcon method is called. However, it is frequently the case that it will take
less time, and file space to manually draw the icon. Listing 24.11 below shows an example of
drawing a bulls eye icon. Figure 24.13 shows the results of this code.

Listing 24.11 Drawing Your Own Icon on the Button

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

public class IconButton extends JPanel {
 static JFrame myFrame;
 protected JLabel label;
 JPopupMenu pm;

 public IconButton(){
 JButton hello = new JButton(“Hello”);
 hello.setMnemonic(‘h’);

28 1529-5 CH24 9/23/98, 4:01 PM528

529

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

 hello.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 label.setText(“Hello World!”);
 }
 });

 //set the background of the button
 hello.setBackground (SystemColor.control);

 //Set the icon for the button
 Icon icon = new MyFirstIcon ();
 hello.setIcon(icon);

 add(hello);

 }

 public static void main(String args[]){
 myFrame = new JFrame(“Hello World!”);
 IconButton ib = new IconButton();
 myFrame.getContentPane().add(“Center”,ib);
 myFrame.setSize(300,75);
 myFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });
 myFrame.setVisible(true);
 }
}

class MyFirstIcon implements Icon{

 static private final Dimension size = new Dimension(20, 20);

 public void paintIcon(Component c, Graphics g, int x, int y) {
 //translate g to the x,y coordiantes so you don’t have to deal
 //with it through out the rest of the method
 g.translate(x, y);

 int right = size.width;
 int bottom = size.height;

 int ringWidth= right/10;
 int ringHeight = bottom/10;

 // Draw white fill
 g.setColor(Color.red);
 g.fillOval(0,0,right,bottom);

 // Draw outer ring
 g.setColor(Color.white);
 g.fillOval(ringWidth,ringHeight,right-ringWidth*2,
➥bottom-ringHeight*2);

continues

Creating Icons

28 1529-5 CH24 9/23/98, 4:01 PM529

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

530 Chapter 24 Advanced JFC

 // Draw middle white ring
 g.setColor(Color.red);
 g.fillOval(ringWidth*2,ringHeight*2,right-ringWidth*4,
➥bottom-ringHeight*4);

 //draw middle ring
 g.setColor(Color.white);
 g.fillOval(ringWidth*3,ringWidth*3,right-ringWidth*6,
➥bottom-ringHeight*6);

 // Draw middle white ring
 g.setColor(Color.red);
 g.fillOval(ringWidth*4,ringHeight*4,right-ringWidth*8,
➥bottom-ringHeight*8);

 //draw inner ring
 g.setColor(Color.white);
 g.fillOval(ringWidth*5,ringWidth*5,right-ringWidth*10,
➥bottom-ringHeight*10);

 //Translate g back to where it was when we started the
 //method
 g.translate(-x, -y);
 }

 public int getIconWidth() { return size.width; }
 public int getIconHeight() { return size.height; }

}

Listing 24.11 Continued

JFC Applets
So you’ve gotten intrigued by all this JFC - Swing stuff, and now you want to write some applets
that use JFC. Well, before you do, you need to consider one important technical issue: JFC is a
fairly large package; can you afford to use it? If you’re writing an intranet applet, odds are this
isn’t an issue, but if you’re writing an Internet app, you’ll want to be sure to tell your users how
to put the JFC packages into their browser. If you don’t do this, your users will get stuck down-
loading that huge file every time they run your application.

Now, to change your applet, you need to do only two things. First, you need to extend JApplet
instead of Applet, and second, you need to add your components to the content pane instead of
directly to the applet.

FIG. 24.13
The button has a unique
icon on it.

28 1529-5 CH24 9/23/98, 4:01 PM530

531

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

24

III
Part

Ch

Listing 24.12 below shows how to build the HelloWorld applet with a button. Notice that the
feet.gif icon can be used here too.

Listing 24.12 You Must Add All Components to the Content Pane of a Swing
Applet

import java.awt.*;
import java.awt.event.*;
//import com.sun.java.swing.*;
import com.sun.java.swing.*;

public class HelloWorldJFCApplet extends JApplet {
 static JFrame myFrame;

 public void init(){

 Icon icon = new ImageIcon (“feet.gif”);
 JLabel label = new JLabel (“Hello World!”,icon,SwingConstants.RIGHT);

 //For an Applet you must add everything to the content pane.
 Container panel = getContentPane();
 panel.setLayout(new FlowLayout());
 panel.add(label);
 }

}

Configuring Netscape and Internet Explorer for JFC The best way to use JFC with either
Navigator or Internet Explorer is to use the Java Plug-in. The Plug-in includes the Swing API,
and insures that you are using a true Java Virtual Machine. ●

JFC Applets

28 1529-5 CH24 9/23/98, 4:01 PM531

P2/V5 mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter24 LP#4

532 Chapter 24 Advanced JFC

28 1529-5 CH24 9/23/98, 4:01 PM532

533

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

C H A P T E R

Images

Drawing Images to the Screen 534

Producers, Consumers, and Observers 537

Image Filters 540

Copying Memory to an Image 541

Copying Images to Memory 543

Color Models 551

25

In this chapter

29 1529-5 CH25 9/23/98, 4:02 PM533

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

534 Chapter 25 Images

Drawing Images to the Screen
Java’s methods for manipulating images are different from some of the more conventional
graphics systems. To support network-based operations, Java has to support an imaging para-
digm that supports the gradual loading of images. You don’t want your applet to sit and wait for
all the images to download. Java’s producer-consumer model takes the gradual loading of im-
ages into account. Java also uses the concept of filters to enable you to change the image as it
passes from producer to consumer. This might seem like a strange way to deal with images at
first, but it is very powerful.

Just drawing basic images to the screen is easy to do in Java. The Graphics class provides a
convenient method called drawImage() for this very purpose. The drawImage method was used
in several programs before. In Chapter 15, “Advanced Applet Code,” “Adding Images to
Applets,” you learned to load images from URLs and draw them in the paint() method. The
paint() method enables you to do much more than this, allowing you to scale the image dy-
namically. And starting with Java 1.1, you can also crop and rotate the image just using the
drawImage method.

Listing 25.1 shows how to use the drawImage method to double the size of the image when it
appears on the screen (see Figure 25.1).

Listing 25.1 ScaleImage.java—Draw the Image at Twice Its Normal Size

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Image;
import java.net.URL;
import java.net.MalformedURLException;

public class ScaleImage extends Applet{
 Image img;

 public void init(){
 try{
 img = getImage (new URL(getDocumentBase(),”MagnaHeader.gif”));
 }catch (MalformedURLException e){
 System.out.println(“URL not valid:”+e);
 }
 }

 public void paint (Graphics g){
 g.drawImage (img,0,0,img.getWidth(null)*2,img.getHeight(null)*2,this);
 }

}

29 1529-5 CH25 9/23/98, 4:02 PM534

535

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch
Starting with Java 1.1, an additional drawImage method was added that provided you even more
functionality. This drawImage method has the following signature:

public abstract boolean drawImage(Image img,
int dx1, int dy1, int dx2, int dy2,
int sx1, int sy1, int sx2, int sy2,
ImageObserver observer)

This drawImage method works quite a bit differently from its brothers. First the initial set of
parameters (the dx variables) specify not just the x and y coordinate to start from and the
height and width, but the x,y coordinate of the upper-left corner of the image and the x,y coor-
dinate of the lower-right portion of the image. This means you can actually perform axle con-
versions directly. The second set of parameters (the sx variables) indicate the x,y coordinates
of the source to start from and end at—enabling you to crop the image at will.

Look at how you can use the drawImage method in practice. Listing 25.2 shows how to use this
drawImage method to flip an image upside down (see Figure 25.2).

Listing 25.2 FlipImage.java

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Image;
import java.net.URL;
import java.net.MalformedURLException;

FIG. 25.1
You can draw a simple
image to the screen
and scale it to twice its
size.

continues

Drawing Images to the Screen

29 1529-5 CH25 9/23/98, 4:02 PM535

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

536 Chapter 25 Images

public class FlipImage extends Applet{
 Image img;

 public void init(){
 try{
 img = getImage (new URL(getDocumentBase(),”MagnaHeader.gif”));
 }catch (MalformedURLException e){
 System.out.println(“URL not valid:”+e);
 }
 }

 public void paint (Graphics g){
 g.drawImage (img,0,
 img.getHeight(null), img.getWidth(null), 0,0,0,
 img.getWidth(null),img.getHeight(null),this);
 }
}

Listing 25.2 Continued

Next, look at how to use the sx variables to crop out just the center of the image. In Listing 25.3
below the center of the image is drawn upside down (see Figure 25.3).

Listing 25.3 FlipCropImage.java

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Image;

FIG. 25.2
drawImage enables
you to flip an image
upside–down.

29 1529-5 CH25 9/23/98, 4:02 PM536

537

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

import java.net.URL;
import java.net.MalformedURLException;

public class FlipCropImage extends Applet{
 Image img;

 public void init(){
 try{
 img = getImage (new URL(getDocumentBase(),”MagnaHeader.gif”));
 }catch (MalformedURLException e){
 System.out.println(“URL not valid:”+e);
 }
 }

 public void paint (Graphics g){
 g.drawImage (img,0, img.getHeight(null)/2,img.getWidth(null)/2,
 0,img.getWidth(null)/4, img.getHeight(null)/4,
 img.getWidth(null)*3/4 ,img.getHeight(null)*3/4, this);
 }
}
}

Producers, Consumers, and Observers
Java’s model for manipulating images is more complex than other models. Java uses the con-
cept of image producers and image consumers. An example of an image producer might be an
object responsible for fetching an image over the network, or it might be a simple array of

FIG. 25.3
drawImage enables
you to crop out a
section of the image.

Producers, Consumers, and Observers

29 1529-5 CH25 9/23/98, 4:02 PM537

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

538 Chapter 25 Images

bytes that represent an image. The image producer can be thought of as the source of the
image data. Image consumers are objects that make use of the image data.

Image consumers are, typically, low-level drawing routines that display the image onscreen.
The interesting thing about the producer-consumer model is that the producer is “in control.”
The ImageProducer uses the setPixels method in the ImageConsumer to describe the image to
the consumer.

The best way to illustrate this mechanism is to trace the process of loading an image over the
network. First, the ImageProducer starts reading the image. The first thing it reads from the
image is the width and height of the image. It notifies its consumers (notice that a producer
can serve multiple consumers) of the dimension of the image using the setDimensions
method. Figure 25.4 illustrates the relationship between an ImageProducer and an
ImageConsumer.

Next, the producer reads the color map for the image. From this color map, the producer de-
termines what kind of color model the image uses, and calls the setColorModel method in
each consumer. Figure 25.5 illustrates how the producer passes color information to the con-
sumer.

FIG. 25.4
The ImageProducer
reads the image
dimensions from the
image file and passes
the information to the
ImageConsumer.

The producer calls the setHints method in each consumer to tell the consumers how it in-
tends to deliver the image pixels. This enables the consumers to optimize their pixel handling,
if possible. Some of the values for the hints are: ImageConsumer.RANDOMPIXELORDER,
ImageConsumer.TOPDOWNLEFTRIGHT, ImageConsumer.COMPLETESCANLINES, ImageConsumer.
SINGLEPASS, and ImageConsumer.SINGLEFRAME. Figure 25.6 illustrates how the producer passes
hints to the consumer.

Now the producer finally starts to “produce” pixels, calling the setPixels method in the con-
sumers to deliver the image. This might be done in many calls, especially if the consumers are
delivering one scan line at a time for a large image. Or it might be one single call if the consum-
ers are delivering the image as a single pass (ImageConsumer.SINGLEPASS). Figure 25.7 shows
the producer passing pixel information to the consumer.

FIG. 25.5
The producer uses the
setColorModel
method to relay color
information to the
consumer.

29 1529-5 CH25 9/23/98, 4:02 PM538

539

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

Finally, the producer calls the imageComplete method in the consumer to indicate that the
image has been delivered. If a failure occurs in delivery—for instance, the network went down
as it was being transmitted—then the imageComplete method will be called with a parameter of
ImageConsumer.IMAGEERROR or ImageConsumer.IMAGEABORT. Another possible status is that this
image is part of a multiframe image (a form of animation) and there are more frames to come.
This would be signaled by the ImageConsumer.SINGLEFRAMEDONE parameter. When everything
is truly complete, imageComplete is called with the ImageConsumer.STATICIMAGEDONE param-
eter. Figure 25.8 shows the producer wrapping up the image transfer to the consumer.

FIG. 25.6
The producer passes
hints to the consumer
to indicate how it will
send pixels.

FIG. 25.7
The producer uses the
setPixels method to
pass pixel information
to the consumer.

This method enables Java to load images efficiently; it does not have to stop and wait for them
all to load before it begins. The ImageObserver interface is related to the producer-consumer
interface as a sort of “interested third party.” It enables an object to receive updates whenever
the producer has released some new information about the image.

You might recall that when you used the drawImage method, you passed this as the last param-
eter. You were actually giving the drawImage method a reference to an ImageObserver. The
Applet class implements the ImageObserver interface. The ImageObserver interface contains a
single method called imageUpdate:

boolean imageUpdate(Image img, int flags, int x, int y,
 int width, int height)

Not all the information passed to the imageUpdate method is valid all the time. The flags pa-
rameter is a summary of flags that tell what information is now available about the image. Here
are the possible flags:

FIG. 25.8
The producer uses the
imageComplete
method to tell the
consumer it is through
transferring the image.

Producers, Consumers, and Observers

29 1529-5 CH25 9/23/98, 4:02 PM539

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

540 Chapter 25 Images

ImageObserver.WIDTH Width value is now valid.

ImageObserver.HEIGHT Height value is now valid.

ImageObserver.PROPERTIES Image properties are now available.

ImageObserver.SOMEBITS More pixels are available (x, y, width, and height
indicate the bounding box of the pixels now available).

ImageObserver.FRAMEBITS Another complete frame is now available.

ImageObserver.ALLBITS The image has loaded completely.

ImageObserver.ERROR There was an error loading the image.

ImageObserver.ABORT The loading of the image was aborted.

These flags are usually added together, so an imageUpdate method might test for the WIDTH flag
with the following code:

if ((flags & ImageObserver.WIDTH) != 0) {
 // width is now available
 }

Image Filters
The Java image model also enables you to filter images easily. The concept of a filter is similar
to the idea of a filter in photography. It is something that sits between the image consumer (the
film) and the image producer (the outside world). The filter changes the image before it is
delivered to the consumer. The CropImageFilter is a predefined filter that crops an image to a
certain dimension. (It only shows a portion of the whole image.) You create a CropImageFilter
by passing the x, y, width, and height of the cropping rectangle to the constructor:

public CropImageFilter(int x, int y, int width, int height)

After you create an image filter, you can lay it on top of an existing image source by creating a
FilteredImageSource:

public FilteredImageSource(ImageProducer imageSource, ImageFilter filter)

The applet in Listing 25.4 takes an image and applies a CropImageFilter to it to display only a
part of the image. Figure 25.9 contains the output from this applet, showing a full image and a
cropped version of that image.

Listing 25.4 Source Code for CropImage.java

import java.awt.*;
import java.awt.image.*;
import java.applet.*;

// Example 25.4 - CropImage Applet
//
// This applet creates a CropImageFilter to create a
// cropped version of an image. It displays both the original
// and the cropped images.

29 1529-5 CH25 9/23/98, 4:02 PM540

541

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

public class CropImage extends Applet
{
 private Image originalImage;
 private Image croppedImage;
 private ImageFilter cropFilter;

 public void init()
 {
// Get the original image
 originalImage = getImage(getDocumentBase(), “samantha.gif”);

// Create a filter to crop the image in a box starting at (25, 30)
// that is 75 pixels wide and 75 pixels high.

 cropFilter = new CropImageFilter(25, 30, 75, 75);

// Create a new image that is a cropped version of the original

 croppedImage = createImage(new FilteredImageSource(
 originalImage.getSource(), cropFilter));
 }

 public void paint(Graphics g)
 {
// Display both images
 g.drawImage(originalImage, 0, 0, this);
 g.drawImage(croppedImage, 0, 200, this);
 }
}

FIG. 25.9
The
CropImageFilter
enables you to display
only a portion of an
image.

Copying Memory to an Image
One possible type of image producer is an array of integers representing the color values of
each pixel. The MemoryImageSource class is just that. You create the memory image and then
create a MemoryImageSource to act as an image producer for that memory image. Next, you
create an image from the MemoryImageSource. MemoryImageSource has a number of construc-
tors. In all of them, you must supply the width and height of the image, the array of pixel

Copying Memory to an Image

29 1529-5 CH25 9/23/98, 4:02 PM541

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

542 Chapter 25 Images

values, the starting offset of the first pixel in the array, and the number of positions that make
up a scan line in the image. The pixel values are normally the RGB values for each pixel; how-
ever, if you supply your own color model, the meaning of the pixel values is determined by the
color model. The scanline length is usually the same as the image width.

Sometimes, however, your pixel array might have extra padding at the end of the scanline, so
you might have a scanline length larger than the image width. You cannot have a scanline
length shorter than the image width. You can also pass a table of properties for the image that
will be passed to the image consumer. You need the properties only if you have an image con-
sumer that requires them. The consumers that ship with the JDK do not require any proper-
ties. Here are the constructors for the MemoryImageSource:

public MemoryImageSource(int width, int height, ColorModel model,
byte[] pixels, int startingOffset, int scanlineLength)

public MemoryImageSource(int width, int height, ColorModel model,
byte[] pixels, int startingOffset, int scanlineLength, Hashtable properties)

public MemoryImageSource(int width, int height, ColorModel model,
int[] pixels, int startingOffset, int scanlineLength)

public MemoryImageSource(int width, int height, ColorModel model,
int[] pixels, int startingOffset, int scanlineLength, Hashtable properties)

public MemoryImageSource(int width, int height, int[] pixels,
int startingOffset, int scanlineLength)

public MemoryImageSource(int width, int height, int[] pixels,
int startingOffset, int scanlineLength, Hashtable properties)

The applet in Listing 25.5 creates a memory image, a MemoryImageSource, and finally draws the
image in the drawing area. Figure 25.10 shows the output from this applet.

Listing 25.5 Source Code for MemoryImage.java

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

// Example 25.5 - MemoryImage Applet
//
// This applet creates an image using an array of
// pixel values.

public class MemoryImage extends Applet
{

FIG. 25.10
MemoryImageSource
class enables you to
create your own images
from pixel values.

29 1529-5 CH25 9/23/98, 4:02 PM542

543

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 private final static int b = Color.blue.getRGB();
 private final static int r = Color.red.getRGB();
 private final static int g = Color.green.getRGB();

// Create the array of pixel values. The image will be 10x10
// And resembles a square bullseye with blue around the outside,
// green inside the blue, and red in the center.

 int pixels[] = {
 b, b, b, b, b, b, b, b, b, b,
 b, b, b, b, b, b, b, b, b, b,
 b, b, g, g, g, g, g, g, b, b,
 b, b, g, g, g, g, g, g, b, b,
 b, b, g, g, r, r, g, g, b, b,
 b, b, g, g, r, r, g, g, b, b,
 b, b, g, g, g, g, g, g, b, b,
 b, b, g, g, g, g, g, g, b, b,
 b, b, b, b, b, b, b, b, b, b,
 b, b, b, b, b, b, b, b, b, b};

 Image myImage;

 public void init()
 {
// Create the new image from the pixels array. The 0, 10 means start
// reading pixels from array location 0, and there is a new row of
// pixels every 10 locations.
 myImage = createImage(new MemoryImageSource(10, 10,
 pixels, 0, 10));
 }

 public void paint(Graphics g)
 {
// Draw the image. Notice that the width and height we give for the
// image is 10 times its original size. The drawImage method will
// scale the image automatically.
 g.drawImage(myImage, 0, 0, 100, 100, this);
 }
}

Copying Images to Memory
The PixelGrabber class is sort of an inverse of the MemoryImageSource. Rather than taking an
array of integers and turning it into an image, it takes an image and turns it into an array of
integers. The PixelGrabber acts as an ImageConsumer. You create a PixelGrabber, give it the
dimensions of the image you want and an array in which to store the image pixels, and it gets
the pixels from the ImageProducer.

To grab pixels, you must first create a PixelGrabber by passing the image you want to grab,
the x, y, width, and height of the area you are grabbing, an array to contain the pixel values,
and the offset and scanline length for the array of pixel values:

Copying Images to Memory

29 1529-5 CH25 9/23/98, 4:02 PM543

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

544 Chapter 25 Images

public PixelGrabber(Image image, int x, int y, int width, int height,
int[] pixels, int startingOffset, int scanlineLength)

You can also supply an image producer instead of an image:

public PixelGrabber(ImageProducer producer, int x, int y, int width, int height,
int[] pixels, int startingOffset, int scanlineLength)

To initiate the pixel grabbing, call the grabPixels method.

public boolean grabPixels() throws InterruptedException

starts grabbing pixels and waits until it gets all the pixels. If the pixels are grabbed success-
fully, it returns true. If there is an error or an abort, it returns false.

public boolean grabPixels(long ms) throws InterruptedException

starts grabbing pixels and waits a maximum of ms milliseconds for all the pixels. If the pixels
are grabbed successfully, it returns true. If there is a timeout, an error, or an abort, it returns
false.

You can check on the status of a pixel grab with the status method:

public synchronized int status()

The value returned by status contains the same information as the flags parameter in the
imageUpdate method in ImageObserver. Basically, if the ImageObserver.ABORT bit is set in the
value, the pixel grab is aborted; otherwise, it should be okay.

The PixelGrabber is useful if you want to take an existing image and modify it. Listing 25.6 is
an applet that uses the PixelGrabber to get the pixels of an image into an array. It then enables
you to color sections of the image by picking a crayon and touching the area you want to color.
To redisplay the image, it uses the MemoryImageSource to turn the array of pixels back into an
image. The applet runs pretty slowly on a 486/100, so you need a lot of patience. It requires the
Shape class.

Listing 25.6 Source Code for Crayon.java

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

// Example 25.6 - Crayon Applet
//
// The Crayon applet uses the PixelGrabber to create an array of pixel
// values from an image. It then allows you to paint the image using
// a set of crayons, and then redisplays the image using the
// MemoryImageSource.
// If you want to use other images with this applet, make sure that
// the lines are done in black, since it specifically looks for black
// as the boundary for an area.
// Also, beware, this applet runs very slowly on a 486/100

public class Crayon extends Applet
{

29 1529-5 CH25 9/23/98, 4:02 PM544

545

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 private Image coloringBook; // the original image
 private Image displayImage; // the image to be displayed

 private int imageWidth, imageHeight; // the dimensions of the image

// the following two arrays set up the shape of the crayons

 int crayonShapeX[] = { 0, 2, 10, 15, 23, 25, 25, 0 };
 int crayonShapeY[] = { 15, 15, 0, 0, 15, 15, 45, 45 };

// We use the ShapeObject class defined earlier so we can move the crayons
// to a new location easily.
 private ShapeObject crayons[];

// The color class doesn’t provide a default value for brown, so we add one.
 private Color brown = new Color(130, 100, 0);

// crayonColors is an array of all the colors the crayons can be. You can
// add new crayons just by adding to this array.

 private Color crayonColors[] = {
 Color.blue, Color.cyan, Color.darkGray,
 Color.gray, Color.green, Color.magenta,
 Color.orange, Color.pink, Color.red,
 Color.white, Color.yellow, brown };

 private Color currentDrawingColor; // the color we are coloring with

 private int imagePixels[]; // the memory image of the picture

 boolean imageValid = false; // did we read the image in o.k.?

// blackRGB is just used as a shortcut to get to the black pixel value
private int blackRGB = Color.black.getRGB();

 public void init()
 {
 int i;
 MediaTracker tracker = new MediaTracker(this);

// Get the image we will color
 coloringBook = getImage(getDocumentBase(), “smileman.gif”);

// tell the media tracker about the image
 tracker.addImage(coloringBook, 0);

// Wait for the image, if we get an error, flag the image as invalid
 try {
 tracker.waitForID(0);
 imageValid = true;
 } catch (Exception oops) {
 imageValid = false;
 }

// Get the image dimensions

continues

Copying Images to Memory

29 1529-5 CH25 9/23/98, 4:02 PM545

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

546 Chapter 25 Images

 imageWidth = coloringBook.getWidth(this);
 imageHeight = coloringBook.getHeight(this);

// Copy the image to the array of pixels
 resetMemoryImage();

// Create a new display image from the array of pixels
 remakeDisplayImage();

// Create a set of crayons. We determine how many crayons to create
// based on the size of the crayonColors array
 crayons = new ShapeObject[crayonColors.length];

 for (i=0; i < crayons.length; i++)
 {
// Create a new crayon shape for each color
 crayons[i] = new ShapeObject(crayonShapeX,
 crayonShapeY, crayonShapeX.length);

// The crayons are lined up in a row below the image
 crayons[i].moveShape(i * 30,
 imageHeight + 10);
 }
// Start coloring with the first crayon
 currentDrawingColor = crayonColors[0];
 }

// resetMemoryImage copies the coloringBook image into the
// imagePixels array.

 private void resetMemoryImage()
 {
 imagePixels = new int[imageWidth * imageHeight];

// Set up a pixel grabber to get the pixels
 PixelGrabber grabber = new PixelGrabber(
 coloringBook.getSource(),
 0, 0, imageWidth, imageHeight, imagePixels,
 0, imageWidth);

// Ask the image grabber to go get the pixels
 try {
 grabber.grabPixels();
 } catch (Exception e) {
 // Ignore for now
 return;
 }

// Make sure that the image copied correctly, although we don’t
// do anything if it doesn’t.

 if ((grabber.status() & ImageObserver.ABORT) != 0)
 {
 // uh oh, it aborted

Listing 25.6 Continued

29 1529-5 CH25 9/23/98, 4:02 PM546

547

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 return;
 }

 }

// getPixel returns the pixel value for a particular x and y
 private int getPixel(int x, int y)
 {
 return imagePixels[y * imageWidth + x];
 }

// setPixel sets the pixel value for a particular x and y
 private void setPixel(int x, int y, int color)
 {
 imagePixels[y*imageWidth + x] = color;
 }

// floodFill starts at a particular x and y coordinate and fills it, and all
// the surrounding pixels with a color. It doesn’t paint over black pixels,
// so they represent the borders of the fill.
// The easiest way to code a flood fill is by doing it recursively - you
// call flood fill on a pixel, color that pixel, then it calls flood fill
// on each surrounding pixel and so on. Unfortunately, that usually causes
// stack overflows since recursion is pretty expensive.
// This routine uses an alternate method. It makes a queue of pixels that
// it still has to fill. It takes a pixel off the head of the queue and
// colors the pixels around it, then adds those pixels to the queue. In other
// words, a pixel is really added to the queue after it has been colored.
// If a pixel has already been colored, it is not added, so eventually, it
// works the queue down until it is empty.

 private void floodFill(int x, int y, int color)
 {
// If the pixel we are starting with is already black, we won’t paint
 if (getPixel(x, y) == blackRGB)
 {
 return;
 }

// Create the pixel queue. Assume the worst case where every pixel in the
// image may be in the queue.
 int pixelQueue[] = new int[imageWidth * imageHeight];
 int pixelQueueSize = 0;

// Add the start pixel to the queue (we created a single array of ints,
// even though we are enqueuing two numbers. We put the y value in the
// upper 16 bits of the integer, and the x in the lower 16. This gives
// a limit of 65536x65536 pixels, that should be enough.)

 pixelQueue[0] = (y << 16) + x;
 pixelQueueSize = 1;

// Color the start pixel.
 setPixel(x, y, color);

continues

Copying Images to Memory

29 1529-5 CH25 9/23/98, 4:02 PM547

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

548 Chapter 25 Images

// Keep going while there are pixels in the queue.
 while (pixelQueueSize > 0)
 {

// Get the x and y values of the next pixel in the queue
 x = pixelQueue[0] & 0xffff;
 y = (pixelQueue[0] >> 16) & 0xffff;

// Remove the first pixel from the queue. Rather than move all the
// pixels in the queue, which would take forever, just take the one
// off the end and move it to the beginning (order doesn’t matter here).

 pixelQueueSize--;
 pixelQueue[0] = pixelQueue[pixelQueueSize];

// If we aren’t on the left side of the image, see if the pixel to the
// left has been painted. If not, paint it and add it to the queue.
 if (x > 0) {
 if ((getPixel(x-1, y) != blackRGB) &&
 (getPixel(x-1, y) != color))
 {
 setPixel(x-1, y, color);
 pixelQueue[pixelQueueSize] =
 (y << 16) + x-1;
 pixelQueueSize++;
 }
 }

// If we aren’t on the top of the image, see if the pixel above
// this one has been painted. If not, paint it and add it to the queue.
 if (y > 0) {
 if ((getPixel(x, y-1) != blackRGB) &&
 (getPixel(x, y-1) != color))
 {
 setPixel(x, y-1, color);
 pixelQueue[pixelQueueSize] =
 ((y-1) << 16) + x;
 pixelQueueSize++;
 }
 }

// If we aren’t on the right side of the image, see if the pixel to the
// right has been painted. If not, paint it and add it to the queue.
 if (x < imageWidth-1) {
 if ((getPixel(x+1, y) != blackRGB) &&
 (getPixel(x+1, y) != color))
 {
 setPixel(x+1, y, color);
 pixelQueue[pixelQueueSize] =
 (y << 16) + x+1;
 pixelQueueSize++;
 }
 }

Listing 25.6 Continued

29 1529-5 CH25 9/23/98, 4:02 PM548

549

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

// If we aren’t on the bottom of the image, see if the pixel below
// this one has been painted. If not, paint it and add it to the queue.
 if (y < imageHeight-1) {
 if ((getPixel(x, y+1) != blackRGB) &&
 (getPixel(x, y+1) != color))
 {
 setPixel(x, y+1, color);
 pixelQueue[pixelQueueSize] =
 ((y+1) << 16) + x;
 pixelQueueSize++;
 }
 }
 }
 }

// remakeDisplayImage takes the array of pixels and turns it into an
// image for us to display.
 private void remakeDisplayImage()
 {
 displayImage = createImage(new MemoryImageSource(
 imageWidth, imageHeight, imagePixels, 0, imageWidth));
 }

// The paint method is written with the assumption that the screen has
// not been cleared ahead of time, that way we can create an update
// method that doesn’t clear the screen, but doesn’t need an off-screen
// image.

 public void paint(Graphics g)
 {
 int i;

// If we got the image successfully, draw it, otherwise, print a message
// saying we couldn’t get it.

 if (imageValid)
 {
 g.drawImage(displayImage, 0, 0, this);
 }
 else
 {
 g.drawString(“Unable to load coloring image.”, 0, 50);
 }

// Draw the crayons
 for (i=0; i < crayons.length; i++)
 {
// Draw each crayon in the color it represents
 g.setColor(crayonColors[i]);
 g.fillPolygon(crayons[i]);

// Get the box that would enclose the crayon
 Rectangle box = crayons[i].getBoundingBox();

continues

Copying Images to Memory

29 1529-5 CH25 9/23/98, 4:02 PM549

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

550 Chapter 25 Images

// If the crayon is the current one, draw a black box around it, if not,
// draw a box the color of the background around it (in case the current
// crayon has changed, we want to make sure the old box is erased).

 if (crayonColors[i] == currentDrawingColor)
 {
 g.setColor(Color.black);
 }
 else
 {
 g.setColor(getBackground());
 }

// Draw the box around the crayon.
 g.drawRect(box.x, box.y, box.width, box.height);
 }
 }

// Override the update method to call paint without clearing the screen.

 public void update(Graphics g)
 {
 paint(g);
 }

 public boolean mouseDown(Event event, int x, int y)
 {
 int i;

// Check each crayon to see whether the mouse was clicked inside of it. If so,
// change the current color to that crayon’s color. We use the “inside”
// method to see whether the mouse x,y is within the crayon shape. Pretty
handy!

 for (i=0; i < crayons.length; i++)
 {
 if (crayons[i].inside(x, y))
 {
 currentDrawingColor = crayonColors[i];
 repaint();
 return true;
 }
 }

// If the mouse wasn’t clicked on a crayon, see whether it was clicked within
// the image. This assumes that the image starts at 0, 0.
 if ((x < imageWidth) && (y < imageHeight))
 {
// If the image was clicked, fill that section of the image with the
// current crayon color
 floodFill(x, y, currentDrawingColor.getRGB());

// Now re-create the display image because we just changed the pixels
 remakeDisplayImage();

Listing 25.6 Continued

29 1529-5 CH25 9/23/98, 4:02 PM550

551

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 repaint();
 return true;
 }

 return true;
 }
}

Color Models
The image producer-consumer model also makes use of a ColorModel class. As you have seen,
the images passed between producers and consumers are made up of arrays of integers. Each
integer represents the color of a single pixel. The ColorModel class contains methods to extract
the red, green, blue, and alpha components from a pixel value. You are probably already
familiar with the red, green, and blue color components, but the alpha component might be
something new to you.
◊ See “The Color Class,” p. 457

The alpha component represents the transparency of a color. An alpha value of 255 means that
the color is completely opaque, whereas an alpha of zero indicates that the color is completely
transparent. The default color model is the RGBdefault model, which encodes the four-color
components in the form 0xaarrggbb. The left-most eight bits are the alpha value; the next eight
bits are the red component followed by eight bits for green and, finally, eight bits for blue. For
example, a color of 0×12345678 has an alpha component of 0×12 (fairly transparent), a red
component of 0×34, a green component of ×56, and a blue component of 0×78.

The alpha component is used only for images. You cannot use it in conjunction with the
Color class. In other words, you can’t use it in any of the drawing functions in the

Graphics class. ■

Any time you need a color model and you are satisfied with using the RGBdefault model, you
can use getRGBdefault:

public static ColorModel getRGBdefault()

You can extract the red, green, blue, and alpha components of a pixel using these methods:

public abstract int getRed(int pixel)
public abstract int getGreen(int pixel)
public abstract int getBlue(int pixel)
public abstract int getAlpha(int pixel)

You can find out the number of bits per pixel in a color model using getPixelSize:

public int getPixelSize()

Because many other AWT components prefer colors in RGB format, you can ask the color
model to convert a pixel value to RGB format with getRGB:

public int getRGB(int pixel)

N O T E

Color Models

29 1529-5 CH25 9/23/98, 4:02 PM551

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

552 Chapter 25 Images

The DirectColorModel Class
The DirectColorModel class stores the red, green, blue, and alpha components of a pixel di-
rectly in the pixel value. The standard RGB format is an example of a direct color model. The
format of the pixel is determined by a set of bitmasks that tell the color model how each color
is mapped into the pixel. The constructor for the DirectColorModel takes the number of bits
per pixel, the red, green, and blue bit masks, and an optional alpha mask as parameters:

public DirectColorModel(int bits, int redMask, int greenMask,
int blueMask)

public DirectColorModel(int bits, int redMask, int greenMask,
int blueMask, int alphaMask)

You can query the mask values using the following methods:

public final int getRedMask()
public final int getGreenMask()
public final int getBlueMask()
public final int getAlphaMask()

The bits in each mask must be contiguous, that is, they must all be adjacent. You can’t have a
blue bit sitting between two red bits. The standard RGB format is 0xaarrggbb where aa is the
hex value of the alpha component, and rr, gg, and bb represent the hex values for the red,
green, and blue components, respectively. This is represented in a direct color model as:

DirectColorModel rgbModel = new DirectColorModel(32,
 0xff0000, 0x00ff00, 0x0000ff, 0xff000000)

The IndexColorModel Class
Unlike the DirectColorModel, the IndexColorModel class stores the actual red, green, blue,
and alpha components of a pixel in a separate place from the pixel. A pixel value is an index into
a table of colors. You can create an IndexColorModel by passing the number of bits per pixel,
the number of entries in the table, and the red, green, and blue color components to the con-
structor. You can optionally pass either the alpha components or the index value for the trans-
parent pixel:

public IndexColorModel(int bitsPerPixel, int tableSize,
byte[] red, byte[] green, byte[] blue)

public IndexColorModel(int bitsPerPixel, int tableSize,
byte[] red, byte[] green, byte[] blue, int transparentPixel)

public IndexColorModel(int bitsPerPixel, int tableSize,
byte[] red, byte[] green, byte[] blue, byte[] alpha)

Instead of passing the red, green, and blue components in separate arrays, you can pass them
as one big array of bytes. The IndexColorModel class assumes that every three bytes repre-
sents a color (every four if you tell it you are sending it alpha components). The color compo-
nents should be stored in the order red, green, blue. If you specify an alpha component, it
should come after the blue component. That might be counter-intuitive because the standard
RGB format has the alpha component first. Here are the constructors for the packed format of
colors:

29 1529-5 CH25 9/23/98, 4:02 PM552

553

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

public IndexColorModel(int bitsPerPixel, int tableSize,
byte[] packedTable, boolean includesAlpha)

public IndexColorModel(int bitsPerPixel, int tableSize,
byte[] packedTable, boolean includesAlpha, int transparentPixel)

Notice that you can actually have both a transparent pixel and alpha components using this last
format!

You can retrieve a copy of the red, green, blue, and alpha tables with the following methods:

public final void getReds(byte[] redArray)
public final void getGreens(byte[] greenArray)
public final void getBlues(byte[] blueArray)
public final void getAlphas(byte[] alphaArray)

Each method copies the component values from the table into the array you pass it. Make sure
that the array is at least as large as the table size. The getMapSize method returns the size of
the table:

public final int getMapSize()

The getTransparentPixel method returns the index value of the transparent pixel, or it re-
turns -1 if there is no transparent pixel:

public final int getTransparentPixel()

RGBImageFilter Class
The java.awt.image package comes with two standard image filters: the CropImageFilter and
the RGBImageFilter. The RGBImageFilter enables you to manipulate the colors of an image
without changing the image itself. When you create your own custom RGBImageFilter, you
need to create only a filterRGB method:

public abstract int filterRGB(int x, int y, int rgb)

For each pixel in an image, the filterRGB method is passed the pixel’s x and y coordinates and
its current RGB value. It returns the new RGB value for the pixel.

Because some images are defined with an index color model, you can set your filter to filter
only the index color model. This is handy if the color adjustment has nothing to do with the x,y
position of the pixel. If you filter only rgb values from the index, the x and y coordinates passed
to filterRGB will be -1,-1. To indicate that you are willing to filter the index instead of the
whole image, set the canFilterIndexColorModel variable to true:

protected boolean canFilterIndexColorModel

You can override the filterIndexColorModel method if you want to change the behavior of
the index color model filtering:

public IndexColorModel filterIndexColorModel(IndexColorModel oldCM)

The IndexColorModel returned by this method is the new index color model that will be used
by the image.

Color Models

29 1529-5 CH25 9/23/98, 4:02 PM553

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

554 Chapter 25 Images

If you want to change only the color model for an image, you can use the RGBImageFilter to
substitute one color model for another:

public void substituteColorModel(ColorModel oldCM, ColorModel newCM)

This method is used by the RGBImageFilter when filtering an index color model. It creates a
new color model by filtering the colors of the old model through your filterRGB method and
then sets up a substitution from the old color model to the new color model. When a substitu-
tion is set up, the filterRGB method is not called for individual pixels. This enables you to
change the colors quickly.

Listing 25.7 shows a simple gray color model class that takes the red, green, and blue values
from another color model and converts them all to gray. It takes the maximum value of the red,
green, and blue components and uses it for all three components. The gray color model leaves
the alpha value untouched.

Listing 25.7 Source Code for GrayModel.java

import java.awt.image.*;

// This class implements a gray color model
// scheme based on another color model. It acts
// like a gray filter. To compute the amount of
// gray for a pixel, it takes the max of the red,
// green, and blue components and uses that value
// for all three color components.

public class GrayModel extends ColorModel
{
 ColorModel originalModel;

 public GrayModel(ColorModel originalModel)
 {
 super(originalModel.getPixelSize());
 this.originalModel = originalModel;
 }

// The amount of gray is the max of the red, green, and blue
 protected int getGrayLevel(int pixel)
 {
 return Math.max(originalModel.getRed(pixel),
 Math.max(originalModel.getGreen(pixel),
 originalModel.getBlue(pixel)));
 }

// Leave the alpha values untouched
 public int getAlpha(int pixel)
 {
 return originalModel.getAlpha(pixel);
 }

// Since gray requires red, green and blue to be the same,
// use the same gray level value for red, green, and blue

29 1529-5 CH25 9/23/98, 4:02 PM554

555

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 public int getRed(int pixel)
 {
 return getGrayLevel(pixel);
 }

 public int getGreen(int pixel)
 {
 return getGrayLevel(pixel);
 }

 public int getBlue(int pixel)
 {
 return getGrayLevel(pixel);
 }

// Normally, this method queries the red, green, blue and
// alpha values and returns them in the form 0xaarrggbb. To
// keep from computing the gray level 3 times, we just override
// this method, get the gray level once, and return it as the
// red, green, and blue, and add in the original alpha value.

 public int getRGB(int pixel)
 {
 int gray = getGrayLevel(pixel);
 return (getAlpha(pixel) << 24) + (gray << 16) +
 (gray << 8) + gray;
 }
}

Listing 25.8 shows an RGB image filter that sets up a simple substitution of the gray model for
the original color model.

Listing 25.8 Source Code for GrayFilter.java

import java.awt.image.*;

// This class sets up a very simple image graying
// filter. It takes the original color model and
// sets up a substitition to a GrayModel.
public class GrayFilter extends RGBImageFilter
{
 public GrayFilter()
 {
 canFilterIndexColorModel = true;
 }

// When the color model is first set, create a gray
// model based on the original model and set it up as
// the substitute color model.

 public void setColorModel(ColorModel cm)
 {

continues

Color Models

29 1529-5 CH25 9/23/98, 4:02 PM555

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

556 Chapter 25 Images

 substituteColorModel(cm, new GrayModel(cm));
 }

// This method has to be present, but it will never be called
// because we are doing a color model substitution.

 public int filterRGB(int x, int y, int pixel)
 {
 return pixel;
 }
}

Listing 25.9 shows a simple applet that displays an image using the gray filter.

Listing 25.9 Source Code for Grayer.java

import java.awt.*;
import java.awt.image.*;
import java.applet.*;

// This applet displays a grayed-out image by using
// a GrayFilter rgb image filter.

public class Grayer extends Applet
{
 private Image origImage;
 private Image grayImage;
 private GrayFilter colorFilter;

 public synchronized void init()
 {
// Get the name of the image to use
 String gifName = getParameter(“image”);

// Fetch the image
 origImage = getImage(getDocumentBase(), gifName);
 System.out.println(origImage);

// Create the gray filter
 colorFilter = new GrayFilter();

// Create a grayed-out version of the original image
 grayImage = createImage(new FilteredImageSource(
 origImage.getSource(),
 colorFilter));

 MediaTracker mt = new MediaTracker(this);
 mt.addImage(grayImage, 0);
 try {
 mt.waitForAll();
 } catch (Exception ignore) {
 }

Listing 25.8 Continued

29 1529-5 CH25 9/23/98, 4:02 PM556

557

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 }

 public synchronized void paint(Graphics g)
 {
 g.drawImage(grayImage, 0, 0, this);
 }

 public void update(Graphics g)
 {
 paint(g);
 }
}

Animation by Color Cycling
The technique of color cycling is a little-known animation technique where an image is ani-
mated by changing its color palette without changing the actual image. This can take a number
of forms—from simulating flowing water to changing text. You can use this technique on im-
ages created with an index color model. The idea is that you change the values in a color table
and redraw the image with the new color table. If you continually loop through a set of colors,
the image appears animated even though the image data itself hasn’t changed.

Any time you perform image animation by creating new images on-the-fly, don’t use createImage to
create the new images. Instead, reuse the existing image by calling the flush method in the current
image. This cleans out the memory used by the old image and causes it to be filtered again. Otherwise,
on some systems you might use up more memory than you need to.

Listing 25.10 shows an RGB image filter that cycles the colors in an index color model.

Listing 25.10 Source Code for CycleFilter.java

import java.awt.*;
import java.awt.image.*;

//
// This class cycles the colors in an index color model.
// When you create a CycleFilter, you give the offset in
// the index color model and also the number of positions
// you want to cycle. Then every time you call cycleColors,
// it increments the cycle position. You then need to re-create
// your image and its colors will be cycled.
//
// This filter will work only on images that have an indexed
// color model.
public class CycleFilter extends RGBImageFilter {

 // The offset in the index to begin cycling
 protected int cycleStart;

T I P

continues

Color Models

29 1529-5 CH25 9/23/98, 4:02 PM557

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

558 Chapter 25 Images

 // How many colors to cycle
 protected int cycleLen;

 // The current position in the cycle
 protected int cyclePos;

 // A temporary copy of the color components being cycled
 protected byte[] tempComp;

 public CycleFilter(int cycleStart, int cycleLen) {
 this.cycleStart = cycleStart;
 this.cycleLen = cycleLen;
 tempComp = new byte[cycleLen];

 cyclePos = 0;

 // Must set this to true to allow the shortcut of filtering
 // only the index and not each individual pixel

 canFilterIndexColorModel = true;
 }

 // cycleColorComponent takes an array of bytes that represent
 // either the red, green, blue, or alpha components from the
 // index color model, and cycles them based on the cyclePos.
 // It leaves the components that aren’t part of the cycle intact.

 public void cycleColorComponent(byte component[]) {

 // If there aren’t enough components to cycle, leave this alone
 if (component.length < cycleStart + cycleLen) return;

 // Make a temporary copy of the section to be cycled
 System.arraycopy(component, cycleStart, tempComp,
 0, cycleLen);

 // Now for each position being cycled, shift the component over
 // by cyclePos positions.
 for (int i=0; i < cycleLen; i++) {
 component[cycleStart+i] = tempComp[(cyclePos+i) %
 cycleLen];
 }
 }

 // cycleColors moves the cyclePos up by 1.

 public void cycleColors() {
 cyclePos = (cyclePos + 1) % cycleLen;
 }

 // Can’t really filter direct color model RGB this way, since we have
 // no idea what rgb values get cycled, so just return the original
 // rgb values.

Listing 25.10 Continued

29 1529-5 CH25 9/23/98, 4:02 PM558

559

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 public int filterRGB(int x, int y, int rgb) {
 return rgb;
 }

 // filterIndexColorModel is called by the image filtering mechanism
 // whenever the image uses an indexed color model and the
 // canFilterIndexColorModel flag is set to true. This allows you
 // to filter colors without filtering each and every pixel
 // in the image.

 public IndexColorModel filterIndexColorModel(IndexColorModel icm) {

 // Get the size of the index color model
 int mapSize = icm.getMapSize();

 // Create space for the red, green, and blue components
 byte reds[] = new byte[mapSize];
 byte greens[] = new byte[mapSize];
 byte blues[] = new byte[mapSize];

 // Copy in the red components and cycle them
 icm.getReds(reds);
 cycleColorComponent(reds);

 // Copy in the green components and cycle them
 icm.getGreens(greens);
 cycleColorComponent(greens);

 // Copy in the blue components and cycle them
 icm.getBlues(blues);
 cycleColorComponent(blues);

 // See if there is a transparent pixel. If not, copy in the alpha
 // values, just in case the image should be partially transparent.

 if (icm.getTransparentPixel() == -1) {

 // Copy in the alpha components and cycle them
 byte alphas[] = new byte[mapSize];
 icm.getAlphas(alphas);
 cycleColorComponent(alphas);

 return new IndexColorModel(icm.getPixelSize(),
 mapSize, reds, greens, blues, alphas);
 } else {

 // If there was a transparent pixel, ignore the alpha values and
 // set the transparent pixel in the new filter
 return new IndexColorModel(icm.getPixelSize(),
 mapSize, reds, greens, blues,
 icm.getTransparentPixel());
 }
 }
}

Color Models

29 1529-5 CH25 9/23/98, 4:02 PM559

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

560 Chapter 25 Images

To use the CycleFilter, set up an applet that continually calls cycleColors in the CycleFilter
and then redraws an image. Listing 25.11 shows an example applet that creates a simple
memory image with an index color model and uses the CycleFilter to cycle the colors. Figure
25.11 shows the output image generated by the Cycler applet.

Listing 25.11 Source Code for Cycler.java

import java.awt.*;
import java.awt.image.*;
import java.applet.*;

// This applet creates a series of moving
// lines by creating a memory image and cycling
// its color palette.

public class Cycler extends Applet implements Runnable {
 protected Image origImage; // the image before color cycling
 protected Image cycledImage; // image after cycling
 protected CycleFilter colorFilter; // performs the cycling

 protected Thread cycleThread;
 protected int delay = 50; // milliseconds between cycles

 protected int imageWidth = 200;
 protected int imageHeight = 200;

 protected boolean stopStatus = false; //thread should not stop, until true

 public void init() {

 // Create space for the memory image
 byte pixels[] = new byte[imageWidth * imageHeight];

 // We’re going to cycle through 16 colors, but leave position 0 alone in
 // the index color model we create, so allow room for 17 slots
 byte red[] = new byte[17];
 byte green[] = new byte[17];
 byte blue[] = new byte[17];

 // Fill slots 1-16 with varying shades of gray (when the red, green,
 // blue values are all equal you get shades of gray ranging from
 // black when all values are 0, to white when all values are 255).

FIG. 25.11
The Cycler applet
performs animation by
cycling the color palette.

29 1529-5 CH25 9/23/98, 4:02 PM560

561

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

25

III
Part

Ch

 for (int i=0; i < 16; i++) {
 red[i+1] = (byte) (i * 16);
 green[i+1] = (byte) (i * 16);
 blue[i+1] = (byte) (i * 16);
 }

 // Create an index color model that supports 8 bit indices, only 17
 // colors, and uses the red, green, and blue arrays for the color values

 IndexColorModel colorModel = new IndexColorModel(8, 17,
 red, green, blue);

 // Now create the image, just go from top to bottom, left to right
 // filling in the colors from 1-16 and repeating.

 for (int i=0; i < imageHeight; i++) {
 for (int j=0; j < imageWidth; j++) {
 pixels[i*imageWidth + j] =
 (byte) ((j % 16)+1);
 }
 }

 // Create the uncycled image
 origImage = createImage(new MemoryImageSource(imageWidth,
 imageHeight,
 colorModel, pixels, 0,
imageWidth));

 // Create the filter for cycling the colors
 colorFilter = new CycleFilter(1, 16);

 // Create the first cycled image
 cycledImage = createImage(new FilteredImageSource(
 origImage.getSource(),
 colorFilter));
 }

 // Paint simply draws the cycled image
 public synchronized void paint(Graphics g) {
 g.drawImage(cycledImage, 0, 0, this);
 }

 // Flicker-free update
 public void update(Graphics g) {
 paint(g);
 }

 // Cycles the colors and creates a new cycled image. Uses media
 // tracker to ensure that the new image has been created before
 // trying to display. Otherwise, we can get bad flicker.

 public synchronized void doCycle() {
 // Cycle the colors
 colorFilter.cycleColors();

continues

Color Models

29 1529-5 CH25 9/23/98, 4:02 PM561

P2/VB mp12 UsingJava 1.2 1529-5 8.10.98 ayanna chapter25 LP#5

562 Chapter 25 Images

 // Flush clears out a loaded image without having to create a
 // whole new one. When we use waitForID on this image now, it
 // will be regenerated.

 cycledImage.flush();

 MediaTracker myTracker = new MediaTracker(this);
 myTracker.addImage(cycledImage, 0);
 try {

 // Cause the cycledImage to be regenerated
 if (!myTracker.waitForID(0, 1000)) {
 return;
 }
 } catch (Exception ignore) {
 }
 // Now that we have reloaded the cycled image, ask that it
 // be redrawn.
 repaint();
 }

 // Typical threaded applet start and stop
 public void start() {
 stopStatus = false; //don’t stop yet
 cycleThread = new Thread(this);
 cycleThread.start();
 }

 public void stop() {
 stopStatus = true;
 }

 public void run() {
 // Continually cycle colors and wait.
 while (!stopStatus) {
 doCycle();
 try {
 Thread.sleep(delay);
 } catch (Exception hell) {
 }
 }
 }
}

When you are comfortable with Java’s imaging model, you can create many wonderful images.
You can write image filters to perform a wide variety of effects. You can use the
MemoryImageSource and PixelGrabber to make an image editor, or a paint program. You can
even use image transparency to make interesting image combinations. Whatever image ma-
nipulation you need to do, Java should be able to handle it. ●

Listing 25.11 Continued

29 1529-5 CH25 9/23/98, 4:02 PM562

563

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

C H A P T E R

Java 2D Graphics

26

In this chapter

The Graphics2D Object 564

Coordinates in Java 2D 564

Drawing Figures 565

Different Strokes 569

Custom Fills 571

Transformations 575

Drawing Text 576

Drawing Images 580

Transparency 590

Clipping 592

30 1529-5 CH26 9/23/98, 4:13 PM563

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

564 Chapter 26 Java 2D Graphics

The Graphics2D Object
One of the major complaints about the early versions of Java was that the graphics API was not
very robust. The functions provided by the AWT were roughly the same as those found on 8-bit
microcomputers in the early 1980s. Java 1.2 introduces a powerful new 2D graphics API that
provides the kinds of features one would expect from a modern graphics API. The Java 2D API
provides better support for drawing shapes, filling and rotating shapes, drawing text, rendering
images, and defining colors.

If you are familiar with the Graphics object from the Java AWT, you already have some idea of
how the 2D graphics API works. All the new 2D features are provided by the Graphics2D class,
which is a subclass of the Graphics object. One of the challenges faced by the Java designers
when creating a new 2D API was that because so many developers were familiar with the exist-
ing graphics API, they needed to extend the old API without breaking it. Because the new
Graphics2D object is a subclass of the Graphics class, you can use a Graphics2D object any-
where you have been using a Graphics object. In other words, your existing graphics code
doesn’t break when you use the new Graphics2D object.

Under the old AWT API, you didn’t actually create your own Graphics object (at least, not
usually). Instead, you relied on the paint method, which received a Graphics object as a pa-
rameter. Under the 2D API, you still use the paint method to get your Graphics object. Under
Java 1.2, the Graphics object passed to your paint method is really a Graphics2D object! You
only need to cast the Graphics object to a Graphics2D object:

public void paint(Graphics oldGraphics)
{

Graphics2D newGraphics = (Graphics2D) oldGraphics;

// now you can use the new 2-D methods
}

Coordinates in Java 2D
The original AWT API treated the drawing area as a simple field of pixels. Coordinate 1,1 repre-
sented a pixel location, and coordinate 2,1 was the pixel directly adjacent to 1,1. This drawing
coordinate system worked for simple screen drawing, but really didn’t work well if you tried to
draw on a printer. The problem is that printers have much greater resolutions than screens. If
you use the same number of pixels to draw an image on a printer as you do for the screen, the
printer image will be tiny (or very blocky). As a developer, you don’t want to keep track of how
much you have to resize drawings for various devices, so the 2D API takes care of that for you.

Java 2D has the notion of a “coordinate space.” A coordinate space is just a way of specifying
coordinates. Your program normally operates in “user coordinate space,” which is a virtual
drawing area where coordinate 0,0 is in the upper-left corner, and the area is a certain number
of pixels wide and a certain number high. Because most drawing work is done on a screen, the
user coordinate space is given the same dimensions as the screen area. While your program
operates in the user coordinate space, the device that displays the output uses a “device coordi-
nate space.”

30 1529-5 CH26 9/23/98, 4:13 PM564

565

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

To translate between user coordinates and device coordinates, the 2D system uses a “default
transform” that defines how a coordinate in user space is converted to a coordinate in device
space. Because the dimensions of the user space are the same as the screen dimensions, the
default transform for the screen device doesn’t change the coordinates at all. In other words,
coordinate 100,50 in user coordinate space is also coordinate 100,50 onscreen. The default
transform for a printer puts 72 user space pixels per inch. The coordinate 144,72 in user space
would be to 2 inches from the left, and 1 inch down on a printer page.

Although it is sometimes okay to think of the coordinates in user space as representing pixels,
it is not always correct. Coordinates in the Graphics2D object are specified with floating point
numbers, not whole numbers. Thus you could draw a line from 50.1,100.1 to 50.4, 100.4. On the
screen, this may only draw the pixel at 50,100; on a printer, however, you would get a very
small line.

The fact that coordinates do not necessarily represent whole pixels is really what enables you
to make very smooth printer pictures and perform complex transformations on screen images.
You can now draw an image with much greater precision, and let the screen device draw it as
best it can. If you have a better display device, your drawing will look better. In the past, be-
cause you were working with whole pixels, a printer device couldn’t give you any better detail
because there was no way to be more specific. If you wanted to draw a circle on the screen that
had a 3-pixel diameter, for example, you would either draw a plus sign (+), or a 3×3 square.
Using the Java 2D API, you can draw a circle with a diameter of 3 that will still look like either a
square or a plus sign on the screen, but when drawn on a printer it will look like a real circle.

You shouldn’t have to deal directly with coordinate spaces when writing Java programs, but it is
important to remember that you can be much more specific with coordinates than you could
using the old Graphics object.

Drawing Figures
In the original AWT Graphics object, there were specific methods for drawing and filling vari-
ous kinds of shapes. There were very few options for specifying the kind of pen to use for
drawing and how to fill the shape. In fact, the only thing you could really change was the color
used to draw and fill.

The Graphics2D object treats all drawn figures as shapes (it treats images and text separately).
There is only one draw method in Graphics2D, and it takes a shape as a parameter:

public void draw(Shape s)

Likewise, there is only one fill method:

public void fill(Shape s)

The trick to drawing figures in the 2D API is creating shapes. Fortunately, the java.awt.geom
package supplies a wide variety of shape creation classes, including some common shapes.

Drawing Figures

30 1529-5 CH26 9/23/98, 4:13 PM565

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

566 Chapter 26 Java 2D Graphics

Don’t forget to import java.awt.geom.* when using the shape objects. Just importing java.awt.*
won’t get the subpackages.

Drawing a Line
The java.awt.geom.Line2D class is a shape that represents a simple line between two points.
When you create the line, you must use either the Float or Double version of the line class to
define the points. The Double version is there in case you need a lot of precision. The following
code snippet creates a Line2D object from 50,60 to 300,320 and then draws it:

Line2D line = new Line2D.Float(50, 60, 300, 320);

newGraphics.draw(line);

In the java.awt.geom package, you will find that the Java designers made heavy use of
Java’s inner class feature. All the shape objects have at least one inner class that is used to

specify coordinates using a particular data type. All the shapes have a Float inner class, and many
have a Double class. Line2D is a shape class, but to specify coordinates, you use the inner class
Line2D.Float. ■

You can also use the Point2D class to define the end points of a line:

Line2D line = new Line2D.Float(
 new Point2D.Float(50, 60), new Point2D.Float(300, 320));

Drawing a Rectangle
The Rectangle2D class defines a rectangle shape using an x,y coordinate, a width, and a
height. The following code snippet creates a rectangle at 10,15 with a width of 100 and a height
of 50 and draws it:

Rectangle2D rect = new Rectangle2D.Float(10, 15, 100, 50);

newGraphics.draw(rect);

Drawing a Rounded Rectangle
The RoundRectangle2D draws a rectangle whose corners are rounded. In addition to the rect-
angle position and size, you specify the width and height of the rounding arc. If you specify a
width and height of 5 for the rounding arc, for example, the rounded portion of each corner
would be 5 units in width and height. The following code fragment defines a rounded rectangle
at 10, 15 with a width of 100, a height of 50, and a rounding of 5 units in the x direction, and 3 in
the y direction:

RoundRectangle2D roundRect =
New RoundRectangle2D.Float(10, 15, 100, 50, 5, 3);

T I P

N O T E

30 1529-5 CH26 9/23/98, 4:13 PM566

567

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

Drawing Ellipses and Circles
The Ellipse2D represents an ellipse shape, which is a circle when the width and height are the
same. As with the ellipse methods in the Graphics object, the ellipse is defined using a
bounding box. You specify a rectangle whose width and height represent the width and height
of the ellipse (for a circle, use the circle’s diameter for both width and height). You also give
the x,y coordinate of the upper-left corner of the rectangle. The following code fragment cre-
ates an ellipse at coordinates 50, 80 with a width of 30 and a height of 10:

Ellipse2D ellipse =
New Ellipse2D.Float(50, 80, 30, 10);

You may often need to specify the coordinates of a circle or an ellipse by using the center of the shape
and not the upper-left corner of the bounding rectangle. You can compute the upper-left coordinates
by leftX = centerX - (width / 2) and upperY = centerY - (height / 2).

Drawing Arcs
In addition to drawing ellipses, you can draw partial ellipses using the Arc2D class. You specify
the position and size of the arc the same way you specify an ellipse, using the upper-left corner,
width, and height of the bounding box. In addition, you specify the starting angle and ending
angle in degrees. For half an ellipse, you could use a starting angle of 0 and an ending angle of
180, or a starting angle of 90 and an ending angle of 270. Remember that unlike a compass, 0
degrees points to the right, with 90 pointing down, 180 pointing left, and 270 pointing up.

CAUTION

Angles for the ARC2D class go in a clockwise direction (90 degrees being at the bottom). This is the
opposite of the old arc routines in the Graphics class, where 90 degrees was at the top and angles
increased in a counter-clockwise direction.

Also, the angle positions used for specifying the start and end of the arc may not look like the
angles you expect. The angles are measured from the center of the ellipse, but they are mea-
sured as if they were on a circle. If the ellipse is twice as wide as it is tall, the angle as mea-
sured on the screen will not be the same angle you specified. Figure 26.1 shows a pie wedge
drawn from 0 to 45 degrees on a circle, and the same wedge drawn on an ellipse. In the second
case, notice that the angle is less than 45 degrees onscreen.

Drawing Curves
In addition to arcs, the Java 2D API provides shapes that define quadratic and cubic curves. A
quadratic curve is defined by two end points and a single control point that controls the shape
of the curve. A cubic curve is similar to a quadratic curve except that it has two control points
rather than one.

T I P

Drawing Figures

30 1529-5 CH26 9/23/98, 4:13 PM567

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

568 Chapter 26 Java 2D Graphics

The following code fragment defines a quadratic curve with end points at 50, 50 and 50, 200
with a control point at 10, 10:

QuadCurve2D curve = new QuadCurve2D.Float(50, 50, 10, 10, 50, 100);

Figure 26.2 shows the curve with a circle drawn at the control point.

FIG. 26.1
As a circle stretches into
an ellipse, the arc
angles do not match the
angles displayed
onscreen.

The following code fragment defines a cubic curve with end points at 50, 50 and 50, 200, with
control points at 10, 10 and 100, 100:

CubicCurve2D curve = new CubicCurve2D.Float(50, 50, 10, 10, 100, 100, 50, 200);

Figure 26.3 shows the cubic curve with circles drawn at the control points.

FIG. 26.2
A quadratic curve bends
toward the control point.

On all the curve definition functions, the control points parameters appear in between the start and
end points. In other words, the first two parameters define the start point (if one is needed) and the
next few pairs of parameters define the control points, and then the last two parameters are the
endpoint.

FIG. 26.3
A cubic curve bends
toward both control
points.

T I P

30 1529-5 CH26 9/23/98, 4:13 PM568

569

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

Drawing Arbitrary Shapes
In addition to predefined shapes, you can also create your own shapes using the GeneralPath
class. All you need to do to create you own shape is call the moveTo and lineTo methods in
GeneralPath for each point in the shape, just as if you were drawing it with the Graphics class.

The following code fragment creates a GeneralPath object and defines a triangle using moveTo
and lineTo:

GeneralPath path = new GeneralPath();
path.moveTo(0, 50);
path.lineTo(25, 0);
path.lineTo(50, 50);

In addition to the lineTo method, you can also create a curve between two points using quadTo
and curveTo. The quadTo method starts at the current point and draws a quadratic curve to
another point using a single control point. The following code defines a quadratic line to 50,50
using 100,0 as a control point:

path.quadTo(100, 0, 50, 50);

The curveTo method uses two control points, as shown in this statement, which is the same as
the preceding quadTo call but with an additional control point of 40,30:

path.curveTo(40, 30, 100, 0, 50, 50);

Different Strokes
Until now, drawing different shapes hasn’t been much different from the old way of doing
things. The real excitement comes when you start changing the drawing stroke and the fill
pattern for the shapes you are drawing. The drawing stroke defines how the border of the
shape is drawn. In the old AWT Graphics object, the stroke was always a 1-pixel wide solid line.
Now, you can change the width of the stroke and also create a wide variety of dotted lines.

The BasicStroke class can be created several different ways:

public BasicStroke()
public BasicStroke(float width, int cap, int join)
public BasicStroke(float width, int cap, int join,
float miterlimit)
public BasicStroke(float width, int cap,
int join, float miterlimit, float[] dash,
float dash_phase)

The width parameter defines the width of the stroke. The default width is 1. The cap parameter
determines the shape of the ends of the stroke. It is important for line segments and curves
that are not connected all the way around. There are three possible values for the cap param-
eter: CAP_BUTT, CAP_ROUND, and CAP_SQUARE.

The CAP_BUTT value indicates that there should be nothing extra drawn on the end of the
stroke. CAP_ROUND indicates that the ends of the line should be rounded, and CAP_SQUARE indi-
cates that the ends should be square. Figure 26.4 shows the various ends of a stroke.

Different Strokes

30 1529-5 CH26 9/23/98, 4:13 PM569

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

570 Chapter 26 Java 2D Graphics

The join parameter determines how corners in the stroke should be handled. There are three
possible values for the join parameter: JOIN_BEVEL, JOIN_MITER, and JOIN_ROUND.

The JOIN_BEVEL option draws a straight line between the outer ends of the stroke and fills in
the area. This gives the corners a flattened appearance. The JOIN_MITER option extends the
strokes until they meet at a point, making the corners sharp. The JOIN_ROUND option makes an
arc connection between the ends of the stroke, giving the corner a rounded appearance. The
miterlimit parameter defines how far out the miter can go. It is not used for JOIN_ROUND or
JOIN_BEVEL. Figure 26.5 shows the various types of corner joins.

FIG. 26.4
A stroke can either be
left alone, rounded-off,
or squared off.

The dash array contains alternating lengths for blank space and dashes for a line. The first
element of the array indicates the length of the first dash. The next element indicates the
length of the first gap. The array values continue to alternate between dash length and gap
length. The following array definition, for example, creates a dash-dot pattern by specifying a
long dash, a small gap, an even smaller second dash, and another gap the same size as the first:

float[] dashValues = new float[4];
dashValues[0] = 20;
dashValues[1] = 10;
dashValues[2] = 5;
dashValues[3] = 10;

Figure 26.6 shows this dashed line pattern.

FIG. 26.5
Corners can be beveled,
mitered, or rounded.

30 1529-5 CH26 9/23/98, 4:13 PM570

571

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

The dashphase parameter tells how far into the dash sequence to start. If you used a value of 10
for the first dash length, and you set the dash phase to 11, for example, the line would start
with the first blank area.

After you have created a BasicStroke object, you tell the Graphics2D class to use it by calling
setStroke:

newGraphics.setStroke(myStroke);

Custom Fills
The original AWT Graphics class only allowed solid color fills. The Graphics2D class adds the
capability to create gradient color fills and textured patterns. The GradientPaint object en-
ables you to define a gradual color change between two points. The two points you define don’t
need to be contained within the figure you are drawing, however. These points are only used to
define the length of the gradient area in user space. If you define start and endpoints that are
100 units apart, for example, the fill starts with the color assigned to the start point, and over
the course of 100 units, transforms the fill color to the color associated with the endpoint. Nor-
mally, the gradient is acyclic, so that after the color reaches the end point color, it stays at that
color. You can optionally make the fill cyclic, which causes the fill color to change back to the
start color after it reaches the endpoint color. The gradient pattern follows the direction of the
line between the points you define. In other words, if the points you define are on a horizontal
line the gradient will change color horizontally. If the points are on a vertical line, the color
changes vertically. Likewise, if the points are on a diagonal, the gradient changes diagonally.

Figure 26.7 shows three gradient patterns and lines indicating the endpoints of the gradient.

The gradient sounds pretty complex, but it is very easy to set one up. The GradientPaint
object has the following Constructors:

public GradientPaint(float x1, float y1, Color color1,
float x2, float y2, Color color2)
public GradientPaint(float x1, float y1, Color color1,
float x2, float y2, Color color2, boolean cyclic)
public GradientPaint(Point2D pt1, Color color1,
Point2D pt2, Color color2)
public GradientPaint(Point2D pt1, Color color1,
Point2D pt2, Color color2, boolean cyclic)

FIG. 26.6
You can define
interesting dash
patterns in a stroke
object.

Custom Fills

30 1529-5 CH26 9/23/98, 4:13 PM571

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

572 Chapter 26 Java 2D Graphics

As you can see by the various Constructors, you can specify the endpoints of the gradient
using either floating point x,y values, or a Point2D structure (which contains a floating point
x,y pair anyway). The cyclic parameter should be set to true if you want the gradient to cycle
back to the start point when it reaches the endpoint.

After you create the GradientPaint object, call the setPaint method in Graphics2D to use it:

GradientPaint gradient = new GradientPaint(0, 0, Color.red,
 50, 50, Color.blue, true);
newGraphics.setPaint(gradient);

Rectangle2D rect = new Rectangle2D.float(0, 0, 200, 200);
NewGraphics.fill(rect);

The TexturePaint object enables you to use an image for filling figures. You just provide a
BufferedImage object containing the pattern you want to use for the fill. As you will see later in
this chapter, the BufferedImage class is a special version of the Image class that is tuned for
manipulating the individual pixels of the image using an array. Along with the image, you need
to provide a rectangle that describes the size of the fill pattern, and a flag to indicate how
TexturePaint should generate colors.

The TexturePaint object has only one Constructor:

public TexturePaint(BufferedImage pattern,
Rectangle2D rect2d, int interpolation)

The pattern parameter specifies the image used for the fill pattern. The rect2d parameter
describes the size of the pattern. In other words, the pattern is replicated in blocks the size of
rect2d. The interpolation parameter is used to determine how to display colors when the fill
can’t represent all the colors in the image. The two possible values for interpolation are
TexturePaint.BILINEAR and TexturePaint.NEAREST_NEIGHBOR. Listing 26.1 shows an applet
that draws a simple path by using a very wide stroke and a texture fill. It is a little unusual, but
the texture fill in this example is an actual picture. Fills using simple bit patterns are a little

FIG. 26.7
The gradient changes
colors in the direction of
the line connecting the
endpoints.

30 1529-5 CH26 9/23/98, 4:13 PM572

573

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

more common. The program uses an image file named katyface.gif. Make sure you have an
image with that name in the same directory as the applet before running the program.

Listing 26.1 Source Code for TextureDemo.java

import java.awt.*;
import java.applet.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;
import java.net.URL;

public class TextureDemo extends Applet
{

 public void paint(Graphics g)
 {

// Get the Graphics2D object

 Graphics2D newG = (Graphics2D) g;

// Create a path to draw

 GeneralPath path = new GeneralPath();

 path.moveTo(60, 0);
 path.lineTo(50, 300);
 path.curveTo(160, 230, 270, 140, 400, 100);

// Load an image to use as the texture

 URL imgURL = null;
 try {
 imgURL = new URL(getDocumentBase(), “katyface.gif”);
 } catch (Exception ignore) {
 }

 Image img = getImage(imgURL);

 MediaTracker tracker = new MediaTracker(this);
 try {
 tracker.addImage(img, 0);
 tracker.waitForAll();
 } catch (Exception e) {
 e.printStackTrace();
 }

// Normally you would create a buffered image and set the individual
// pixels yourself, but you can also use an existing image. Rather than
// trying to convert the loaded image into a BufferedImage, it is easier
// (from a programming standpoint) to just get a Graphics2D object for
// the BufferedImage and draw the texture image into it

continues

Custom Fills

30 1529-5 CH26 9/23/98, 4:13 PM573

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

574 Chapter 26 Java 2D Graphics

 BufferedImage buff = new BufferedImage(img.getWidth(this),
 img.getHeight(this), BufferedImage.TYPE_INT_RGB);

 Graphics tempGr = buff.createGraphics();

 tempGr.drawImage(img, 0, 0, this);

// The TexturePaint requires a rectangle defining the area to be filled
// In this case, just use the image size.

 Rectangle2D rect = new Rectangle2D.Float(
 0, 0, img.getHeight(this),
 img.getWidth(this));

// Create the textured paint

 TexturePaint painter = new TexturePaint(buff, rect,
 TexturePaint.NEAREST_NEIGHBOR);

 newG.setPaint(painter);

// Create a VERY wide stroke (100 pixels) round off the corners and
// make the ends square
 BasicStroke stroke = new BasicStroke(100,
 BasicStroke.CAP_SQUARE, BasicStroke.JOIN_ROUND);
 newG.setStroke(stroke);

// Draw the original path
 newG.draw(path);
 }
}

Figure 26.8 shows the output of the TextureDemo applet.

Listing 26.1 Continued

FIG. 26.8
You can use an image
as a fill pattern.

30 1529-5 CH26 9/23/98, 4:13 PM574

575

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

Transformations
In addition to drawing shapes, you frequently need to move, rotate, and resize shapes. These
operations are performed using an object called AffineTransform. The AffineTransform class
contains a matrix that is used to change one x,y point into another. If you really like doing your
own matrix operations, you can create an AffineTransform by supplying the six matrix entries
used in the transform. The transform matrix has 3 columns and 2 rows. If you number the
elements on row 0 as m00, m01, and m02 and the elements on row 1 as m10, m11, and m12, the
formula for translating point xorig,yorig to xnew,ynew is as follows:

xnew = xorig * m00 + yorig * m01 + m02

ynew = xorig * m10 + yorig * m11 + m12

Fortunately, for those who don’t like matrix operations, the AffineTransform class has meth-
ods for building the transform one operation at a time. You start by creating an empty
AffineTransform by calling the default Constructor:

AffineTransform myTransform = new AffineTransform();

You can add a translation (that is, a move) by calling the translate method. The following
example moves the transform 5 units to the left and 10 units down:

myTransform.translate(-5.0, 10.0);

When you perform translate, rotate, and scaling operations on a transform, you aren’t really
moving the transform. Instead, you are changing what the transform does to points. It is helpful,
however, to think of these operations as actually moving the transform, because whatever you think you
are doing to the transform is what it does to shapes.

The rotate method rotates the transform in a clockwise direction (or counter-clockwise for
negative angle values). The angle of rotation is specified in radians. You can specify an optional
x,y point, which rotates the transform around a specific point rather than around the origin.
The two forms of the rotate method are as follows:

public void rotate(double numRadians)

public void rotate(double numRadians, double x, double y)

The scale method multiplies the x and y coordinates by particular values. When you call the
scale method, you always pass scale values for both x and y. If you only want to scale in one
direction, use a scale value of 1.0 for the value you don’t want to change. To double the size of
the transform in the x direction and leave the y values alone, for example, use 2.0 for the x
scale and 1.0 for the y scale:

myTransform.scale(2.0, 1.0);

The shear method is similar to the scale method, except that it changes the x value based on
the y value, and the y value based on the x value. If you shear the x values by a factor of 2, the x
value for each point will be increased by the shear factor times that point’s y value. Suppose, for
example, that you have an x shear of 2, the point 5,10 would be sheared to (5 + 2*10), 10 or in

T I P

Transformations

30 1529-5 CH26 9/23/98, 4:13 PM575

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

576 Chapter 26 Java 2D Graphics

simpler terms, 25, 10. The higher the y value, the more the x points get moved. The same
relationship holds true for shears in the y direction. The shear method is defined as follows:

public void shear(double xshear, double yshear)

Just manipulating an AffineTransform object doesn’t change anything onscreen. You need to
apply the transform to either a shape that you want to draw, or to the entire Graphics2D object.
To manipulate a shape, call the createTransformedShape method, which returns a new shape
with the current transform applied. The following code fragment rotates a rectangle 45 de-
grees, for example:

Rectangle2D rect = new Rectangle2D.Float(0, 0, 50, 20);
AffineTransform transform = new AffineTransform();
Transform.rotate(45.0 * 3.1415927 / 180.0);
Shape rotatedRect = transform.createTransformedShape(rect);

Remember that you can multiply a degree value by 3.1415927 / 180.0 or just 0.0174532928 to
convert it to radians.

You can also apply a transform to the entire Graphics2D object by calling the setTransform
method in Graphics2D. Transforming the Graphics object itself causes everything drawn with
that Graphics object to be transformed before being displayed. The setTransform method is
defined as follows:

public void setTransform(AffineTransform transform)

Drawing Text
Drawing text is one of the big three in graphics operations (drawing shapes and images being
the other two). The 2D API adds some handy extensions to the original text drawing routines.
One of the most notable is the ability to rotate text. The Graphics2D class implements several
different versions of the drawString method. The simplest version takes a string and an x,y
coordinate pair:

public void drawString(String textString, float x, float y)

This simple version of the drawString method is analogous to the drawString method in the
Graphics class, except that the coordinates are specified with floating point values rather than
integers. The other big difference, of course, is that all the graphics transforms in the current
transform matrix are applied to the string before drawing it. This enables you to rotate text
strings, and even paint them with interesting fill patterns.

Styled Strings
You can also draw a StyledString object, which is a string and an associated set of attributes
(often just a font). You can even concatenate styled strings together to make a single styles
string containing text of different fonts. You might want to print the ubiquitous “Hello World!”
message, for example, using different fonts for each word. The following code fragment does
just that:

T I P

30 1529-5 CH26 9/23/98, 4:13 PM576

577

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

Font fntCourier = new Font(“courier”, Font.PLAIN, 48);
StyledString ssHello = new StyledString(“Hello “, fntCourier);

Font fntHelvetica = new Font(“helvetica”, Font.BOLD, 48);
StyledString ssWorld = new StyledString(“World!”, fntHelvetica);

StyledString helloWorld = ssHello.concat(ssWorld);

newGraphics.drawString(helloWorld, 100, 100);

Like the normal Java String class, the StyledString is immutable—you can’t change its con-
tents. Instead, you create new versions of the string by calling concat (to put two strings to-
gether) or substring (to get a portion of the string). The substring method is identical to the
String substring method:

public StyledString substring(int startIndex, int endIndex)

Text Layouts
Although the StyledString class is useful, the most useful new text feature is the TextLayout
object. One of the biggest drawbacks of the original drawString method in the Graphics class
is that it only draws a single line. You often need to draw entire paragraphs of text. Until now,
developers have had to create their own formatting routines to break up a paragraph into mul-
tiple lines, resulting in multiple calls to drawString. The TextLayout class can format text to fit
on multiple lines, and can even handle right-to-left and top-to-bottom paragraph styles that
sometimes occur when drawing non-English text. You can even use TextLayout to format a
StyledString, allowing multiple fonts within the paragraph.

The TextLayout class has several Constructors:

public TextLayout(String string, Font font)
public TextLayout(String string, AttributeSet attributes)
public TextLayout(StyledString text)
public TextLayout(AttributedCharacterIterator text)

The two most common TextLayout constructors are the String/Font combination and the
StyledString. If you want more complex characters, you can use a set of character attributes,
or define the attributes of each character though an iterator. The program in Listing 26.2 dis-
plays a simple paragraph onscreen:

Listing 26.2 Source Code for Paragraph.java

import java.awt.*;
import java.applet.*;
import java.awt.geom.*;
import java.awt.font.*;

public class Paragraph extends Applet
{

continues

Drawing Text

30 1529-5 CH26 9/23/98, 4:13 PM577

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

578 Chapter 26 Java 2D Graphics

 public void paint(Graphics g)
 {

// Get the Graphics2D object

 Graphics2D newG = (Graphics2D) g;

 String message = “Harold, on the other hand, refused “+
 “ to eat the chalk. He reached into his lunchbox “+
 “ and removed a small block of balsa wood, which “+
 “ he proceeded to chew on gleefully. Harold always “+
 “ referred to balsa wood as a \”light snack\””;

 Font fntRoman = new Font(“timesroman”, Font.PLAIN, 24);

 TextLayout layout = new TextLayout(message, fntRoman);

 newG.drawString(layout, (float) 100, (float) 100);
 }
}

Character Attributes
Although you may be happy with changing just the font on a character, the need often arises to
change more than that. The StyledString and the TextLayout classes enable you to specify a
set of character attributes that define much more than just a different font. You specify charac-
ter attributes through the AttributeSet object, which, like the StyledString object, is immu-
table. If you can’t change it, how can you set it? That’s where the MutableAttributeSet object
comes in. You typically create a MutableAttributeSet, add new attributes to it, and then pass it
to a method that takes an AttributeSet as a parameter. You can think of the relationship be-
tween AttributeSet and MutableAttributeSet like the relationship between String and
StringBuffer. The MutableAttributeSet is used for building AttributeSets that cannot be
changed.

A MutableAttributeSet is itself subclass of AttributeSet, and you normally pass it to meth-
ods that expect an AttributeSet. If any method needs to keep a reference to the
AttributeSet, it will make a copy of it. Otherwise, because the set is really a mutable set, you
could make changes later on in your program that affect existing attributes. What this boils
down to is that an AttributeSet is immutable only in that the class has no methods to change
it. An AttributeSet can change if it is actually a MutableAttributeSet.

To set character attributes, you should use the TextAttributeSet object. The
TextAttributeSet object is a mutable object set that also defines a number of constants. Some
of the constants represent the names of various text attributes, and other constants represent
default or common values for those attributes.

Listing 26.2 Continued

30 1529-5 CH26 9/23/98, 4:13 PM578

579

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

The names of the valid text attributes are as follows:

Attribute Name Meaning

LANGUAGE The language used for the text (usually a locale)

READING The pronunciation information for the word (used
for some languages that require a pronunciation
annotation)

INPUT_METHOD_SEGMENT Used for breaking up lines into segments (usually
words)

SWAP_COLORS Whether the foreground and background colors
of the text should be swapped

FAMILY The family for the font

WEIGHT The weight of the characters (bold text means a
heavier weight)

POSTURE The slant of the text

SIZE The size of the font in points

TRANSFORM The graphics transform applied to the font

FONT An instance of Font to use for the characters

BIDI_EMBEDDING Controls bi-directional text

BACKGROUND An instance of Color specifying the background
color of the text

FOREGROUND An instance of Color specifying the foreground
color of the text

UNDERLINE Indicates whether text should be underlined

STRIKETHROUGH Indicates whether the text should have a
strikethrough

SUPERSUBSCRIPT Makes the text either a superscript or a subscript

JUSTIFICATION Adjusts the amount of space used in justification

RUN_DIRECTION Controls whether text runs left-to-right, right-to-
left, or top-to-bottom

BIDI_NUMERIC Controls bi-directional layout of roman numerals

BASELINE Adjusts the baseline for all characters

To set various attributes, you just call the add method with the name of the attribute and its
value. Many attribute values have preset constants; others take string or numeric arguments.
The following code fragment creates a text attribute set with a Times-Roman font and
strikethrough:

Font fntRoman = new Font(“timesroman”, Font.PLAIN, 24);

TextAttributeSet textAttr = new TextAttributeSet();
textAttr.add(TextAttributeSet.FONT, fntRoman);

Drawing Text

30 1529-5 CH26 9/23/98, 4:13 PM579

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

580 Chapter 26 Java 2D Graphics

textAttr.add(TextAttributeSet.STRIKETHROUGH,
TextAttributeSet.STRIKETHROUGH_ON);

Drawing Images
The Java 2D API recognizes the frequent need to manipulate images by performing various
mathematical operations on them. It also strengthens the ability to manipulate image data on a
pixel-by-pixel basis. Although the earlier versions of the AWT did not prevent these types of
operations, they were not as efficient, and many operations needed to be performed manually.

Buffered Images
In previous versions of Java, it was very difficult to manipulate images on a pixel-by-pixel basis.
You had to either create an image filter and modify the pixels as they came through the filter,
or you had to make a pixel grabber to grab an image and then create a MemoryImageSource to
turn the array of pixels into an image. The BufferedImage class provides a quick, convenient
shortcut by providing an image whose pixels can be manipulated directly.

The easiest way to create a buffered image is to specify a width, height, and a pixel type:

public BufferedImage(int width, int height, int pixelType)

The pixel type has many different options, but you usually just need TYPE_INT_ARGB or
TYPE_INT_RGB. The TYPE_INT_ARGB pixel type is the same pixel type used in earlier versions of
Java. Each pixel is represented by a 32-bit integer with 8 bits for transparency, and 8-bit red,
green, and blue values, arranged as aarrggbb. The TYPE_INT_RGB format is almost identical
except that it assumes that there is no transparency. The aa portion is assumed to be 255 at all
times. If you have worked with systems that encode colors in bbggrr form in an integer, you
can use the TYPE_INT_BGR format for your pixels. Given three integer red, green, and blue
values, you can encode them in RGB format like this:

int rgb = (red << 16) + (green << 8) + blue;

To use this technique, you must ensure that the red, green, and blue values are between 0 and
255. To add an alpha (transparency) to the pixel, you can use the following line:

int argb = (alpha << 24) + (red << 16) + (green << 8) + blue;

To store a pixel in bgr format, just reverse the order of the variables like this:

int bgr = (blue << 16) + (green << 8) + red;

To extract the alpha, red, green, and blue components from an ARGB pixel, you can use the
following statements:

int alpha = (argb >> 24) & 255;

int red = (argb >> 16) & 255;

int green = (argb >> 8) & 255;

int blue = argb & 255;

30 1529-5 CH26 9/23/98, 4:13 PM580

581

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

The getRGB method in BufferedImage returns a pixel in ARGB format, regardless of how the
pixel is stored within the image:

public int getRGB(int x, int y)

To set a pixel in a buffered image, call setRGB (don’t forget to use ARGB format for the pixel):

public int setRGB(int x, int y, int rgb)

Copying an Image into a BufferedImage
When you use the getImage method in java.applet.Applet or java.awt.Toolkit, the image
you get back is just an Image object. There are probably a number of complicated ways to turn
an image into a BufferedImage. One quick and dirty way is to create a Graphics object from a
BufferedImage and draw an image onto it. Although this method is not very efficient, it is
pretty easy to do and if you only need to do it once, efficiency isn’t that big a deal.

The following code fragment creates a BufferedImage object, and then gets a Graphics object
to draw to the buffered image, and then draws an existing image into the buffered image:

// Create a buffered image using the existing image’s
// width and height

BufferedImage buff = new BufferedImage(img.getWidth(this),
img.getHeight(this), BufferedImage.TYPE_INT_RGB);

// Get a graphics object for drawing into the buffered image
Graphics tempGr = buff.createGraphics();

// Draw the existing image into the buffered image
tempGr.drawImage(img, 0, 0, this);

Filtering Buffered Images
Image filters were introduced in Java 1.0 and they have always been a useful way to manipulate
images. The Java 2D API expands the existing image filtering with several pre-made filters, and
special filtering for buffered images. The old AWT image filtering mechanism used the
producer-consumer model where the filter was a consumer of the source image and a producer
of the filtered image. Although the BufferedImage class contains a getSource method, which is
required for creating a FilteredImageSource, the method returns null. Consequently, you
can’t really use the existing producer-consumer interface for filtering buffered images. Instead,
the BufferedImageOp interface defines a way to filter a single buffered image source into a
single buffered image destination by directly manipulating the buffered pixels.

The BufferedImageFilter class exists as a way to hook the image ops into the existing
producer-consumer paradigm, but it is currently broken.

BufferedImageOp is only an interface, so you can’t instantiate it directly. Instead, you must
either create a class that implements the interface, or use one of the existing image op classes:
AffineTransformOp, BandCombineOp, ColorConvertOp, ConvolveOp, LookupOp, RescaleOp, and
ThresholdOp. Some of the built-in operations allow the source and destination to be the same.

Drawing Images

30 1529-5 CH26 9/23/98, 4:13 PM581

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

582 Chapter 26 Java 2D Graphics

Others require separate images. The rule of thumb is, if the operation uses more than one
pixel in a conversion, or if it moves a pixel from one place to another, you need a separate
source and destination. Color conversions, for instance, almost never need separate source and
destination images.

To filter an image using any of the BufferedImageOp classes, just create the op and call the
filter method with a source and destination image (which for some ops can be the same
image). Here is an example call to the filter method:

op.filter(srcBuff, destBuff);

If you just need to draw a filtered image, the drawImage method in Graphics2D enables you to
draw an image filtered by a BufferedImageOp:

public void drawImage(BufferedImage image,
 BufferedImageOp op, ImageObserver obs)

AffineTransformOp An AffineTransformOp performs an affine transform on an image. The
transform can contain any combination of scaling, rotation, and translation. The following code
fragment creates an AffineTransformOp that rotates an image 45 degrees, for example:

AffineTransform transform = new AffineTransform();

transform.rotate(45.0 * 3.1415927 / 180.0,
buff.getWidth() / 2, buff.getHeight() / 2);

AffineTransformOp op = new BilinearAffineTransformOp(
transform);

AffineTransformOp is an abstract class. You must choose either
BilinearAffineTransformOp or NearestNeighborAffineTransformOp. These

two versions differ only in how they choose colors when performing a transform. ■

The AffineTransformOp requires separate source and destination images.

BandCombineOp At first glance, the BandCombineOp filter seems strange and not very useful.
Buffered images are stored in raster objects, which are really just arrays of pixels. Within these
rasters are “bands” of colors. For a typical RGB image, there are three bands: red, green, and
blue. The BandCombineOp filter enables you to change the color of an image by a combination of
the various color bands. For a 3-band image, you specify a matrix with 4 columns and 3 rows,
like this:

 B11 B12 B13 B1OFFSET
 B21 B22 B23 B2OFFSET
 B31 B32 B33 B3OFFSET

The formula for the color of band 1 is as follows:

B1COLOR = B1COLOR * B11 + B2COLOR * B12 +
B3COLOR * B13 + B1OFFSET

The following filter would do nothing to an image (that is, it is the identity matrix for a band
combine) because it just multiplies each color in the band by 1:

N O T E

30 1529-5 CH26 9/23/98, 4:13 PM582

583

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0

In a typical RGB raster, band 1 is red, band 2 is green, and band 3 is blue. The following matrix
removes all the green color from a picture while leaving red and blue alone:

 1.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 0.0 0.0 1.0 0.0

You can invert colors, too. To invert the red, for instance, the red row in the matrix would be
this:

 -1.0 0.0 0.0 255.0

This would multiply the red color by –1 and add 255, making the formula 255 – red.

The really interesting combinations come when you allow one color to contribute to another
color. You could filter the red so that it is a combination of the amount of red, green, and blue
in the image, for example. The following matrix leaves red and blue alone, but for green it uses
half the old amount of green and one fourth the amount of red and one fourth the amount of
blue. In other words, the brighter the green and blue are, the brighter the red is. Here is the
matrix:

 1.0 0.0 0.0 0.0
 0.25 0.5 0.25 0.0
 0.0 0.0 1.0 0.0

The following code fragment creates a BandCombineOp object:

float filt[][] = {
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.25f, 0.5f, 0.25f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f }};

BandCombineOp op = new BandCombineOp(filt);

BandCombineOp can use the same image for the source and destination.

ColorConvertOp The ColorConvertOp class converts from one color space to another. A color
space defines how a color is represented. You are probably familiar with the RGB color space,
for example, where you specify colors by using the amount of red, green, and blue in the color.
Publishers often use a color space called CMYK, which specifies colors by the amount of cyan,
magenta, yellow, and black. The following code fragment creates a ColorConvertOp that con-
verts an image into a grayscale image:

ColorSpace graySpace = ColorSpace.getInstance(
ColorSpace.CS_GRAY);

ColorConvertOp op = new ColorConvertOp(
graySpace);

ConvolveOp The ConvolveOp class implements a common image operation where each pixel
is modified based on the pixels around it, according to a simple matrix operation. When you

Drawing Images

30 1529-5 CH26 9/23/98, 4:13 PM583

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

584 Chapter 26 Java 2D Graphics

create a ConvolveOp object, you supply a Kernel object, which contains the matrix to be applied
to the image. The Kernel object even has several predefined sharpening matrices that use
edge-detection to enhance an image.

If you have ever used a paint program that has different image algorithms, you may have seen
one called “edge detect.” When you run edge detect on an image, you get a mostly black image
with lines showing some of the edges in the image. You can create an edge detect using a
Kernel and a ConvoleOp.

When you create a Kernel for image processing, you really just specify a matrix that is used to
calculate the color of each pixel in the image. The matrix determines how the surrounding
pixels affect the current pixel. In the case of an edge detect, you completely ignore the color of
the current pixel. Instead, you look at the upper-left and lower-right pixels (you can really look
at any pair of opposing pixels). Multiply the upper-left pixel by some factor and multiply the
lower-right pixel by the negative of that factor. The higher the factors, the more pronounced
the edges.

The matrix for the Kernel object should have odd-numbered dimensions, and is usually 3×3.
The center value in the matrix is the multiplication factor for the current pixel. The surround-
ing values are the factors for the surrounding pixels. To perform an edge detect, you want the
current pixel to be ignored, so the center value would be 0. The upper-left and lower-right
corners of the matrix would contain the edge-detect factors. Figure 26.9 shows an image next
to the result of an edge detect on the image.

The following code fragment creates a fairly strong edge detector using a factor of 5:

float matrix[] = {
-5, 0, 0,
0, 0, 0,
0, 0, 5 };

Kernel kernel = new Kernel(3, 3, matrix);

ConvolveOp op = new ConvolveOp(kernel,
ConvolveOp.EDGE_ZERO_FILL);

FIG. 26.9
An edge detect shows
sharp transitions
between colors.

30 1529-5 CH26 9/23/98, 4:13 PM584

585

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

The Kernel class has some predefined matrices for image sharpening. These matrices are
SHARPEN3x3_1, SHARPEN3x3_2, SHARPEN3x3_3. These matrices are defined as follows:

SHARPEN3x3_1:

-1 -1 -1
-1 9 -1
-1 -1 -1

SHARPEN3x3_2:

 1 -2 1
-2 5 -2
 1 -2 1

SHARPEN3x3_3:

 0 -1 0
-1 5 -1
 0 -1 0

You can create a Kernel with one of these predefined matrices like this:

Kernel sharpen = new Kernel(Kernel.SHARPEN3x3_1);

After you create a Kernel, you use it to create a ConvolveOp:

ConvolveOp op = new ConvolveOp(sharpen);

Because it relies on surrounding pixels, ConvolveOp must have different source and destina-
tion images.

LookupOp The LookupOp class provides a simple table lookup to map one pixel value to an-
other. To create a LookupOp, you need to create a LookupTable, which takes an array or byte or
short values. LookupTable itself is an abstract class. You must create either a ByteLookupTable
or a ShortLookupTable. The following code fragment creates a LookupOp that reverses colors
(0 becomes 255, 1 becomes 254, and so on):

short lookupValues[] = new short[256];

for (int i=0; i < lookupValues.length; i++) {
lookupValues[i] =(short) (255 - i);
}

LookupTable table = new ShortLookupTable(0, lookupValues);

LookupOp op = new LookupOp(table);

Figure 26.10 shows an image before and after this reverse-color lookup.

LookupOp can have the same source and destination images.

RescaleOp The RescaleOp class enables you to change colors in an image based on a coeffi-
cient and an offset. The name might lead you to believe that it changes the size of an image,
but it does not (use the AffineTransformOp for that). You create a RescaleOp by supplying a
scaling factor and an offset. Each color in the image is multiplied by the scaling factor and then
added to the offset. The Constructors for RescaleOp are declared as follows:

Drawing Images

30 1529-5 CH26 9/23/98, 4:13 PM585

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

586 Chapter 26 Java 2D Graphics

public RescaleOp(float factor, float offset)

public RescaleOp(float[] factors, float[] offsets)

When you pass an array of values to the Constructor, the values apply to each raster channel.
(For an RGB image, that’s the red, green, and blue channels.) If you pass singular values, they
apply to all channels. You can perform a “wash” effect by halving the color values and adding
128. The following code fragment creates a wash RescaleOp:

RescaleOp op = new RescaleOp(0.5f, 128);

Figure 26.11 shows an image before and after the wash effect.

FIG. 26.10
A lookup table can be a
quick way to reverse
colors.

Because it operates only on single pixels, RescaleOp can use the same image for the source
and destination.

CAUTION

RescaleOp does not adjust color values that are above 255 or below 0. Instead, it adds them into the final
RGB color value as they are, causing very strange distortion effects. If you keep the coefficient of
RescaleOp at 1 or less, you shouldn’t run into any problems. Try to avoid situations where a color value
might be less than 0 or greater than 255.

FIG. 26.11
A RescaleOp can
make washout effects,
among other things.

30 1529-5 CH26 9/23/98, 4:13 PM586

587

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

ThresholdOp Rounding out the list of predefined operations, ThresholdOp provides an on-off
type filter for colors. You specify a threshold value, a low value, and a high value. Any color less
than the threshold value is assigned the low value, and any color higher than the threshold is
assigned the high value. The assignments are done on a per-channel basis. (That is, it works on
the red, and then the green, and then the blue channels in an RGB image.) You can specify
different values for each color channel by providing arrays of threshold, low, and high values.
As you might guess, ThresholdOp really reduces the number of colors in an image. The Con-
structors for ThresholdOp are as follows:

public ThresholdOp(float threshold, float low, float high)

public ThresholdOp(float[] thresholds, float[] lows, float[] highs)

Figure 26.12 shows an image with a threshold of 128, a low value of 0, and a high value of 255.
You might think that it would produce a completely black and white picture, but there are a few
patches of color. These occur when some channels go to 0 and others go to 255.

Manipulating Buffered Images
Sometimes you may want to manipulate the pixels in a buffered image without using a filter.
You can use getRGB and setRGB to manipulate pixels directly. Listing 26.3 shows an applet that
performs an emboss effect on an image. The operation is similar to an edge detect, but cannot
be implemented using ConvolveOp because it needs to set the current pixel to 128 before fac-
toring in the upper-left and lower-right pixels. Make sure the katyface.gif file is in the same
directory as the applet.

Listing 26.3 Source Code for Emboss.java

import java.awt.*;
import java.applet.*;
import java.awt.geom.*;
import java.awt.font.*;
import java.awt.image.*;
import java.net.URL;

FIG. 26.12
A ThresholdOp
reduces colors
significantly in most
images.

continues

Drawing Images

30 1529-5 CH26 9/23/98, 4:13 PM587

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

588 Chapter 26 Java 2D Graphics

public class Emboss extends Applet
{

 public void paint(Graphics g)
 {

// Get the Graphics2D object

 Graphics2D newG = (Graphics2D) g;

// Load an image to display

 URL imgURL = null;
 try {
 imgURL = new URL(getDocumentBase(), “katyface.gif”);
 } catch (Exception ignore) {
 }

 Image img = getImage(imgURL);

 MediaTracker tracker = new MediaTracker(this);
 try {
 tracker.addImage(img, 0);
 tracker.waitForAll();
 } catch (Exception e) {
 e.printStackTrace();
 }

// Normally you would create a buffered image and set the individual
// pixels yourself, but you can also use an existing image. Rather than
// trying to convert the loaded image into a BufferedImage, it is easier
// (from a programming standpoint) to just get a Graphics2D object for
// the BufferedImage and draw the image into it

 int width = img.getWidth(this);
 int height = img.getHeight(this);

// Create a buffered version of the image by creating a graphics
// context and drawing into it.

 BufferedImage buff = new BufferedImage(width,
 height, BufferedImage.TYPE_INT_ARGB);

 Graphics tempGr = buff.createGraphics();

 tempGr.drawImage(img, 0, 0, this);

// Create a buffered image to hold the resulting embossed image

 BufferedImage outBuff = new BufferedImage(width,
 height, BufferedImage.TYPE_INT_ARGB);

 embossImage(buff, outBuff);

Listing 26.3 Continued

30 1529-5 CH26 9/23/98, 4:13 PM588

589

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

 newG.drawImage(outBuff, 100, 100, this);
 }

// To emboss an image, you start with a completely gray destination image.
// For each pixel in the source image, look at pixels to the upper-left and
// lower-right. Figure out the change in red, green, and blue between the
// upper-left and lower-right and look at the maximum change (either maximum
// positive or maximum negative) for any color component. For example,
// if the green changed by -5, blue changed by 10 and red changed by
// -100, the maximum change would be -100 (the red, which changed the most).
//
// Now, add the amount of change to 128 (the gray level) and create a
// pixel in the destination image with red, green, and blue values equal
// to the new gray level. Make sure you adjust the gray level so it can’t
// be less than 0 or more than 255.
//
//
 public void embossImage(BufferedImage srcImage, BufferedImage destImage)
 {

 int width = srcImage.getWidth();
 int height = srcImage.getHeight();

// Loop through every pixel

 for (int i=0; i < height; i++) {
 for (int j=0; j < width; j++) {

// Assume that the upper-left and lower-right are 0
 int upperLeft = 0;
 int lowerRight = 0;

// If the pixel isn’t on the upper or left edge, get the upper-left
// pixel (otherwise, the upper-left for edge pixels is the default of 0)

 if ((i > 0) && (j > 0)) {

// The & 0xffffff strips off the upper 8 bits, which is the transparency

 upperLeft = srcImage.getRGB(j-1, i-1)
 & 0xffffff;
 }

// If the pixel isn’t on the bottom or right edge, get the lower-right
// pixel (otherwise, the lower-right for egde pixels is the default of 0)

 if ((i < height-1) && (j < width-1)) {

// The & 0xffffff strips off the upper 8 bits, which is the transparency
 lowerRight = srcImage.getRGB(j+1, i+1)
 & 0xffffff;
 }

// Get the differences between the red, green and blue pixels

continues

Drawing Images

30 1529-5 CH26 9/23/98, 4:13 PM589

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

590 Chapter 26 Java 2D Graphics

 int redDiff = ((lowerRight >> 16) & 255) -
 ((upperLeft >> 16) & 255);
 int greenDiff = ((lowerRight >> 8) & 255) -
 ((upperLeft >> 8) & 255);
 int blueDiff = (lowerRight & 255) -
 (upperLeft & 255);

// Figure out which color had the greatest change

 int diff = redDiff;
 if (Math.abs(greenDiff) > Math.abs(diff))
 diff=greenDiff;
 if (Math.abs(blueDiff) > Math.abs(diff))
 diff=blueDiff;

// Add the greatest change to a medium gray
 int greyColor = 128 + diff;

// If the gray is too high or too low, make it fit in the 0-255 range
 if (greyColor > 255) greyColor = 255;
 if (greyColor < 0) greyColor = 0;

// Create the new color, and don’t forget to add in a transparency
// of 0xff000000 making the image completely opaque

 int newColor = 0xff000000 + (greyColor << 16) +
 (greyColor << 8) + greyColor;

 destImage.setRGB(j, i, newColor);
 }
 }
 }
}

Figure 26.13 shows an embossed image.

Listing 26.3 Continued

Transparency
In the early versions of Java, the AWT image API allowed the use of transparent or semi-
transparent pixels. In addition to the regular red-green-blue values in a color, there was a

FIG. 26.13
You can use a
BufferedImage to
create an embossing
effect.

30 1529-5 CH26 9/23/98, 4:13 PM590

591

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

fourth value—the alpha component. An alpha component of 0 meant that the color was com-
pletely transparent (thus, the RGB values were actually unused). An alpha component of 255
meant that the color was completely opaque. When it was drawn over an existing pixel, the
existing pixel was completely hidden. Alpha values between 0 and 255 gave interesting results.
You could have two images overlay each other and blend together.

The Java 2D graphics API extends the transparency model to all drawing, enabling you to
specify an alpha component for any color.

One term you will encounter frequently in the Java documentation is “premultiplied alpha.”
When Java draws pixels containing an alpha component, it really adds the various red, green,
and blue values for each different figure it is drawing at a particular place. When adding these
values, it multiplies them by their respective alpha values first. If an image is completely trans-
parent, for example, it has an alpha value of 0. There is no magical check in the code to say that
when alpha is 0, don’t draw the pixel. Instead, it multiplies the red, green, and blue components
by the alpha value of 0 and adds them to the current pixel values. Because they all multiply out
to 0, they have no effect on the current color.

Sometimes, a color has a “premultipled alpha,” meaning the red, green, and blue values have
already been multiplied by the alpha. They are ready to be added to the current pixel color. You
probably won’t have to deal with premultiplied alpha values very often, however, unless you
specifically want to. The default handling of colors leaves the red, green, and blue components
alone.

You can create a color with a transparent component with one of the following Constructors for
Color:

public Color(int red, int green, int blue, int alpha)

public Color(int rgba, boolean hasAlpha)

public Color(float red, float green, float blue, float alpha)

The program in Listing 26.4 draws two figures, one with a partially transparent red, the other
with a partially transparent blue. The area where they overlap is magenta. If not for the alpha
component, there would be no overlap and the first triangle would be hidden wherever the
second triangle is drawn.

Listing 26.4 Source Code for AlphaDraw.java

import java.awt.*;
import java.applet.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;
import java.net.URL;

public class AlphaDraw extends Applet
{

 public void paint(Graphics g)

continues

Transparency

30 1529-5 CH26 9/23/98, 4:13 PM591

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

592 Chapter 26 Java 2D Graphics

 {
 Graphics2D newG = (Graphics2D) g;

// Create a partially transparent blue

 Color transBlue = new Color(0, 0, 255, 128);
 newG.setColor(transBlue);

 GeneralPath path = new GeneralPath();

 path.moveTo(60, 0);
 path.lineTo(50, 300);
 path.curveTo(160, 230, 270, 140, 400, 100);

 newG.fill(path);

 Color transRed = new Color(255, 0, 0, 128);
 newG.setColor(transRed);

 path = new GeneralPath();
 path.moveTo(200, 300);
 path.lineTo(10, 100);
 path.lineTo(300, 40);
 path.lineTo(200, 300);

 newG.fill(path);

 }
}

Clipping
Under the Java 2D API, you can now set up clipping regions using any Shape object, including
text. Earlier in this chapter, you saw how to set up an image paint object so that when you
drew text, it filled in the text with an image. You can do something similar by creating what is
essentially a stencil, made of text or any shape you like. All you do is create a shape and call the
clip method in Graphics2D:

public clip(Shape shape)

Listing 26.5 shows how to use a text string as a clipping area. Note that you need to translate
the string before clipping with it. Make sure the johnpat2.gif file is in the same directory as
your applet.

Listing 26.5 Source Code for TextClip.java

import java.awt.*;
import java.applet.*;
import java.awt.geom.*;

Listing 26.4 Continued

30 1529-5 CH26 9/23/98, 4:13 PM592

593

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

26

III
Part

Ch

import java.awt.font.*;
import java.awt.image.BufferedImage;
import java.net.URL;

public class TextClip extends Applet
{

 public void paint(Graphics g)
 {

// Get the Graphics2D object

 Graphics2D newG = (Graphics2D) g;

// Load an image to use as the texture

 URL imgURL = null;
 try {
 imgURL = new URL(getDocumentBase(), “johnpat2.gif”);
 } catch (Exception ignore) {
 }

 Image img = getImage(imgURL);

 MediaTracker tracker = new MediaTracker(this);
 try {
 tracker.addImage(img, 0);
 tracker.waitForAll();
 } catch (Exception e) {
 e.printStackTrace();
 }

 int width = img.getWidth(this);
 int height = img.getHeight(this);

 Font bigfont = new Font(“Serif”, Font.BOLD, 60);

 StyledString ssGrahams = new StyledString(“The Grahams”,
 bigfont);

// Set the clipping area to be the text string
 AffineTransform transform = new AffineTransform();
 transform.translate(0, 100);

 Shape clipShape = transform.createTransformedShape(
 ssGrahams.getStringOutline());

 newG.clip(clipShape);

// Draw the image over the clipped area
 newG.drawImage(img, 0, 0, width*2, height*2, this);

 }
}

Clipping

30 1529-5 CH26 9/23/98, 4:13 PM593

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter26 LP#3

594 Chapter 26 Java 2D Graphics

The Java 2D API provides a much richer set of graphics functions, taking much of the burden
off the programmer. Using this new 2D API, you can create visually stunning displays, and
display information better and more efficiently. ●

30 1529-5 CH26 9/23/98, 4:13 PM594

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTIV LP#2

IVP A R T

IO

27 Files, Streams, and Java 597

28 Using Strings and Text 637

29 Using Internationalization 663

30 Communications and Networking 681

31 TCP Sockets 699

32 UDP Sockets 719

33 java.net 741

34 Java Security in Depth 769

35 Object Serialization 795

36 Remote Method Invocation 809

37 Management API 829

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTIV LP#2

597

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

C H A P T E R

Files, Streams, and Java

Streams: What Are They? 598

The Basic Input and Output Classes 599

Handling Files 605

Using Pipes 615

Buffered Streams 624

Data Streams 624

Byte Array Streams 626

Char Array Streams 627

Conversion Between Bytes and Characters 627

The StringBufferInputStream 628

Object Streams 628

Other Streams 631

The StreamTokenizer Class 633

27

In this chapter

32 1529-5 CH27 9/23/98, 4:20 PM597

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

598 Chapter 27 Files, Streams, and Java

Streams: What Are They?
All computer programs must accept input and generate output. That is, after all, basically what
a computer is useful for. Obviously, every computer language must have a way of dealing with
input and output. Otherwise it would be impossible to write a useful program. Java features a
rich set of classes that represent everything from a general input or output stream to a sophisti-
cated random-access file. You now get a chance to experiment with these important classes.

The java.io package provides different input and output streams for reading and writing data.
There are streams for a variety of sources including access to common file system functions
(such as file and directory creation, removal and renaming, as well as directory listing). The
input and output streams can be connected to files, network sockets, or internal memory
buffers.

The java.io package also contains a number of stream filters that enable you to access stream
data in a variety of different formats. You can also create your own filters to add additional
functionality.

All information used with a computer system flows from the input through the computer to the
output. It is this idea of data flow that leads to the term streams. That is, a stream is really nothing
more than a flow of data. There are input streams that direct data from the outside world from the
keyboard, or a file for instance, into the computer, and output streams that direct data toward output
devices such as the computer screen or a file. Because streams are general in nature, a basic
stream does not specifically define which devices the data flows from or to. Just like a wire carrying
electricity that is being routed to a light bulb, TV, or dishwasher, a basic input or output stream can
be directed to or from many different devices.

In Java, streams are represented by classes. The simplest of these classes represents basic
input and output streams (InputStream and OutputStream) that provide general streaming
capabilities. Java derives from the basic classes other classes that are more specifically ori-
ented toward a certain type of input or output. You can find all these classes in the java.io
package:

■ InputStream The basic input stream.

■ BufferedInputStream A basic buffered input stream.

■ DataInputStream An input stream for reading primitive data types.

■ FileInputStream An input stream used for basic file input.

■ ByteArrayInputStream An input stream whose source is a byte array.

■ StringBufferInputStream An input stream whose source is a string.

■ LineNumberInputStream An input stream that supports line numbers.

■ PushbackInputStream An input stream that allows a byte to be pushed back onto the
stream after the byte is read.

32 1529-5 CH27 9/23/98, 4:20 PM598

599

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

■ PipedInputStream An input stream used for inter-thread communication.

■ SequenceInputStream An input stream that combines two other input streams.

■ OutputStream The basic output stream.

■ PrintStream An output stream for displaying text.

■ BufferedOutputStream A basic buffered output stream.

■ DataOutputStream An output stream for writing primitive data types.

■ FileOutputStream An output stream used for basic file output.

■ FilterInputStream An abstract input stream used to add new behaviors to existing
input stream classes.

■ FilterOutputStream An abstract output stream used to add new behaviors to existing
output stream classes.

■ ByteArrayOutputStream An output stream whose destination is a byte array.

■ PipedOutputStream An output stream used for inter-thread communication.

■ File A class that encapsulates disk files.

■ FileDescriptor A class that holds information about a file.

■ RandomAccessFile A class that encapsulates a random-access disk file.

■ StreamTokenizer A class that enables a stream to be input as a series of tokens.

Obviously, there are too many stream classes to be covered thoroughly in a single chapter. An
entire book could be written on Java I/O alone. For that reason, this chapter covers the most
useful of the stream classes, concentrating on basic input and output, as well as file handling
and inter-thread communications. You begin with a brief introduction to the classes, after
which sample programs demonstrate how the classes work.

The Basic Input and Output Classes
The more specific Java stream classes such as FileInputStream and ByteArrayOutputStream
rely on the general base classes InputStream and OutputStream for their basic functionality,
but extend them to create more specific classes. Because InputStream and OutputStream are
abstract classes, you cannot use them directly. However, because all of Java’s stream classes
have InputStream or OutputStream in their family tree, you should know what these classes
have to offer.

The InputStream Class
The InputStream class represents the basic input stream. As such, it defines a set of methods
that all input streams need. Table 27.1 lists these methods, without their parameters.

The Basic Input and Output Classes

32 1529-5 CH27 9/23/98, 4:21 PM599

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

600 Chapter 27 Files, Streams, and Java

Table 27.1 Methods of the InputStream Class

Method Description

read() Reads data into the stream.

skip() Skips over bytes in the stream.

available() Returns the number of bytes immediately available in the stream.

mark() Marks a position in the stream.

reset() Returns to the marked position in the stream.

markSupported() Returns a boolean value indicating whether the stream supports
marking and resetting.

close() Closes the stream.

The read() method is overloaded in the class, providing three methods for reading data from
the stream. The methods’ signatures look like this:

int read()
int read(byte b[])
int read(byte b[], int off, int len)

The most basic method for getting data from any InputStream object is the read method.

public abstract int read() throws IOException

reads a single byte from the input stream and returns it. This method performs what is known
as a blocking read, which means that it waits for data if there is none available. So, when a
datasource doesn’t have any data to be read yet the method will wait until a byte becomes
available before returning. One example of this situation is when the stream is on a network
and the next byte of data may not have arrived yet. You want to be careful with this situation,
however, because it can cause similar problems to the synchronization problems discussed in
Chapter 13, “Threads,” if you are not careful.

When the stream reaches the end of a file, this method returns –1. Note that to be able to
return a full 8 bits of data (a byte) and still have –1 only occur when the stream is at an end, the
values are actually returned as if they were generated from an unsigned byte—that is, if you
write a –1 into a stream it will actually get read back in as an integer with a value of 255. Fortu-
nately casting that int back to a byte will return the value to –1.

This read method is the most important because it is the method that actually grabs data
from the native source. All the other methods use this one to perform their work. ■

public int read(byte[] bytes) throws IOException

fills an array with bytes read from the stream and returns the number of bytes read. It is pos-
sible for this method to read fewer bytes than the array can hold, because there may not be

N O T E

32 1529-5 CH27 9/23/98, 4:21 PM600

601

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

enough bytes in the stream to fill it. When the stream reaches end of file this method returns
–1. You will always receive all the bytes in the stream before you hit end of file. In other words,
if there are 50 bytes left in the stream and you ask to read 100 bytes, this method returns the
50 bytes, and then the next time it is called it returns –1, if the stream is at an end.

public int read(byte[] bytes, int offset, int length)
 throws IOException

fills an array starting at position offset with up to length bytes from the stream. It returns
either the number of bytes read or –1 for end of file.

The read method always blocks (it sits and waits without returning) when there is no data
available. To avoid blocking, you might need to ask ahead of time exactly how many bytes you
can safely read without blocking. The available method returns this number:

public int available() throws IOException

You can skip over data in a stream by passing the skip method the number of bytes you want
to skip over:

public long skip(long n)

The skip method actually uses the read method to skip over bytes, so it will block under the
same circumstances as read. It returns the number of bytes it skipped or –1 if it hits the end of
file.

Some input streams enable you to place a bookmark of sorts at a point so that you can return to
that location later. The markSupported method returns true if the stream supports marking:

public boolean markSupported()

The mark method marks the current position in the stream, so you can back up to it later:

public synchronized void mark(int readLimit)

The readLimit parameter sets the maximum number of bytes that can be read from the stream
before the mark is no longer set. In other words, you must tell the stream how many bytes it
should let you read before it forgets about the mark. Some streams may need to allocate
memory to support marking, and this parameter tells them how big to make their array.

If you have set a mark, you can reposition the stream back to the mark by calling the reset
method:

public synchronized void reset() throws IOException

After you are done with a stream, you should close it down using the close method:

public void close() throws IOException

The Basic Input and Output Classes

32 1529-5 CH27 9/23/98, 4:21 PM601

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

602 Chapter 27 Files, Streams, and Java

Most streams get closed automatically at garbage collection time. On the majority of operating
systems, however, the number of files you can have open at one time is limited. Therefore, you
should close your streams when you are finished with them to free up system resources imme-
diately without waiting for garbage collection.

The OutputStream Class
The counterpart to InputStream is the OutputStream class, which provides the basic function-
ality for all output streams. Table 27.2 lists the methods defined in the OutputStream class,
along with their descriptions.

Table 27.2 Methods of the OutputStream Class

Method Description

write() Writes data to the stream.

flush() Forces any buffered output to be written.

close() Closes the stream.

Rather than being a source of data like the input stream, an output stream is a recipient of data.
The most basic method of an OutputStream object is the write method.

public abstract void write(int b) throws IOException

writes a single byte of data to an output stream.

public void write(byte[] bytes) throws IOException

writes the entire contents of the bytes array to the output stream.

public void write(byte[] bytes, int offset, int length)
 throws IOException

writes length bytes from the bytes array, starting at position offset.

Depending on the type of stream, you may need to occasionally flush the stream if you need to
be sure that the data written on the stream has been delivered. Flushing a stream does not
destroy any information in the stream, it just makes sure that any data stored in internal buff-
ers is written out onto whatever device the stream may be connected to. To flush an output
stream, call the flush method:

public void flush() throws IOException

As with the input streams, you should close output streams when you are done with them by
calling the close method:

public void close() throws IOException

32 1529-5 CH27 9/23/98, 4:21 PM602

603

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

System.in and System.out Objects
To support the standard input and output devices (usually the keyboard and screen, respec-
tively), Java defines two stream objects that you can use in your programs without having to
create stream objects of your own. The System.in object (instantiated from the InputStream
class) enables your programs to read data from the keyboard, whereas the System.out object
(instantiated from the PrintStream class) routes output to the computer’s screen. You can use
these stream objects directly to handle standard input and output in your Java programs, or
you can use them as the basis for other stream objects you may want to create.

Listing 27.1, for example, is a Java application that accepts a line of input from the user and
then displays the line onscreen. Figure 27.1 shows the application running in a DOS window.

FIG. 27.1
Java’s System class
provides for
standard I/O.

Listing 27.1 IOApp.java—Performing Basic User Input and Output

import java.io.*;
class IOApp {
 public static void main(String args[]) {
 byte buffer[] = new byte[255];
 System.out.println(“\nType a line of text: “);
 try {
 System.in.read(buffer, 0, 255);
 }
 catch (Exception e) {
 String err = e.toString();
 System.out.println(err);
 }
 System.out.println(“\nThe line you typed was: “);
 try{
 String inputStr = new String(buffer, “Default”);
 System.out.println(inputStr);
 }catch (UnsupportedEncodingException e){
 System.out.println(“e:”+e);
 }
 }
}

The Basic Input and Output Classes

32 1529-5 CH27 9/23/98, 4:21 PM603

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

604 Chapter 27 Files, Streams, and Java

PrintWriter Class
You probably noticed in Listing 27.1 a method called println(), which is not a part of the
OutputStream class. To provide for more flexible output on the standard output stream, the
System class derives its out output-stream object from the PrintWriter class, which provides
for printing values as text output. Table 27.3 lists the methods of the PrintWriter class, along
with their descriptions.

Table 27.3 Basic Methods of the PrintWriter Class

Method Description

write() Writes data to the stream.

flush() Flushes data from the stream.

checkError() Flushes the stream, returning errors that occurred.

print() Prints data in text form.

println() Prints a line of data (followed by a newline character) in text form.

close() Closes the stream.

As with many of the methods included in the stream classes, the write(), print(), and
println() methods are overloaded many times and come in several versions. The write()
method can write Strings, partial Strings, single chars or whole char arrays, whereas the
print() and println() methods can display almost any type of data onscreen. The various
method signatures look like this:

void write(int c)
void write(char c[], int off, int len)
void write(String s)
void write(String s,int off,int len)
void print(Object obj)
void print(String s)
void print(char s[])
void print(char c)
void print(int i)
void print(long l)
void print(float f)
void print(double d)
void print(boolean b)
void println()
void println(Object obj)
void println(String s)
void println(char s[])
void println(char c)
void println(int i)
void println(long l)
void println(float f)
void println(double d)
void println(boolean b)

32 1529-5 CH27 9/23/98, 4:21 PM604

605

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

Handling Files
Now that you’ve had an introduction to the stream classes, you can put your knowledge to
work. Perhaps the most common use of I/O—outside of retrieving data from the keyboard and
displaying data onscreen—is file I/O. Any program that wants to retain its status (including the
status of any edited files) must be capable of loading and saving files. Java provides several
classes—including File, FileDescriptor, RandomAccessFile, FileInputStream,
FileOutputStream, FilePermission, FileReader, and FileWriter—for dealing with files. In
this section, you examine these classes and get a chance to see how they work.

File Security
When you start reading and writing to a disk from a networked application, you have to con-
sider security issues. Because the Java language is used especially for creating Internet-based
applications, security is even more important. No user wants to worry that the Web pages he’s
currently viewing are capable of reading from and writing to his hard disk. For this reason, the
Java system was designed to allow the user to set system security from within his Java-
compatible browser and determine which files and directories are to remain accessible to the
browser and which are to be locked up tight.

In most cases, the user disallows all file access on his local system, thus completely protecting
his system from unwarranted intrusion. In fact the default setting on all current browsers
disallows access to the local system, and until recently even volunteering access to the file
system was not possible. This tight security is vital to the existence of applets because of the
way they are automatically downloaded onto a user’s system behind the user’s back, as it were.
No one would use Java-compatible browsers if he feared that such use would open his system
to the tampering of nosy corporations and sociopathic programmers.

Java standalone applications, however, are a whole different story. Java applications are no
different than any other application on your system. They cannot be automatically downloaded
and run the way applets are. For this reason, standalone applications can have full access to the
file system on which they are run. The file-handling examples in this chapter, then, are incorpo-
rated into Java standalone applications.

FileInputStream Class
If your file-reading needs are relatively simple, you can use the FileInputStream class, which
is a simple input-stream class derived from InputStream. This class features all the methods
inherited from the InputStream class. To create an object of the FileInputStream class, you
call one of its Constructors, of which there are three, as shown:

FileInputStream(String name)
FileInputStream(File file)
FileInputStream(FileDescriptor fdObj)

The first Constructor creates a FileInputStream object from the given filename name. The
second Constructor creates the object from a File object, and the third creates the object
from a FileDescriptor object.

Handling Files

32 1529-5 CH27 9/23/98, 4:21 PM605

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

606 Chapter 27 Files, Streams, and Java

Listing 27.2 is a Java application that reads its own source code from disk and displays the code
onscreen. Figure 27.2 shows the application’s output in a DOS window.

FIG. 27.2
The FileApp
application reads and
displays its own source
code.

Listing 27.2 FileApp.java—An Application That Reads Its Own Source Code

import java.io.*;
class FileApp {
 public static void main(String args[]) {
 byte buffer[] = new byte[2056];
 try {
 FileInputStream fileIn =
 new FileInputStream(“fileapp.java”);
 int bytes = fileIn.read(buffer, 0, 2056);
 try{
 String str = new String(buffer, 0, bytes, “Default”);
 System.out.println(str);
 }catch (UnsupportedEncodingException e){
 System.out.println(“The encoding \”Default\” was not found :”+e);
 }
 }
 catch (Exception e) {
 String err = e.toString();
 System.out.println(err);
 }
 }
}

Using the FileOutputStream Class
As you may have guessed, the counterpart to the FileInputStream class is FileOutputStream,
which provides basic file-writing capabilities. Besides FileOutputStream’s methods, which are
inherited from OutputStream, the class features three Constructors, whose signatures look
like this:

FileOutputStream(String name)
FileOutputStream(File file)
FileOutputStream(FileDescriptor fdObj)

32 1529-5 CH27 9/23/98, 4:21 PM606

607

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

The first Constructor creates a FileOutputStream object from the given filename, name,
whereas the second Constructor creates the object from a File object. The third Constructor
creates the object from a FileDescriptor object.

Listing 27.3 is a Java application that reads a line of text from the keyboard and saves it to a file.
When you run the application, type a line and press Enter. Then at the system prompt (for
DOS), type TYPE LINE.TXT to display the text in the file, just to prove it’s really there. Figure
27.3 shows a typical program run.

FIG. 27.3
The FileApp2
application saves user
input to a file.

Listing 27.3 FileApp2.java—An Application that Saves Text to a File

import java.io.*;
class FileApp2
{
 public static void main(String args[])
 {
 byte buffer[] = new byte[80];
 try
 {
 System.out.println
 (“\nEnter a line to be saved to disk:”);
 int bytes = System.in.read(buffer);
 FileOutputStream fileOut =
 new FileOutputStream(“line.txt”);
 fileOut.write(buffer, 0, bytes);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 }
}

Handling Files

32 1529-5 CH27 9/23/98, 4:21 PM607

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

608 Chapter 27 Files, Streams, and Java

Using the File Class
If you need to obtain information about a file, you should create an object of Java’s File class.
This class enables you to query the system about everything from the file’s name to the time it
was last modified. You can also use the File class to make new directories, as well as to delete
and rename files. Create a File object by calling one of the class’s three Constructors, whose
signatures are as follows:

File(String path)
File(String path, String name)
File(File dir, String name)

The first Constructor creates a File object from the given full pathname (for example,
C:\CLASSES\MYAPP.JAVA). The second Constructor creates the object from a separate path and
a file, and the third creates the object from a separate path and filename, with the path being
associated with another File object.

The File class features a full set of methods that give your program a lot of file-handling op-
tions. Table 27.4 lists these methods along with their descriptions.

Table 27.4 Methods of the File Class

Method Description

getName() Gets the file’s name (as a String).

getPath() Gets the file’s path (as a String).

getAbsolutePath() Gets the file’s absolute path (as a String).

getAbsoluteFile() Gets the file’s absolute path (as a File).

getCanonicalPath() Gets the file’s canonical path. (as a String).

getCanonicalFile() Gets the file’s canonical path (as a File).

getParent() Gets the file’s parent directory (as a String).

getParentFile() Gets the file’s parent directory (as a File).

exists() Returns true if the file exists, false otherwise.

createNewFile() Creates a new file, but only if the file does not already exist
(returns true if the file was created).

createTempFile Creates a temporary file. The file’s name is created first, by
(String pattern, the directory, and then by using the pattern to create a unique
File directory) name (returns a File).

createTempFile Creates a temporary file. The file’s name is created first, by
(String prefix) the default system temp directory, and then by using the

pattern to create a unique name (returns a File).

deleteOnExit() Request that this file be deleted when the VM exits. Note:
only successful by normal VM exits not by abnormal exits.

32 1529-5 CH27 9/23/98, 4:21 PM608

609

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

Method Description

canWrite() Returns true if the file can be written to.

canRead() Returns true if the file can be read.

setReadOnly() Sets the file so that it is read only.

isFile() Returns true if the file is valid.

isDirectory() Returns true if the directory is valid.

isAbsolute() Returns true if the filename is absolute.

isHidden() Tests to see if the file is hidden. (Returns true if it is.)

lastModified() Returns the time the file was last changed, represented as the
number of milliseconds since 00:00:00 GMT, January 1, 1970.

setLastModified Sets the time when the file was last modified. The time should
(long time) be represented as the number of milliseconds since 00:00:00

GMT, January 1, 1970.

length() Returns the number of bytes in the file.

mkdir() Makes a directory represented by this file. (Returns true if
successful.)

mkdirs() Makes a directory represented by this file, and any required
but non-existent parent directories.(Returns true if success-
ful.)

renameTo(File dest) Renames the file to the indicated file.

list() Gets a list of files in the directory. (Returns an array of strings.)

list Gets a list of files in the directory that match the given file
(FilenameFilter filter) filter. (Returns an array of strings.)

listFiles() Gets a list of files in the directory. (Returns an array of files.)

listFiles Gets a list of files in the directory that match the given file
(FilenameFilter filter) filter. (Returns an array of files.)

listRoots() Gets a list of the root directories for the current system. A
Windows or Macintosh computer would have one root for
each drive, a UNIX machine has one root (/). (Returned as an
array of files.)

delete() Deletes the file. (Returns true if successful.)

hashCode() Gets a hash code for the file.

equals() Compares the file object with another object. (Returns true
if they are equal.)

toString() Gets a string containing the file’s path.

toURL() Returns an URL object equivalent to the file.

Handling Files

32 1529-5 CH27 9/23/98, 4:21 PM609

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

610 Chapter 27 Files, Streams, and Java

Directory Operations Although most of the methods in the File class can be used on both
files and directories, the list method is only for use in a directory:

public String[] list()

The list method returns an array of the names of all the files contained within the directory.
You can also set up a filename filter for the list method, which enables you to select only
certain filenames:

public String[] list(FilenameFilter filter)

The FilenameFilter interface defines a single method, accept, that returns true if a filename
should be included in the list:

public abstract boolean accept(File dir, String name)

Listing 27.4 shows an object that implements a filename filter that allows only files ending with
.java.

Listing 27.4 Source Code for JavaFilter.java

import java.io.*;

// This class implements a filename filter that only allows
// files that end with .java

public class JavaFilter extends Object implements FilenameFilter
{
 public JavaFilter()
 {
 }

 public boolean accept(File dir, String name)
 {

// Only return true for accept if the file ends with .java
 return name.endsWith(“.java”);

 }
}

Listing 27.5 shows a program that uses the JavaFilter to list out all the .java files in the cur-
rent directory.

Listing 27.5 Source code for ListJava.java

import java.io.*;

public class ListJava extends Object
{
 public static void main(String[] args)
 {

32 1529-5 CH27 9/23/98, 4:21 PM610

611

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

// Create a File instance for the current directory
 File currDir = new File(“.”);

// Get a filtered list of the .java files in the current directory
 String[] javaFiles = currDir.list(new JavaFilter());

// Print out the contents of the javaFiles array
 for (int i=0; i < javaFiles.length; i++) {
 System.out.println(javaFiles[i]);
 }
 }
}

Creating Temporary Files A new JDK 1.2 feature is the ability to create temporary files. Tem-
porary files are useful for a variety of purposes in many programs. To create a temporary file,
you can use the static createTemporaryFile method in File. As shown in Listing 27.6, the
temporary file is created by passing in a string that represents the naming pattern that you
want to apply to the file. The string should contain the first several letters of the file name
(minimum three characters) and then a pound sign (#), followed by an extension. The pound
sign is replaced with a four-digit number that is guaranteed to be unique within this instance of
the VM. If you do not provide the pound sign, it is automatically appended to the string; if you
do not provide an extension, it is automatically assumed to be .tmp.

Listing 27.6 Source Code for TestFile.java

import java.io.*;
public class TestFile{
 public static void main(String args[]){
 try{
 File tempFile = File.createTempFile(“test#que”);
 FileOutputStream fout = new FileOutputStream(tempFile);
 PrintStream out = new PrintStream(fout);
 out.println(“Place this test string in the temp file”);
 }catch (IOException ioe){
 System.out.println(“There was a problem creating/writing to the
➥temp file”);
 ioe.printStackTrace(System.err);
 }
 }
}

After you run the TestFile program in Listing 27.6 you should see a file called test????.que
in your systems temp directory (where the ????s are actually numbers).

Deleting Files on Exit There is one additional feature commonly used with temporary files,
but which can be applied to any file. The deleteOnExit() method was added to JDK 1.2 which
allows you to schedule a file to be deleted when the VM exits. This is very useful if, for
instance, you are creating a file within your program, but don’t want to leave it on the system

Handling Files

32 1529-5 CH27 9/23/98, 4:21 PM611

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

612 Chapter 27 Files, Streams, and Java

after the program quits. There are two cautions you need to be aware of with this method.
First, once a file is scheduled to be deleted on exit, you cannot unschedule it. The second is
that the deleteOnExit() method is only effective if the VM exits normally, such as by
System.exit(0). If the system crashes, or there is some other form of abnormal crash, the
VM will not be able to delete the file.

Listing 27.7 shows how TestFile in Listing 27.6 would be modified to delete the file when the
system exits. Notice that when you run TestFile2 you see a file in the temp directory before
the system exits, but afterwards the file is gone.

Listing 27.7 Source Code for TestFile.java

import java.io.*;
public class TestFile2{
 public static void main(String args[]){
 try{
 File tempFile = File.createTempFile(“test#que”);
 FileOutputStream fout = new FileOutputStream(tempFile);
 PrintStream out = new PrintStream(fout);
 out.println(“Place this test string in the temp file”);
 tempFile.deleteOnExit();
 }catch (IOException ioe){
 System.out.println(“There was a problem creating/writing to the
➥temp file_
 ioe.printStackTrace(System.err);
 }

 System.out.println(“Until you hit ‘Enter’ there is a temp file on the
➥system”);_
 try{
 System.in.read();
 }catch (IOException ioe){
 }
 System.exit(0);
 }
}

RandomAccessFile Class
At this point, you may think that Java’s file-handling capabilities are scattered through a lot of
different classes, making it difficult to obtain the basic functionality you need to read, write,
and otherwise manage a file. But Java’s creators are way ahead of you. They created the
RandomAccessFile class for those times when you really need to get serious about your file
handling. By using this class, you can do just about everything you need to do with a file.

You create a RandomAccessFile object by calling one of the class’s two Constructors, whose
signatures are as follows:

RandomAccessFile(String name, String mode)
RandomAccessFile(File file, String mode)

32 1529-5 CH27 9/23/98, 4:21 PM612

613

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

The first Constructor creates a RandomAccessFile object from a string containing the filename
and another string containing the access mode (“ for read and rw for read and write). The
second Constructor creates the object from a File object and the mode string.

After you have the RandomAccessFile object created, you can call on the object’s methods to
manipulate the file. Table 27.5 lists those methods.

Table 27.5 Methods of the RandomAccessFile Class

Method Description

close() Closes the file.

getFD() Gets a FileDescriptor object for the file.

getFilePointer() Gets the location of the file pointer.

length() Gets the length of the file.

read() Reads data from the file.

readBoolean() Reads a boolean value from the file.

readByte() Reads a byte from the file.

readChar() Reads a char from the file.

readDouble() Reads a double floating-point value from the file.

readFloat() Reads a float from the file.

readFully() Reads data into an array, completely filling the array.

readInt() Reads an int from the file.

readLine() Reads a text line from the file.

readLong() Reads a long int from the file.

readShort() Reads a short int from the file.

readUnsignedByte() Reads an unsigned byte from the file.

readUnsignedShort() Reads an unsigned short int from the file.

readUTF() Reads a UTF string from the file.

seek() Positions the file pointer in the file.

skipBytes() Skips over a given number of bytes in the file.

write() Writes data to the file.

writeBoolean() Writes a boolean to the file.

writeByte() Writes a byte to the file.

writeBytes() Writes a string as bytes.

Using Pipes

continues

32 1529-5 CH27 9/23/98, 4:21 PM613

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

614 Chapter 27 Files, Streams, and Java

Table 27.5 Continued

Method Description

writeChar() Writes a char to the file.

writeChars() Writes a string as char data.

writeDouble() Writes a double floating-point value to the file.

writeFloat() Writes a float to the file.

writeInt() Writes an int to the file.

writeLong() Writes a long int to the file.

writeShort() Writes a short int to the file.

writeUTF() Writes a UTF string.

Listing 27.8 is a Java application that reads and displays its own source code using a
RandomAccessFile object. Figure 27.4 shows a typical program run.

Listing 27.8 FileApp3.java—Using a RandomAccessFile Object

import java.io.*;
class FileApp3
{
 public static void main(String args[])
 {
 try
 {
 RandomAccessFile file =
 new RandomAccessFile(“fileapp3.java”, “r”);
 long filePointer = 0;
 long length = file.length();
 while (filePointer < length)
 {

FIG. 27.4
The FileApp3
application can read
and display its own
source code.

32 1529-5 CH27 9/23/98, 4:21 PM614

615

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

 String s = file.readLine();
 System.out.println(s);
 filePointer = file.getFilePointer();
 }
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 }
}

Using Pipes
Normal stream and file handling under Java isn’t all that different than under any other com-
puter language. The Java stream classes provide all the functions you are used to using to
handle streams. However, Java also supports pipes, a form of data stream with which you may
have little experience. Basically, pipes are a way to transfer data directly between different
threads. One thread sends data through its output pipe, and another thread reads the data from
its input pipe. By using pipes, you can share data between different threads without having to
resort to things like temporary files.

Introducing the PipedInputStream and PipedOutputStream
Classes

As you may have guessed, Java provides two special classes for dealing with pipes.

The first class, PipedInputStream, represents the input side of a pipe; the second,
PipedOutputStream, represents the output side of the pipe. These classes work together to
provide a piped stream of data in much the same way a conventional pipe provides a stream of
water. If you were to cap off one end of a conventional pipe, the flow of water would stop. The
same is also true of piped streams. If you don’t have both an input and output stream, you’ve
effectively sealed off one or both ends of the data pipe.

To create a piped stream, you first create an object of the PipedOutputStream class. Then, you
create an object of the PipedInputStream class, handing it a reference to the piped output
stream, like this:

pipeOut = new PipedOutputStream();
pipeIn = new PipedInputStream(pipeOut);

By giving the PipedInputStream object a reference to the output pipe, you have effectively
connected the input and output into a stream through which data can flow in a single direction.
Data that’s pumped into the output side of the pipe can be received by another thread that has
access to the input side of the pipe, as shown in Figure 27.5.

Using Pipes

32 1529-5 CH27 9/23/98, 4:21 PM615

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

616 Chapter 27 Files, Streams, and Java

It may seem a little weird that the output side of the pipe is the side into which data is
pumped, and the input side is the side from which the data flows. You have to think in

terms of the threads that are using the pipe, rather than of the pipe itself. That is, the thread supplying
data sends its output into the piped output stream, and the thread inputting the data takes it from the
piped input stream. ■

After you have created the pipe, you can read and write data just as you would with a conven-
tional file. In the following section, you get a chance to see pipes in action.

The PipeApp Application
Listings 27.9 and 27.10 are the source code for an application called PipeApp that uses
pipes to process data. The application has three threads: the main thread and two secondary
threads that are started by the main thread. The program takes a file that contains all Xs, and,
using pipes to transfer data, first changes the data to all Ys and finally changes the data to all
Zs, after which the program displays the modified data onscreen. Note that no additional files,
beyond the input file, are created. All data is manipulated using pipes. Figure 27.6 shows a
program run.

FIG. 27.5
The output stream and
input stream act as two
ends on a one-way
pipe.

N O T E

FIG. 27.6
The PipeApp
application uses pipes
to share data with three
threads.

32 1529-5 CH27 9/23/98, 4:21 PM616

617

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

Listing 27.9 PipeApp.java—The Main PipeApp Application

import java.io.*;
public class PipeApp {
 public static void main(String[] args) {
 PipeApp pipeApp = new PipeApp();
 try {
 FileInputStream XFileIn = new FileInputStream(“input.txt”);
 InputStream YInPipe = pipeApp.changeToY(XFileIn);
 InputStream ZInPipe = pipeApp.changeToZ(YInPipe);
 System.out.println();
 System.out.println(“Here are the results:”);
 System.out.println();
 BufferedReader reader = new BufferedReader(new
➥InputStreamReader(ZInPipe));
 String str = reader.readLine();
 while (str != null) {
 System.out.println(str);
 str = reader.readLine();
 }
 reader.close();
 }
 catch (Exception e) {
 System.out.println(e.toString());
 }
 }
 public InputStream changeToY(InputStream inputStream) {
 try {
 BufferedReader XFileIn = new BufferedReader(new
➥InputStreamReader(inputStream));
 PipedOutputStream pipeOut = new PipedOutputStream();
 PipedInputStream pipeIn = new PipedInputStream(pipeOut);
 PrintWriter printWriter = new PrintWriter(pipeOut);
 YThread yThread = new YThread(XFileIn, printWriter);
 yThread.start();
 return pipeIn;
 }
 catch (Exception e) {
 System.out.println(e.toString());
 }
 return null;
 }
 public InputStream changeToZ(InputStream inputStream) {
 try {
 BufferedReader YFileIn = new BufferedReader
➥(new InputStreamReader(inputStream));
 PipedOutputStream pipeOut2 = new PipedOutputStream();
 PipedInputStream pipeIn2 = new PipedInputStream(pipeOut2);
 PrintWriter printWriter2 = new PrintWriter(pipeOut2);
 ZThread zThread = new ZThread(YFileIn, printWriter2);
 zThread.start();
 return pipeIn2;
 }
 catch (Exception e) {
 System.out.println(e.toString());

Using Pipes

continues

32 1529-5 CH27 9/23/98, 4:21 PM617

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

618 Chapter 27 Files, Streams, and Java

Listing 27.9 Continued

 }
 return null;
 }
}

Listing 27.10 YThread.java—The Thread That Changes the Data to Ys

import java.io.*;
class YThread extends Thread {
 BufferedReader XFileIn;
 PrintWriter printWriter;
 YThread(BufferedReader XFileIn, PrintWriter printWriter) {
 this.XFileIn = XFileIn;
 this.printWriter = printWriter;
 }
 public void run() {
 try {
 String XString = XFileIn.readLine();
 while (XString != null) {
 String YString = XString.replace(‘X’, ‘Y’);
 printWriter.println(YString);
 printWriter.flush();
 XString = XFileIn.readLine();
 }
 printWriter.close();
 }
 catch (IOException e) {
 System.out.println(e.toString());
 }
 }
}

Listing 27.11 ZThread.java—The Thread That Changes the Data to All Zs

import java.io.*;
class ZThread extends Thread {
 BufferedReader YFileIn;
 PrintWriter printWriter;
 ZThread(BufferedReader YFileIn, PrintWriter printWriter) {
 this.YFileIn = YFileIn;
 this.printWriter = printWriter;
 }
 public void run() {
 try {
 String YString = YFileIn.readLine();
 while (YString != null) {
 String ZString = YString.replace(‘Y’, ‘Z’);
 printWriter.println(ZString);
 printWriter.flush();
 YString = YFileIn.readLine();
 }

32 1529-5 CH27 9/23/98, 4:21 PM618

619

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

 printWriter.close();
 }
 catch (IOException e) {
 System.out.println(e.toString());
 }
 }
}

Exploring the main() Method
Seeing the PipeApp application work and understanding why it works are two very different
things. In this section, you examine the program line by line to see what’s going on. The
PipeApp.java file is the main program thread, so you start your exploration there. This applica-
tion contains three methods: the main() method, which all applications must have; and the
changeToY() and changeToZ() methods, which start two additional threads.

Inside main(), the program first creates an application object for the program:

PipeApp pipeApp = new PipeApp();

This is necessary to be able to call the ChangeToY() and ChangeToZ() methods, which don’t
exist until the application object has been created. One way around this would be to make all
the class’s methods static, rather than just main(). Then, you could call the methods without
creating an object of the class.

After creating the application object, the program sets up a try program block because streams
require that IOException exceptions be caught in your code. Inside the try block, the program
creates an input stream for the source text file:

FileInputStream XFileIn = new FileInputStream(“input.txt”);

This new input stream is passed to the changeToY() method so that the next thread can read
the file:

InputStream YInPipe = pipeApp.changeToY(XFileIn);

The changeToY() method creates the thread that changes the input data to all Ys (you will see
how this method works in the following section, “Exploring the changeToY() Method”) and
returns the input pipe from the thread. The next thread can use this input pipe to access the
data created by the first thread. Therefore the input pipe is passed as an argument to the
changeToZ() method:

InputStream ZInPipe = pipeApp.changeToZ(YInPipe);

The changeToZ() method starts the thread that changes the data from all Ys to all Zs. The main
program uses the input pipe returned from changeToZ()to access the modified data and print it
onscreen.

After the program gets the ZInPipe piped input stream, it prints a message onscreen:

System.out.println();
System.out.println(“Here are the results:”);
System.out.println();

Using Pipes

32 1529-5 CH27 9/23/98, 4:21 PM619

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

620 Chapter 27 Files, Streams, and Java

Then, the program maps the piped input stream to a BufferedReader object, which enables the
program to read the data using the readLine() method:

BufferedReader reader = new BufferedReader(new InputStreamReader(ZInPipe));

After the input stream is created, the program can read the data in, line by line, and display it
onscreen (see Listing 27.12).

Listing 27.12 LST19_08.TXT—Reading and Displaying the Data Line by Line

String str = reader.readLine();
while (str != null)
{
 System.out.println(str);
 str = inputStream.readLine();
}

Finally, after displaying the data, the program closes the input stream:

reader.close();

Exploring the changeToY() Method
Inside the changeToY() method is the first place in the program you really get to see pipes in
action. Like main(), the changeToY() method does most of its processing inside a try program
block to catch IOException exceptions. The method first maps the source input stream, which
was passed as the method’s single parameter, to a DataInputStream object. This enables the
program to read data from the stream using the readLine() method:

BufferedReader XFileIn = new BufferedReader
(new InputStreamReader(inputStream));
Next, changeToY() creates the output pipe and input pipe:
PipedOutputStream pipeOut = new PipedOutputStream();
PipedInputStream pipeIn = new PipedInputStream(pipeOut);

Then, to be able to use the println() method to output text lines to the pipe, the program
maps the output pipe to a PrintStream object:

PrintWriter printWriter = new PrintWriter(pipeOut);

At this point, the method has four streams created:

■ The first (XFileIn) represents the data that will be read from the file.

■ The second and third (pipeOut and printWriter, which you can think of as the same
stream, if you like) are the output end of the pipe into which the new thread will output
its data.

■ The fourth (pipeIn) is the input side of the pipe from which the next thread will input its
data.

Figure 27.7 illustrates this situation.

32 1529-5 CH27 9/23/98, 4:21 PM620

621

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

Now the program can create the thread that changes the data from Xs to Ys. That thread is an
object of the YThread class, whose Constructor is passed the input file (XFileIn) and the out-
put pipe (now called printWriter) as arguments:

YThread yThread = new YThread(XFileIn, printWriter);

After creating the thread, the program starts the thread:

yThread.start();

As you soon see, the YThread thread reads data in from XFileIn, changes the data from Xs to
Ys, and outputs the result into printWriter, which is the output end of the pipe. Because the
output end of the pipe is connected to the input end (pipeIn), the input end contains the data
that the YThread thread changed to Ys. The program returns that end of the pipe from the
changeToY() method so that it can be used as the input for the changeToZ() method. Figure
27.8 shows the changeToY() portion of the chain.

Using Pipes

FIG. 27.7
These are the streams
created in the
changeToY()
method.

FIG. 27.8
The changeToY()
method reads in Xs and
send Ys into the pipe.

Exploring the changeToZ() Method
The changeToZ()method works similarly to the changeToY() method. However, because the
way each method accesses its streams is important to understanding the PipeApp application,
you examine changeToZ() line by line, too. The changeToZ() method starts by mapping its
input stream, which is the input end of the pipe returned from changeToY(), to a

32 1529-5 CH27 9/23/98, 4:21 PM621

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

622 Chapter 27 Files, Streams, and Java

BufferedReader object so that the program can read from the stream using the readLine()
method:

BufferedReader YFileIn = new BufferedReader(new InputStreamReader
➥(inputStream));

The program then creates a new pipe:

PipedOutputStream pipeOut2 = new PipedOutputStream();
PipedInputStream pipeIn2 = new PipedInputStream(pipeOut2);

This new pipe routes data from the third thread (counting the main thread) back to the main
program.

After creating the pipe, the program maps the output end to a PrintStream object so that data
can be sent into the pipe using the println() method:

PrintWriter printWriter2 = new PrintWriter(pipeOut2);

Next, the program creates a thread from the ZThread class, providing the input pipe created by
changeToY() and the new output pipe (mapped to printWriter2) as arguments to the class’s
Constructor:

ZThread zThread = new ZThread(YFileIn, printStream2);

The next line starts the thread:

zThread.start();

The ZThread thread reads data from the input pipe created by changeToY() that was stuffed
with data by the YThread thread, and then changes the data to Zs, and finally outputs the data
to the output pipe called printWriter2. The changeToZ() method returns the input half of this
pipe (pipeIn2) from the method, where the main program prints the stream’s contents
onscreen. You now have a stream scenario like that illustrated in Figure 27.9.

FIG. 27.9
The data travels a long
path as it’s changed
from all Ys to all Zs.

32 1529-5 CH27 9/23/98, 4:21 PM622

623

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

Exploring the YThread Class
You now should have a basic understanding of how the pipes work. The last part of the puzzle
is the way that the secondary threads, YThread and ZThread, service the pipes. Because the
two threads work almost identically, you examine only YThread.

YThread’s Constructor receives two parameters: the input file and the output end of the first
pipe. The Constructor saves these parameters as data members of the class:

this.XFileIn = XFileIn;
this.printWriter = printWriter;

With its streams in hand, the thread can start processing the data, which it does in its run()
method. First, the thread reads a line from the input file; then it starts a while loop that pro-
cesses all the data in the file. The first line read from the file before the loop begins ensures
that XString is not null, which would prevent the loop from executing:

String XString = XFileIn.readLine();
while (XString != null)

Inside the loop, the thread first changes the newly read data to all Ys:

String YString = XString.replace(‘X’, ‘Y’);

It then outputs the modified data to the output end of the pipe:

printWriter.println(YString);
printWriter.flush();

It’s important to flush the stream to ensure that all buffered data has been output into the pipe.

Next, the thread reads another line of data for the next iteration of the loop:

XString = XFileIn.readLine();

Finally, when the loop completes, the thread closes the piped output stream:

printWriter.close();

And that’s all there is to it. To put it simply, the thread does nothing more than read lines from
the input file, change the characters in the lines to Ys, and ship the changed data into the pipe,
from which it is retrieved from the next thread.

The ZThread thread works almost the same way, except its input stream is the input end of the
pipe into which YThread output its data. Finally, the input end of ZThread’s pipe feeds the main
program as the program reads the text lines and displays them onscreen.

Filtered Streams
One of the most powerful aspects of streams is that you can chain one stream to the end of
another. The basic input stream, for example, only provides a read method for reading bytes. If
you want to read strings and integers, you can attach a special data input stream to an input
stream and suddenly have methods for reading strings, integers, and even floats. The
FilterInputStream and FilterOutputStream classes provide the capability to chain streams
together. They don’t add any new methods, however. Their big contribution is that they are

Data Streams

32 1529-5 CH27 9/23/98, 4:21 PM623

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

624 Chapter 27 Files, Streams, and Java

“connected” to another stream. The Constructors for the FilterInputStream and
FilterOutputStream classes take InputStream and OutputStream objects as parameters:

public FilterInputStream(InputStream in)
public FilterOutputStream(OutputStream out)

Because these classes are themselves instances of InputStream and OutputStream, they can be
used as parameters to Constructors to other filters, enabling you to create long chains of input
and output filters.

The DataInputStream class, discussed later in this chapter, is a very useful filter that enables
you to read strings, integers, and other simple types from an input stream. In addition, the
LineNumberInputStream filter automatically counts lines as you read input. You can chain these
filters together to read data while counting the lines:

LineNumberInputStream lineCount = new LineNumberInputStream(
 System.in);
DataInputStream dataIn = new DataInputStream(lineCount);

Buffered Streams
Buffered streams help speed up your programs by reducing the number of reads and writes on
system resources. Suppose you have a program that is writing one byte at a time. You may not
want each write call to go out to the operating system, especially if it is writing to a disk. In-
stead, you would like the bytes to be accumulated into big blocks and written out in bulk. The
BufferedInputStream and BufferedOutputStream classes provide this functionality. When you
create them, you can provide a buffer size:

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int bufferSize)
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int bufferSize)

The BufferedInputStream class tries to read as much data into its buffer as possible in a single
read call; the BufferedOutputStream class only calls the write method when its buffer fills up,
or when flush is called.

Data Streams
The DataInputStream and DataOutputStream filters are two of the most useful filters in the
java.io package. They enable you to read and write Java primitive types in a machine-
independent fashion. This is important if you want to write data to a file on one machine and
read it in on another machine with a different CPU architecture. One of the most common
difficulties in transferring binary data between an Intel-based PC and a Sparc-based worksta-
tion, for example, is the different way the CPUs store integers. A number stored on a Sun as
0´12345678 would be interpreted by a PC as 0´78563412. Fortunately, the DataInputStream and
DataOutputStream classes take care of any necessary conversions automatically.

32 1529-5 CH27 9/23/98, 4:21 PM624

625

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

The DataInput Interface
The DataInputStream implements a DataInput interface. This interface defines methods for
reading Java primitive data types, as well as a few other methods.

The DataInput methods for reading primitive data types are as follows:

public boolean readBoolean() throws IOException, EOFException
public byte readByte() throws IOException EOFException
public char readChar() throws IOException, EOFException
public short readShort() throws IOException, EOFException
public int readInt() throws IOException, EOFException
public long readLong() throws IOException, EOFException
public float readFloat() throws IOException, EOFException
public double readDouble() throws IOException, EOFException

Sometimes you may need to read an unsigned byte or short (16-bit integer). You can use the
readUnsignedByte and readUnsignedShort to do that:

public int readUnsignedByte() throws IOException, EOFException
public int readUnsignedShort() throws IOException, EOFException

You might expect the DataInput interface to include a readString method. It does, but it isn’t
called readString. Instead, the method to read a string is called readUTF. UTF stands for
Unicode Transmission Format and is a special format for encoding 16-bit Unicode values. UTF
assumes that most of the time the upper 8 bits of a Unicode value will be 0 and optimizes with
that in mind. The definition of readUTF is as follows:

public String readUTF() throws IOException

Many times you want to read data from a text file, often one line at a time. The readLine
method reads in a line from a text file terminated by \r, \n, or end of file, stripping off the \r or
\n before returning the line as a string:

public String readLine() throws IOException, EOFException

When you are trying to read a fixed number of bytes into an array using the standard read
method in the InputStream class, you may have to call read several times because it may re-
turn before reading the full numbers of bytes you wanted. This is especially true when you are
transferring data over the network. The readFully methods explicitly wait for the full number
of bytes you have requested:

public void readFully(byte[] bytes)
 throws IOException, EOFException
public void readFully(byte[] bytes, int offset, int length)
 throws IOException, EOFException

Notice that the readFully methods do not return a number of bytes as the standard read meth-
ods do. This is because you should already know how many bytes will be read, either by the
size of the array in the first version of the method or the length parameter in the second. The
skipBytes method performs a function similar to the readFully method; that is, it waits until
the desired number of bytes have been skipped before returning. In fact, it is better to think of
the method as being called “skipBytesFully”.

public int skipBytes(int numBytes)

Conversion Between Bytes and Characters

32 1529-5 CH27 9/23/98, 4:21 PM625

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

626 Chapter 27 Files, Streams, and Java

The DataOutput Interface
The DataOutput interface defines the output methods that correspond to the input methods
defined in the DataInput interface. The methods defined by this interface are as follows:

public void writeBoolean(boolean b) throws IOException
public void writeByte(int b) throws IOException
public void writeChar(int c) throws IOException
public void writeShort(int c) throws IOException
public void writeInt(int i) throws IOException
public void writeLong(long l) throws IOException
public void writeFloat(float f) throws IOException
public void writeDouble(double d) throws IOException
public void writeUTF(String s) throws IOException

You can also write a string as a series of bytes or chars using the writeBytes and writeChars
methods:

public void writeBytes(String s) throws IOException
public void writeChars(String s) throws IOException

The DataInputStream and DataOutputStream Classes
The DataInputStream and DataOutputStream classes are just stream filters that implement the
DataInput and DataOutput interfaces. Their Constructors are typical stream filter
Constructors in that they just take the stream to filter as an argument:

public DataInputStream(InputStream in)
public DataOutputStream(OutputStream out)

Byte Array Streams
You don’t always have to write to a file or the network to use streams. You can write to and read
from arrays of bytes using the ByteArrayInputStream and ByteArrayOutputStream classes.
These streams are not filter streams like some of the others; they are input and output streams.

When you create a ByteArrayInputStream, you must supply an array of bytes that will serve as
the source of the bytes to be read from the stream.

public ByteArrayInputStream(byte[] bytes)

creates a byte input stream using the entire contents of bytes as the data in the stream.

public ByteArrayInputStream(byte[] bytes, int offset, int length)

creates a byte input stream that reads up to length bytes starting at position offset.

A ByteArrayOutputStream is an array of bytes that continually grows to fit the data stored in it.
The Constructor for the ByteArrayOutputStream class takes an optional initial size parameter
that determines the initial size of the array that stores the bytes written to the stream:

public ByteArrayOutputStream()
public ByteArrayOutputStream(int initialSize)

32 1529-5 CH27 9/23/98, 4:21 PM626

627

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

After you have written data to a ByteArrayOutputStream, you can convert the contents of the
stream to an array of bytes by calling toByteArray:

public synchronized byte[] toByteArray()

The size method returns the total number of bytes written to the stream so far:

public int size()

Char Array Streams
One of the differences between Java and languages such as C is that Java treats characters as
16-bit values rather than 8-bit values. Unfortunately, under Java 1.0, there was no 16-bit version
of the byte array streams. This encouraged programmers to treat characters as 8-bit values if
they wanted to use the byte array streams. Fortunately, with Java 1.1 changes were made to
include character array streams, but they are not called streams. Java 1.1 introduced a new
type of stream called a “Reader” or a “Writer,” depending on whether it is an input stream or an
output stream. The character version of the ByteArrayInputStream is called a
CharArrayReader, while the CharArrayWriter performs functions similar to the
ByteArrayOutputStream.

The CharArrayReader and CharArrayWriter classes function almost identically to their byte
array counterparts. They contain the same methods, only the char array streams use char
values everywhere the byte array streams use byte values. The constructors for
CharArrayReader and CharArrayWriter look like this, for example:

public CharArrayReader(char[] buf)
public CharArrayReader(char[] buf, int offset, int length)

public CharArrayWriter()
public CharArrayWriter(int size)

Conversion Between Bytes and Characters
Because many systems have previously treated characters as 8-bit values, you often encounter
situations where you need to convert an 8-bit value into a 16-bit Java character. Java characters
are 16 bits in order to support the Unicode standard, which supports a wide variety of interna-
tional character sets. Currently, many programmers just take the 8-bit value and assume the
upper 8 bits are 0. Unfortunately, that won’t work in all situations. Java 1.1 added a standard
mechanism for converting bytes into characters and characters into bytes. That doesn’t mean
there is a standard conversion, however. You still have to figure out what kind of conversion
you should perform. After you figure that out, there is a standard way for you to tell an I/O
stream how to convert characters.

The Reader and Writer classes represent a special category of input and output streams
geared toward character operations. These classes perform an automatic conversion between
bytes and characters. For each of the core input and output streams, there are Reader and

Conversion Between Bytes and Characters

32 1529-5 CH27 9/23/98, 4:21 PM627

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

628 Chapter 27 Files, Streams, and Java

Writer versions for doing character operations. The following Reader and Writer classes func-
tion identically to their stream counterparts, except that they take a Reader rather than an
InputStream, or a Writer rather than an OutputStream: BufferedReader, BufferedWriter,
FileReader, FileWriter, FilterReader, FilterWriter, PipedReader, PipedWriter,
PrinterWriter, and PushbackReader.

The InputStreamReader and OutputStreamWriter classes provide a bridge between streams
and the Reader/Writer classes. InputStreamReader takes an InputStream and provides a
Reader interface for it. The Constructor takes an optional encoding name, which is the name
of the character encoding used to translate bytes into characters:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)

Likewise, the OutputStreamWriter class provides a Writer interface for an OutputStream, and
also can take an optional encoding parameter:

public OutputStreamWriter(OutputStream out)
public OutputStreamWriter(OutputStream out, String encoding)

The Reader and Writer classes enable you to support international character sets in your pro-
grams in a seamless manner. If your programs are reading and writing data that could poten-
tially be in another language, you should use the Reader/Writer objects rather than streams.

The StringBufferInputStream
The StringBufferInputStream is a close cousin to the ByteArrayInputStream. The only differ-
ence between the two is that the StringBufferInputStream Constructor takes a string as the
source of the stream’s characters rather than a byte array:

public StringBufferInputStream(String str)

Object Streams
When Sun added Remote Method Invocation (RMI) to Java, it also added the capability to
stream arbitrary objects. The ObjectInput and ObjectOutput interfaces define methods for
reading and writing any object, in the same way that DataInput and DataOutput define meth-
ods for reading and writing primitive types. In fact, the ObjectInput and ObjectOutput inter-
faces extend the DataInput and DataOutput interfaces. The ObjectInput interface adds a
single input method:

public abstract Object readObject()
throws ClassNotFoundException, IOException

Similarly, the ObjectOutput interface adds a single output method:

public abstract void writeObject(Object obj)
throws IOException

32 1529-5 CH27 9/23/98, 4:21 PM628

629

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

The ObjectOutputStream implements a stream filter that enables you to write any object to a
stream, as well as any primitive type. Like most stream filters, you create an
ObjectOutputStream by passing it an OutputStream:

public OutputStream(OutputStream outStream)

You can use the writeObject method to write any object to the stream:

public final void writeObject(Object ob)
throws ClassMismatchException, MethodMissingException, IOException

Because the ObjectOutputStream is a subclass of DataOutputStream, you can also use any of
the methods from the DataOutput interface, such as writeInt or writeUTF.

Listing 27.13 shows a program that uses writeObject to stream a date and hash table to a file.

Listing 27.13 Source Code for WriteObject.java

import java.io.*;
import java.util.*;

// This class writes out a date object and a hash table object
// to a file called “writeme” using an ObjectOutputStream.

public class WriteObject extends Object
{
 public static void main(String[] args)
 {

// Create a hash table with a few entries

 Hashtable writeHash = new Hashtable();
 writeHash.put(“Leader”, “Moe”);
 writeHash.put(“Lieutenant”, “Larry”);
 writeHash.put(“Stooge”, “Curly”);

 try {

// Create an output stream to a file called “writeme”
 FileOutputStream fileOut =
 new FileOutputStream(“writeme”);

// Open an output stream filter on the file stream
 ObjectOutputStream objOut =
 new ObjectOutputStream(fileOut);

// Write out the current date and the hash table
 objOut.writeObject(new Date());
 objOut.writeObject(writeHash);

// Close the stream
 objOut.close();

 } catch (Exception writeErr) {

continues

Object Streams

32 1529-5 CH27 9/23/98, 4:21 PM629

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

630 Chapter 27 Files, Streams, and Java

Listing 27.13 Continued

// Dump out any error information
 writeErr.printStackTrace();
 }
 }
}

The ObjectInputStream, as you might have guessed, implements a stream filter for the
ObjectInput interface. You create an ObjectInputStream by passing it the input stream you
want it to filter:

public ObjectInputStream(InputStream inStream)

The readObject method reads an object from the input stream:

public final Object readObject()
throws MethodMissingException, ClassMismatchException
 ClassNotFoundException, StreamCorruptedException, IOException

You can also use any of the methods from the DataInput interface on an ObjectInputStream.

Listing 27.14 shows a program that uses readObject to read the objects written to the
“writeme” file by the example in Listing 27.13.

Listing 27.14 Source Code for ReadObject.java

import java.io.*;
import java.util.*;

// This class opens up the file “writeme” and reads two
// objects from it. It makes no assumptions about the
// types of the objects, it just prints them out.

public class ReadObject extends Object
{
 public static void main(String[] args)
 {
 try {

// Open an input stream to the file “writeme”
 FileInputStream fileIn =
 new FileInputStream(“writeme”);

// Create an ObjectInput filter on the stream
 ObjectInputStream objIn =
 new ObjectInputStream(fileIn);

// Read in the first object and print it
 Object ob1 = objIn.readObject();
 System.out.println(ob1);

// Read in the second object and print it
 Object ob2 = objIn.readObject();
 System.out.println(ob2);

32 1529-5 CH27 9/23/98, 4:21 PM630

631

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

// Close the stream
 objIn.close();

 } catch (Exception writeErr) {
// Dump any errors
 writeErr.printStackTrace();
 }
 }
}

If you do not have the latest version of Java, you can download the object serialization exten-
sions from www.javasoft.com.

Other Streams
Java also provides a number of utility filters. These filters are special in that they do not exist in
pairs—that is, they work exclusively for either input or output.

The LineNumberReader Class
The LineNumberReader enables you to track the current line number of an input stream. As
usual, you create a LineNumberReader by passing it the input stream you want it to filter:

public LineNumberReader(new InputStreamReader(InputStream inStream))

The getLineNumber method returns the current line number in the input stream:

public int getLineNumber()

By default, the lines are numbered starting at 0. The line number is incremented every time an
entire line has been read. You can set the current line number with the setLineNumber method:

public void setLineNumber(int newLineNumber)

Listing 27.15 shows a program that prints the contents of standard input along with the current
line number.

Listing 27.15 Source Code for PrintLines.java

import java.io.*;

// This class reads lines from standard input (System.in) and
// prints each line along with its line number.

public class PrintLines extends Object {
 public static void main(String[] args) {

 // Set up a line number input filter to count the line numbers
 LineNumberReader lineCounter = new LineNumberReader
➥(new InputStreamReader(System.in));

Other Streams

continues

32 1529-5 CH27 9/23/98, 4:21 PM631

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

632 Chapter 27 Files, Streams, and Java

Listing 27.15 Continued

 try {
 while (true) {

 // Read in the next line
 String nextLine = lineCounter.readLine();

 // If readLine returns null, we’ve hit the end of the file
 if (nextLine == null) break;

 // Print out the current line number followed by the line
 System.out.print(lineCounter.getLineNumber());
 System.out.print(“: “);
 System.out.println(nextLine);
 }
 } catch (Exception done) {
 done.printStackTrace();
 }
 }
}

The SequenceInputStream Class
The SequenceInputStream filter enables you to treat a number of input streams as one big
input stream. This is useful if you want to read from a number of data files but you don’t really
care where one file stops and another starts. If you have a situation where you can just as easily
combine all your input files into one big file, this stream will probably be of some use. You can
create a SequenceInputStream that combines two streams by passing both streams to the
Constructor:

public SequenceInputStream(InputStream stream1, InputStream stream2)

If you want more than two streams, you can pass an enumeration to the Constructor:

public SequenceInputStream(Enumeration e)

The enumeration should return the input stream objects you want to combine. A simple way to
implement this is to stick all your input streams in a vector and use the vector’s elements
method:

Vector v = new Vector();
v.addElement(stream1);
v.addElement(stream2);
v.addElement(stream3);
v.addElement(stream4); // and so on_
InputStream seq = new SequenceInputStream(v.elements());

If you want to combine three streams, you can also create a chain of SequenceInputStreams
this way:

InputStream seq = new SequenceInputStream(stream1,
new SequenceInputStream(stream2, stream3));

32 1529-5 CH27 9/23/98, 4:21 PM632

633

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

The PushbackInputStream Class
The PushbackInputStream is a special stream that enables you to peek at a single character in
an input stream and push it back onto the stream. This technique is often used in creating
lexical scanners that peek at a character, put it back on the stream, and then read the character
again as part of a larger input. You might see that the next character is a digit, for example, so
you put it back and call your routine that reads in a number. At this point, you might be think-
ing that to create a PushbackInputStream filter you only need to pass the input stream you
want it to filter. You are correct:

public PushbackInputStream(InputStream inStream)

The unread method pushes a character back into the input stream:

public void unread(int ch) throws IOException

This character is the first one read the next time the stream is read. The character that gets
pushed back does not have to be the most recent character read. In other words, you can read
a character off a stream, then unread a completely different character. You can only unread one
character at a time, however.

The StreamTokenizer Class
The StreamTokenizer class implements a simple lexical scanner that breaks up a stream of
characters into a stream of tokens. If you think of a stream of characters as being a sentence,
the tokens represent the words and punctuation marks that make up the sentence. You create a
StreamTokenizer filter by passing it the input stream you want it to filter:

public StringTokenizer(InputStream inStream)

After you have created the filter, you can use the nextToken method to retrieve that token from
the stream:

public int nextToken() throws IOException

The nextToken method returns either a single character or one of the following constants:

■ StreamTokenizer.TT_WORD

■ StreamTokenizer.TT_NUMBER

■ StreamTokenizer.TT_EOL

■ StreamTokenizer.TT_EOF

If the token value returned is TT_WORD, the sval instance variable contains the actual value of
the word:

public String sval

If the token value is TT_NUMBER, the nval instance variable contains the numeric value of the
token:

public double nval

The TT_EOL and TT_EOF tokens represent the end of a line and the end of a file respectively.

The StreamTokenizer Class

32 1529-5 CH27 9/23/98, 4:21 PM633

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

634 Chapter 27 Files, Streams, and Java

You can specify which characters make up a word by calling the wordChars method with the
starting and ending characters for a range of characters:

public void wordChars(int lowChar, int highChar)

The wordChars calls are additive, so subsequent calls to wordChars add to the possible word
characters instead of replacing them. The default set of word characters is defined by the fol-
lowing calls:

tokenizer.wordChars(‘A’, ‘Z’); // All upper-case letters
tokenizer.wordChars(‘a’, ‘z’); // All lower-case letters
tokenizer.wordChars(150, 255); // Other special characters
 // outside 7-bit ascii range

If you were writing a program to parse Java programs, you might also want to add ‘$’ and ‘_’
to the valid word chars, because these may appear in Java identifiers. You would do this with
the following pair of calls:

tokenizer.wordChars(‘$’, ‘$’);
tokenizer.wordChars(‘_’, ‘_’);

One of the things that delimits a token is whitespace. Whitespace is not a token itself, but it can
define where one token starts and another stops. The phrase “Nyuk nyuk nyuk,” for example,
contains three TT_WORD tokens, separated by whitespace. The phrase “Nyuk, nyuk, nyuk” actu-
ally contains five tokens—three nyuks and two ‘,’ tokens. In each case, the whitespace is
ignored. The typical whitespace characters are as follows:

■ ‘ ‘

■ ‘\t’ (tab)

■ ‘\n’ (newline)

■ ‘\r’ (carriage return)

■ ‘\f’ (form feed)

■ The end of the file

You can define the whitespace characters with the whitespaceChars method, which is also
additive like the wordChars method:

public void whitespaceChars(int lowChar, int highChar)

You can define the default set of whitespace characters with:

tokenizer.whitespaceChars(‘ ‘, ‘ ‘);
tokenizer.whitespaceChars(‘\t’, ‘\t’);
tokenizer.whitespaceChars(‘\n’, ‘\n’);
tokenizer.whitespaceChars(‘\r’, ‘\r’);
tokenizer.whitespaceChars(‘\f’, ‘\f’);

Sun took a shortcut, however, and defined all control characters as whitespace, along with the
space character. In other words, characters such as escape and backspace are considered to be
whitespace by the StreamTokenizer. Doing this allows the tokenizer to set its whitespace char-
acters with a single call:

tokenizer.whitespaceChars(0, ‘ ‘);

32 1529-5 CH27 9/23/98, 4:21 PM634

635

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

27

IV
Part

Ch

The StreamTokenizer can also handle comments. It does not deal very well with
multicharacter comment characters, or with quote-like comments other than those that Java
uses. It can handle //-style comments, and also the /*-*/ comments found in Java and C++,
but it cannot handle the (*-*) comments found in Pascal. To allow the //-style comments to
be parsed, pass true to the slashSlashComments method:

public void slashSlashComments(boolean allowSlashSlash)

To activate the /*-*/ comments, pass true to slashStarComments:

public void slashStarComments(boolean allowSlashStar)

In addition to these two methods, you can also flag an individual character as a comment char-
acter with the commentChar method:

public void commentChar(int commentChar)

The comment characters are considered to be single-line comments, which means that when
one is encountered, the rest of the line is ignored and parsing begins again on the next line.
The commentChar method is additive, so you can set multiple comment characters by calling
this method multiple times.

CAUTION

The StreamTokenizer sets / as a comment character by default. You may want to set it to be an ordinary
character with the ordinaryChar method. Otherwise, any time the tokenizer encounters a single /, it will
skip it and everything else up to the end of line.

You can undo any special settings for a character or a range of characters by calling the
ordinaryChar or ordinaryChars methods:

public void ordinaryChar(int ch)
public void ordinaryChars(int loadChar, int highChar)

These methods undo any special significance to a character. If you set the ‘$’ and ‘_’ charac-
ters to be word characters and then decide that they shouldn’t be, you can make them ordinary
characters again by using the following:

tokenizer.ordinaryChar(‘$’);
tokenizer.ordinaryChar(‘_’);

The StreamTokenizer also recognizes characters as quote characters. When the tokenizer
encounters a quote character, it takes all the other characters up to the next quote character
and puts them in the string value stored in sval, and then it returns the quote character as the
token value. You can flag a character as being a quote character by calling quoteChar:

public void quoteChar(int ch)

The default quote characters are ‘ and “.

The StreamTokenizer Class

32 1529-5 CH27 9/23/98, 4:21 PM635

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH27 LP#4

636 Chapter 27 Files, Streams, and Java

Normally the words returned for a TT_WORD token are stored exactly as they appear in the input
stream. However, if you want tokens to be non–case-sensitive—in other words, if you want
FOO, Foo, and foo to be the same—you can ask the tokenizer to automatically convert words
to all lowercase by passing true to the lowerCaseMode method:

public void lowerCaseMode(boolean shiftToLower)

The parseNumbers method tells the tokenizer to accept floating-point numbers:

public void parseNumbers()

If this method is not called, the tokenizer treats the number 3.14159 as three separate tokens—
3, ., and 14159. This method is called automatically by the StreamTokenizer Constructor. The
only time you need to call it is if you call resetSyntax.

The resetSyntax method completely clears out the tokenizer’s tables:

public void resetSyntax()

CAUTION

Because of the way StreamTokenizer is designed, it requires the space character (‘ ‘) to be something
other than an ordinary character. If you call resetSyntax, you must then set space to be either
whitespace, a word character, a comment character, or a quote character. Otherwise, the tokenizer cannot
read characters from the stream.

32 1529-5 CH27 9/23/98, 4:21 PM636

637

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

C H A P T E R

Using Strings and Text

Introducing Strings 638

Using the String Class 638

Using the StringBuffer Class 651

Using the StringTokenizer Class 651

Dealing with Fonts 654

28

In this chapter

33 1529-5 CH28 9/23/98, 4:24 PM637

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

638 Chapter 28 Using Strings and Text

Introducing Strings
String handling in C or C++ (the languages that inspired Java) is infamously clunky. Java solves
that problem the same way many C++ programmers do: by creating a String class. Java’s
String class enables your programs to manage text strings effortlessly, using statements simi-
lar to those used in simpler languages such as BASIC or Pascal. Java also makes it easy to
handle fonts, which determine the way that your text strings appear onscreen.

So, what exactly is a string, anyway? In its simplest form, a string is nothing more than one or
more text characters arranged consecutively in memory. You can think of a string as an array
of characters, with this array having an index that starts at zero. (That is, the first character in
the string is at array index 0.) Unfortunately, few computer languages deal with strings in such
a simple form. This is because a program needs to know where a string ends, and there are
several different solutions to the length problem. Pascal, for example, tacks the length of the
string onto the front of the characters, whereas C++ expects to find a null character (a zero) at
the end of the string.

In Java, strings are represented by one of two classes:

■ String Best used for string constants—that is, for strings that are not going to change
after they’re created.

■ StringBuffer Used for strings that require a lot of manipulation.

With the String class, although you can do operations such as find, compare, and
concatenate characters, you cannot insert new characters into the string or change the

length of the string (except through concatenation—which actually creates a new string anyway). ■

Within an object of the String or StringBuffer class, Java creates an array of characters much
like that used for strings in C++ programs. Because this character array is hidden within the
class, however, it cannot be accessed except through the class’s methods. This data encapsula-
tion (a key feature of object-oriented programming, by the way) ensures that the string will be
maintained properly and will be manipulated in accordance with the rules of the class (repre-
sented by the methods).

Figures 28.1 and 28.2 illustrate this concept. In Figure 28.1, a conventional C++ string is left hanging
in memory where the program can manipulate it at will, regardless of whether said manipulation
makes sense or results in a fatal error. In Figure 28.2, the string is protected by the methods of the
class—the only way through which the program can access the string.

Using the String Class
In Java, you create strings by creating an object of the String or StringBuffer class. This
String object can be created implicitly or explicitly depending on how the string is being used
in the program. To create a string implicitly, you just place a string literal in your program, and

N O T E

33 1529-5 CH28 9/23/98, 4:24 PM638

639

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

Java goes ahead and creates a String object for the string automatically. This is because, even
internally, Java uses String objects to represent string literals. Look at this line, for example:

g.drawString(“This is a string”, 50, 50);

FIG. 28.1
In conventional
programs, strings can
be accessed directly by
the program, leading to
complications and
errors.

FIG. 28.2
By using a String
class, the string can be
accessed only through
the class’s methods,
which eliminates many
potential errors.

You are (or rather Java is) implicitly creating a String object for the string literal “This is a
string”. Every time you refer to a string this way in a Java program, you’re creating a String
object.

The other way to create a String object is to explicitly instantiate an object of the String class.
The String class has seven Constructors, so there are plenty of ways to explicitly create a
String object, the most obvious way being this:

String str = new String(“This is a string”);

You can also declare a String object and then set its value later in the program, like this:

String str;
str = “This is a string”;

Using the String Class

33 1529-5 CH28 9/23/98, 4:24 PM639

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

640 Chapter 28 Using Strings and Text

Or, you can combine both of the approaches and end up with this:

String str = “This is a string”;

Finally, any of the following lines create a null string:

String str = new String();
String str = “”;
String str = “”;

Although the preceding examples are the most common ways of explicitly creating String
objects, the String class offers several alternatives. The seven String class’s constructors look
like this:

public String()
public String(String value)
public String(char value[])
public String(char value[], int offset, int count)
public String(byte ascii[], int hibyte, int offset, int count)
public String(byte ascii[], int hibyte)
public String (StringBuffer buffer)

These constructors create, respectively, the following:

■ Null string

■ String object from another String object (including from a string literal)

■ String from an array of characters

■ String from a subarray of characters

■ Unicode String from a subarray of bytes using hibyte as the high byte for each Unicode
character

■ Unicode String from an array of bytes using hibyte as the high byte for each Unicode
character

■ String from a StringBuffer object

CAUTION

There’s a big difference between a null String object and a null string. When you declare a String object
with a line such as String str;, you are declaring an object of the String class that has not yet been
instantiated. That is, there is not yet a String object associated with str, meaning that the String object
is null. When you create a String object with a line such as String str = “”;, you are creating a fully
instantiated String object whose string contains no characters (has a string length of zero). This is called a
null string.

Getting Information About a String Object
After you have your String object constructed, you can call upon the String class’s methods to
obtain information about the string. To get the length of the string, for example, you can call
the length() method, like this:

33 1529-5 CH28 9/23/98, 4:24 PM640

641

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

String str = “This is a string”;
int len = str.length();

These lines set len to 16, which is the length of the string (including spaces, of course).

If you want to know whether a string starts with a certain prefix, you can call the startsWith()
method, like this:

String str = “This is a string”;
boolean result = str.startsWith(“This”);

Here, the boolean variable result is equal to true, because str does indeed start with “This”.
In the following example, result is false:

String str = “This is a string”;
boolean result = str.startsWith(“is”);

A similar method is endsWith(), which determines whether the String object ends with a
given set of characters. You use that method as follows:

String str = “This is a string”;
boolean result = str.endsWith(“string”);

In this example, result ends up equal to true, whereas the following code segment sets
result equal to false:

String str = “This is a string”;
boolean result = str.endsWith(“This”);

If you’re setting up a table for strings that you want to be able to locate quickly, you can use a
hash table. To get a hash code for a string, you can call the hashCode() method:

String str = “This is a string”;
int hashcode = str.hashCode();

◊ See “The Hashtable Class,” p. 1059

If you want to find the location of the first occurrence of a character within a string, use the
indexOf() method:

String str = “This is a string”;
int index = str.indexOf(‘a’);

In this example, index is equal to 8, which is the index of the first a in the string.

To find the location of subsequent characters, you can use two versions of the indexOf()
method. To find the first occurrence of ‘i’, for example, you might use these lines:

String str = “This is a string”;
int index = str.indexOf(‘i’);

This gives index a value of 2. To find the next occurrence of “i,” you can use a line similar to
this:

index = str.indexOf(‘i’, index+1);

Using the String Class

33 1529-5 CH28 9/23/98, 4:25 PM641

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

642 Chapter 28 Using Strings and Text

By including the index+1 as the method’s second argument, you’re telling Java to start search-
ing at index 3 in the string (the old value of index, plus 1). This results in index being equal to
5, which is the location of the second occurrence of “i” in the string. If you called the previous
line again, index would be equal to 13, which is the location of the third “i” in the string.

You can also search for characters backward through a string, using the lastIndexOf()
method:

String str = “This is a string”;
int index = str.lastIndexOf(“i”);

Here, index is equal to 13. To search backward for the next “i,” you might use a line like this:

index = str.lastIndexOf(‘i’, index-1);

Now, index is equal to 5, because the index–1 as the second argument tells Java where to
begin the backward search. The variable index was equal to 13 after the first call to
lastIndexOf(), so in the second call, index–1 equals 12.

There are also versions of indexOf() and lastIndexOf() that search for substrings within a
string. The following example sets index to 10, for instance:

String str = “This is a string”;
int index = str.indexOf(“string”);

Listing 28.1 is an applet that gives you a chance to experiment with the indexOf() method.
Listing 28.2 is the HTML document that loads the applet. When you run the applet, enter a
string into the first text box and a substring for which to search in the second box. When you
click the Search button, the applet displays the index at which the substring is located (see
Figure 28.3).

FIG. 28.3
The StringApplet
applet searches for
substrings.

Listing 28.1 StringApplet.java—An Applet That Searches for Substrings

import java.awt.*;
import java.applet.*;
public class StringApplet extends Applet
{

33 1529-5 CH28 9/23/98, 4:25 PM642

643

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

 TextField textField1;
 TextField textField2;
 Button button1;
 String displayStr;
 public void init()
 {
 Label label = new Label(“String:”);
 add(label);
 textField1 = new TextField(20);
 add(textField1);
 label = new Label(“substr:”);
 add(label);
 textField2 = new TextField(20);
 add(textField2);
 button1 = new Button(“Search”);
 add(button1);
 displayStr = “”;
 resize(230, 200);
 }
 public void paint(Graphics g)
 {
 g.drawString(displayStr, 80, 150);
 }
 public boolean action(Event evt, Object arg)
 {
 if (arg == “Search”)
 {
 String str = textField1.getText();
 String substr = textField2.getText();
 int index = str.indexOf(substr);
 displayStr = “Located at “ + str.valueOf(index);
 repaint();
 return true;
 }
 else
 return false;
 }
}

Listing 28.2 STRINGAPPLET.HTML—StringApplet’s HTML Document

<title>Applet Test Page</title>
<h1>Applet Test Page</h1>
<applet
 code=”StringApplet.class”
 width=200
 height=200
 name=”StringApplet”>
</applet>

Using the String Class

33 1529-5 CH28 9/23/98, 4:25 PM643

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

644 Chapter 28 Using Strings and Text

Comparing Strings
Often, you need to know when two strings are equal. You might want to compare a string en-
tered by the user to another string hard-coded in your program, for example. There are two
basic ways you can compare strings:

■ Calling the equals() method

■ Using the normal comparison operator

The equals() method returns true when the two strings are equal and false otherwise.
Here’s an example:

String str = “This is a string”;
boolean result = str.equals(“This is a string”);

Here, the boolean variable result is equal to true. You could also do something similar using
the comparison operator:

String str = “This is a string”;
if (str == “This is a string”)
 result = true;

This also results in result being true.

Although these two methods are the easiest way to compare strings, the String class gives you
many other options. The equalsIgnoreCase() method compares two strings without regard for
upper- or lowercase letters. That is, the following code sets result to false because equals()
considers the case of the characters in the string:

String str = “THIS IS A STRING”;
boolean result = str.equals(“this is a string”);

This code fragment, however, sets result to true:

String str = “THIS IS A STRING”;
boolean result = str.equalsIgnoreCase(“this is a string”);

If you want to know more than just whether the strings are equal, you can call on the
compareTo() method, which returns a value less than zero when the String object is less than
the given string, zero when the strings are equal, and greater than zero if the String object is
greater than the given string. The comparison is done according to alphabetic order (or, if you
want to be technical about it, according to the ASCII values of the characters). So, this code
segment sets result to a value greater than zero because “THIS IS A STRING” is greater than
“ANOTHER STRING”:

String str = “THIS IS A STRING”;
int result = str.compareTo(“ANOTHER STRING”);

33 1529-5 CH28 9/23/98, 4:25 PM644

645

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

The following comparison, however, results in a result being set to a value less than zero,
because “THIS IS A STRING” is less than “ZZZ ANOTHER STRING”:

String str = “THIS IS A STRING”;
int result = str.compareTo(“ZZZ ANOTHER STRING”);

Finally, the following comparison results in zero because the strings are equal:

String str = “THIS IS A STRING”;
int result = str.compareTo(“THIS IS A STRING”);

C and C++ programmers will be very familiar with this form of string comparison.

If you really want to get fancy with your string comparisons, you can dazzle your Java program-
ming buddies by using the regionMatches() method, which enables you to compare part of
one string with part of another. Here’s an example:

String str = “THIS IS A STRING”;
boolean result = str.regionMatches(10, “A STRING”, 2, 6);

The regionMatches() method’s four arguments are as follows:

■ Where to start looking in the source string

■ The string to compare to

■ The location in the comparison string at which to start looking

■ The number of characters to compare

The preceding example sets result to true. In this case, Java starts looking in “THIS IS A
STRING” at the tenth character (starting from 0), which is the S in STRING. Java also starts its
comparison at the second character of the given string “A STRING,” which is also the S in
STRING. Java compares six characters starting at the given offsets, which means it is compar-
ing STRING with STRING, a perfect match.

There’s also a version of regionMatches() that is non–case-sensitive. The following example
sets result to true:

String str = “THIS IS A STRING”;
boolean result = str.regionMatches(true, 10, “A string”, 2, 6);

The new first argument in this version of regionMatches() is a boolean value indicating
whether the comparison should be non–case-sensitive. A value of true tells Java to ignore the
case of the characters. A value of false for this argument results in exactly the same sort of
case-sensitive comparison you get with the four-argument version of regionMatches().

Listing 28.3 is an applet that gives you a chance to experiment with the compareTo() method.
Listing 28.4 is the HTML document that runs the applet. When you run the applet, enter a
string into each text box. When you click the Compare button, the applet determines how the
strings compare and displays the results (see Figure 28.4).

Using the String Class

33 1529-5 CH28 9/23/98, 4:25 PM645

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

646 Chapter 28 Using Strings and Text

Listing 28.3 StringApplet2.java—An Applet That Compares Strings

import java.awt.*;
import java.applet.*;
public class StringApplet2 extends Applet
{
 TextField textField1;
 TextField textField2;
 Button button1;
 String displayStr;
 public void init()
 {
 Label label = new Label(“String 1:”);
 add(label);
 textField1 = new TextField(20);
 add(textField1);
 label = new Label(“String 2:”);
 add(label);
 textField2 = new TextField(20);
 add(textField2);
 button1 = new Button(“Compare”);
 add(button1);
 displayStr = “”;
 resize(230, 200);
 }
 public void paint(Graphics g)
 {
 g.drawString(displayStr, 30, 150);
 }
 public boolean action(Event evt, Object arg)
 {
 if (arg == “Compare”)
 {
 String str1 = textField1.getText();
 String str2 = textField2.getText();
 int result = str1.compareTo(str2);
 if (result < 0)
 displayStr = “String1 is less than String2”;
 else if (result == 0)

FIG. 28.4
Here’s
StringApplet2
comparing two strings.

33 1529-5 CH28 9/23/98, 4:25 PM646

647

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

 displayStr = “String1 is equal to String2”;
 else
 displayStr = “String1 is greater than String2”;
 repaint();
 return true;
 }
 else
 return false;
 }
}

Listing 28.4 STRINGAPPLET2.HTML—StringApplet2’s HTML Document

<title>Applet Test Page</title>
<h1>Applet Test Page</h1>
<applet
 code=”StringApplet2.class”
 width=200
 height=200
 name=”StringApplet2">
</applet>

String Extraction
There may be many times in your programming career when you want to extract portions of a
string. The String class provides for these needs with a set of methods for just this purpose.
You can determine the character at a given position in the string, for example, by calling the
charAt() method, like this:

String str = “This is a string”;
Char chr = str.charAt(6);

In these lines, the character variable chr ends up with a value of “s”, which is the fifth character
in the string. Why didn’t chr become equal to “i”? Because, as in C and C++, you start counting
array elements at zero rather than one.

A similar method, getChars(), enables you to copy a portion of a String object to a character
array:

String str = “This is a string”;
char chr[] = new char[20];
str.getChars(5, 12, chr, 0);

In this code sample, the character array chr ends up containing the characters “is a st.” The
getChars() method’s arguments are the index of the first character in the string to copy, the
index of the last character in the string, the destination array, and where in the destination
array to start copying characters.

Using the String Class

33 1529-5 CH28 9/23/98, 4:25 PM647

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

648 Chapter 28 Using Strings and Text

The method getBytes() does the same thing as getChars(), but uses a byte array as the desti-
nation array:

String str = “This is a string”;
byte byt[] = new byte[20];
str.getBytes(5, 12, byt, 0);

Another way to extract part of a string is to use the substring() method:

String str1 = “THIS IS A STRING”;
String str2 = str1.substring(5);

In this case, the String object str2 ends up equal to the substring “IS A STRING”. This is
because substring()’s single argument is the index of the character at which the substring
starts. Every character from the index to the end of the string gets extracted.

If you don’t want to extract all the way to the end of the string, you can use the second version
of the substring() method, whose arguments specify the beginning and ending indexes:

 String str1 = “THIS IS A STRING”;
 String str2 = str1.substring(5, 9);

These lines set str2 to the substring IS A.

Listing 28.5 is an applet that gives you a chance to experiment with the indexOf() method.
Listing 28.6 is the HTML document that runs the applet. When you run the applet, enter a
string into the first text box. Then, enter the starting and ending indexes for a substring in the
second and third boxes. When you click the Extract button, the applet finds and displays the
selected substring (see Figure 28.5).

FIG. 28.5
StringApplet3 is
running under
AppletViewer.

CAUTION

There’s no error checking in Listing 28.5, so make sure your indexes are correct. Otherwise, Java generates
an exception.

33 1529-5 CH28 9/23/98, 4:25 PM648

649

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

Listing 28.5 StringApplet3.java—An Applet That Extracts Substrings

import java.awt.*;
import java.applet.*;
public class StringApplet3 extends Applet
{
 TextField textField1;
 TextField textField2;
 TextField textField3;
 Button button1;
 String displayStr;
 public void init()
 {
 Label label = new Label(“String:”);
 add(label);
 textField1 = new TextField(20);
 add(textField1);
 label = new Label(“Start:”);
 add(label);
 textField2 = new TextField(5);
 add(textField2);
 label = new Label(“End:”);
 add(label);
 textField3 = new TextField(5);
 add(textField3);
 button1 = new Button(“Extract”);
 add(button1);
 displayStr = “”;
 resize(230, 200);
 }
 public void paint(Graphics g)
 {
 g.drawString(“Selected substring:”, 70, 130);
 g.drawString(displayStr, 70, 150);
 }
 public boolean action(Event evt, Object arg)
 {
 if (arg == “Extract”)
 {
 String str1 = textField1.getText();
 String str2 = textField2.getText();
 String str3 = textField3.getText();
 int start = Integer.parseInt(str2);
 int end = Integer.parseInt(str3);
 displayStr = str1.substring(start, end);
 repaint();
 return true;
 }
 else
 return false;
 }
}

Using the String Class

33 1529-5 CH28 9/23/98, 4:25 PM649

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

650 Chapter 28 Using Strings and Text

Listing 28.6 STRINGAPPLET3.HTML—StringApplet3’s HTML Document

<title>Applet Test Page</title>
<h1>Applet Test Page</h1>
<applet
 code=”StringApplet3.class”
 width=200
 height=200
 name=”StringApplet3">
</applet>

String Manipulation
Although the String class is intended to be used for string constants, the class does provide
some string-manipulation methods that “modify” the String object. The word modify is in quo-
tation marks here because these string-manipulation methods don’t actually change the String
object, but rather create an additional String object that incorporates the requested changes. A
good example is the replace() method, which enables you to replace any character in a string
with another character:

String str1 = “THIS IS A STRING”;
String str2 = str1.replace(‘T’, ‘X’);

In this example, str2 contains “XHIS IS A SXRING” because the call to replace() requests
that every occurrence of a T be replaced with an X. Note that str1 remains unchanged and
that str2 is a brand new String object.

Another way you can manipulate strings is to concatenate them. Concatenate is just a fancy
term for “join together.” So, when you concatenate two strings, you get a new string that con-
tains both of the original strings. Look at these lines of Java source code, for example:

String str1 = “THIS IS A STRING”;
String str2 = str1.concat(“XXXXXX”);

Here, str2 contains “THIS IS A STRINGXXXXXX”, whereas str1 remains unchanged. As you
can see, the concat() method’s single argument is the string to concatenate with the original
string.

To make things simpler, the String class defines an operator, the plus sign (+), for concatenat-
ing strings. By using this operator, you can join strings in a more intuitive way. Here’s an ex-
ample:

String str1 = “THIS IS A STRING”;
String str2 = str1 + “XXXXXX”;

This code segment results in exactly the same strings as the preceding concat() example.
Note that you can use the concatenation operator many times in a single line, like this:

String str = “This “ + “is “ + “a test”;

33 1529-5 CH28 9/23/98, 4:25 PM650

651

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

If you want to be certain of the case of characters in a string, you can rely on the
toUpperCase() and toLowerCase() methods, each of which returns a string whose characters
have been converted to the appropriate case. Look at these lines, for example:

String str1 = “THIS IS A STRING”;
String str2 = str1.toLowerCase();

Here, str2 is “this is a string” because the toLowerCase() method converts all characters
in the string to lowercase. The toUpperCase() method, of course, does just the opposite—
converting all characters to uppercase.

Sometimes you have strings that contain leading or trailing spaces. The String class features a
method called trim() that removes both leading and trailing whitespace characters. You use it
like this:

String str1 = “ THIS IS A STRING “;
String str2 = str1.trim();

In this example, str2 contains the string “THIS IS A STRING”, missing all the spaces before
the first T and after the G.

Finally, you can use the String class’s valueOf() method to convert just about any type of data
object to a string, thus enabling you to display the object’s value onscreen. The following lines
convert an integer to a string, for example:

int value = 10;
String str = String.valueOf(value);

Notice that valueOf() is a static method, meaning that it can be called by referencing the
String class directly, without having to instantiate a String object. Of course, you can also call
valueOf() through any object of the String class, like this:

int value = 10;
String str1 = “”;
String str2 = str1.valueOf(value);

Using the StringBuffer Class
The StringBuffer class enables you to create String objects that can be changed in various
ways, unlike the String class, which represents string constants. When you modify a string of
the StringBuffer class, you’re not creating a new String object, but rather operating directly
on the original string itself. For this reason, the StringBuffer class offers a different set of
methods than the String class, all of which operate directly on the buffer that contains the
string.

Creating a StringBuffer Object
The StringBuffer class offers several Constructors that enable you to construct a
StringBuffer object in various ways. Those Constructors look like this:

StringBuffer()
StringBuffer(int length)
StringBuffer(String str)

Using the StringBuffer Class

33 1529-5 CH28 9/23/98, 4:25 PM651

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

652 Chapter 28 Using Strings and Text

These Constructors create an empty StringBuffer, an empty StringBuffer of the given
length, and a StringBuffer from a String object (or string literal), respectively.

Getting Information About a StringBuffer Object
Just as with regular strings, you might need to know the length of a string stored in a
StringBuffer object. The class provides the length() method for this purpose. StringBuffer
objects, however, also have a capacity() method that returns the capacity of the buffer. Simply
put, a StringBuffer’s length is the number of characters stored in the string, whereas capacity
is the maximum number of characters that fits in the buffer. In the following code example,
length is 2 and capacity is 28:

StringBuffer str = new StringBuffer(“XX”);
int length= str.length();
int capacity = str.capacity();

StringBuffer Object
You’ve already had some experience with string extraction when you learned about the String
class. The StringBuffer class has two of the same methods for accomplishing this task. Those
methods are charAt() and getChars(), both of which work similarly to the String versions.
Here’s an example of using charAt():

StringBuffer str = new StringBuffer(“String buffer”);
char ch = str.charAt(5);

And here’s an example of using getChars():

StringBuffer str = new StringBuffer(“String buffer”);
char ch[] = new char[20];
str.getChars(7, 10, ch, 0);

In addition, with JDK 1.2 you can also obtain a subString() from a StringBuffer, just like with
the String class as shown in the next example:

StringBuffer str = new StringBuffer(“String buffer”);
String buffer = str.subString(8);
String rin = str.subString(3,6);

Manipulating a StringBuffer Object
There are several ways you can modify the string that’s stored in a StringBuffer object. Unlike
with the string-modification methods in the String class, which create a new string, the meth-
ods in the StringBuffer class work directly on the buffer in which the original string is stored.
The first thing you can do with a string buffer is set its length. You do this by calling the
setLength() method:

StringBuffer str = new StringBuffer(“String buffer”);
str.setLength(40);

This method’s single argument is the new length. If the new length is greater than the old
length, both the string and buffer length are increased, with the additional characters being

33 1529-5 CH28 9/23/98, 4:25 PM652

653

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

filled with zeroes. If the new length is smaller than the old length, characters are chopped off
the end of the string, but the buffer size remains the same.

If you want to be guaranteed a specific buffer size, you can call the ensureCapacity() method,
like this:

StringBuffer str = new StringBuffer(“String buffer”);
str.ensureCapacity(512);

The ensureCapacity() method’s argument is the new capacity for the buffer.

You can change a character in the string buffer by calling the setCharAt() method:

StringBuffer str = new StringBuffer(“String buffer”);
str.setCharAt(3, ‘X’);

The setCharAt() method’s arguments are the index of the character to change and the new
character. In the preceding example, the string buffer becomes “StrXng buffer”. As of JDK
1.2 you can also replace sections of the String with Strings or other native types using the
replace() methods. replace() works similar to setCharAt(), only instead of requiring a
character, you can replace sections of the other string types as well; this is shown in the next
example. Notice that with insert() you must provide the begin (inclusive) and end (exclu-
sive) index of the characters to replace, instead of just the single character index you need with
setCharAt().

StringBuffer str = new StringBuffer(“String buffer”); str.replace(3,6, ‘XYZ’);

You can add characters to the end of the string with the append() method and insert characters
anywhere in the string with the insert() method. Both of these methods come in several
versions that enable you to handle many different types of data. To add a character version of
an integer to the end of the string, for example, do something like this:

StringBuffer str = new StringBuffer(“String buffer”);
int value = 15;
str.append(value);

After this code executes, str contains “String buffer15”. Similarly, you insert characters like
this:

StringBuffer str = new StringBuffer(“String buffer”);
int value = 15;
str.insert(6, value);

This code results in a string of “String15 buffer”. The two arguments in the previous version
of insert() are the index at which to insert the characters and the data object to insert.

As of JDK 1.2 you can also delete characters from the StringBuffer using deleteCharAt() and
delete(). deletCharAt() requires the index of the character you want to delete, while de-
lete() requires the start (inclusive) index and the end (exclusive) index, as shown in the next
example:

StringBuffer str = new StringBuffer(“String buffer”);
str.deleteCharAt(6);
str.delete(3,6);

Using the StringBuffer Class

33 1529-5 CH28 9/23/98, 4:25 PM653

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

654 Chapter 28 Using Strings and Text

Using the StringTokenizer Class
If you’ve been using your computer for a while, you may remember the old-fashioned text
adventure games where you would enter a command from the keyboard such as GET KEY AND
OPEN DOOR, and the computer would follow your instructions. Programs like these had to parse
a text string and separate the string into separate words. These words are called tokens, and
you may run into times when you would like to extract tokens from a text string. Java provides
the StringTokenizer class for just this purpose.

Because StringTokenizer is not part of the java.lang package as String and StringBuffer
are, you must include the correct package in your applet. That package is java.util, and you
import it like this:

import java.util.StringTokenizer;

Or, if you want to import the entire util package, you could write this:

import java.util.*;

You can construct a StringTokenizer object in several ways, but the easiest is to supply the
string you want to tokenize as the Constructor’s single argument, like this:

StringTokenizer tokenizer =
 new StringTokenizer(“One Two Three Four Five”);

This type of string tokenizer uses space characters as the separators (called delimiters) be-
tween the tokens. To get a token, you call the nextToken() method:

String token = tokenizer.nextToken();

Each time you call nextToken(), you get the next token in the string. Usually, you extract to-
kens using a while loop. To control the while loop, you call the hasMoreTokens() method,
which returns true as long as there are more tokens in the string. A typical tokenizer loop
might look like this:

while (tokenizer.hasMoreTokens())
 String token = tokenizer.nextToken();

You can also determine how may tokens are in the string by calling the countTokens()
method:

StringTokenizer tokenizer =
 new StringTokenizer(“One Two Three Four Five”);
int count = tokenizer.countTokens();

In this example, count equals 5.

33 1529-5 CH28 9/23/98, 4:25 PM654

655

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

Listing 28.7 is an applet that tokenizes any string you enter. When you run the applet, enter a
string into the first text box. Then, click the Tokenize button to get a list of tokens in the string
(see Figure 28.6).

Listing 28.7 TokenApplet.java—An Applet That Tokenizes Strings

import java.awt.*;
import java.applet.*;
import java.util.StringTokenizer;
public class TokenApplet extends Applet
{
 TextField textField1;
 Button button1;
 public void init()
 {
 textField1 = new TextField(30);
 add(textField1);
 button1 = new Button(“Tokenize”);
 add(button1);
 resize(300, 300);
}
 public void paint(Graphics g)
 {
 String str = textField1.getText();
 StringTokenizer tokenizer =
 new StringTokenizer(str);
 int row = 110;
 while (tokenizer.hasMoreTokens())
 {
 String token = tokenizer.nextToken();
 g.drawString(token, 80, row);
 row += 20;
 }
 }
 public boolean action(Event evt, Object arg)
 {
 if (arg == “Tokenize”)
 {
 repaint();
 return true;
 }
 else
 return false;
 }
}

Using the StringTokenizer Class

33 1529-5 CH28 9/23/98, 4:25 PM655

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

656 Chapter 28 Using Strings and Text

Dealing with Fonts
Because every system handles fonts in a different way, you have to be careful with how you use
fonts in your applets. Although Java does its best to match fonts, you have to handle fonts care-
fully to be sure that your displays look right. To help in this task, Java has a Font class that
enables you to not only create and display fonts, but also to retrieve information about fonts.
Because all text displayed in a Java program uses the current font (including the text used in
components such as buttons), no chapter on strings would be complete without a discussion of
fonts.

Getting Font Attributes
Every font that you can use with your Java applets is associated with a group of attributes that
determines the size and appearance of the font. The most important of these attributes is the
font’s name, which determines the font’s basic style. You can easily get information about the
currently active font. Start by calling the Graphics object’s getFont() method, like this:

Font font = g.getFont();

The getFont() method returns a Font object for the current font. After you have the Font
object, you can use the Font class’s various methods to obtain information about the font. Table
28.1 shows the most commonly used public methods of the Font class and what they do.

Table 28.1 Most Commonly Used Public Methods for the Font Class

Method Description

getFamily() Returns the family name of the font.

getName() Returns the name of the font.

getSize() Returns the size of the font.

FIG. 28.6
The TokenApplet can
extract individual words
from a string.

33 1529-5 CH28 9/23/98, 4:25 PM656

657

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

Method Description

getStyle() Returns the style of the font, where 0 is plain, 1 is bold, 2 is italic, and 3 is
bold italic.

isBold() Returns a Boolean value indicating whether the font is bold.

isItalic() Returns a Boolean value indicating whether the font is italic.

isPlain() Returns a Boolean value indicating whether the font is plain.

toString() Returns a string of information about the font.

Most of the general font handling methods are also available inside your applet class. For
example, you can call getFont() from within your applet’s init() method, without

having to worry about Graphics objects. The same is true for getFontMetrics() and setFont(),
which you learn about in the sections “Getting Font Metrics” and “Using the Font.” ■

As always, the best way to see how something works is to try it out yourself. With that end in
mind, Listing 28.8 is an applet that displays information about the currently active font using
many of the methods described in Table 28.1. Figure 28.7 shows the applet running under
AppletViewer.

Dealing with Fonts

N O T E

FIG. 28.7
This is FontApplet
running under
AppletViewer.

Listing 28.8 FontApplet.java—Getting Information About a Font

import java.awt.*;
import java.applet.*;
public class FontApplet extends Applet
{
 public void paint(Graphics g)
 {
 Font font = getFont();
 String name = font.getName();
 String family = font.getFamily();
 int n = font.getStyle();
 String style;

continues

33 1529-5 CH28 9/23/98, 4:25 PM657

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

658 Chapter 28 Using Strings and Text

Listing 28.8 Continued

 if (n == 0)
 style = “Plain”;
 else if (n == 1)
 style = “Bold”;
 else if (n == 2)
 style = “Italic”;
 else
 style = “Bold Italic”;
 n = font.getSize();
 String size = String.valueOf(n);
 String info = font.toString();
 String s = “Name: “ + name;
 g.drawString(s, 50, 50);
 s = “Family: “ + family;
 g.drawString(s, 50, 65);
 s = “Style: “ + style;
 g.drawString(s, 50, 80);
 s = “Size: “ + size;
 g.drawString(s, 50, 95);
 g.drawString(info, 20, 125);
 }
}

As you can see from Listing 28.8, using the Font class’s methods is fairly straightforward. Just
call the method, which returns a value that describes some aspect of the font represented by
the Font object.

Getting Font Metrics
In many cases, the information you can retrieve from a Font object is enough to keep you out
of trouble. By using the size returned by the getSize() method, for example, you can properly
space the lines of text. Sometimes, however, you want to know more about the font you are
using. You might want to know the width of a particular character, for example, or even the
width in pixels of an entire text string. In these cases, you need to work with text metrics,
which are more detailed font attributes.

True to form, the Java Developer’s Kit includes the FontMetrics class, which makes it easy to
obtain information about fonts. You create a FontMetrics object like this:

FontMetrics fontMetrics = getFontMetrics(font);

The getFontMetrics() method returns a reference to a FontMetrics object for the active font.
Its single argument is the Font object for which you want the font metrics.

After you have the FontMetrics object, you can call its methods to obtain detailed information
about the associated font. Table 28.2 lists the most commonly used methods.

33 1529-5 CH28 9/23/98, 4:25 PM658

659

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

Table 28.2 Commonly Used FontMetrics Methods

Method Description

charWidth() Returns the width of a character.

getAscent() Returns the font’s ascent.

getDescent() Returns the font’s descent.

getFont() Returns the associated Font object.

getHeight() Returns the font’s height.

getLeading() Returns the font’s leading (line spacing).

stringWidth() Returns the width of a string.

toString() Returns a string of information about the font.

If you haven’t used fonts before, some of the terms—leading, ascent, and descent—used in Table 28.2
may be unfamiliar to you. Leading (pronounced “ledding”) is the amount of whitespace between lines
of text. Ascent is the height of a character, from the baseline to the top of the character. Descent is the
size of the area that accommodates the descending portions of letters, such as the tail on a lowercase
g. Height is the sum of ascent, descent, and leading. Refer to Figure 28.8 for examples of each.

Dealing with Fonts

FIG. 28.8
Ascent, descent, and
leading determine the
overall height of a font.

Creating Fonts
You may think an applet that always uses the default font is boring to look at. In many cases,
you would be right. An easy way to spruce up an applet is to use different fonts. Luckily, Java
enables you to create and set fonts for your applet. You do this by creating your own Font ob-
ject, like this:

Font font = new Font(“TimesRoman”, Font.PLAIN, 20);

The Constructor for the Font class takes three arguments: the font name, style, and size. The
style can be any combination of the font attributes defined in the Font class. Those attributes
are Font.PLAIN, Font.BOLD, and Font.ITALIC.

T I P

33 1529-5 CH28 9/23/98, 4:25 PM659

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

660 Chapter 28 Using Strings and Text

Although you can create fonts with the plain, bold, or italic styles, you may at times need to
combine font styles. Suppose, for example, that you wanted to use both bold and italic styles.
The line

Font font = new Font(“Courier”, Font.BOLD + Font.ITALIC, 18);

gives you an 18-point, bold, italic, Courier font.

A point is a measurement of a font’s height and is equal to 1/72 of an inch. ■

Using the Font
After you’ve created the font, you have to tell Java to use the font. You do this by calling the
setFont() method, like this:

setFont(font);

The next text displayed in your applet uses the new font. Although you request a certain type
and size of font, however, you can’t be sure of what you will get. The system tries its best to
match the requested font, but you still need to know at least the size of the font you end up
with. You can get all the information you need by creating a FontMetrics object, like this:

FontMetrics fontMetrics = getFontMetrics(font);

To get the height of a line of text, call the FontMetrics object’s getHeight() method, like this:

int height = fontMetrics.getHeight();

CAUTION

When creating a font, be aware that the user’s system may not have a particular font loaded. In that case,
Java chooses a default font as a replacement. This possible font substitution is a good reason to use
methods such as Font.getName() to see whether you got the font you wanted. You especially need to
know the size of the font, so you can be sure to position your text lines properly.

You would not create a font unless you had some text to display. The problem is that before you
can display your text, you need to know at least the height of the font. Failure to consider the
font’s height may give you text lines that overlap or that are spaced too far apart. You can use
the height returned from the FontMetrics class’s getHeight() method as a row increment
value for each line of text you need to print. Listing 28.9, which is the source code for the
FontApplet2 applet, shows how this is done. Figure 28.9 shows what the applet looks like.

Listing 28.9 FontApplet2.java—Displaying Different-Sized Fonts

import java.awt.*;
import java.applet.*;
public class FontApplet2 extends Applet
{

N O T E

33 1529-5 CH28 9/23/98, 4:25 PM660

661

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

28

IV
Part

Ch

 TextField textField;
 public void init()
 {
 textField = new TextField(10);
 add(textField);
 textField.setText(“32”);
 }
 public void paint(Graphics g)
 {
 String s = textField.getText();
 int height = Integer.parseInt(s);
 Font font = new Font(“TimesRoman”, Font.PLAIN, height);
 g.setFont(font);
 FontMetrics fontMetrics = g.getFontMetrics(font);
 height = fontMetrics.getHeight();
 int row = 80;
 g.drawString(“This is the first line.”, 70, row);
 row += height;
 g.drawString(“This is the second line.”, 70, row);
 row += height;
 g.drawString(“This is the third line.”, 70, row);
 row += height;
 g.drawString(“This is the fourth line.”, 70, row);
 }
 public boolean action(Event event, Object arg)
 {
 repaint();
 return true;
 }
}

Dealing with Fonts

FIG. 28.9
This is AppletViewer
running FontApplet2.

When you run FontApplet2, you see the window shown in Figure 28.9. The size of the active
font is shown in the text box at the top of the applet, and a sample of the font appears below the
text box. To change the size of the font, type a new value into the text box and press Enter.

The spacing of the lines is accomplished by first creating a variable to hold the vertical position
for the next line of text:

int row = 80;

33 1529-5 CH28 9/23/98, 4:25 PM661

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH28 LP#4

662 Chapter 28 Using Strings and Text

Here, the program not only declares the row variable, but also initializes it with the vertical
position of the first row of text.

The applet then prints the first text line, using row for drawString()’s third argument:

g.drawString(“This is the first line.”, 70, row);

In preparation for printing the next line of text, the program adds the font’s height to the row
variable:

row += height;

Each line of text is printed, with row being incremented by the font’s height in between, like
this:

g.drawString(“This is the second line.”, 70, row);
row += height;
g.drawString(“This is the third line.”, 70, row);

33 1529-5 CH28 9/23/98, 4:25 PM662

663

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

C H A P T E R

Using Internationalization

29

In this chapter

Internationalization Scenario 664

What Is Internationalization? 664

Java Support for Internationalization 664

Input-Output (I/O) for Internationalization 672

The New Package java.text 676

An Example: InternationalTest 677

34 1529-5 CH29 9/23/98, 4:34 PM663

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

664 Chapter 29 Using Internalization

Internationalization Scenario
Joe Programmer is a Java developer for Company X. His distributed sales application is a huge
success in California, where his company is based, mainly because he follows good object-
oriented design and implementation: keeping his objects portable, reusable, and independent.
One day, Company X decides to start selling its product in Japan. Joe Programmer, who does
not know Japanese, gets a Java-literate translator to go through his code and make all the nec-
essary changes using some custom Japanese language character set that Joe doesn’t really
understand. But he happily compiles this Japanese-language version of his code and sends it
off to Japan, where it is a big success. Encouraged by this result, Company X starts moving
into other markets; France and Canada are next. To Joe’s dismay, he finds that he has to main-
tain several completely different versions of his code because France and Canada, although
they share a common language, have a completely different culture! Poor Joe now has five
compiled versions of his code: an American English, Japanese, French, Canadian French, and
Canadian English. Now, when he makes even the slightest change to his code, he has to make
the same change five times, and then hire several translators to make language changes di-
rectly in the source code. Clearly, Joe is in an unacceptable situation.

What Is Internationalization?
In the previous scenario, Joe Programmer is said to have written a myopic program, one that is
only suited to one locale. A locale is a region (usually geographic, but not necessarily so) that
shares customs, culture, and language. Each of the five versions of Joe’s program was localized
for one specific locale and was unusable outside that locale without major alteration. This vio-
lates the fundamental principle of OOP design, because Joe’s program is no longer portable or
reusable. The process of isolating the culture-dependent code (text, pictures, and so on) from
the language-independent code (the actual functionality of the program) is called international-
ization. After a program has been through this process, it can easily be adapted to any locale
with a minimum amount of effort. Version 1.1 of the Java language added built-in support for
internationalization, which makes writing truly portable code easy.

Java Support for Internationalization
Internationalization required several changes to the Java language. In the past, writing interna-
tionalized code required extra effort and was substantially more difficult than writing myopic
code. One of the design goals was to reverse this paradigm. Java seeks to make writing interna-
tionalized code easier than its locale-specific counterpart. Internationalization mainly affects
three packages:

■ java.util Includes the Locale class. A Locale encapsulates certain information about
a locale, but does not provide the actual locale-specific operations. Rather, affected
methods can now be passed a Locale object as a parameter that will alter their behavior.

34 1529-5 CH29 9/23/98, 4:34 PM664

665

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

If no Locale is specified, a default Locale is taken from the environment. This package
also provides support for ResourceBundles, objects that encapsulate locale-sensitive data
in a portable, independent way.

■ java.io All of the classes in java.io that worked with InputStreams and OutputStreams
have corresponding classes that work with class Reader and Writer. Readers and
Writers work like Streams, except they are designed to handle 16-bit Unicode characters
instead of 8-bit bytes.

■ java.text An entirely new package that provides support for manipulating various
kinds of text. This includes collating (sorting) text, formatting dates and numbers, and
parsing language-sensitive data.

The Locale class
A Locale object encapsulates information about a specific locale. This consists of just enough
information to uniquely identify the locale’s region. When a locale-sensitive method is passed a
Locale object as a parameter, it attempts to modify its behavior for that particular locale. A
Locale is initialized with a language code, a country code, and an optional variant code. These
three things define a region, although you need not specify all three. For example, you could
have a Locale object for American English, California variant. If you ask the Calendar class
what the first month of the year is, the Calendar tries to find a name suitable for Californian
American English. Because month names are not affected by what state you are in, the
Calendar class has no built-in support for Californian English, and it tries to find a best fit.
It next tries American English, but because month names are constant in all English-speaking
countries, this fails as well. Finally, the Calendar class returns the month name that
corresponds to the English Locale. This best-fit lookup procedure allows the programmer
complete control over the granularity of internationalized code.

You create a Locale object using the following syntax:

Locale theLocale = new Locale(“en”, “US”);

where “en” specifies English, and “US” specifies United States. These two-letter codes are used
internally by Java programs to identify languages and countries. They are defined by the ISO-
639 and ISO-3166 standards documents respectively. More information on these two docu-
ments can be found at:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Currently, the JDK supports the following language and country combinations in all of its
locale-sensitive classes, such as Calendar, NumberFormat, and so on. This list may change in the
future, so be sure to check the latest documentation (see Table 29.1).

Java Support for Internationalization

34 1529-5 CH29 9/23/98, 4:34 PM665

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

666 Chapter 29 Using Internalization

Table 29.1 Locales Supported by the JDK

Locale Country Language

da_DK Denmark Danish

DE_AT Austria German

de_CH Switzerland German

de_DE Germany German

el_GR Greece Greek

en_CA Canada English

en_GB United Kingdom English

en_IE Ireland English

en_US United States English

es_ES Spain Spanish

fi_FI Finland Finnish

fr_BE Belgium French

fr_CA Canada French

fr_CH Switzerland French

fr_FR France French

it_CH Switzerland Italian

it_IT Italy Italian

ja_JP Japan Japanese

ko_KR Korea Korean

nl_BE Belgium Dutch

nl_NL Netherlands Dutch

no_NO Norway Norwegian (Nynorsk)

no_NO_B Norway Norwegian (Bokmål)

pt_PT Portugal Portuguese

sv_SE Sweden Swedish

tr_TR Turkey Turkish

zh_CN China Chinese(Simplified)

zh_TW Taiwan Chinese (Traditional)

34 1529-5 CH29 9/23/98, 4:34 PM666

667

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

Programmers can also create their own custom Locales, simply by specifying a unique se-
quence of country, language, variant. Multiple variants can be separated by an underscore
character. To create a variant of Californian American English running on a Windows machine,
use the following code:

Locale theLocale = new Locale(“en”, “US”, “CA_WIN”);

Remember that methods that do not understand this particular variant will try to find a best fit
match, in this case probably “en_US”.

The two-letter abbreviations listed here are not meant to be displayed to the user; they are
meant only for internal representation. For display, use one of the Locale methods listed in
Table 29.2. You will notice that these methods are generally overloaded so that you can get the
parameter either for the current locale or the one specified.

Table 29.2 Locale Display Methods

Method Name Description

getDisplayCountry()

getDisplayCountry(Locale) Country name, localized for default Locale, or specified
Locale.

getDisplayLanguage()

getDisplayLanguage(Locale) Language name, localized for default Locale, or
specified Locale.

getDisplayName()

getDisplayName(Locale) Name of the entire locale, localized for default Locale,
or specified Locale.

getDisplayVariant()

getDisplayVariant(Locale) Name of the Locale’s variant. If the localized name is
not found, this returns the variant code.

These methods are very useful when you want to have a user interact with a Locale object.
Here’s an example of using the getDisplayLanguage() method:

Locale.setDefault(new Locale(“en”, “US”)); //Set default Locale to American
 //English

Locale japanLocale = new Locale(“ja:, “JP”); //Create locale for Japan
System.out.println(japanLocale.getDisplayLanguage());
System.out.println(japanLocale.getDisplayLanguage(Locale.FRENCH));

This code fragment prints out the name of the language used by japanLocale. In the first case,
it is localized for the default Locale, which has been conveniently set to American English. The
output would therefore be Japanese. The second print statement localizes the language name
for display in French, which yields the output Japonais. All of the Locale “display” methods

Java Support for Internationalization

34 1529-5 CH29 9/23/98, 4:34 PM667

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

668 Chapter 29 Using Internalization

use this same pattern. Almost all Internationalization API methods allow you to explicitly
control the Locale used for localization, but in most cases, you’ll just want to use the default
Locale.

Another thing to note in the preceding example is the use of the static constant Locale.FRENCH.
The Locale class provides a number of these useful constants, each of which is a shortcut for
the corresponding Locale object. A list of these objects is shown in Table 29.3.

Table 29.3 Locale Static Objects

Constant Name Locale Shortcut for

CANADA English Canada new Locale(“en”, “CA”, “”)

CANADA_FRENCH French Canada new Locale(“fr”, “CA”, “”)

CHINA SCHINESE PRC Chinese (Simplified) new Locale(“zh”, “CN”, “”)

CHINESE Chinese Language new Locale(“zh”, “”, “”)

ENGLISH English Language new Locale(“en”, “”, “”)

FRANCE France new Locale(“fr”, “FR”, “”)

FRENCH French Language new Locale(“fr”, “”, “”)

GERMAN German Language new Locale(“de”, “”, “”)

GERMANY Germany new Locale(“de”, “DE”, “”)

ITALIAN Italian Language new Locale(“it”, “”, “”)

ITALY Italy new Locale(“it”, “IT”, “”)

JAPAN Japan new Locale(“jp”, “JP”, “”)

JAPANESE Japanese Language new Locale(“jp”, “”, “”)

KOREA Korea new Locale(“ko”, “KR”, “”)

KOREAN Korean Language new Locale(“ko”, “”, “”)

TAIWAN TCHINESE Taiwan new Locale(“zh”, “TW”, “”)
(Traditional Chinese)

UK Great Britain new Locale(“en”, “GB”, “”)

US United States new Locale(“en”, “US”, “”)

Packaging Locale-Sensitive Data
The Locale class allows you to easily handle Locale-sensitive methods. However, most pro-
grams (especially applets and GUI-based applications) require the use of Strings, data, and
other resources that also need to be localized. For instance, most GUI programs have OK and
Cancel buttons. This is fine for the United States, but other locales require different labels for

34 1529-5 CH29 9/23/98, 4:34 PM668

669

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

these buttons. In Germany, for instance, you might use Gut and Vernichten instead. Tradition-
ally, information such as this was included in the source code of an application, which, as Pro-
grammer Joe found out earlier, can lead to many problems when trying to simultaneously
support many localized versions of one program. To solve this problem, Java provides a way to
encapsulate this data into objects that are loaded by the VM upon demand. These objects are
called ResourceBundles.

ResourceBundles—Naming Conventions ResourceBundle is an abstract class that must be
extended to provide any functionality. ResourceBundles are loaded by a class loader by name,
and must follow a very strict naming convention to be loaded properly. This is best illustrated
by example. Let’s say you have a class called LabelBundle that extends ResourceBundle and
contains the names of all GUI labels you use in an application. The class called LabelBundle
provides default information; LabelBundle_fr provides French labels; LabelBundle_ge_GE
provides German labels; and LabelBundle_en_US_MAC provides Macintosh-specific American
English labels. You request a ResourceBundle using the following static method:

ResourceBundle getResourceBundle(String baseName, Locale locale, ClassLoader
loader)

This method uses the specified ClassLoader to search for a class that matches baseName, plus
certain attributes of the specified Locale. There is a very specific search pattern that is used to
find the closest match to the Bundle you request:

bundleName + “_” + localeLanguage + “_” + localeCountry + “_” + localeVariant
bundleName + “_” + localeLanguage + “_” + localeCountry
bundleName + “_” + localeLanguage
bundleName + “_” + defaultLanguage + “_” + defaultCountry + “_” + defaultVariant
bundleName + “_” + defaultLanguage + “_” + defaultCountry
bundleName + “_” + defaultLanguage
bundleName

In our example, if you request the baseName LabelBundle with a fr_FR_WIN (French language,
France, Windows platform) Locale, the getResourceBundle() method performs the following
steps:

1. Searches for the class LabelBundle_fr_FR_WIN, which fails because you have defined no
such class.

2. Searches for the class LabelBundle_fr_FR, which also fails because you did not define a
France-only Bundle.

3. Searches for class LabelBundle_fr. This succeeds and returns the class with this name.
However, if this search had failed (if you had not supplied a French-language Bundle),
the search would have continued, using the language, country, and variant codes
supplied in the default Locale.

Creating ResourceBundles Now that you understand the naming convention used with
ResourceBundles, take a look at how they are created. The simplest form of ResourceBundles
extends the ResourceBundle class directly, and then overrides one method:

Object handleGetObject(String key)

Java Support for Internationalization

34 1529-5 CH29 9/23/98, 4:34 PM669

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

670 Chapter 29 Using Internalization

This method returns an object that corresponds to the specified key. These keys are internal
representations of the content stored in the ResourceBundle and should be the same for all
localized versions of the same data. An extremely simple version of your LabelBundle might be
defined as follows:

class LabelBundle extends ResourceBundle {
public Object handleGetObject(String key) {
if(key.equals(“OK”))
return “OK”;
else if(key.equals(“Cancel”))
return “Cancel”;

// Other labels could be handled here

return null; // If the key has no matches, always return null
}
}

Other versions of the same bundle might return values translated into different languages. You
can see, however, that this method of handling key-value pairs is very inefficient if you have
more than a few keys. Luckily, Java provides two subclasses of ResourceBundle that can make
life easier: ListResourceBundle and PropertyResourceBundle.

ListResourceBundles use an array of two-element arrays to store the key-value pairs used
earlier. All you have to do is override the default getContents() method, like this:

class LabelBundle extends ListResourceBundle {
static final Object[][] labels = {
{“OK”, “OK”},
{“Cancel”, “Cancel”},
(“AnotherKey”, “Another Value”}
//More key-value pairs can go here
};

public Object[][] getContents() {
return labels;
}
}

You could also provide your own similar functionality using a hashtable, but that’s only worth-
while if you want the contents to change dynamically over time.

PropertyResourceBundles are created as needed from predefined “property” files stored on
disk. These are usually used for systemwide settings, or when large amounts of data need to be
stored in a key-value pair. PropertyResourceBundles are built from files with the same name as
the corresponding class file, but with the .properties extension instead. To implement the
LabelBundle_de_DE class, you might provide a file called LabelBundle_de_DE.properties with
the following content:

OK=Gut
Cancel=Vernichten
AnotherKey=This value has a lot of text stored within it. Of course, it really
ought to be translated into German first...

34 1529-5 CH29 9/23/98, 4:34 PM670

671

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

Contents are always specified in the form “key=value” and are assumed to be Strings (although
they can be cast into other appropriate objects). This functionality is based on the
java.util.Properties class. See Chapter 47, “java.lang,” for more information on the
java.util package.

Although the examples given here all deal with String objects, ResourceBundles can
store objects of any type, including Dates, Applets, GUI elements, or even other

ResourceBundles! ■

Accessing ResourceBundles As previously mentioned, you load ResourceBundles by name
using the static method getResourceBundle(). Assuming this succeeds (it throws an exception
otherwise), you can then query individual values within the bundle using the getObject()
method. Of course, this also usually requires an explicit cast to the kind of object you want, so
you need to know this information ahead of time. As a matter of convenience, ResourceBundle
also provides the following methods that return already-cast objects:

■ getMenu(String)

■ getMenuBar(String)

■ getObject(String)

■ getString(String)

■ getStringArray(String)

Other Internationalization Pieces in java.util
Internationalization required a couple of other changes to be made to java.util classes. For
instance, under Java 1.0, the Date class was used for time manipulation. However, since then, it
is simply a wrapper for one particular instant in time. For creating Date objects, you should
now use the Calendar class. Calendar is an abstract class that provides culture-independent
methods for manipulating the epoch, century, year, month, week, day, and time in various
ways. To instantiate the Calendar class, you have to extend it and provide methods based on a
particular Calendar standard. The only one that (so far) comes with the JDK is the
GregorianCalendar class, which provides very sophisticated functionality for the world’s most
popular calendar system. Future releases may include support for various lunar, seasonal, or
other calendar systems. An adjunct to the Calendar class, which is not usually used directly by
the programmer, is the TimeZone (and SimpleTimeZone) class, which allows dates and times to
be properly adjusted for other time zones.

The Date, Calendar, and TimeZone classes provide a huge amount of functionality that most
programmers will never need to know about. You don’t need to understand the intricacies of
temporal arithmetic to make use of these classes; they all contain default methods that allow
you to get the current time and date, and display it in a Locale-sensitive way. By merely using
the provided methods, your programs will become localized by default, requiring no added
effort on your part.

N O T E

Java Support for Internationalization

34 1529-5 CH29 9/23/98, 4:34 PM671

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

672 Chapter 29 Using Internalization

There are many more methods in these few classes than are worth discussing here. If you
are interested, a simple example of the Calendar and Date classes interacting is

provided in the example at the end of the chapter. For a more complete discussion, you should consult
the Java API documentation directly. ■

Input-Output (I/O) for Internationalization
Originally, the java.io package operated exclusively on byte streams, a continuous series of
8-bit quantities. However, Java’s Unicode characters are 16 bits, which makes using them with
byte streams difficult. Therefore, if you look at the java.io package, there is also a whole
series of 16-bit character stream Readers and Writers, which correspond to the old
InputStream and OutputStream. The two sets of classes can work together or separately, de-
pending on whether your program needs to input or output text of any kind.

Character Set Converters
The way in which characters are represented as binary numbers is called an encoding scheme.
The most common scheme used for English text is called the ISO Latin-1 encoding. The set of
characters supported by any one encoding is said to be its character set, which includes all
possible characters that can be represented by the encoding. Usually, the first 127 codes of an
encoding correspond to the almost universally accepted ASCII character set, which includes all
of the standard characters and punctuation marks. Nevertheless, most encodings can vary
radically, especially because some, like Chinese and Japanese encodings, have character sets
that bear little resemblance to English!

Luckily, Java 1.1 provides classes for dealing with all of the most common encodings around.
The ByteToCharConverter and CharToByteConverter classes are responsible for performing
very complex conversions to and from the standard Unicode characters supported by Java.
Each encoding scheme is given its own label by which it can be identified. A complete list of
supported encodings and their labels is shown in Table 29.4.

Table 29.4 JDK 1.1–Supported Character Encodings

Label Encoding Scheme Description

8859_1 ISO Latin-1

8859_2 ISO Latin-2

8859_3 ISO Latin-3

8859_4 ISO Latin-4

8859_5 ISO Latin/Cyrillic

8859_6 ISO Latin/Arabic

8859_7 ISO Latin/Greek

N O T E

34 1529-5 CH29 9/23/98, 4:34 PM672

673

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

8859_8 ISO Latin/Hebrew

8859_9 ISO Latin-5

Big5 Big 5 Traditional Chinese

CNS11643 CNS 11643 Traditional Chinese

Cp1250 Windows Eastern Europe/Latin-2

Cp1251 Windows Cyrillic

Cp1252 Windows Western Europe/Latin-1

Cp1253 Windows Greek

Cp1254 Windows Turkish

Cp1255 Windows Hebrew

Cp1256 Windows Arabic

Cp1257 Windows Baltic

Cp1258 Windows Vietnamese

Cp437 PC Original

Cp737 PC Greek

Cp775 PC Baltic

Cp850 PC Latin-1

Cp852 PC Latin-2

Cp855 PC Cyrillic

Cp857 PC Turkish

Cp860 PC Portuguese

Cp861 PC Icelandic

Cp862 PC Hebrew

Cp863 PC Canadian French

Cp864 PC Arabic

Cp865 PC Nordic

Cp866 PC Russian

Cp869 PC Modern Greek

Cp874 Windows Thai

EUCJIS Japanese EUC

Label Encoding Scheme Description

continues

Input-Output (I/O) for Internationalization

34 1529-5 CH29 9/23/98, 4:34 PM673

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

674 Chapter 29 Using Internalization

GB2312 GB2312-80 Simplified Chinese

JIS JIS

KSC5601 KSC5601 Korean

MacArabic Macintosh Arabic

MacCentralEurope Macintosh Latin-2

MacCroatian Macintosh Croatian

MacCyrillic Macintosh Cyrillic

MacDingbat Macintosh Dingbat

MacGreek Macintosh Greek

MacHebrew Macintosh Hebrew

MacIceland Macintosh Iceland

MacRoman Macintosh Roman

MacRomania Macintosh Romania

MacSymbol Macintosh Symbol

MacThai Macintosh Thai

MacTurkish Macintosh Turkish

MacUkraine Macintosh Ukraine

SJIS PC and Windows Japanese

UTF8 Standard UTF-8

Java also provides ways for developers to create their own encodings and to create converters
for already-existing but unsupported encodings. The details of how character conversion is
done are actually quite complex, and those who are interested are referred to Java’s Web
pages.

Readers and Writers
Character streams make heavy use of character set converters. Fortunately, they also hide the
underlying complexity of the conversion process, making it easy for Java programs to be writ-
ten without knowledge of the internationalizing process. Again, you see that programs are
internationalized by default.

The advantages of using character streams over byte streams are many. Although they have
the added overhead of doing character conversion on top of byte reading, they also allow for
more efficient buffering. Byte streams are designed to read information one byte at a time,

Table 29.4 Continued

Label Encoding Scheme Description

34 1529-5 CH29 9/23/98, 4:34 PM674

675

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

while character streams read one buffer at a time. According to Sun, this, combined with a new
efficient locking scheme, more than compensates for the speed loss caused by the conversion
process. Every input or output stream in the old class hierarchy now has a corresponding
Reader or Writer class that performs similar functions using character streams (see Table
29.5).

Table 29.5 Input/Output Streams and Corresponding Reader and Writer
 Classes (from Sun Microsystems, Inc.)

Byte Stream Class Corresponding Function
(InputStream/ Character Stream
OutputStream) Class (Reader/Writer)

InputStream Reader Abstract class from which
all other classes inherit
methods, and so on

BufferedInputStream BufferedReader Provides a buffer for input
operations

LineNumberInputStream LineNumberReader Keeps track of line numbers

ByteArrayInputStream CharArrayReader Reads from an array

N/A InputStreamReader Translates a byte stream
into a character stream

FileInputStream FileReader Allows input from a file
on disk

FilterInputStream FilterReader Abstract class for filtered
input

PushbackInputStream PushbackReader Allows characters to be
pushed back into the stream

PipedInputStream PipedReader Reads from a process pipe

StringBufferInputStream StringReader Reads from a String

OutputStream Writer Abstract class for character-
output streams

BufferedOutputStream BufferedWriter Buffers output, uses
platform’s line separator

ByteArrayOutputStream CharArrayWriter Writes to a character array

FilterOutputStream FilterWriter Abstract class for filtered
character output

N/A OutputStreamWriter Translates a character
stream into a byte stream

continues

Input-Output (I/O) for Internationalization

34 1529-5 CH29 9/23/98, 4:34 PM675

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

676 Chapter 29 Using Internalization

FileOutputStream FileWriter Translates a character
stream into a byte file

PrintStream PrintWriter Prints values and objects
to a Writer

PipedOutputStream PipedWriter Writes to a PipedReader

N/A StringWriter Writes to a String

The impact of these changes is actually quite minor if you’re developing new programs. All you
have to do is remember to use Reader and Writer classes where before you used InputStream
and OutputStream. The biggest change you’ll have to worry about relates to the
DataInputStream and PrintStream, which used to be the classes of choice for sending text
input and output. The DataInputStream.readLine() method has been deprecated—you
should use BufferedReader.readLine() instead. Furthermore, you can no longer instantiate a
new PrintStream object, although you can still use pre-existing PrintStreams (such as
System.out) for debugging purposes. To output line-terminated strings, you should use the
PrintWriter class instead. The main offshoot of this is that all code that is used to communi-
cate with the DataInputStream and PrintStream classes (which includes much Socket, File,
and Piped code) will have to be updated to use the proper Reader and Writer classes. To make
this easier, Java provides classes called InputStreamReader and OutputStreamWriter, which
are used to create a new Writer or Reader based on a byte stream. This makes the Reader/
Writer system compatible with all of the other classes that currently use byte streams (like URL,
Socket, File, and so on).

The New Package java.text
The most advanced and complex Internationalization API features are found in the java.text
package. They include many classes for formatting and organizing text in a language-
independent way. For instance, date formatting can be quite problematic for programmers. In
America, dates are written in month-day-year order, but in Europe, dates are written in day-
month-year order. This makes interpreting a date like 10/2/97 difficult: Does this represent
October 2, 1997 or February 10, 1997? This is the purpose of properly formatted text. Most of
these classes are not intended to be instantiated directly and can be accessed through static
getDefault() methods.

Text collating, on the other hand, is the process of sorting text according to particular rules. In
English, sorting in alphabetical order is relatively easy because English lacks many special
characters (such as accents) that could complicate things. In French, however, things are not
so simple. Two words that look very similar (like péché and pêche) have entirely different

Table 29.5 Continued
Byte Stream Class Corresponding Function
(InputStream/ Character Stream
OutputStream) Class (Reader/Writer)

34 1529-5 CH29 9/23/98, 4:34 PM676

677

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

meanings. Which should come first alphabetically? And what about characters like hyphen-
ation or punctuation? The Java Collation class provides a way of defining language-specific
sort criteria in a robust, consistent manner.

Text boundaries can also be ambiguous across languages. Where do words, sentences, and
paragraphs begin and end? In English, a period generally marks the end of a sentence, but is
this always the case? Certainly not. The TextBoundary and CharacterIterator classes can
intelligently break up text into various sub-units based on language-specific criteria. Java comes
with built-in support for some languages, but you can always define your own set of rules, as
well. TextBoundary works by returning the integer index of boundaries that occur within a
String, as demonstrated by the following example, which breaks up a String by words:

String str = “This is a line of text. It contains many words, sentences, and
➥formatting.”;
TextBoundary byWord = TextBoundary.getWordBreak();
int from, to;
from = byWord.first();
while((to = byWord.next()) != DONE) {
System.out.println(byWord.getText().substring(from, to));
 from = to;
}

This snippet of code prints out each word on its own line. Although this example is trivial, text
boundaries can be extremely important, especially in GUI applications that require text selec-
tion, intelligent word-wrapping, and so on.

An Example: InternationalTest
To better understand how all of this fits together, take a look at this very simple Java applica-
tion that makes use of several of the features discussed in this chapter. It is included on the
CD-ROM accompanying this book, if you’d like to play with it yourself.

The application is a very simple one. It takes up to three command-line parameters that specify
a locale. It uses this information to

1. Display some information about the default locale and the one entered

2. Try to load a ResourceBundle corresponding to the specified locale and print out what
the Bundle contains

3. Display the date, localized to the specified locale

Besides the main application class (InternationalTest), the program requires several other
classes. Most are ResourceBundles that correspond to different locales (currently,
ResourceBundles must be created as public classes, but this may change in a future release of
the JDK). Another thing to note is that this application passes “null” as the ClassLoader param-
eter to the getResourceBundle() method. This is because applications are loaded from the
CLASSPATH environment variable, and do not have an explicit ClassLoader. As long as the
ResourceBundles are also available via CLASSPATH, you don’t need a separate ClassLoader to
load them. If you were making an applet, on the other hand, you would need a ClassLoader to

An Example: InternationalTest

34 1529-5 CH29 9/23/98, 4:34 PM677

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

678 Chapter 29 Using Internalization

load the classes across the Internet. You can use the same ClassLoader instance that loaded
the applet like this:

ClassLoader loader = this.getClass().getClassLoader();

The complete listing of InternationalTest follows in Listing 29.1.

Listing 29.1 InternationalTest.java

import java.util.*;
import java.lang.*;
import java.text.DateFormat;

class InternationalTest extends Object {

public static void main(String args[]) {

String lang = “”, country = “”, var = “”;

 try {
 lang = args[0];
 country = args[1];
 var = args[2];
 } catch(ArrayIndexOutOfBoundsException e) {
 if(lang.equals(“”)) {
 System.out.println(“You must specify at least one parameter”);
 System.exit(1);
 }
 }

 Locale locale = new Locale(lang, country, var);
 Locale def = Locale.getDefault();

 System.out.println(“Default Locale is: “+ def.getDisplayName());
 System.out.println(“You have selected Locale: “+locale.getDisplayName());
 System.out.println(“Default language, localized for your locale is: “ +
 def.getDisplayLanguage(locale));
 System.out.println(“Default country name, localized: “ +
 locale));

 ClassLoader loader = null;

 ResourceBundle bundle = null;
 try {
 bundle = ResourceBundle.getResourceBundle(“TestBundle”, locale, loader);
 } catch(MissingResourceException e) {
 System.out.println(“No resources available for that locale.”);
 } finally {
 System.out.println(“Resources available are: “);
 System.out.println(“ r1: “ + bundle.getString(“r1”));
 System.out.println(“ r2:” + bundle.getString(“r2”));
 }

34 1529-5 CH29 9/23/98, 4:34 PM678

679

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

29

IV
Part

Ch

 DateFormat myFormat = DateFormat.getDateTimeFormat(DateFormat.FULL,
DateFormat.FULL, locale);
 Calendar myCalendar = Calendar.getDefault(locale);
 System.out.println(“The localized date and time is: “ +
 myFormat.format(myCalendar.getTime()));

 }
}

Figures 29.1, 29.2, and 29.3 show output from the InternationalTest program.

FIG. 29.1
American English
locale.

FIG. 29.2
Canadian French and
Canadian French
Macintosh locales.

An Example: InternationalTest

34 1529-5 CH29 9/23/98, 4:34 PM679

P2/VB mp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 29 LP#3

680 Chapter 29 Using Internalization

So where does this leave Joe Programmer? Well, he’s got some work to do to convert his appli-
cation to the Internationalization API. His labels, text, and localized resources need to be en-
capsulated into ResourceBundles for each locale he supports. He also needs to adjust a few
methods and objects to use localized date, time, and message formats. When this process is
complete, he’ll find that not only will his program be localized for many locales, but he also
does not need to support multiple versions of the same program. Even better, when a new
locale needs to be supported, he doesn’t need to modify his source code at all—he just needs to
get his locale-specific resources translated to this new language/customs. His program is now,
once again, portable, reusable, and independent. ●

FIG. 29.3
Canadian English and
Germany locales.

34 1529-5 CH29 9/23/98, 4:34 PM680

681

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

C H A P T E R

Communications and Networking

Overview of TCP/IP 682

TCP/IP Protocols 685

Uniform Resource Locator (URL) 687

Java and URLs 688

30

In this chapter

35 1529-5 CH30 9/23/98, 4:36 PM681

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

682 Chapter 30 Communications and Networkiing

Overview of TCP/IP
Despite all its other merits, the rapid embrace of Java by the computing community is primarily
due to its powerful integration with Internet networking. The Internet revolution has forever
changed the way the personal computer is used, empowering individuals to gather, publish,
and share information in a vast resource with millions of participants. Building on top of this
foundation, Java could be the next major revolution in computing.

The Java execution environment is designed so that applications can be easily written to effi-
ciently communicate and share processing with remote systems. Much of this functionality is
provided with the standard Java API within the java.net package.

This is the first of four chapters that will demonstrate clear and practical uses of the classes
within java.net, explaining the programming concepts on which they are based. As a founda-
tion of these discussions, the design of the Internet network protocol suite—TCP/IP—is illus-
trated within this chapter.

TCP/IP is a suite of protocols that interconnects the various systems on the Internet. TCP/IP
provides a common programming interface for diverse and foreign hardware. The suite sup-
ports the joining of separate physical networks implementing different network media. TCP/IP
makes a diverse, chaotic, global network like the Internet possible.

Models provide useful abstractions of working systems, ignoring fine detail while enabling a
clear perspective on global interactions. Models also facilitate a greater understanding of func-
tioning systems and also provide a foundation for extending that system. Understanding the
models of network communications is an essential guide to learning TCP/IP fundamentals.

OSI Reference Model
The network protocol architecture known as the Open Systems Interconnect (OSI) Reference
Model is often used to describe network systems. The OSI scheme was one part of a larger
project by the International Organization for Standardization (ISO). The OSI protocols never
proved as successful as TCP/IP, making the Reference Model perhaps the most enduring
aspect of this ISO endeavor.

The model consists of seven layers providing specific functionality. Each layer has defined
characteristics, and together the whole enables network communication. The software imple-
mentation of such a layered model is appropriately termed a protocol stack.

The OSI model is illustrated in Figure 30.1. User applications insert information into one layer
and each encapsulates the data until the last is reached. The information is then transmitted to
the destination, sometimes having the layers translated from the bottom up as the data is trans-
ported.

The following layers have specific roles, each refraining from intruding into the domain of the
other, all depending upon the others:

■ Application Layer Contains network applications within which people interact, such as
mail, file transfer, and remote login.

35 1529-5 CH30 9/23/98, 4:36 PM682

683

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

Overview of TCP/IP

■ Presentation Layer Creates common data structures.

■ Session Layer Manages connections between network applications.

■ Transport Layer Ensures that data is received exactly as it is sent.

■ Network Layer Routes data through various physical networks while traveling to a
known host.

■ Data Link Layer Transmits and receives packets of information reliably across a
uniform physical network.

■ Physical Layer Defines the physical properties of the network, such as voltage levels,
cable types, and interface pins.

TCP/IP Network Model
The OSI model helps when trying to understand the TCP/IP communication architecture.
When viewed as a layered model, TCP/IP is usually seen as being composed of four layers:

FIG. 30.1
The OSI Reference
Model consists of seven
layers.

OSI Reference Model
7

Session Layer

Transport Layer

Network Layer

Data Link Layer

6

5

4

3

2

1

7

6

5

4

3

2

1 Physical Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application LayerApplication Layer

Presentation LayerPresentation Layer

35 1529-5 CH30 9/23/98, 4:36 PM683

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

684 Chapter 30 Communications and Networkiing

■ Application

■ Network

■ Transport

■ Link

These layers are illustrated in Figure 30.2. Attempts to map these layers to the OSI model are
inexact and confuse matters, so this chapter refrains from such an endeavor.

FIG. 30.2
The TCP/IP network
model can be broken
down into four layers.

4

3

2

1

4

3

2

1

Application
Layer

Application
Layer

Transport
Layer

Transport
Layer

Network
Layer

Network
Layer

Link LayerLink Layer

TCP/IP Model

As in the OSI model, each TCP/IP layer plays a specific role, each of which is described in the
following four sections.

Application Layer Network applications depend on the definition of a clear dialog. In a client-
server system, the client application knows how to request services, and the server knows how
to appropriately respond. Protocols that implement this layer include HTTP, FTP, and Telnet.

35 1529-5 CH30 9/23/98, 4:36 PM684

685

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

TCP/IP Protocols

Transport Layer The Transport Layer enables network applications to obtain messages over
clearly defined channels and with specific characteristics. The two protocols within the TCP/IP
suite that generally implement this layer are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

Network Layer The Network Layer enables information to be transmitted to any machine on
the contiguous TCP/IP network, regardless of the different physical networks that intervene.
Internet Protocol (IP) is the mechanism for transmitting data within this layer.

Link Layer The Link Layer consists of the low-level protocols used to transmit data to ma-
chines on the same physical network. Protocols that aren’t part of the TCP/IP suite, such as
Ethernet, Token Ring, FDDI, and ATM, implement this layer.

Data within these layers is usually encapsulated with a common mechanism: protocols have a
header that identifies meta information such as the source, destination, and other attributes,
and a data portion that contains the actual information. The protocols from the upper layers are
encapsulated within the data portion of the lower ones. When traveling back up the protocol
stack, the information is reconstructed as it is delivered to each layer. Figure 30.3 shows this
concept of encapsulation.

TCP/IP Protocols
Three protocols are most commonly used within the TCP/IP scheme, and a closer investiga-
tion of their properties is warranted. Understanding how these three protocols (IP, TCP, and
UDP) interact is critical to developing network applications.

FIG. 30.3
As data moves through
the TCP/IP layers, it is
encapsulated.

Application Layer

Transport Layer

Network Layer

Link Layer

Header Data

Header

Header

Header

Header

Data

Data

Data

35 1529-5 CH30 9/23/98, 4:36 PM685

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

686 Chapter 30 Communications and Networkiing

Internet Protocol (IP)
IP is the keystone of the TCP/IP suite. All data on the Internet flows through IP packets, the
basic unit of IP transmissions. IP is termed a connectionless, unreliable protocol. As a
connectionless protocol, IP does not exchange control information before transmitting data to a
remote system—packets are merely sent to the destination with the expectation that they will
be treated properly. IP is unreliable because it does not retransmit lost packets or detect cor-
rupted data. These tasks must be implemented by higher level protocols, such as TCP.

IP defines a universal addressing scheme called IP addresses. An IP address is a 32-bit num-
ber, and each standard address is unique on the Internet. Given an IP packet, the information
can be routed to the destination based upon the IP address defined in the packet header. IP
addresses are generally written as four numbers, between 0 and 255, separated by a period (for
example, 124.148.157.6).

While a 32-bit number is an appropriate way to address systems for computers, humans under-
standably have difficulty remembering them. Thus, a system called the Domain Name System
(DNS) was developed to map IP addresses to more intuitive identifiers and vice versa. You can
use www.netspace.org instead of 128.148.157.6.

It is important to realize that these domain names are not used or understood by IP. When an
application wants to transmit data to another machine on the Internet, it must first translate the
domain name to an IP address using the DNS. A receiving application can perform a reverse
translation, using the DNS to return a domain name given an IP address. There is not a one-to-
one correspondence between IP addresses and domain names: a domain name can map to
multiple IP addresses, and multiple IP addresses can map to the same domain name.

CAUTION

Even more important to note is that the entire body of DNS data cannot be trusted. Varied systems through
the world are responsible for maintaining DNS records. DNS servers can be tricked, and servers can be set
up that are populated with false information. In fact, a security hole in early Java implementations was
created by an inappropriate trust of the DNS.

Transmission Control Protocol (TCP)
Most Internet applications use TCP to implement the transport layer. TCP provides a reliable,
connection-oriented, continuous-stream protocol. The implications of these characteristics are:

■ Reliable When TCP segments, the smallest unit of TCP transmissions, are lost or
corrupted, the TCP implementation will detect this and retransmit necessary segments.

■ Connection-oriented TCP sets up a connection with a remote system by transmitting
control information, often known as a handshake, before beginning a communication. At
the end of the connect, a similar closing handshake ends the transmission.

■ Continuous-stream TCP provides a communications medium that allows for an
arbitrary number of bytes to be sent and received smoothly; once a connection has been

35 1529-5 CH30 9/23/98, 4:36 PM686

687

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

Uniform Resource Locator (URL)

established, TCP segments provide the application layer the appearance of a continuous
flow of data.

Because of these characteristics, it is easy to see why TCP would be used by most Internet
applications. TCP makes it very easy to create a network application, freeing you from worry-
ing how the data is broken up or about coding error correction routines. However, TCP re-
quires a significant amount of overhead and perhaps you might want to code routines that
more efficiently provide reliable transmissions, given the parameters of your application. Fur-
thermore, retransmission of lost data may be inappropriate for your application, because such
information’s usefulness may have expired. In these instances, UDP serves as an alternative,
described in the following section, “User Datagram Protocol (UDP).”

An important addressing scheme that TCP defines is the port. Ports separate various TCP
communications streams that are running concurrently on the same system. For server appli-
cations, which wait for TCP clients to initiate contact, a specific port can be established from
where communications will originate. These concepts come together in a programming ab-
straction known as sockets.
◊ See “TCP Socket Basics,” p. 700

User Datagram Protocol (UDP)
UDP is a low-overhead alternative to TCP for host-to-host communications. In contrast to TCP,
UDP has the following features:

■ Unreliable UDP has no mechanism for detecting errors, nor retransmitting lost or
corrupted information.

■ Connectionless UDP does not negotiate a connection before transmitting data.
Information is sent with the assumption that the recipient will be listening.

■ Message-oriented UDP enables applications to send self-contained messages within
UDP datagrams, the unit of UDP transmission. The application must package all
information within individual datagrams.

For some applications, UDP is more appropriate than TCP. For instance, with the Network
Time Protocol (NTP), lost data indicating the current time would be invalid by the time it was
retransmitted. In a LAN environment, Network File System (NFS) can more efficiently provide
reliability at the application layer and thus uses UDP.

As with TCP, UDP provides the addressing scheme of ports, allowing for many applications to
simultaneously send and receive datagrams. UDP ports are distinct from TCP ports. For ex-
ample, one application can respond to UDP port 512 while another unrelated service handles
TCP port 512.

Uniform Resource Locator (URL)
While IP addresses uniquely identify systems on the Internet, and ports identify TCP or UDP
services on a system, URLs provide a universal identification scheme at the application level.
Anyone who has used a Web browser is familiar with URLs, though their complete syntax may

35 1529-5 CH30 9/23/98, 4:36 PM687

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

688 Chapter 30 Communications and Networkiing

not be self-evident. URLs were developed to create a common format of identifying resources
on the Web, but they were designed to be general enough so as to encompass applications that
predated the Web by decades. Similarly, the URL syntax is flexible enough to accommodate
future protocols.

URL Syntax
The primary classification of URLs is the scheme, which usually corresponds to an application
protocol. Schemes include HTTP, FTP, Telnet, and Gopher. The rest of the URL syntax is in a
format that depends on the scheme. These two portions of information are separated by a
colon:

scheme-name:scheme-info

Thus, while mailto:dwb@netspace.org indicates “send mail to user ‘dwb’ at the machine
netspace.org,” ftp://dwb@netspace.org/ means “open an FTP connection to netspace.org
and log in as user dwb.”

General URL Format
Most URLs conform to a general format that follows this pattern:

scheme-name://host:port/file-info#internal-reference

Scheme-name is an URL scheme such as HTTP, FTP, or Gopher. Host is the domain name or IP
address of the remote system. Port is the port number on which the service is listening; be-
cause most application protocols define a standard port, unless a non-standard port is being
used, the port and the colon that delimits it from the host are omitted. File-info is the re-
source requested on the remote system, which often is a file. However, the file portion may
actually execute a server program and it usually includes a path to a specific file on the system.
The internal-reference is usually the identifier of a named anchor within an HTML page. A
named anchor enables a link to target a particular location within an HTML page. Usually this
is not used, and this token with the # character that delimits it is omitted.

Realize that this general format is very much an over-simplification that only agrees with com-
mon use. For more complete information on URLs, read the following resource:

http://www.netspace.org/users/dwb/url-guide.html

Java and URLs
Java provides a very powerful and elegant mechanism for creating network client applications,
allowing you to use relatively few statements to obtain resources from the Internet. The
java.net package contains the sources of this power, the URL and URLConnection classes.

The Security Manager of Java browsers generally prohibits applets from opening a network
connection to a machine other than the one from which the applet was downloaded. This

security feature significantly limits what applets can accomplish. This holds true for all Java networking

N O T E

35 1529-5 CH30 9/23/98, 4:36 PM688

689

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

Java and URLs

described in this and subsequent chapters. Java applications, however, are under no such
restrictions. ■

The URL Class
This class enables you to easily create a data structure containing all the necessary information
to obtain the remote resource. After an URL object has been created, you can obtain the various
portions of the URL according to the general format. The URL object also enables you to obtain
the remote data.

The URL class has four constructors:

public URL(String spec) throws MalformedURLException;
public URL(String protocol, String host, String file)
throws MalformedURLException;
public URL(String protocol, String host, int port, String file)
throws MalformedURLException;
public URL(URL context, String spec)
throws MalformedURLException;

The first constructor is the most commonly used and enables you to create an URL object with a
simple declaration like:

URL myURL = new URL(“http://www.yahoo.com/”);

The second and third constructors enable you to specify explicitly the various portions of the
URL. The last constructor enables you to use relative URLs. A relative URL only contains part
of the URL syntax; the rest of the data is completed from the URL to which the resource is
relative. This will often be seen in HTML pages, where a reference to merely more.html means
“get more.html from the same machine and directory where the current document resides.”

Here are examples of these constructors:

URL firstURLObject - new URL(“http://www.yahoo.com/”);
URL secondURLObject = new URL(“http”,”www.yahoo.com”,”/”);
URL thirdURLObject =
 new URL(“http”,”www.yahoo.com”,80,”/”);
URL fourthURLObject = new URL(firstURLObject,”text/suggest.html”);

The first three statements create URL objects that all refer to the Yahoo! home page, while the
fourth creates a reference to “text/suggest.html” relative to Yahoo’s home page (such as
http://www.yahoo.com/text/suggest.html). All of these constructors throw a
MalformedURLException, which you will generally want to catch. The example shown later in
Listing 30.1 illustrates this. Note that once you create an URL object, you can change to which
resource it points. To accomplish this, you must create a new URL object.

Connecting to an URL
Now that you’ve created an URL object, you will want to actually obtain some useful data. There
are two main avenues of so doing: reading directly from the URL object or obtaining an
URLConnection instance from it.

35 1529-5 CH30 9/23/98, 4:36 PM689

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

690 Chapter 30 Communications and Networkiing

Reading directly from the URL object requires less code, but is much less flexible, and it only
allows a read-only connection. This is limiting, as many Web services enable you to write infor-
mation that will be handled by a server application. The URL class has an openStream() method
that returns an InputStream object through which the remote resource can be read byte-by-
byte.

Handling data as individual bytes is cumbersome, so you will often want to embed the returned
InputStream within a DataInputStream object, allowing you to read the input line-by-line. This
coding strategy is often referred to as using a decorator, as the DataInputStream decorates the
InputStream by providing a more specialized interface. The fo=towing code fragment obtains
an InputStream directly from the URL object and then decorates that stream:

URL whiteHouse = new URL(“http://www.whitehouse.gov/”);
InputStream undecoratedInput = whiteHouse.openStream();
DataInputStream decoratedInput =
 new DataInputStream(undecoratedInput);

Another more flexible way of connecting to the remote resource is by using the
openConnection() method of the URL class. This method returns an URLConnection object that
provides a number of very powerful methods that you can use to customize your connection to
the remote resource.

For example, unlike the URL class, an URLConnection enables you to obtain both an
InputStream and an OutputStream. This has a significant impact upon the HTTP protocol,
whose access methods include both GET and POST. With the GET method, an application merely
requests a resource and then reads the response. The POST method is often used to provide
input to server applications by requesting a resource, writing data to the server with the HTTP
request body, and then reading the response. In order to use the POST method, you can write to
an OutputStream obtained from the URLConnection prior to reading from the InputStream. If
you read first, the GET method will be used and a subsequent write attempt will be invalid.

The following code fragment demonstrates using an URLConnection object to contact a remote
server application using the HTTP POST method by writing to an OutputStream decorated by a
PrintStream instance. www.javasoft.com makes a CGI server application available to test out
these methods. The code connects to a CGI application which reverses the POST data and then
reads the reversed data from a decorated InputStream.

URL reverseURL =
new URL(“http://www.javasoft.com/cgi-bin/backwards”);
URLConnection reverseConn = reverseURL.openConnection();
PrintStream output =
new PrintStream(reverseConn.getOutputStream());
DataInputStream input =
new DataInputStream(reverseConn.getInputStream());
output.println(“string=TexttoReverse”);
String reversedText = input.readLine();

HTTP-Centric Classes
After reading this overview of the URL and URLConnection classes, you may begin to suspect
that the methods of these classes are designed with HTTP (Hypertext Transport Protocol) in

35 1529-5 CH30 9/23/98, 4:36 PM690

691

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

Java and URLs

mind. If you look at the complete class specifications, this notion is confirmed. Though the
http scheme is only one of many classifications of URLs, these classes are very HTTP-centric.

HTTP is likely to be the most used standard protocol for your communications on the Web and
Internet, so this is not a significant concern. You should be aware, however, that many of these
methods are useful only when working with HTTP URLs.

An Example: Customized AltaVista Searching
Now that you’ve learned the basics of Java networking, it would be nice to do something
actually useful. The AltaVista search engine provides a very powerful way of searching for
documents on the Web; however, it is designed to only return a few hits at a time to optimize
performance. As other astute and sagacious programmers have pointed out, developing a small
client to automatically request all of the search results and then present them at once is very
useful. The AltaVistaList Java application does just that.

AltaVista is a powerful search engine that allows you to find documents on the Web. The AltaVista
home page is available at http://www.altavista.digital.com/.

When designing this application, first consider what public methods this class should have. It
needs:

■ A method to start the application.

■ A method to initialize the object.

■ A method to print out all of the results.

■ A number of protected methods to be used by the object itself: a method to create a
query to send to AltaVista, a method to get a single HTML page from AltaVista, and a
method to parse out the hit results from the rest of the returned HTML page.

Listing 30.1 shows the entire code of the AltaVistaList application. When executed with a
series of keywords, it returns an HTML page that contains all of the hits returned by AltaVista.

B„ETION

Note that this application is limited by the specific mechanisms AltaVista uses to receive and present
information. These mechanisms are not guaranteed to remain static—thus, if AltaVista changes, this program
fails.

Listing 30.1 AltaVistaList.java

import java.net.*; // Import the names of the classes
import java.io.*; // to be used.

/**
 * This application creates a single, concise HTML page

T I P

continues

35 1529-5 CH30 9/23/98, 4:36 PM691

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

692 Chapter 30 Communications and Networkiing

 * of hits from the AltaVista search engine given a
 * search string.
 * @author David W. Baker
 * @version 1.1
 */
public class AltaVistaList {
 private static final String AGENT_NAME =
 “java-alta-search”;
 private static final String AGENT_VERSION = “1.0”;
 private static final String SEARCH_URL =
 “http://www.altavista.digital.com/cgi-bin/query”;
 private int totalHits = 0;
 private StringBuffer outputList = new StringBuffer();

 /**
 * This starts the application.
 * @param args Program arguments - the search string.
 */
 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println(
 “Usage: AltaVistaList search string”);
 System.exit(1);
 }
 AltaVistaList runApp = new AltaVistaList(args);
 runApp.printOutput(System.out);
 System.exit(0);
 }

 /**
 * This constructor connects to AltaVista and obtains
 * all of the relevant hits.
 * @param args The search tokens.
 */
 public AltaVistaList(String[] args) {
 String hitData; // Store incoming data.
 int startHits = 0; // Get the next 10 hits from here.
 String searchSyntax = createQuery(args);

 URLConnection.setDefaultRequestProperty(“User-Agent”,
 AGENT_NAME + “/” + AGENT_VERSION);
 while (true) {
 hitData = getPage(SEARCH_URL + “?” + searchSyntax +
 startHits); // Go get a page of hits.
 hitData = getHits(hitData); // Extract the hits.
 // If there were no hits in the page, hitData will
 // be null. If there were hits, append them to
 // the outputList, increment to the next 10 hits,
 // and go through the loop again.
 if (hitData != null) {
 outputList.append(hitData + “\n”);
 startHits += 10;
 // Otherwise, break from the loop.
 } else {

Listing 30.1 Continued

35 1529-5 CH30 9/23/98, 4:36 PM692

693

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

Java and URLs

 break;
 }
 }
 }

 /**
 * This method builds an AltaVista search query
 * string.
 * @param searchTokens An array of search tokens.
 * @return The search query string built.
 */
 protected String createQuery(String[] searchTokens) {
 StringBuffer searchString = new StringBuffer();

 // Append the tokens to a single string.
 for(int index = 0; index < searchTokens.length;
 index++) {
 searchString.append(searchTokens[index]);
 // Add a space if there’s another token coming up.
 if (index < searchTokens.length-1) {
 searchString.append(“ “);
 }
 }
 // URL encode the string.
 String encodedSearchString =
 URLEncoder.encode(searchString.toString());
 // Return the proper query string.
 return “what=web&fmt=c&pg=q&q=” + encodedSearchString
 + “&stq=”;
 }

 /**
 * This method obtains a page from the Web.
 * @param url The URL of the page to obtain.
 * @return The page obtained.
 */
 protected String getPage(String url) {
 // A buffer for the incoming page.
 StringBuffer page = new StringBuffer();
 String nextLine; // The next line in the input stream.

 try {
 URL urlObject = new URL(url);
 URLConnection agent = urlObject.openConnection();
 DataInputStream input =
 new DataInputStream(agent.getInputStream());
 // While readLine() doesn’t return null, append
 // then next line to the buffer.
 while((nextLine = input.readLine()) != null) {
 page.append(nextLine+”\n”);
 }
 input.close();
 } catch(MalformedURLException excpt) {
 System.out.println(“Badly formed URL: “ + excpt);
 } catch(IOException excpt) {

continues

35 1529-5 CH30 9/23/98, 4:36 PM693

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

694 Chapter 30 Communications and Networkiing

 System.out.println(“Failed I/O: “ + excpt);
 }
 // Convert the buffer to a string and return.
 return page.toString();
 }

 /**
 * This method extracts the list of hits from a returned
 * AltaVista results page.
 * @param hitPage The page returned from AltaVista.
 * @return The list of hits.
 */
 protected String getHits(String hitPage) {
 int first,last; // Begin/end of a substring.
 int notFound = -1; // Not found return for indexOf().
 String hitSection = null; // The hits part of page.

 // Go to the first “<a href=” after “<pre>”.
 first = hitPage.indexOf(“<pre>”) + “<pre>”.length();
 first = hitPage.indexOf(“<a href=”,first);
 // End pointer at “</pre>”.
 last = hitPage.indexOf(“</pre>”);

 // If our beginning is after our end, return.
 if (last < first) {
 return hitSection;
 }
 // If neither substring is found, return.
 if (first == notFound || last == notFound) {
 System.err.println(“Bad search page format”);
 return hitSection;
 }

 // Cut out the substring.
 hitSection = hitPage.substring(first,last);
 first = last = 0;
 totalHits += 1; // Found one hit.
 // Go through the page line by line.
 while((last = hitSection.indexOf(“\n”,first))
 != notFound) {
 // Find the next “<a href=” which should be
 // immediately after the \n.
 first = hitSection.indexOf(“<a href=”,last);
 // If it’s not, return the current substring.
 if (first != (last+1)) {
 return hitSection.substring(0,last);
 // Otherwise, another hit has been found.
 } else {
 totalHits += 1;
 }
 }
 return hitSection; // Return the substring.
 }

Listing 30.1 Continued

35 1529-5 CH30 9/23/98, 4:36 PM694

695

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

Java and URLs

 /**
 * This method prints the list of hits obtained from
 * AltaVista.
 * @param sendOutput Where to print the output.
 */
 public void printOutput(PrintStream sendOutput) {
 sendOutput.print(“<!DOCTYPE HTML PUBLIC \”-//IETF//” +
 “DTD HTML//EN\”>\n<HTML>\n<HEAD>\n<TITLE>” +
 AGENT_NAME + “</TITLE>\n</HEAD>\n<BODY>\n<H1>” +
 “Search Results</H1>\n<P>Total number of “ +
 “hits: “ + totalHits + “</P>\n<PRE>\n” +
 outputList + “</PRE>\n</BODY>\n</HTML>\n”);
 }
}

The main() Method: Starting the Application First, the application imports the two pack-
ages it will be using, allowing its method invocations of the Java API to be more brief. Then the
class is declared and a number of private instance variables are initialized: search_URL is the
URL to the AltaVista search engine, totalHits maintains a count of the hits returned, and
outputList is a buffer for the HTML of the returned hits.

The main() method enables this code to be executed as an application. This method checks for
an appropriate set of arguments and creates an instance of the AltaVistList class. It then tells
that instance to print its output, passing the printOutput() method System.out. System.out is
a static reference to a PrintStream object within the java.lang.System class. By passing this
PrintStream to printOutput(), it indicates that the AltaVistaList instance should send its
data to standard output. Finally, main() exits the application with a return value of 0, indicating
that the execution completed normally.

The AltaVistaList Constructor The class’ only constructor takes an argument of a reference
to an array of String objects. It passes this array reference to the createQuery() method,
described below, which builds a query for the AltaVista search engine. The constructor then
invokes a static method of the URLConnection class, setDefaultRequestProperty():

URLConnection.setDefaultRequestProperty(“User-Agent”,
AGENT_NAME + “/” + AGENT_VERSION);

Note that because this is a static method, it is not invoked through an instance of
URLConnection. Instead, the method is invoked through the class itself. This method indicates
that all HTTP requests should specify the “User-Agent” field as being equal to a string that
identifies this application. The HTTP User-Agent is a field that Web clients use to tell servers
their program name, allowing servers to keep track of what clients are visiting the site. For
instance, Netscape browsers send a User-Agent field that includes “Mozilla,” while the Internet
Explorer sends “Explorer.” Unfortunately, as of the writing of this chapter, the JDK has yet to
implement this method, and the User-Agent remains the default Java<version>. This code has
been left in with the assumption that the JDK will soon complete its implementation of the
Java API.

The constructor then enters an infinite loop. In this loop, it calls the getPage() method with an
URL of a page to receive. This URL is the URL of the AltaVista search engine appended by a

35 1529-5 CH30 9/23/98, 4:36 PM695

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

696 Chapter 30 Communications and Networkiing

question mark, the query returned by createQuery(), and a number from where the hit list
should start. AltaVista lists hits 10 at a time, and the startHits counter enables the
AltaVistaList application to increment throughout the entire list of hits. The returned page is
passed to getHits(), which strips out the hits from the rest of the HTML page. If what remains
is a null String reference, the application breaks from the loop. Otherwise, it appends the data
to a StringBuffer and then increments the startHits counter to set up for retrieving the next
ten hits.

The createQuery() Method: Building the Query String This protected method is used inter-
nally by an instance of the AltaVistaList class, building the query syntax for the AltaVista
search engine. This query string follows this format:

what=web&fmt=c&pg=q&q=<search string>&stq=<n>

While this appears confusing, this is merely a set of five parameters separated by ampersands.
what=web tells AltaVista to search its index of Web pages. fmt=c asks for output to be returned
in a compact format, facilitating parsing and efficient presentation. pq=q indicates that you are
doing a simple query using the basic syntax language. q= identifies your search string, which
must be encoded in the URL format, encoding spaces, and other special characters. Finally,
stq= tells AltaVista which query result item to start from when returning its data. AltaVista
returns results 10 at a time, and stq= enables you to obtain the results after the first 10n.

createQuery() takes an array of String objects and appends the entire array to a
StringBuffer object. The contents of each String are separated by a space. Another static
method is used, this time encode() from the URLEncoder class. This is a very useful method:

String encodedSearchString =
URLEncoder.encode(searchString.toString());

The URLEncoder.encode() static method takes a String as an argument and returns a corre-
sponding String that is in URL encoded format. This format allows spaces and other special
characters to be encapsulated within an URL.

createQuery() then returns the appropriate query with this encoded String embedded. Note
that createQuery() omits the number for the stq= parameter, as that information is appended
within the main() method.

The getPage() Method: Retrieving a Web Page getPage()is a method that demonstrates the
concepts learned to this point regarding Java and networking. Passed a String that contains an
URL, the method creates an URL instance and then obtains an URLConnection from that in-
stance. It sets up a DataInputStream to read data from that connection line-by-line, and then
enters a loop. This while loop reads the next line of data, exiting the loop if the next line is null.
The method appends each line to a StringBuffer object, and once completed, uses that class’
toString() method to return a String.

The getHits() Method: Parsing Out the Hits The logic of this method is a little hard to follow,
but its goal is to take a String containing an HTML page from the AltaVista search engine and
strip out the returned hits. It accomplishes this by using two pointers, first and last, to indi-
cate the beginning and end of appropriate substrings within the page.

35 1529-5 CH30 9/23/98, 4:36 PM696

697

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

30

IV
Part

Ch

Java and URLs

getHits() looks for the first instance of <a href= after the first occurrence of <pre>, which is
where the hit list should begin. The end of the hit list should be at the first </pre> tag. If no
such string is found, the method returns with a null String reference, indicating that the page
was devoid of hits.

Otherwise, the method pares down the HTML page to a substring and iterates through that
data. Each hit should be a new line starting with <a href=. While this is the case, the method
keeps looping until it comes to the end of the data. Each line that it encounters indicates a new
hit has been found, and the method increments an instance variable used to keep track of the
total number of hits. Once completed, the method returns the String containing the hits.

The printOutput Method: Displaying the Results The printOutput() method is very simple.
It takes a PrintStream as an argument and then prints an HTML page to that stream. Instead
of hard-coding System.out, this method is flexible and enables output to be easily directed to
some other stream. The HTML page printed includes the total number of hits and then a
preformatted section containing each hit on a separate line.

Running AltaVistaList To run the AltaVistaList application, first compile it with javac.
Then, execute it with the Java interpreter, passing it an appropriate set of arguments. For in-
stance, to see what additional information is available on the Web with both Java and URL on
the same page, use the following command:

java AltaVistaList Java URL

35 1529-5 CH30 9/23/98, 4:36 PM697

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH30 LP#4

698 Chapter 30 Communications and Networkiing

35 1529-5 CH30 9/23/98, 4:36 PM698

699

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

C H A P T E R

TCP Sockets

TCP Socket Basics 700

Creating a TCP Client/Server Application 706

31

In this chapter

36 1529-5 CH31 9/23/98, 4:38 PM699

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

700 Chapter 31 TCP Sockets

TCP Socket Basics
Sockets are a programming abstraction that isolates your code from the low-level
implementations of the TCP/IP protocol stack. TCP sockets enable you to quickly develop
your own custom client/server applications. Although the URL class described in Chapter 30,
“Communications and Networking,” is very useful with well-established protocols, sockets
allow you to develop your own modes of communication.

Sockets, as a programming interface, were originally developed at the University of California
at Berkeley as a tool to easily accomplish network programming. Originally part of UNIX oper-
ating systems, the concept of sockets has been incorporated into a wide variety of operating
environments, including Java.

What Is a Socket?
A socket is a handle to a communications link over the network with another application. A
TCP socket uses the TCP protocol, inheriting the behavior of that transport protocol. Four
pieces of information are needed to create a TCP socket:

■ The local system’s IP address

■ The TCP port number the local application is using

■ The remote system’s IP address

■ The TCP port number to which the remote application is responding

The original TCP specification, RFC 793, used the term socket to mean the combination of a system’s
IP address and port number. A pair of sockets identified a unique end-to-end TCP connection. In this
discussion, the term socket is used at a higher level, and a socket is your interface to a single network
connection. RFC 793 is available at:

ftp://ftp.internic.net/rfc/rfc793.txt

Sockets are often used in client/server applications. A centralized service waits for various
remote machines to request specific resources, handling each request as it arrives. For clients
to know how to communicate with the server, standard application protocols are assigned well-
known ports. On UNIX operating systems, ports below 1024 can only be bound by applications
with super-user (for example, root) privileges; thus, for control, these well-known ports lie
within this range, by convention. Some well-known ports are shown in Table 31.1.

The Internet Assigned Numbers Authority (IANA) assigns well-known ports to application protocols. At
the time of this writing, the current listing of the well-known ports is within RFC 1700, available from:

ftp://ftp.internic.net/rfc/rfc1700.txt

T I P

T I P

36 1529-5 CH31 9/23/98, 4:38 PM700

701

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

TCP Socket Basics

Table 31.1 Well-Known TCP Ports and Services

Port Service

21 FTP

23 Telnet

25 SMTP (Standard Mail Transfer Protocol)

79 Finger

80 HTTP

For many application protocols, you can merely use the Telnet application to connect to the service
port and then manually emulate a client. This may help you understand how client/server communica-
tions work.

Client applications must also obtain, or bind, a port to establish a socket connection. Because
the client initiates the communication with the server, such a port number could conveniently
be assigned at runtime. Client applications are usually run by normal, unprivileged users on
UNIX systems, and thus these ports are allocated from the range above 1024. This convention
has held when migrated to other operating systems, and client applications are generally given
a dynamically allocated or ephemeral port above 1024.

Because no two applications can bind the same port on the same machine simultaneously, a
socket uniquely identifies a communications link. Realize that a server may respond to two
clients on the same port, because the clients will be on different systems and/or different
ports; the uniqueness of the link’s characteristics are preserved. Figure 31.1 illustrates this
concept.

Figure 31.1 shows a server application responding to three sockets through port 80, the well-
known port for HTTP. Two sockets are communicating with the same remote machine, while
the third is to a separate system. Note the unique combination of the four TCP socket charac-
teristics.

Figure 31.1 also shows a simplified view of a client-server connection. Many machines are
configured with multiple IP interfaces—they have more than one IP address. These distinct IP
addresses allow for separate connections to be maintained. Thus, a server may have an applica-
tion accept connections on port 80 for one IP address while a different application handles
connections to port 80 for another IP address. These connections are distinct. The Java socket
classes, described within the next section, “Java TCP Socket Classes,” allow you to select a
specific local interface for the connection.

Java TCP Socket Classes
Java has a number of classes that allow you to create socket-based network applications. The
two classes you use include java.net.Socket and java.net.ServerSocket.

T I P

36 1529-5 CH31 9/23/98, 4:38 PM701

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

702 Chapter 31 TCP Sockets

The Socket class is used for normal two-way socket communications and has four commonly
used constructors:

public Socket(String host, int port)
➥throws UnknownHostException, IOException;
public Socket(InetAddress address, int port)
➥throws IOException;
public Socket(String host, int port, InetAddress localAddr,
➥int localPort) throws UnknownHostException, IOException;
public Socket(InetAddress address, int port,
➥InetAddress localAddr, int localPort)
➥throws UnknownHostException, IOException

The first constructor allows you to create a socket by just specifying the domain name of the
remote machine within a String instance and the remote port. The second enables you to
create a socket with an InetAddress object. The third and fourth are similar to the first two,
except they allow you to choose the local interface and port number for the connection. If your
machine has multiple IP addresses, you can use these constructors to choose a specific inter-
face to use.

An InetAddress is an object that stores an IP address of a remote system. It has no public
constructor methods, but does have a number of static methods that return instances of
InetAddress. Thus, InetAddress objects can be created through static method invocations:

FIG. 31.1
Many clients can
connect to a single
server through separate
sockets.

Server
128.148.157.6

Client
128.148.157.142

Client
204.160.73.131

T
C

P
/8

0

T
C

P
/8

0

T
C

P
/8

0

T
C

P
/2

11
1

T
C

P
/2

11
2

T
C

P
/3

52
6

36 1529-5 CH31 9/23/98, 4:38 PM702

703

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

TCP Socket Basics

try {
InetAddress remoteOP =
InetAddress.getByName(“www.microsoft.com”);
InetAddress[] allRemoteIPs =
InetAddress.getAllByName(“www.microsoft.com”);
InetAddress myIP = InetAddress.getLocalHost();
} catch(UnknownHostException excpt) {
System.err.println(“Unknown host: “ + excpt);
}

The first method returns an InetAddress object with an IP address for www.microsoft.com.
The second obtains an array of InetAddress objects, one for each IP address mapped to
www.microsoft.com. (Recall from Chapter 30 that the same domain name can correspond to
several IP addresses.) The last InetAddress method creates an instance with the IP address of
the local machine. All of these methods throw an UnknownHostException, which is caught in
the previous example.

The DNS, described in Chapter 30, is a distributed database whose information changes over time. The
InetAddress class, however, is written so that it only performs DNS resolution once for each
hostname over the life of the Java runtime. All subsequent InetAddress objects created for a
particular hostname will be returned from a persistent cache.

Thus, if you have a long-running Java application, the IP address contained within an InetAddress
object may become inappropriate. The comments within the JDK code indicate that this was done for
security reasons. In your programming, this may become an important fact to be aware of.

◊ See “Internet Protocol (IP),” p. 686

The Socket class has methods that allow you to read and write through the socket—the
getInputStream() and getOutputStream() methods. To make applications simpler to design,
the streams these methods return are usually decorated by another java.io object, such as
BufferedReaderandPrintWriter, respectively. Both getInputStream() and
getOutputStream() throw an IOException, which should be caught. Note the following:

try {
Socket netspace = new Socket(“www.netspace.org”,7);
BufferedReader input = new BufferedReader(
new InputStreamReader(netspace.getInputStream()));
PrintWriter output = new PrintWriter(
netspace.getOutputStream(), true);
} catch(UnknownHostException expt) {
System.err.println(“Unknown host: “ + excpt);
System.exit(1);
} catch(IOException excpt) {
System.err.println(“Failed I/O: “ + excpt);
System.exit(1);
}

To write a one-line message and then read a one-line response, you need only use the deco-
rated stream:

output.println(“test”);
String testResponse = input.readLine();

T I P

36 1529-5 CH31 9/23/98, 4:38 PM703

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

704 Chapter 31 TCP Sockets

After you have completed communicating through the socket, you must first close the
InputStream and OutputStream instances, and then close the socket.

output.close();
input.close();
netspace.close();

To create a TCP server, it is necessary to understand a new class, ServerSocket. ServerSocket
allows you to bind a port and wait for clients to connect, setting up a complete Socket object at
that time. ServerSocket has three constructors:

public ServerSocket(int port) throws IOException;
public ServerSocket(int port, int count)
➥throws IOException;
public ServerSocket(int port, int count,
➥InetAddress localAddr) throws IOException;

The first constructor creates a listening socket at the port specified, allowing for the default
number of 50 clients waiting in the connection queue. The second constructor enables you to
change the length of the connection queue, allowing greater or fewer clients to wait to be
processed by the server. The final constructor allows you to specify a local interface to listen
for connections. If your machine has multiple IP addresses, this constructor allows you to
provide services to specific IP addresses. Should you use the first two constructors on such a
machine, the ServerSocket will accept connections to any of the machine’s IP addresses.

After creating a ServerSocket, the accept() method can be used to wait for a client to connect.
The accept() method blocks until a client connects, and then returns a Socket instance for
communicating to the client. Blocking is a programming term that means a routine enters an
internal loop indefinitely, returning only when a specific condition occurs. The program’s
thread of execution does not proceed past the blocking routine until it returns—that is, when
the specific condition happens.

The following code creates a ServerSocket at port 2222, accepts a connection, and then opens
streams through which communication can take place once a client connects:

try {
 ServerSocket server = new ServerSocket(2222);
 Socket clientConn = server.accept();

 BufferedReader input = new BufferedReader(
 new InputStreamReader(clientConn.getInputStream()));
 PrintWriter output = new PrintWriter(
 clientConn.getInputStream(), true);
} catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 System.exit(1);
}

After communications are complete with the client, the server must close the streams and then
close the Socket instance, as previously described.

36 1529-5 CH31 9/23/98, 4:38 PM704

705

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

TCP Socket Basics

The socket classes in the Java API provide a convenient stream interface by using your
host’s TCP implementation. Within the JDK, a subclass of the abstract class SocketImpl

performs the interaction with your machine’s TCP. It is possible to define a new SocketImpl that
could use a different transport layer than plain TCP. You can change this transport layer implementation
by creating your own subclass of SocketImpl and defining your own SocketImplFactory. However,
in this chapter, it is assumed that you are using the JDK’s socket implementation, which uses TCP. ■

Customizing Socket Behavior
The JDK allows you to specify certain parameters that affect how your TCP sockets behave.
These parameters mimic the behavior of some of the options available within the Berkeley
sockets API and are often referred to by the names within that API: SO_SNDBUF, SO_RCVBUF,
SO_TIMEOUT, SO_LINGER, and TCP_NODELAY.

The Socket class has a method setSoTimeout(int timeout) that allows you to specify a
timeout in milliseconds. Any subsequent attempts to read from the InputStream of this socket
waits for data only until this timeout expires. If the timeout expires, an
InterruptedIOException is thrown. By default, the timeout is 0, indicating that a read() call
should block forever or until an IOException is thrown.

The ServerSocket class also has a setSoTimeout(int timeout) method, but the timeout ap-
plies to the accept() method. If you set a timeout, a subsequent call to accept()waits only the
specified number of milliseconds for a client to connect. When the timeout expires, an
InterruptedIOException is thrown. For most applications, it is appropriate for a server to wait
indefinitely for clients to connect, but in certain instances, the ability to timeout is valuable.
When the exception is thrown, the ServerSocket instance is still valid, and, if you want, you
can call accept() again.

The setSoLinger(boolean on, int linger) method of the Socket class allows you to modify
how the close() method behaves. Normally, when you close() the socket, any data that is
queued by your machine’s TCP or has yet to be acknowledged by the recipient is dealt with in
the background; the close() function does not block until TCP has completed the transmis-
sion. If you enable the setSoLinger() option, this changes. When the option is enabled with a
timeout of 0, a close() causes any data queued for transmission to be discarded, and the re-
cipient is sent a reset segment. To wit, the connection abruptly aborts. When the option is
enabled with a positive timeout, close()blocks until all of the data has been sent and acknowl-
edged by the recipient, or the timeout expires, in which case an IOException is thrown. This
option allows your
application to become more aware of how successful TCP is at sending all of the data to the
recipient.

The Socket class was improved in JDK 1.2 to allow you to get and manipulate the size of the
send and receive buffers (SO_SNDBUF and SO_RCVBUF, respectively). Socket’s
getSendBufferSize() and getReceiveBufferSize() obtain the size of the send or receive
buffers. The setSendBufferSize(int size) and setReceiveBufferSize(int size), on the
other hand, are used to specify hints to the socket factory as to what size these buffers should be.

N O T E

36 1529-5 CH31 9/23/98, 4:38 PM705

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

706 Chapter 31 TCP Sockets

For high-volume sockets, setting the size higher tends to increase performance, while on
lower-volume sockets, or those with known block sizes, setting the number lower tends to
decrease the backlog of data. All four methods can throw a SocketException if something goes
wrong.

The last socket option that Java TCP sockets support is set within the setTcpNoDelay(boolean
on) option of the Socket class. This allows you to disable the use of the Nagle algorithm in your
machine’s TCP implementation. The Nagle algorithm instructs a TCP implementation to limit
the number of unacknowledged small segments to one. When sending data a small piece at a
time, TCP using the Nagle algorithm waits until each piece is acknowledged before sending
another. This greatly reduces congestion on networks, and in most instances, it is to your ad-
vantage to leave the Nagle algorithm enabled. However, there are times when an application
must have small messages transmitted without delay, and the setTcpNoDelay() method allows
you to disable the standard behaviors.

The Nagle algorithm was originally proposed within RFC 896, available from:

ftp://ftp.internic.net/rfc/rfc896.txt ■

Creating a TCP Client/Server Application
Having understood the building blocks of TCP socket programming, the next challenge is to
develop a practical application. To demonstrate this process, you will create a stock quote
server and client. The client will contact the server and request stock information for a set of
stock identifiers. The server will read data from a file, periodically checking to see if the file has
been updated, and send the requested data to the client.

Designing an Application Protocol
Given the needs of our system, our protocol has six basic steps:

1. Client connects to server.

2. Server responds to client with a message indicating the currentness of the data.

3. The client requests data for a stock identifier.

4. The server responds.

5. Repeat steps 3 and 4 until the client ends the dialog.

6. Terminate the connection.

Implementing this design, you come up with a more detailed protocol. The server waits for the
client on port 1701. When the client first connects, the server responds with:

+HELLO time-string

N O T E

36 1529-5 CH31 9/23/98, 4:38 PM706

707

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

Creating a TCP Client/Server Application

time-string indicates when the stock data to be returned was last updated. Next, the client
sends a request for information. The server follows this by a response providing the data, as
follows:

STOCK: stock-id
+stock-id stock-data

stock-id is a stock identifier consisting of a series of capital letters. stock-data is a string of
characters detailing the performance of the particular stock. The client can request informa-
tion on other stocks by repeating this request sequence.

Should the client send a request for information regarding a stock of which the server is un-
aware, the server responds with:

-ERR UNKNOWN STOCK ID

If the client sends a command requesting information about a stock, but omits the stock ID, the
server sends:

-ERR MALFORMED COMMAND

Should the client send an invalid command, the server responds with:

-ERR UNKNOWN COMMAND

When the client is done requesting information, it ends the communication and the server
confirms the end of the session:

QUIT
+BYE

The next example demonstrates a conversation using the following protocol. All server re-
sponses should be preceded by a + or - character, while the client requests should not. In this
example, the client is requesting information on three stocks: ABC, XYZ, and AAM. The server
has information only regarding the last two:

+HELLO Tue, Jul 16, 1996 09:15:13 PDT
STOCK: ABC
-ERR UNKNOWN STOCK ID
STOCK: XYZ
+XYZ Last: 20 7/8; Change -0 1/4; Volume 60,400
STOCK: AAM
+AAM Last 35; Change 0; Volume 2,500
QUIT
+BYE

Developing the Stock Client
The client application to implement the preceding protocol should be fairly simple. The code is
shown in Listing 31.1.

36 1529-5 CH31 9/23/98, 4:38 PM707

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

708 Chapter 31 TCP Sockets

Listing 31.1 StockQuoteClient.java

import java.io.*; // Import the names of the packages
import java.net.*; // to be used.

/**
 * This is an application which obtains stock information
 * using our new application protocol.
 * @author David W. Baker
 * @version 1.2
 */
public class StockQuoteClient {
 // The Stock Quote server listens at this port.
 private static final int SERVER_PORT = 1701;
 // Should your quoteSend PrintWriter autoflush?
 private static final boolean AUTOFLUSH = true;
 private String serverName;
 private Socket quoteSocket = null;
 private BufferedReader quoteReceive = null;
 private PrintWriter quoteSend = null;
 private String[] stockIDs; // Array of requested IDs.
 private String[] stockInfo; // Array of returned data.
 private String currentAsOf = null; // Timestamp of data.

 /**
 * Start the application running, first checking the
 * arguments, then instantiating a StockQuoteClient, and
 * finally telling the instance to print out its data.
 * @param args Arguments which should be <server> <stock ids>
 */
 public static void main(String[] args) {
 if (args.length < 2) {
 System.out.println(
 “Usage: StockQuoteClient <server> <stock ids>”);
 System.exit(1);
 }
 StockQuoteClient client = new StockQuoteClient(args);
 client.printQuotes(System.out);
 System.exit(0);
 }

 /**
 * This constructor manages the retrieval of the
 * stock information.
 * @param args The server followed by the stock IDs.
 */
 public StockQuoteClient(String[] args) {
 String serverInfo;

 // Server name is the first argument.
 serverName = args[0];
 // Create arrays as long as arguments - 1.
 stockIDs = new String[args.length-1];
 stockInfo = new String[args.length-1];
 // Copy the rest of the elements of the args array
 // into the stockIDs array.

36 1529-5 CH31 9/23/98, 4:38 PM708

709

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

Creating a TCP Client/Server Application

 for (int index = 1; index < args.length; index++) {
 stockIDs[index-1] = args[index];
 }
 // Contact the server and return the HELLO message.
 serverInfo = contactServer();
 // Parse out the timestamp, which is everything after
 // the first space.
 if (serverInfo != null) {
 currentAsOf = serverInfo.substring(
 serverInfo.indexOf(“ “)+1);
 }
 getQuotes(); // Go get the quotes.
 quitServer(); // Close the communication.
 }

 /**
 * Open the initial connection to the server.
 * @return The initial connection response.
 */
 protected String contactServer() {
 String serverWelcome = null;

 try {
 // Open a socket to the server.
 quoteSocket = new Socket(serverName,SERVER_PORT);
 // Obtain decorated I/O streams.
 quoteReceive = new BufferedReader(
 new InputStreamReader(
 quoteSocket.getInputStream()));
 quoteSend = new PrintWriter(
 quoteSocket.getOutputStream(),
 AUTOFLUSH);
 // Read the HELLO message.
 serverWelcome = quoteReceive.readLine();
 } catch (UnknownHostException excpt) {
 System.err.println(“Unknown host “ + serverName +
 “: “ + excpt);
 } catch (IOException excpt) {
 System.err.println(“Failed I/O to “ + serverName +
 “: “ + excpt);
 }
 return serverWelcome; // Return the HELLO message.
 }

 /**
 * This method asks for all of the stock info.
 */
 protected void getQuotes() {
 String response; // Hold the response to stock query.

 // If the connection is still up.
 if (connectOK()) {
 try {
 // Iterate through all of the stocks.
 for (int index = 0; index < stockIDs.length;

continues

36 1529-5 CH31 9/23/98, 4:38 PM709

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

710 Chapter 31 TCP Sockets

 index++) {
 // Send query.
 quoteSend.println(“STOCK: “+stockIDs[index]);
 // Read response.
 response = quoteReceive.readLine();
 // Parse out data.
 stockInfo[index] = response.substring(
 response.indexOf(“ “)+1);
 }
 } catch (IOException excpt) {
 System.err.println(“Failed I/O to “ + serverName
 + “: “ + excpt);
 }
 }
 }

 /**
 * This method disconnects from the server.
 * @return The final message from the server.
 */
 protected String quitServer() {
 String serverBye = null; // BYE message.

 try {
 // If the connection is up, send a QUIT message
 // and receive the BYE response.
 if (connectOK()) {
 quoteSend.println(“QUIT”);
 serverBye = quoteReceive.readLine();
 }
 // Close the streams and the socket if the
 // references are not null.
 if (quoteSend != null) quoteSend.close();
 if (quoteReceive != null) quoteReceive.close();
 if (quoteSocket != null) quoteSocket.close();
 } catch (IOException excpt) {
 System.err.println(“Failed I/O to server “ +
 serverName + “: “ + excpt);
 }
 return serverBye; // The BYE message.
 }

 /**
 * This method prints out a report on the various
 * requested stocks.
 * @param sendOutput Where to send output.
 */
 public void printQuotes(PrintStream sendOutput) {
 // Provided that you actually received a HELLO message:
 if (currentAsOf != null) {
 sendOutput.print(“INFORMATION ON REQUESTED QUOTES”
 + “\n\tCurrent As Of: “ + currentAsOf + “\n\n”);
 // Iterate through the array of stocks.
 for (int index = 0; index < stockIDs.length;
 index++) {

Listing 31.1 Continued

36 1529-5 CH31 9/23/98, 4:38 PM710

711

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

Creating a TCP Client/Server Application

 sendOutput.print(stockIDs[index] + “:”);
 if (stockInfo[index] != null)
 sendOutput.println(“ “ + stockInfo[index]);
 else sendOutput.println();
 }
 }
 }

 /**
 * Conveniently determine if the socket and streams are
 * not null.
 * @return If the connection is OK.
 */
 protected boolean connectOK() {
 return (quoteSend != null && quoteReceive != null &&
 quoteSocket != null);
 }
}

The main() Method: Starting the Client The main()method first checks to see that the
application has been invoked with appropriate command-line arguments, quitting if this is not
the case. It then instantiates a StockQuoteClient with the args array reference and runs the
printQuotes() method, telling the client to send its data to standard output.

The StockQuoteClient Constructor The goal of the constructor is to initialize the data struc-
tures, connect to the server, load the stock data from the server, and terminate the connection.
The constructor creates two arrays, one into which it copies the stock IDs and the other which
remains uninitialized to hold the data for each stock.

It uses the contactServer() method to open communications with the server, returning the
opening string. Provided the connection opened properly, this string contains a timestamp
indicating the currentness of the stock data. The constructor parses this string to isolate that
timestamp, gets the stock data with the getQuotes() method, and then closes the connection
with quitServer().

The contactServer() Method: Starting the Communication Like the examples seen previ-
ously in this chapter, this method opens a socket to the server. It then creates two streams to
communicate with the server. Finally, it receives the opening line from the server (for example,
+HELLO time-string) and returns that as a String.

The getQuotes() Method: Obtaining the Stock Data This method performs the queries on
each stock ID with which the application is invoked, now stored within the stockIDs array.
First it calls a short method, connectOK(), which merely ensures that the Socket and streams
are not null. It iterates through the stockIDs array, sending each in a request to the server. It
reads each response, parsing out the stock data from the line returned. It stores the stock data
as a separate element in the stockInfo array. After it has requested information on each stock,
the getQuotes() method returns.

The quitServer() Method: Ending the Connection This method ends the communication
with the server, first sending a QUIT message if the connection is still valid. Then it performs

36 1529-5 CH31 9/23/98, 4:38 PM711

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

712 Chapter 31 TCP Sockets

the essential steps when terminating a socket communication: it closes the streams and then
the Socket.

The printQuotes() Method: Displaying the Stock Quotes Given a PrintStream object, such
as System.out, this method prints the stock data. It iterates through the array of stock identifi-
ers, stockIDs, and then prints the value in the corresponding stockInfo array.

Developing the Stock Quote Server
The server application is a bit more complex than the client that requests its services. It actu-
ally consists of two classes. The first loads the stock data and waits for incoming client connec-
tions. When a client does connect, it creates an instance of another class that implements the
Runnable interface, passing the newly created Socket to the client.

This secondary object, a handler, is run in its own thread of execution. This allows the server
to loop back and accept more clients, rather than perform the communications with clients one
at a time. When a server handles requests one after the other, it is said to be iterative; one that
deals with multiple requests at the same time is concurrent. For TCP client/server interac-
tions, which can often last a long time, concurrent operation is often essential. The handler is
the object that performs the actual communication with the client, and multiple instances of the
handler allow the server to process multiple requests simultaneously.

This is a common network server design—using a multi-threaded server to allow many client
connects to be handled simultaneously. The code for this application is shown in Listing 31.2.

Listing 31.2 StockQuoteServer.java

import java.io.*; // Import the package names to be
import java.net.*; // used by this application.
import java.util.*;

/**
 * This is an application that implements our stock
 * quote application protocol to provide stock quotes.
 * @author David W. Baker
 * @version 1.2
 */
public class StockQuoteServer {
 // The port on which the server should listen.
 private static final int SERVER_PORT = 1701;
 // Queue length of incoming connections.
 private static final int MAX_CLIENTS = 50;
 // File that contains the stock data of format:
 // <stock-id> <stock information>
 private static final File STOCK_QUOTES_FILE =
 new File(“stockquotes.txt”);
 private ServerSocket listenSocket = null;
 private Hashtable stockInfo;
 private Date stockInfoTime;
 private long stockFileMod;
 // A boolean used to keep the server looping until

36 1529-5 CH31 9/23/98, 4:38 PM712

713

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

Creating a TCP Client/Server Application

 // interrupted.
 private boolean keepRunning = true;

 /**
 * Starts up the application.
 * @param args Ignored command line arguments.
 */
 public static void main(String[] args) {
 StockQuoteServer server = new StockQuoteServer();
 server.serveQuotes();
 }

 /**
 * The constructor creates an instance of this class,
 * loads the stock data, and then our server listens
 * for incoming clients.
 */
 public StockQuoteServer() {
 // Load the quotes and exit if it is unable to do so.
 if (!loadQuotes()) System.exit(1);
 try {
 // Create a listening socket.
 listenSocket =
 new ServerSocket(SERVER_PORT,MAX_CLIENTS);
 } catch(IOException excpt) {
 System.err.println(“Unable to listen on port “ +
 SERVER_PORT + “: “ + excpt);
 System.exit(1);
 }
 }

 /**
 * This method loads in the stock data from a file.
 */
 protected boolean loadQuotes() {
 String fileLine;
 StringTokenizer tokenize;
 String id;
 StringBuffer value;

 try {
 // Create a decorated stream to the data file.
 BufferedReader stockInput = new BufferedReader(
 new FileReader(STOCK_QUOTES_FILE));
 // Create the Hashtable in which to place the data.
 stockInfo = new Hashtable();
 // Read in each line.
 while ((fileLine = stockInput.readLine()) != null) {
 // Break up the line into tokens.
 tokenize = new StringTokenizer(fileLine);
 try {
 id = tokenize.nextToken();
 // Ensure the stock ID is stored in upper case.
 id = id.toUpperCase();
 // Now create a buffer to place the stock value in.

continues

36 1529-5 CH31 9/23/98, 4:38 PM713

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

714 Chapter 31 TCP Sockets

 value = new StringBuffer();
 // Loop through all remaining tokens, placing them
 // into the buffer.
 while(tokenize.hasMoreTokens()) {
 value.append(tokenize.nextToken());
 // If there are more tokens to come, then append
 // a space.
 if (tokenize.hasMoreTokens()) {
 value.append(“ “);
 }
 }
 // Create an entry in our Hashtable.
 stockInfo.put(id,value.toString());
 } catch(NullPointerException excpt) {
 System.err.println(“Error creating stock data “ +
 “entry: “ + excpt);
 } catch(NoSuchElementException excpt) {
 System.err.println(“Invalid stock data record “ +
 “in file: “ + excpt);
 }
 }
 stockInput.close();
 // Store the last modified timestamp.
 stockFileMod = STOCK_QUOTES_FILE.lastModified();
 } catch(FileNotFoundException excpt) {
 System.err.println(“Unable to find file: “ + excpt);
 return false;
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 return false;
 }
 stockInfoTime = new Date(); // Store the time loaded.
 return true;
 }

 /**
 * This method waits to accept incoming client
 * connections.
 */
 public void serveQuotes() {
 Socket clientSocket = null;

 try {
 while(keepRunning) {
 // Accept a new client.
 clientSocket = listenSocket.accept();
 // Ensure that the data file hasn’t changed; if
 // so, reload it.
 if (stockFileMod !=
 STOCK_QUOTES_FILE.lastModified()) {
 loadQuotes();
 }
 // Create a new handler.
 StockQuoteHandler newHandler = new
 StockQuoteHandler(clientSocket,stockInfo,

Listing 31.2 Continued

36 1529-5 CH31 9/23/98, 4:38 PM714

715

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

Creating a TCP Client/Server Application

 stockInfoTime);
 Thread newHandlerThread = new Thread(newHandler);
 newHandlerThread.start();
 }
 listenSocket.close();
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “+ excpt);
 }
 }

 /**
 * This method allows the server to be stopped.
 */
 protected void stop() {
 if (keepRunning) {
 keepRunning = false;
 }
 }
}

/**
 * This class is used to manage a connection to
 * a specific client.
 */
class StockQuoteHandler implements Runnable {
 private static final boolean AUTOFLUSH = true;
 private Socket mySocket = null;
 private PrintWriter clientSend = null;
 private BufferedReader clientReceive = null;
 private Hashtable stockInfo;
 private Date stockInfoTime;

 /**
 * The constructor sets up the necessary instance
 * variables.
 * @param newSocket Socket to the incoming client.
 * @param info The stock data.
 * @param time The time when the data was loaded.
 */
 public StockQuoteHandler(Socket newSocket,
 Hashtable info, Date time) {
 mySocket = newSocket;
 stockInfo = info;
 stockInfoTime = time;
 }

 /**
 * This is the thread of execution that implements
 * the communication.
 */
 public void run() {
 String nextLine;
 StringTokenizer tokens;
 String command;
 String quoteID;

continues

36 1529-5 CH31 9/23/98, 4:38 PM715

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

716 Chapter 31 TCP Sockets

 String quoteResponse;

 try {
 clientSend =
 new PrintWriter(mySocket.getOutputStream(),
 AUTOFLUSH);
 clientReceive =
 new BufferedReader(new InputStreamReader(
 mySocket.getInputStream()));
 clientSend.println(“+HELLO “+ stockInfoTime);
 // Read in a line from the client and respond.
 while((nextLine = clientReceive.readLine())
 != null) {
 // Break the line into tokens.
 tokens = new StringTokenizer(nextLine);
 try {
 command = tokens.nextToken();
 // QUIT command.
 if (command.equalsIgnoreCase(“QUIT”)) break;
 // STOCK command.
 else if (command.equalsIgnoreCase(“STOCK:”)) {
 quoteID = tokens.nextToken();
 quoteResponse = getQuote(quoteID);
 clientSend.println(quoteResponse);
 }
 // Unknown command.
 else {
 clientSend.println(“-ERR UNKNOWN COMMAND”);
 }
 } catch(NoSuchElementException excpt) {
 clientSend.println(“-ERR MALFORMED COMMAND”);
 }
 }
 clientSend.println(“+BYE”);
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 // Finally close the streams and socket.
 } finally {
 try {
 if (clientSend != null) clientSend.close();
 if (clientReceive != null) clientReceive.close();
 if (mySocket != null) mySocket.close();
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 }
 }
 }

 /**
 * This method matches a stock ID to relevant information.
 * @param quoteID The stock ID to look up.
 * @return The releveant data.
 */
 protected String getQuote(String quoteID) {
 String info;

Listing 31.2 Continued

36 1529-5 CH31 9/23/98, 4:38 PM716

717

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

31

IV
Part

Ch

Creating a TCP Client/Server Application

 // Make sure the quote ID is in upper case.
 quoteID = quoteID.toUpperCase();
 // Try to retrieve from out Hashtable.
 info = (String)stockInfo.get(quoteID);
 // If there was such a key in the Hashtable, info will
 // not be null.
 if (info != null) {
 return “+” + quoteID + “ “ + info;
 }
 else {
 // Otherwise, this is an unknown ID.
 return “-ERR UNKNOWN STOCK ID”;
 }
 }
}

Starting the Server The main() method allows the server to be started as an application and
instantiates a new StockQuoteServer object. It then uses the serveQuotes() method to begin
accepting client connections.

The constructor first calls the loadQuotes() method to load in the stock data. The constructor
ensures that this process succeeds, and if not, quits the application. Otherwise, it creates a
ServerSocket at port 1701. Now the server is waiting for incoming clients.

The loadQuotes() Method: Read in the Stock Data This method uses a java.io.File ob-
ject to obtain a DataInputStream, reading in from the data file called “stockquotes.txt”.
loadQuotes() goes through each line of the file, expecting that each line corresponds to a new
stock with a format of:

stock-ID stock-data

The method parses the line and places the data into a Hashtable instance; the uppercase value
of the stock ID is the key while the stock data is the value. It stores the file’s modification time
with the lastModified() method of the File class, so the server can detect when the data has
been updated. It stores the current date using the java.util.Date class, so it can tell connect-
ing clients when the stock information was loaded.

In a more ideal design, this method would read data from the actual source of the stock infor-
mation. Because you probably haven’t set up such a service within another company yet, a
static file will do for now.

The serveQuotes() Method: Respond to Incoming Clients This method runs in an infinite
loop, setting up connections to clients as they come in. It blocks at the accept() method of the
ServerSocket, waiting for a client to connect. When this occurs, it checks to see if the file in
which the stock data resides has a different modification time since it was last loaded. If this is
the case, it calls the loadQuotes() method to reload the data.

The serveQuotes() method then creates a StockQuoteHandler instance, passing it the Socket
created when the client connected and the Hashtable of stock data. It places this handler
within a Thread object and starts that thread’s execution. After this has been performed, the
serveQuotes() method loops back again to wait for a new client to connect.

36 1529-5 CH31 9/23/98, 4:38 PM717

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH31 LP#4

718 Chapter 31 TCP Sockets

Creating the StockQuotesHandler This class implements the Runnable interface so it can
run within its own thread of execution. The constructor merely sets some instance variables to
refer to the Socket and stock data passed to it.

The run() Method: Implementing the Communication This method opens two streams to
read from and write to the client. It sends the opening message to the client and then reads
each request from the client. The method uses a StringTokenizer to parse the request and
tries to match it with one of the two supported commands, STOCK: and QUIT.

If the request is a STOCK: command, it assumes the token after STOCK: is the stock identifier
and passes the identifier to the getQuote() method to obtain the appropriate data. getQuote()
is a simple method that tries to find a match within the stockInfo Hashtable. If one is found, it
returns the line. Otherwise, it returns an error message. The run() method sends this infor-
mation to the client.

If the request is a QUIT command, the server sends the +BYE response and breaks from the
loop. It then terminates the communication by closing the streams and the Socket. The run()
method ends, allowing the thread in which this object executes to terminate.

Should the request be neither of these two commands, the server sends back an error mes-
sage, waiting for the client to respond with a valid command.

Running the Client and Server
Compile the two applications with javac. Then make sure you’ve created the stock quote data
file stockquotes.txt, as specified within the server code, in the proper format. Run the server
with the Java interpreter, and it will run until interrupted by the system.

Finally, run the client to see how your server responds. Try running the client with one or
more of the stock identifiers you placed into the data file. Then, update the data file and try
your queries again; the client should show that the data has changed. ●

36 1529-5 CH31 9/23/98, 4:38 PM718

719

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

C H A P T E R

UDP Sockets

32

In this chapter

Overview of UDP Messaging 720

Creating a UDP Server 723

Creating a UDP Client 727

Using IP Multicasting 732

37 1529-5 CH32 9/23/98, 4:39 PM719

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

720 Chapter 32 UDP Sockets

Overview of UDP Messaging
For many Internet developers, UDP (User Datagram Protocol) is used much less often than
TCP. UDP does not isolate you as neatly from the details of implementing a continuous network
communication. For many Java applications, however, choosing UDP as the tool to create a
network linkage may be the most prudent option.

Programming with UDP has significant ramifications. Understanding these factors will guide
and educate your network programming efforts.

UDP is a good choice for applications in which communications can be separated into discrete
messages, where a single query from a client invokes a single response from a server. Time-
dependent data is particularly suited to UDP. UDP requires much less overhead, but the bur-
den of engineering any necessary reliability into the system is your responsibility. For instance,
if clients never receive responses to their queries—perfectly possible and legitimate with
UDP—you might want to program the clients to retransmit the request or perhaps display an
informative message indicating communication difficulties.

UDP Socket Characteristics
As discussed in Chapter 30, “Communications and Networking,” UDP behaves very differently
than TCP. UDP is described as unreliable, connectionless, and message-oriented. A common
analogy that explains UDP is that of communicating with postcards.

A dialog with UDP must be quanticized into small messages that fit within a small packet of a
specific size, although some packets can hold more data than others. When you send out a
message, you can never be certain that you will receive a return message. Unless you do re-
ceive a return message, you have no idea if your message was received—your message could
have been lost en route, the recipient’s confirmation could have been lost, or the recipient
might be ignoring your message.

The postcards you will be exchanging between network programs are referred to as
datagrams. Within a datagram, you can store an array of bytes. A receiving application can
extract this array and decode your message, possibly sending a return datagram response.

As with TCP, you program in UDP using the socket programming abstraction. However, UDP
sockets are very different from TCP sockets. Extending the postcard analogy, UDP sockets are
much like creating a mailbox.

A mailbox is identified by your address, but you don’t construct a new one for each person to
whom you will be sending a message. (However, you might create a new mailbox to receive
newspapers, which shouldn’t go into your normal mailbox.) Instead, you place an address on
the postcard that indicates to whom the message is being sent. You place the postcard in the
mailbox, and it is (eventually) sent on its way.

When receiving a message, you could potentially wait forever until one arrives in your mailbox.
After one arrives, you can read the postcard. Meta information appears on the postcard that
identifies the sender through the return address.

37 1529-5 CH32 9/23/98, 4:39 PM720

721

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

As the previous analogies suggest, UDP programming involves the following general tasks:

■ Creating an appropriately addressed datagram to send

■ Setting up a socket to send and receive datagrams for a particular application

■ Inserting datagrams into a socket for transmission

■ Waiting to receive datagrams from a socket

■ Decoding a datagram to extract the message, its recipient, and other meta information

Java UDP Classes
The java.net package has the tools that are necessary to perform UDP communications. For
creating datagrams, Java provides the DatagramPacket class. When receiving a UDP datagram,
you also use the DatagramPacket class to read the data, sender, and meta information.

To create a datagram to send to a remote system, the following constructor is provided:

public DatagramPacket(byte[] ibuf, int length,
InetAddress iaddr, int iport);

ibuf is the array of bytes that encodes the data of the message, while length is the length of
the byte array to place into the datagram. This factor determines the size of the datagram.
iaddr is an InetAddress object, which stores the IP address of the intended recipient. port
identifies which port the datagram should be sent to on the receiving host.
◊ See “Java TCP Socket Classes,” p. 701

To receive a datagram, you must use another DatagramPacket constructor in which the incom-
ing data will be stored. This constructor has the prototype of

public DatagramPacket(byte[] ibuff, int ilength);

ibuf is the byte array into which the data portion of the datagram will be copied. ilength is the
number of bytes to copy from the datagram into the array corresponding to the size of the
datagram. If ilength is less than the size of the UDP datagram received by the machine, the
extra bytes will be silently ignored by Java.

Programming with TCP sockets relieves you from breaking your data down into discrete
chunks for transmission over a network. When creating a UDP-based client/server protocol,

you must specify some expected length of the datagrams or create a means for determining this at
runtime.

According to the TCP/IP specification, the largest datagram possible is one that contains 65,507 bytes
of data. However, a host is only required to receive datagrams with up to 548 bytes of data. Most
platforms support larger datagrams of at least 8,192 bytes in length.

Large datagrams are likely to be fragmented at the IP layer. If, during transmission, any one of the IP
packets that contains a fragment of the datagram is lost, the entire UDP datagram will be silently lost.

The point is you must design your application with the datagram size in mind. It is prudent to limit this
size to a reasonable length. ■

N O T E

Overview of UDP Messaging

37 1529-5 CH32 9/23/98, 4:39 PM721

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

722 Chapter 32 UDP Sockets

After a datagram has been received, as illustrated later in this section, you can read that data.
Other methods allow you to obtain meta information regarding the message:

public int getLength();
public byte[] getData();
public InetAddress getAddress();
public int getPort();

The getLength() method is used to obtain the number of bytes contained within the data por-
tion of the datagram. The getData() method is used to obtain a byte array containing the data
received. getAddress() provides an InetAddress object identifying the sender, while
getPort() indicates the UDP port used.

Performing the sending and receiving of these datagrams is accomplished with the
DatagramSocket class, which creates a UDP socket. Three constructors are available:

public DatagramSocket() throws IOException;
public DatagramSocket(int port) throws IOException;
public DatagramSocket(int port, InetAddress localAddr)
➥throws IOException;

The first constructor allows you to create a socket at an unused ephemeral port, generally used
for client applications. The second constructor allows you to specify a particular port, which is
useful for server applications. As with TCP, most systems require super-user privileges to bind
UDP ports below 1024. The final constructor is useful for machines with multiple IP interfaces.
You can use this constructor to send and listen for datagrams from one of the IP addresses
assigned to the machine. On such a host, datagrams sent to any of the machine’s IP addresses
are received by a DatagramSocket created with the first two constructors, while the last con-
structor obtains only datagrams sent to the specific IP address.

You can use this socket to send properly addressed DatagramPacket instances created with the
first constructor described by using this DatagramSocket method:

public void send(DatagramPacket p) throws IOException;

After a DatagramPacket has been created with the second constructor described, a datagram
can be received:

public synchronized void receive(DatagramPacket p)
➥throws IOException;

Note that the receive() method blocks until a datagram is received. Because UDP is unreli-
able, your application cannot expect receive() ever to return unless a timeout is enabled. Such
a timeout, named the SO_TIMEOUT option from the name of the Berkeley sockets API option,
can be set with this method from the DatagramSocket class:

public synchronized void setSoTimeout(int timeout)
➥throws SocketException;

timeout is a value in milliseconds. If set to 0, the receive() method exhibits an infinite
timeout—the default behavior. When greater than zero, a subsequent receive() method invo-
cation waits only the specified timeout before an InterruptedIOException is thrown.

37 1529-5 CH32 9/23/98, 4:39 PM722

723

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

Your host’s UDP implementation has a limited queue for incoming datagrams. If your
application cannot process these datagrams rapidly enough, they will be silently discarded.

Neither the sender nor the receiver is notified when datagrams are dropped from a queue overflow.
Such is the unreliable nature of UDP.

After communications through the UDP socket are completed, that socket should be closed:

public synchronized void close(); ■

Creating a UDP Server
In this section, you learn how to create a basic UDP server that responds to simple client re-
quests. The practical example used here is to create a daytime server.

Daytime is a simple service that runs on many systems. For example, most UNIX systems run
daytime out of inetd, as listed in /etc/inetd.conf. On Windows NT, the daytime server is
available through the Simple TCP/IP Services within the Services Control Panel. Daytime is
generally run on UDP port 13. When sent a datagram, it responds with a datagram containing
the date in a format such as

Friday, July 30, 1993 19:25:00

Listing 32.1 shows the Java code used to implement this service.

Listing 32.1 DaytimeServer.java

import java.net.*; // Import the package names used
import java.util.*;
import java.io.*;
import java.text.*;

/**
 * This is an application that runs the
 * daytime service.
*/
public class DaytimeServer {
 // The daytime service runs on this well known port.
 private static final int TIME_PORT = 13;
 private DatagramSocket timeSocket = null;
 private static final int SMALL_ARRAY = 1;
 private static final int TIME_ARRAY = 100;
 // A boolean to keep the server looping until stopped.
 private boolean keepRunning = true;

 /**
* This method starts the application, creating an
 * instance and telling it to start accepting
 * requests.
 * @param args Command line arguments - ignored.
 */
 public static void main(String[] args) {

N O T E

continues

Creating a UDP Server

37 1529-5 CH32 9/23/98, 4:39 PM723

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

724 Chapter 32 UDP Sockets

 DaytimeServer server = new DaytimeServer();
 server.startServing();
 }

 /**
 * This constructor creates a datagram socket to
 * listen on.
 */
 public DaytimeServer() {
 try {
 timeSocket = new DatagramSocket(TIME_PORT);
 } catch(SocketException excpt) {
 System.err.println(“Unable to open socket: “ +
 excpt);
 }
 }

 /**
 * This method does all of the work of listening for
 * and responding to clients.
 */
 public void startServing() {
 DatagramPacket datagram; // For a UDP datagram.
 InetAddress clientAddr; // Address of the client.
 int clientPort; // Port of the client.
 byte[] dataBuffer; // To construct a datagram.
 String timeString; // The time as a string.

 // Keep looping while you have a socket.
 while(keepRunning) {
 try {
 // Create a DatagramPacket to receive query.
 dataBuffer = new byte[SMALL_ARRAY];
 datagram = new DatagramPacket(dataBuffer,
 dataBuffer.length);
 timeSocket.receive(datagram);
 // Get the meta-info on the client.
 clientAddr = datagram.getAddress();
 clientPort = datagram.getPort();
 // Place the time into byte array.
 dataBuffer = getTimeBuffer();
 // Create and send the datagram.
 datagram = new DatagramPacket(dataBuffer,
 dataBuffer.length,clientAddr,clientPort);
 timeSocket.send(datagram);
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 }
 }
 timeSocket.close();
 }

 /**

Listing 32.1 Continued

37 1529-5 CH32 9/23/98, 4:39 PM724

725

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

 * This method is used to create a byte array
 * containing the current time in the special daytime
 * server format.
 * @return The byte array with the time.
 */
 protected byte[] getTimeBuffer() {
 String timeString;
 SimpleDateFormat daytimeFormat;
 Date currentTime;

 // Get the current time.
 currentTime = new Date();
 // Create a SimpleDateFormat object with the time
 // pattern specified.
 // EEEE - print out complete text for day
 // MMMM - print out complete text of month
 // dd - print out the day in month in two digits
 // yyyy - print out the year in four digits
 // HH - print out the hour in the day, from 0-23
 // in two digits
 // mm - print out the minutes in the hour in two
 // digits
 // ss - print out the seconds in the minute in
 // two digits
 daytimeFormat =
 new SimpleDateFormat(“EEEE, MMMM dd, yyyy HH:mm:ss”);

 // Create the special time format.
 timeString = daytimeFormat.format(currentTime);
 // Convert the String to an array of bytes using the
 // platform’s default character encoding.
 return timeString.getBytes();
 }

 /**
 * This method provides an interface to stopping
 * the server.
 */
 protected void stop() {
 if (keepRunning) {
 keepRunning = false;
 }
 }

 /**
 * Just in case, do some cleanup.
 */
 public void finalize() {
 if (timeSocket != null) {
 timeSocket.close();
 }
 }
}

Creating a UDP Server

37 1529-5 CH32 9/23/98, 4:39 PM725

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

726 Chapter 32 UDP Sockets

Starting the Server
The DaytimeServer class uses a number of static final variables as constants, many of which
are used to create the date string in the proper format. The main() method creates a
DaytimeServer object and then invokes its startServing() method so that it accepts incoming
requests.

The DaytimeServer constructor merely creates a UDP socket at the specified port. Note that
as written, the server may require super-user privileges to run because it binds port 13. If you
don’t have permission to bind this port, the attempt to create a DatagramSocket throws an
exception. The constructor catches this and fails gracefully, informing you of the problem.

The DaytimeServer is an iterative server, whereas the server created in Chapter 31, “TCP
Sockets,” is a concurrent server. DaytimeServer processes each request in serial as they come
in. Given the nature of the protocol—a single datagram comes in and the server immediately
sends back a datagram with the time—an iterative server is most appropriate and is simpler to
program.

The startServing() Method Handling Requests
The startServing() method is where the serving logic is implemented. Although the applica-
tion is intended to be running, it loops through a number of steps: It creates a small byte array
and uses this array to create a DatagramPacket. The application then receives a datagram from
the DatagramSocket. From the datagram, it obtains the IP address and port of the requesting
application. The startServing() method need not read any information from the incoming
datagram, as the datagram’s arrival plus the meta-information it contains is sufficient for the
server to understand the request.

The getTimeBuffer() method is called to obtain a byte array that contains the time in an ap-
propriate format. By using this information, this method creates a new DatagramPacket. Fi-
nally, it sends this information through the DatagramSocket. The server loops through this
process until interrupted externally.

The getTimeBuffer() Method Creating the Byte Array
This protected method creates an instance of Date class containing the current time and then
instantiates a SimpleDateFormat with a specific time pattern. It uses the SimpleDateFormat
object to create a String with the data in the proper format. Finally, it returns the byte array
corresponding to that String.

Running the Daytime Server
To run the server, first compile it with javac. Then, if necessary, log in as the super user (for
example, “root”) and use java to run the server. If this is not possible, modify the TIME_PORT
variable so that it binds to a port over 1024.

In the next example, you create a client to connect to this server.

37 1529-5 CH32 9/23/98, 4:39 PM726

727

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

Creating a UDP Client
The example used to create a UDP client makes use of the daytime server demonstrated previ-
ously but also illustrates communications with multiple servers through a single UDP socket.
TimeCompare is a Java program that requests the time from a series of servers, receives their
responses, and displays the difference between the remote system’s times and the time of the
local machine.

One of the most important aspects of this client is designing it so that an unanswered query
does not hang the program. You cannot expect that every query will be answered. Thus, you
need to use the setSoTimeout() method of the DatagramSocket instance before you call re-
ceive().

Listing 32.2 shows this application.

Listing 32.2 TimeCompare.java

import java.io.*; // Import the package names used.
import java.net.*;
import java.util.*;
import java.text.*;

/**
 * This is an application to obtain the times from
 * various remote systems via UDP and then report
 * a comparison.
*/
public class TimeCompare {
 private static final int TIME_PORT = 13; // Daytime port.
 private static final int TIMEOUT = 10000; // UDP timeout.
 // This is the size of the datagram data to send
 // for the query - intentially small.
 private static final int SMALL_ARRAY = 1;
 // This is the size of the datagram you expect to receive.
 private static final int TIME_ARRAY = 100;
 // A socket to send and receive datagrams.
 DatagramSocket timeSocket = null;
 // An array of addresses to the machines to query.
 private InetAddress[] remoteMachines;
 // The time on this machine.
 private Date localTime;
 // An array of datagram responses from remote machines.
 private DatagramPacket[] timeResponses;

 /**
 * This method starts the application.
 * @param args Command line arguments - remote hosts.
 */
 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println(
 “Usage: TimeCompare host1 (host2 ... hostn)”);

continues

Creating a UDP Client

37 1529-5 CH32 9/23/98, 4:39 PM727

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

728 Chapter 32 UDP Sockets

 System.exit(1);
 }
 // Create an instance.
 TimeCompare runCompare = new TimeCompare(args);
 // Tell it to print out its data.
 runCompare.printTimes();
 System.exit(0); // Exit.
 }

 /**
 * The constructor looks up the remote hosts and
 * creates a UDP socket.
 * @param hosts The hosts to contact.
 */
 public TimeCompare(String[] hosts) {
 remoteMachines = new InetAddress[hosts.length];
 // Look up all hosts and place in InetAddress[] array.
 for(int hostsFound = 0; hostsFound < hosts.length;
 hostsFound++) {
 try {
 remoteMachines[hostsFound] =
 InetAddress.getByName(hosts[hostsFound]);
 } catch(UnknownHostException excpt) {
 remoteMachines[hostsFound] = null;
 System.err.println(“Unknown host “ +
 hosts[hostsFound] + “: “ + excpt);
 }
 }
 try {
 timeSocket = new DatagramSocket();
 } catch(SocketException excpt) {
 System.err.println(“Unable to bind UDP socket: “ +
 excpt);
 System.exit(1);
 }
 // Perform the UDP communications.
 getTimes();
 }

 /**
 * This method is the thread of execution where you
 * send out requests for times and then receive the
 * responses.
 */
 public void getTimes() {
 DatagramPacket timeQuery; // A datagram to send as a query.
 DatagramPacket response; // A datagram response.
 byte[] emptyBuffer; // A byte array to build datagrams.
 int datagramsSent = 0; // # of queries successfully sent.

 // Send out a small UDP datagram to each machine,
 // asking it to respond with its time.
 for(int ips = 0;ips < remoteMachines.length; ips++) {
 if (remoteMachines[ips] != null) {

Listing 32.2 Continued

37 1529-5 CH32 9/23/98, 4:39 PM728

729

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

 try {
 emptyBuffer = new byte[SMALL_ARRAY];
 timeQuery = new DatagramPacket(emptyBuffer,
 emptyBuffer.length, remoteMachines[ips],
 TIME_PORT);
 timeSocket.send(timeQuery);
 datagramsSent++;
 } catch(IOException excpt) {
 System.err.println(“Unable to send to “ +
 remoteMachines[ips] + “: “ + excpt);
 }
 }
 }
 // Get current time to base the comparisons.
 localTime = new Date();
 // Create an array in which to place responses.
 timeResponses = new DatagramPacket[datagramsSent];
 // Set the socket timeout value.
 try {
 timeSocket.setSoTimeout(TIMEOUT);
 } catch(SocketException e) {}
 // Loop through and receive the number of responses
 // you are expecting. You break from this loop prematurely
 // if an InterruptedIOException occurs - that is, if
 // you wait more than TIMEOUT to receive another datagram.
 try {
 for(int got = 0; got < timeResponses.length; got++) {
 // Create a new buffer and datagram.
 emptyBuffer = new byte[TIME_ARRAY];
 response = new DatagramPacket(emptyBuffer,
 emptyBuffer.length);
 // Receive a datagram, timing out if necessary.
 timeSocket.receive(response);
 // Now that you’ve received a response, add it
 // to the array of received datagrams.
 timeResponses[got] = response;
 }
 } catch(InterruptedIOException excpt) {
 System.err.println(“Timeout on receive: “ + excpt);
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 }
 // Close the socket.
 timeSocket.close();
 timeSocket = null;
 }

 /**
 * This prints out a report comparing the times
 * sent from the remote hosts with the local
 * time.
 */
 protected void printTimes() {
 Date remoteTime;
 String timeString;

continues

Creating a UDP Client

37 1529-5 CH32 9/23/98, 4:39 PM729

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

730 Chapter 32 UDP Sockets

 long secondsOff;
 InetAddress dgAddr;
 SimpleDateFormat daytimeFormat;

 System.out.print(“TIME COMPARISON\n\tCurrent time “ +
 “is: “ + localTime + “\n\n”);
 // Iterate through each host.
 for(int hosts = 0;
 hosts < remoteMachines.length; hosts++) {
 if (remoteMachines[hosts] != null) {
 boolean found = false;
 int dataIndex;
 // Iterate through each datagram received.
 for(dataIndex = 0; dataIndex < timeResponses.length;
 dataIndex++) {
 // If the datagram element isn’t null:
 if (timeResponses[dataIndex] != null) {
 dgAddr = timeResponses[dataIndex].getAddress();
 // See if there’s a match.
 if(dgAddr.equals(remoteMachines[hosts])) {
 found = true;
 break;
 }
 }
 }
 System.out.println(‘Host: ‘ +
 remoteMachines[hosts]);
 // If there was a match, print comparison.
 if (found) {
 timeString =
 new String(timeResponses[dataIndex].getData());
 int endOfLine = timeString.indexOf(“\n”);
 if (endOfLine != -1) {
 timeString =
 timeString.substring(0,endOfLine);
 }
 // Create a SimpleDateFormat object with the time
 // pattern specified.
 // EEEE - print out complete text for day
 // MMMM - print out complete text of month
 // dd - print out the day in month in two digits
 // yyyy - print out the year in four digits
 // HH - print out the hour in the day, from 0-23
 // in two digits
 // mm - print out the minutes in the hour in two
 // digits
 // ss - print out the seconds in the minute in
 // two digits
 daytimeFormat =
 new SimpleDateFormat(“EEEE, MMMM dd, yyyy HH:mm:ss”);
 // Parse the string based on the pattern into a
 // Date object.
 remoteTime = daytimeFormat.parse(timeString,
 new ParseStatus());

Listing 32.2 Continued

37 1529-5 CH32 9/23/98, 4:39 PM730

731

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

 // Find the difference.
 secondsOff = (localTime.getTime() -
 remoteTime.getTime()) / 1000;
 secondsOff = Math.abs(secondsOff);
 System.out.println(“Time: “ + timeString);
 System.out.println(“Difference: “ +
 secondsOff + “ seconds\n”);
 } else {
 System.out.println(“Time: NO RESPONSE FROM “
 + “HOST\n”);
 }
 }
 }
 }

 /**
 * This method performs any necessary cleanup.
 */
 protected void finalize() {
 // If the socket is still open, close it.
 if (timeSocket != null) {
 timeSocket.close();
 }
 }
}

Starting TimeCompare
The main() method instantiates a TimeCompare object, passing it the command-line arguments
that correspond to the hosts to query. main() instructs the instance to print out its data and
then exits.

The TimeCompare constructor uses the InetAddress.getByName() static method to look up
the set of remote hosts, placing the returned InetAddress instances into an array of these
objects. If it is unable to look up one of the hosts, this constructor ensures that the element is
set to null and loops through the other hosts. The constructor creates a DatagramSocket at a
dynamically allocated port and finally calls the getTimes() method to perform the queries.

The getTimes() Method TimeCompare’s Execution Path
The first thing this method does is iterate through the remoteMachines array. For each element
that is not null, the getTimes() method creates a small byte array, uses it to construct an ap-
propriately addressed DatagramPacket, and then sends the datagram using the UDP socket.
After it’s sent, the method uses datagramsSent to keep track of how many queries were suc-
cessfully sent.

Now that a datagram has been sent to each remote host, TimeCompare prepares to receive the
responses. At this point, getTimes() collects the current time, used as a basis for comparison
against the remote systems’ times. It creates an array of type DatagramPacket. The length of
this array is equal to the number of successful queries sent, which is the number of expected

Creating a UDP Client

37 1529-5 CH32 9/23/98, 4:39 PM731

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

732 Chapter 32 UDP Sockets

responses. getTimes() then invokes the setSoTimeout() method of the DatagramSocket in-
stance so that accept() will not block forever if a server fails to respond.

getTimes() next enters a loop, attempting to receive a DatagramPacket for each query success-
fully sent. When a response is obtained, it places it into the timeResponses array. If the timeout
on the receive() method expires, it breaks out of the loop.

After getTimes() has completed the loop to receive responses, it closes the DatagramSocket.

The printTimes() Method Showing the Comparison
This method takes an array of UDP packets and prints out a comparison of the times contained
therein. The outer for loop iterates through the machines contacted, while the inner for loop
matches the host to a received datagram. If a match is found, printTimes() calculates the
difference in times and prints the data. If no match is found, printTimes() indicates that a
response from that host was not received.

Running the Application
Compile TimeCompare.java with the Java compiler and then execute it with the Java inter-
preter. Each argument to TimeCompare should be a host name of a remote machine to include
in the comparison. For instance, to check your machine’s time against www.sgi.com and
www.paramount.com, you would type

java TimeCompare www.sgi.com www.paramount.com

and you would see a report that appeared as

TIME COMPARISON
Current time is: Mon Aug 19 08:03:09 PDT 1996

Host: www.sgi.com/204.94.214.4
Time: Mon Aug 19 08:02:55 1996
Difference: 14 seconds

Host: www.paramount.com/192.216.189.10
Time: Mon Aug 19 08:07:58 1996
Difference: 288 seconds

Using IP Multicasting
Internet Protocol (IP) is the means by which all information on the Internet is transmitted.
UDP datagrams are encapsulated within IP packets to send them to the appropriate machines
on the network.
◊ See “Internet Protocol (IP),” p. 686

Most uses of IP involve unicasting—sending a packet from one host to another. However, IP
is not limited to this mode and includes the capability to multicast. With multicasting, a mes-
sage is addressed to a targeted set of hosts. One message is sent, and the entire group can
receive it.

37 1529-5 CH32 9/23/98, 4:39 PM732

733

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

Multicasting is particularly suited to high-bandwidth applications, such as sending video and
audio over the network, because a separate transmission need not be established (which could
saturate the network). Other possible applications include chat sessions, distributed data stor-
age, and online, interactive games. Also, multicasting can be used by a client searching for an
appropriate server on the network; it can send a multicast solicitation, and any listening servers
could contact the client to begin a transaction.

To support IP multicasting, a certain range of IP addresses is set aside solely for this purpose.
These IP addresses are class D addresses, those within the range of 224.0.0.0 and
239.255.255.255. Each of these addresses is referred to as a multicast group. Any IP packet
addressed to that group is received by any machine that has joined that group. Group member-
ship is dynamic and changes over time. To send a message to a group, a host need not be a
member of that group.

When a machine joins a multicast group, it begins accepting messages sent to that IP multicast
address. Extending the previous analogy from the section “UDP Socket Characteristics,” join-
ing a group is similar to constructing a new mailbox that accepts messages intended for the
group. Each machine that wants to join the group constructs its own mailbox to receive the
same message. If a multicast packet is distributed to a network, any machine that is listening
for the message has an opportunity to receive it. That is, with IP multicasting, there is no
mechanism for restricting which machines on the same network may join the group.

Multicast groups are mapped to hardware addresses on interface cards. Thus, IP multicast
datagrams that reach an uninterested host can usually be rapidly discarded by the interface
card. However, more than one multicast group maps to a single hardware address, making for
imperfect hardware-level filtering. Some filtering must still be performed at the device driver
or IP level.

Multicasting has its limitations, however—particularly the task of routing multicast packets
throughout the Internet. A special TCP/IP protocol, Internet Group Management Protocol
(IGMP), is used to manage memberships in a multicast group. A router that supports multi-
casting can use IGMP to determine if local machines are subscribed to a particular group; such
hosts respond with a report about groups they have joined using IGMP. Based on these commu-
nications, a multicast router can determine if it is appropriate to forward on a multicast packet.

CAUTION

Realize that there is no formal way of reserving a multicast group for your own use. Certain groups are
reserved for particular uses, assigned by the Internet Assigned Numbers Authority (IANA). These reserved
groups are listed in RFC 1700, which can be obtained from

ftp://ftp.internic.net/rfc/rfc1700.txt

Other than avoiding a reserved group, there are few rules to choosing a group. The groups from 224.0.0.0
through 224.0.0.225 should never be passed on by a multicast router, restricting communications using
them to the local subnet. Try picking an arbitrary address between 224.0.1.27 and 224.0.1.225.

If you happen to choose a group already being used, your communications will be disrupted by those other
machines. Should this occur, quit your application and try another address.

Using IP Multicasting

37 1529-5 CH32 9/23/98, 4:39 PM733

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

734 Chapter 32 UDP Sockets

Besides the multicast group, another important facet of a multicast packet is the time-to-live
(TTL) parameter. The TTL is used to indicate how many separate networks the sender intends
the message to be transmitted over. When a packet is forwarded on by a router, the TTL within
the packet is decremented by one. When a TTL reaches zero, the packet is not forwarded on
further.

Choose a TTL parameter as small as possible. A large TTL value can cause unnecessary bandwidth use
throughout the Internet. Furthermore, you are more likely to disrupt other multicast communications in
diverse areas that happen to be using the same group.

If your communications should be isolated to machines on the local network, choose a TTL of 1. When
communicating with machines that are not on the local network, try to determine how many multicast
routers exist along the way and set your TTL to one more than that value.

The Multicast Backbone, or MBONE, is an attempt to create a network of Internet routers that
are capable of providing multicast services. However, multicasting today is by no means ubiqui-
tous. If all participants reside on the same physical network, routers need not be involved, and
multicasting is likely to prove successful. For more distributed communications, you may need
to contact your network administrator.

Java Multicasting
The Java MulticastSocket class is the key to utilizing this powerful Internet networking fea-
ture. MulticastSocket allows you to send or receive UDP datagrams that use multicast IP. To
send a datagram, you use the default constructor:

public MulticastSocket() throws IOException;

Then you must create an appropriately formed DatagramPacket addressed to a multicast group
between 224.0.0.0 and 239.255.255.255. After it is created, the datagram can be sent with the
send() method, which requires a TTL value. The TTL indicates how many routers the packets
should be allowed to go through. Avoid setting the TLL to a high value, which could cause the
data to propagate through a large portion of the Internet. Here is an example:

int multiPort = 2222;
int ttl = 1;
InetAddress multiAddr =
➥InetAddress.getByName(“239.10.10.10”);
byte[] multiBytes = new byte[256];
DatagramPacket multiDatagram =
➥new DatagramPacket(multiBytes, multiBytes.length,
multiAddr,multiPort);
MulticastSocket multiSocket = new MulticastSocket();
➥multiSocket.send(multiDatagram, ttl);

To receive datagrams, an application must create a socket at a specific UDP port. Then, it must
join the group of recipients. Through the socket, the application can then receive UDP
datagrams:

T I P

37 1529-5 CH32 9/23/98, 4:39 PM734

735

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

MulticastSocket receiveSocket =
➥new MulticastSocket(multiPort);
receiveSocket.joinGroup(multiAddr);
receiveSocket.receive(multiDatagram);

When the joinGroup() method is invoked, the machine now pays attention to any IP packets
transmitted along the network for that particular multicast group. The host should also use
IGMP to appropriately report the usage of the group. For machines with multiple IP addresses,
the interface through which datagrams should be sent can be configured:

receiveSocket.setInterface(oneOfMyLocalAddrs);

To leave a multicast group, the leaveGroup() method is available. A MulticastSocket should
be closed when communications are done:

receiveSocket.leaveGroup(multiAddr);
receiveSocket.close();

As is apparent, using the MulticastSocket is very similar to using the normal UDP socket
class DatagramSocket. The essential differences are

■ The DatagramPacket must be addressed to a multicast group.

■ The send() method of the MulticastSocket class takes two arguments: a
DatagramPacket and a TTL value.

■ To begin listening for multicast messages, after creating the MulticastSocket instance,
you must use the joinGroup() method.

■ The receive() method is used just as with the DatagramSocket to obtain incoming
messages, though there is no method to set a timeout, like setSoTimeout() in
DatagramSocket.

Multicast Applications
The following two examples show a very simple use of multicasting. Listing 32.3 is a program
that sends datagrams to a specific multicast IP address. The program is run with two argu-
ments: the first specifying the multicast IP address to send the datagrams, the other specifying
the UDP port of the listening applications. The main() method ensures that these arguments
have been received and then instantiates a MultiCastSender object.

The constructor creates an InetAddress instance with the String representation of the
multicast IP address. It then creates a MulticastSocket at a dynamically allocated port for
sending datagrams. The constructor enters a while loop, reading in from standard input line by
line. The program packages the first 256 bytes of each line into an appropriately addressed
DatagramPacket, sending that datagram through the MulticastSocket.

Using IP Multicasting

37 1529-5 CH32 9/23/98, 4:39 PM735

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

736 Chapter 32 UDP Sockets

Listing 32.3 MultCastSender.java

import java.net.*; // Import package names used.
import java.io.*;

/**
 * This is a program that sends data from the command
 * line to a particular multicast group.
 */
class MultiCastSender {
 // The number of Internet routers through which this
 // message should be passed. Keep this low. 1 is good
 // for local LAN communications.
 private static final byte TTL = 1;
 // The size of the data sent - basically the maximum
 // length of each line typed in at a time.
 private static final int DATAGRAM_BYTES = 512;
 private int mcastPort;
 private InetAddress mcastIP;
 private BufferedReader input;
 private MulticastSocket mcastSocket;

 /**
 * This starts up the application.
 * @param args Program arguments - <ip> <port>
 */
 public static void main(String[] args) {
 // This must be the same port and IP address used
 // by the receivers.
 if (args.length != 2) {
 System.out.print(“Usage: MultiCastSender <IP addr>”
 + “ <port>\n\t<IP addr> can be one of 224.x.x.x “
 + “- 239.x.x.x\n”);
 System.exit(1);
 }
 MultiCastSender send = new MultiCastSender(args);
 System.exit(0);
 }

 /**
 * The constructor does all of the work of opening
 * the socket and sending datagrams through it.
 * @param args Program arguments - <ip> <port>
 */
 public MultiCastSender(String[] args) {
 DatagramPacket mcastPacket; // UDP datagram.
 String nextLine; // Line from STDIN.
 byte[] mcastBuffer; // Buffer for datagram.
 byte[] lineData; // The data typed in.
 int sendLength; // Length of line.

 input =
 new BufferedReader(new InputStreamReader(System.in));
 try {
 // Create a multicasting socket.

37 1529-5 CH32 9/23/98, 4:39 PM736

737

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

 mcastIP = InetAddress.getByName(args[0]);
 mcastPort = Integer.parseInt(args[1]);
 mcastSocket = new MulticastSocket();
 } catch(UnknownHostException excpt) {
 System.err.println(“Unknown address: “ + excpt);
 System.exit(1);
 } catch(IOException excpt) {
 System.err.println(“Unable to obtain socket: “
 + excpt);
 System.exit(1);
 }
 try {
 // Loop and read lines from standard input.
 while ((nextLine = input.readLine()) != null) {
 mcastBuffer = new byte[DATAGRAM_BYTES];
 // If line is longer than your buffer, use the
 // length of the buffer available.
 if (nextLine.length() > mcastBuffer.length) {
 sendLength = mcastBuffer.length;
 // Otherwise, use the line’s length.
 } else {
 sendLength = nextLine.length();
 }
 // Convert the line of input to bytes.
 lineData = nextLine.getBytes();
 // Copy the data into the blank byte array
 // which you will use to create the DatagramPacket.
 for (int i = 0; i < sendLength; i++) {
 mcastBuffer[i] = lineData[i];
 }
 mcastPacket = new DatagramPacket(mcastBuffer,
 mcastBuffer.length,mcastIP,mcastPort);
 // Send the datagram.
 try {
 System.out.println(“Sending:\t” + nextLine);
 mcastSocket.send(mcastPacket,TTL);
 } catch(IOException excpt) {
 System.err.println(“Unable to send packet: “
 + excpt);
 }
 }
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 }
 mcastSocket.close(); // Close the socket.
 }
}

Listing 32.4 complements the sender by receiving multicasted datagrams. The application
takes two arguments that must correspond to the IP address and port with which the
MultiCastSender was invoked. The main() method checks the command-line arguments and
then creates a MultiCastReceiver object.

Using IP Multicasting

37 1529-5 CH32 9/23/98, 4:39 PM737

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

738 Chapter 32 UDP Sockets

The object’s constructor creates an InetAddress and then a MulticastSocket at the port used
to invoke the application. It joins the multicast group at the address contained within the
InetAddress instance and then enters a loop. The object’s constructor receives a datagram
from the socket and prints the data contained within the datagram, indicating the machine and
port from where the packet was sent.

Listing 32.4 MultiCastReceiver.java

import java.net.*; // Import package names used.
import java.io.*;

/**
 * This is a program that allows you to listen
 * at a particular multicast IP address/port and
 * print out incoming UDP datagrams.
*/
class MultiCastReceiver {
 // The length of the data portion of incoming
 // datagrams.
 private static final int DATAGRAM_BYTES = 512;
 private int mcastPort;
 private InetAddress mcastIP;
 private MulticastSocket mcastSocket;
 // Boolean to tell the client to keep looping for
 // new datagrams.
 private boolean keepReceiving = true;

 /**
 * This starts up the application
 * @param args Program arguments - <ip> <port>
 */
 public static void main(String[] args) {
 // This must be the same port and IP address
 // used by the sender.
 if (args.length != 2) {
 System.out.print(“Usage: MultiCastReceiver <IP “
 + “addr> <port>\n\t<IP addr> can be one of “
 + “224.x.x.x - 239.x.x.x\n”);
 System.exit(1);
 }
 MultiCastReceiver send = new MultiCastReceiver(args);
 System.exit(0);
 }

 /**
 * The constructor does the work of opening a socket,
 * joining the multicast group, and printing out
 * incoming data.
 * @param args Program arguments - <ip> <port>
 */
 public MultiCastReceiver(String[] args) {
 DatagramPacket mcastPacket; // Packet to receive.
 byte[] mcastBuffer; // byte[] array buffer

37 1529-5 CH32 9/23/98, 4:39 PM738

739

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

32

IV
Part

Ch

 InetAddress fromIP; // Sender address.
 int fromPort; // Sender port.
 String mcastMsg; // String of message.

 try {
 // First, set up your receiving socket.
 mcastIP = InetAddress.getByName(args[0]);
 mcastPort = Integer.parseInt(args[1]);
 mcastSocket = new MulticastSocket(mcastPort);
 // Join the multicast group.
 mcastSocket.joinGroup(mcastIP);
 } catch(UnknownHostException excpt) {
 System.err.println(“Unknown address: “ + excpt);
 System.exit(1);
 } catch(IOException excpt) {
 System.err.println(“Unable to obtain socket: “
 + excpt);
 System.exit(1);
 }
 while (keepReceiving) {
 try {
 // Create a new datagram.
 mcastBuffer = new byte[DATAGRAM_BYTES];
 mcastPacket = new DatagramPacket(mcastBuffer,
 mcastBuffer.length);
 // Receive the datagram.
 mcastSocket.receive(mcastPacket);
 fromIP = mcastPacket.getAddress();
 fromPort = mcastPacket.getPort();
 mcastMsg = new String(mcastPacket.getData());
 // Print out the data.
 System.out.println(“Received from “ + fromIP +
 “ on port “ + fromPort + “: “ + mcastMsg);
 } catch(IOException excpt) {
 System.err.println(“Failed I/O: “ + excpt);
 }
 }
 try {
 mcastSocket.leaveGroup(mcastIP); // Leave the group.
 } catch(IOException excpt) {
 System.err.println(“Socket problem leaving group: “
 + excpt);
 }
 mcastSocket.close(); // Close the socket.
 }

 /**
 * This method provides a way to stop the program.
 */
 public void stop() {
 if (keepReceiving) {
 keepReceiving = false;
 }
 }
}

Using IP Multicasting

37 1529-5 CH32 9/23/98, 4:39 PM739

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 32 LP#4

740 Chapter 32 UDP Sockets

To run the applications, first compile MultiCastSender and MultiCastReceiver. Then, transfer
the MultCastReceiver to other machines, so you can demonstrate more than one participant
receiving messages. Finally, run the applications with the Java interpreter.

For instance, to send multicast messages to the group 224.0.1.30 on port 1111, you could do the
following:
~/classes -> java MultiCastSender 224.0.1.30 1111
This is a test multicast message.
Sending: This is a test multicast message.
Have you received it?
Sending: Have you received it?

To receive these messages, you would run the MultiCastReceiver application on one or more
systems. You join the same multicast group, 224.0.1.30, and listen to the same port number,
1111:
~/classes -> java MultiCastReceiver 224.0.1.30 1111
Received from 204.160.73.131 on port 32911: This is a test multicast message.
Received from 204.160.73.131 on port 32911: Have you received it? ●

37 1529-5 CH32 9/23/98, 4:39 PM740

741

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

C H A P T E R

java.net

The URL Class 742

The URLConnection Class 744

The HTTPURLConnection Class 746

The URLEncoder Class 747

The URLDecoder Class 747

The URLStreamHandler Class 747

The ContentHandler Class 748

The Socket Class 749

The ServerSocket Class 756

The InetAddress Class 760

The DatagramSocket Class 762

The DatagramPacket Class 764

Multicast Sockets 767

33

In this chapter

38 1529-5 CH33 9/23/98, 4:44 PM741

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

742 Chapter 33 java.net

The URL Class
The java.net package provides low-level and high-level network functionality. The high-level
networking classes enable you to access information by specifying the type and location of the
information. You can access information from a Web server, for instance. The high-level classes
take care of the drudgery of networking protocols and enable you to concentrate on the actual
information. If you need finer control than this, you can use the low-level classes. These classes
let you send raw data over the network. You can use them to implement your own networking
protocols.

The URL class represents a Uniform Resource Locator, which is the standard address format for
resources on the World Wide Web as defined in the Internet standard RFC 1630. A URL is
similar to a filename in that it tells where to go to get some information, but you still have to
open and read it to get the information. After you create a URL, you can retrieve the informa-
tion stored at that URL in one of three ways:

■ Use the getContent method in the URL class to fetch the URL’s content directly.

■ Use the openConnection method to get a URLConnection to the URL.

■ Use the openStream method to get an InputStream to the URL.

You have a number of options when it comes to creating a URL object. You can call the Con-
structor with a string representing the full URL:

public URL(String fullURL) throws MalformedURLException

The full URL string is the form you are probably most familiar with. Here is an example:

URL queHomePage = new URL(“http://www.quecorp.com”);

You can also create a URL by giving the protocol, host name, filename, and an optional port
number:

public URL(String protocol, String hostName, String fileName)
 throws MalformedURLException
public URL(String protocol, String hostName, int portNumber, String fileName)
 throws MalformedURLException

The equivalent of the Que home page URL using this notation would be as follows:

URL queHomePage = new URL(“http”, “www.quecorp.com”, “que”);

or

URL queHomePage = new URL(“http”, “www.quecorp.com”, 80,
 “que”); // 80 is default http port

If you have already created a URL and would like to open a new URL based on some informa-
tion from the old one, you can pass the old URL and a string to the URL Constructor:

public URL(URL contextURL, String spec)

This is most often used in applets because the Applet class returns a URL for the directory
where the applet’s .class file resides. You can also get a URL for the directory where the

38 1529-5 CH33 9/23/98, 4:44 PM742

743

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

applet’s document is stored. Suppose, for example, that you stored a file called myfile.txt in
the same directory as your applet’s .html file. Your applet could create the URL for myfile.txt
with this:

URL myfileURL = new URL(getDocumentBase(), “myfile.txt”);

If you had stored myfile.txt in the same directory as the applet’s .class file (it may or may
not be the same directory as the .html file), the applet could create a URL for myfile.txt with
this:

URL myfileURL = new URL(getCodeBase(), “myfile.txt”);

Getting URL Contents
After you create a URL, you will probably want to fetch the contents. The easiest way to do this
is by calling the getContent method:

public final Object getContent()

This first method requires that you define a content handler for the content returned by the
URL. The HotJava browser comes with some built-in content handlers, but Netscape does not
use this method for interpreting content. You will likely get an UnknownServiceException if
you use this method from Netscape.

If you would rather interpret the data yourself, you can get a URLConnection for a URL with the
openConnection method:

public URLConnection openConnection() throws IOException

Your third option for getting the contents of a URL should work almost everywhere. You can
get an input stream to the URL and read it in yourself by using the openStream method:

public final InputStream openStream() throws IOException

The following code fragment dumps the contents of a URL to the System.out stream by open-
ing an input stream to the URL and reading one byte at a time:

try {
 URL myURL = new URL(getDocumentBase(), “foo.html”);
 InputStream in = myURL.openStream(); // get input stream for URL
 int b;
 while ((b = in.read()) != -1) { // read the next byte
 System.out.print((char)b); // print it
 }
 } catch (Exception e) {
 e.printStackTrace(); // something went wrong
}

Getting URL Information
You can retrieve the specific pieces of a URL using the following methods:

public String getProtocol()

returns the name of the URL’s protocol.

The URL Class

38 1529-5 CH33 9/23/98, 4:44 PM743

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

744 Chapter 33 java.net

public String getHost()

returns the name of the URL’s host.

public int getPort()

returns the URL’s port number.

public String getFile()

returns the URL’s filename.

public String getRef()

returns the URL’s reference tag. This is an optional index into an HTML page that follows the
filename and begins with a #.

The URLConnection Class
The URLConnection class provides a more granular interface to a URL than the getContent
method in the URL class. This class provides methods for examining HTTP headers, getting
information about the URL’s content, and getting input and output streams to the URL. There
will be a different URLConnection class for each type of protocol that you can use. There will be
a URLConnection that handles the HTTP protocol, for example, as well as another that handles
the FTP protocol. Your browser may not support any of them. You can feel fairly certain that
they are implemented in HotJava. HotJava is written totally in Java, which uses these classes to
do all of its browsing. Netscape, on the other hand, has its own native code for handling these
protocols and does not use Sun’s URLConnection classes.

This class is geared toward interpreting text that will be displayed in a browser. Consequently,
it has many methods for dealing with header fields and content types.

You do not create a URLConnection object yourself; it is created and returned by a URL object.
After you have an instance of a URLConnection, you can examine the various header fields with
the getHeaderField methods:

public String getHeaderField(String fieldName)

returns the value of the header field named by fieldName. If this field is not present in the
resource, this method returns null.

public String getHeaderField(int n)

returns the value of the nth field in the resource. If there are not that many header fields, this
method returns null. You can get the corresponding field name with the getHeaderFieldKey
method.

public int getHeaderFieldKey(int n)

returns the field name of the nth field in the resource. If there are not that many header fields,
this method returns null.

You can also get a header field value as an integer or a date using the following methods:

38 1529-5 CH33 9/23/98, 4:44 PM744

745

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

public int getHeaderFieldInt(String fieldName, int defaultValue)

converts the header field named by fieldName to an integer. If the field does not exist or is not
a valid integer, it returns defaultValue.

public int getHeaderFieldDate(String fieldName, long defaultValue)

interprets the header field value as a date and returns the number of milliseconds since the
epoch for that date. If the field does not exist or is not a valid date, it returns defaultValue.

In addition to interpreting the header fields, the URLConnection class also returns information
about the content:

public String getContentEncoding()

public int getContentLength()

public String getContentType()

As with the URL class, you can get the entire content of the URL as an object using the
getContent method:

public Object getContent()
throws IOException, UnknownServiceException

This method probably won’t work under Netscape, but should work under HotJava.

Sometimes a program tries to access a URL that requires user authentication in the form of a
dialog box, which automatically pops up when you open the URL. Because you do not always
want your Java program to require that a user be present, you can tell the URLConnection class
whether it should allow user interaction. If a situation occurs that requires user interaction and
you have turned it off, the URLConnection class will throw an exception.

The setAllowUserInteraction method, when passed a value of true, will permit interaction
with a user when needed:

public void setAllowUserInteraction(boolean allowInteraction)

public boolean getAllowUserInteraction()

returns true if this class will interact with a user when needed.

public static void setDefaultAllowUserInteraction(boolean default)

changes the default setting for allowing user interaction on all new instances of URLConnection.
Changing the default setting does not affect instances that have already been created.

public static boolean getDefaultAllowUserInteraction()

returns the default setting for allowing user interaction.

Some URLs allow two-way communication. You can tell a URLConnection whether it should
allow input or output by using the doInput and doOutput methods:

public void setDoInput(boolean doInput)

public void setDoOutput(boolean doOutput)

The URLConnection Class

38 1529-5 CH33 9/23/98, 4:44 PM745

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

746 Chapter 33 java.net

You can set either or both of these values to true. The doInput flag is true by default, and the
doOutput flag is false by default.

You can query the doInput and doOutput flags with getDoInput and getDoOutput:

public boolean getDoInput()

public boolean getDoOutput()

The getInputStream and getOutputStream methods return input and output streams for the
resource:

public InputStream getInputStream()
 throws IOException, UnknownServiceException

public OutputStream getOutputStream()
 throws IOException, UnknownServiceException

The HTTPURLConnection Class
The HTTP protocol has some extra features that the URLConnection class does not address.
When you send an HTTP request, for instance, you can make several different requests (GET,
POST, PUT, and so on). The HTTPURLConnection class provides better access to HTTP-specific
options.

One of the most important fields in the HTTPURLConnection is the request method. You can set
the request method by calling setRequestMethod with the name of the method you want:

public void setRequestMethod(String method) throws ProtocolException

The valid methods are: GET, POST, HEAD, PUT, DELETE, OPTIONS, and TRACE. If you don’t set a re-
quest method, the default method is GET. Calling getRequestMethod will return the current
method:

public String getRequestMethod()

When you send an HTTP request, the HTTP server responds with a response code and mes-
sage. If you try to access a Web page that no longer exists, for example, you get a “404 Not
Found” message. The getResponseMessage method returns the message part of a response
while the getResponseCode returns the numeric portion:

public String getResponseMessage() throws IOException

public int getResponseCode() throws IOException

In the case of “404 Not Found”, getResponseCode would return 404, and getResponseMessage
would return “Not Found”.

Because Web sites move around frequently, Web servers support the notion of redirection,
where you are automatically sent to a page’s new location. The HTTPURLConnection class en-
ables you to choose whether it should automatically follow a redirection. Passing a flag value
of true to setFollowRedirects method instructs the HTTPURLConnection class to follow a
redirection:

38 1529-5 CH33 9/23/98, 4:44 PM746

747

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

public static void setFollowRedirects(boolean flag)

The getFollowRedirects method returns true if redirection is turned on:

public static boolean getFollowRedirects()

The getProxy method returns true if all HTTP requests are going through a proxy:

public abstract boolean usingProxy()

New with JDK 1.2 you can also obtain the message stream that results after an HTTP error.
The getErrorStream() method returns an InputStream that will contain the data sent after an
error. For instance, if the server responded with a 404, the HTTPURLConnection would throw a
FileNotFoundException. However, the Web server might have sent a help page along with the
404. The getErrorStream() method would provide you with a handle to that help page.

public InputStream getErrorStream()

The URLEncoder Class
This class contains only one static method that converts a string into URL-encoded form. The
URL encoding reduces a string to a limited set of characters. Only letters, digits, and the under-
score character are left untouched. Spaces are converted to a +, and all other characters are
converted to hexadecimal and written as %xx, where xx is the hex representation of the charac-
ter. The format for the encode method is as follows:

public static String encode(String s)

The URLDecoder Class
JDK 1.2 has added a class to allow you to decode strings that are in MIME format (the strings
that URLEncoder produces, for instance). When the decode process completes, all ASCII char-
acters a through z, A through Z, and 0 through 9 remain the same, but plus signs (+) are con-
verted into spaces. The rest of the characters in the string are changed to three-character
strings. These three-character strings begin with a percent sign (%) and are followed by the
two-digit hexadecimal representation of the lower 8 bits of the character. For instance, the
string “Hello+%56” is converted to “Hello V”.

public static String decode(String s)

The URLStreamHandler Class
The URLStreamHandler class is responsible for parsing a URL and creating a URLConnection
object to access that URL. When you open a connection for a URL, it scans a set of packages for
a handler for that URL’s protocol. The handler should be named <protocol>.Handler. If you
open an HTTP URL, for instance, the URL class searches for a class named <some package
name>.http.Handler. By default, the class only searches the package sun.net.www.protocol,
but you may specify an alternate search path by setting the system property to

The URLStreamHandler Class

38 1529-5 CH33 9/23/98, 4:44 PM747

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

748 Chapter 33 java.net

java.protocol.handler.pkgs. This property should contain a list of alternate packages to
search that are separated by vertical bars. For example:

mypackages.urls|thirdparty.lib|funstuff”

At the minimum, any subclass of the URLStreamHandler must implement an openConnection
method:

protected abstract URLConnection openConnection(URL u)
 throws IOException

This method returns an instance of URLConnection that knows how to speak the correct proto-
col. If you create your own URLStreamHandler for the FTP protocol, for example, this method
should return a URLConnection that speaks the FTP protocol.

You can also change the way a URL string is parsed by creating your own parseURL and setURL
methods:

protected void parseURL(URL u, String spec, int start, int limit)

This method parses a URL string, starting at position start in the string and going up to posi-
tion limit. It modifies the URL directly, after it has parsed the string, using the protected set
method in the URL.

You can set the different parts of a URL’s information using the setURL method:

protected void setURL(URL u, String protocol, String host, int port,
 String file, String ref)

The call to set looks like the following:

u.set(protocol, host, port, file, ref);

Most of the popular network protocols are already implemented in the HotJava browser. If
you want to use the URLStreamHandler facility in Netscape and other browsers, you

need to write many of these yourself. ■

The ContentHandler Class
When you fetch a document using the HTTP protocol, the Web server sends you a series of
headers before sending the actual data. One of the items in this header indicates what kind of
data is being sent. This data is referred to as content, and the type of the data (referred to as
the MIME content-type) is specified by the Content-type header. Web browsers use the con-
tent type to determine what to do with the incoming data.

If you want to provide your own handler for a particular MIME content-type, you can create a
ContentHandler class to parse it and return an object representing the contents. The mecha-
nism for setting up your own content handler is almost identical to that of setting up your own
URLStreamHandler. You must give it a name of the form <some package name>.major.minor.
The major and minor names come from the MIME Content-type header, which is in the fol-
lowing form:

Content-type: major/minor

N O T E

38 1529-5 CH33 9/23/98, 4:44 PM748

749

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

One of the most common major/minor combinations is text/plain. If you define your own
text/plain handler, it can be named MyPackage.text.plain. By default, the URLConnection
class searches for content handlers only in a package named sun.net.www.content. You can
give additional package names by specifying a list of packages separated by vertical bars in the
java.content.handler.pkgs system property.

The only method you must implement in your ContentHandler is the getContent method:

public abstract Object getContent(URLConnection urlConn)
 throws IOException

It is completely up to you how you actually parse the content and select the kind of object you
return.

The Socket Class
The Socket class is one of the fundamental building blocks for network-based Java applications.
It implements a two-way connection-oriented communications channel between programs.
After a socket connection is established, you can get input and output streams from the Socket
object. To establish a socket connection, a program must be listening for connections on a
specific port number. Although socket communications are peer-to-peer—that is, neither end
of the socket connection is considered the master, and data can be sent either way at any
time—the connection establishment phase has a notion of a server and a client.

Think of a socket connection as a phone call. After the call is made, either party can talk at any
time, but when the call is first made, someone must make the call and someone else must
listen for the phone to ring. The person making the call is the client, and the person listening
for the call is the server.

The ServerSocket class, discussed later in this chapter, listens for incoming calls. The Socket
class initiates a call. The network equivalent of a telephone number is a host address and port.
The host address can either be a host name such as netcom.com, or a numeric address such as
192.100.81.100. The port number is a 16-bit number that is usually determined by the server.
When you create a Socket object, you pass the constructor the destination host name and port
number for the server you are connecting to. For example,

public Socket(String host, int port)
 throws UnknownHostException, IOException

creates a socket connection to port number port at the host named by host. If the Socket class
cannot determine the numeric address for the host name, it throws an UnknownHostException.
If there is a problem creating the connection—for instance, if there is no server listening at
that port number—you get an IOException.

If you want to create a connection using a numeric host address, you can pass the numeric
address as a host name string. The host address 192.100.81.100, for instance, can be

passed as the host name “192.100.81.100”. ■

public Socket(String host, int port, boolean stream)
 throws UnknownHostException, IOException

The Socket Class

N O T E

38 1529-5 CH33 9/23/98, 4:44 PM749

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

750 Chapter 33 java.net

creates a socket connection to port number port at the host named by host. You can optionally
request this connection be made by using datagram-based communication rather than stream-
based. With a stream, you are assured that all the data sent over the connection will arrive
correctly. Datagrams are not guaranteed, however, so it is possible that messages can be lost.
The tradeoff here is that the datagrams are much faster than the streams. Therefore, if you
have a reliable network, you may be better off with a datagram connection. The default mode
for Socket objects is Stream mode. If you pass false for the stream parameter, the connection
will be made in Datagram mode. You cannot change modes after the Socket object has been
created.

public Socket(InetAddress address, int port)
 throws IOException

creates a socket connection to port number port at the host whose address is stored in
address.

public Socket(InetAddress address, int port, boolean stream)
 throws IOException

creates a socket connection to port number port at the host whose address is stored in ad-
dress. If the stream parameter is false, the connection is made in Datagram mode.

Because of security restrictions in Netscape and other browsers, you may be restricted to
making socket connections back to the host address from where the applet was

loaded. ■

Sending and Receiving Socket Data
The Socket class does not contain explicit methods for sending and receiving data. Instead, it
provides methods that return input and output streams, enabling you to take full advantage of
the existing classes in java.io.

The getInputStream method returns an InputStream for the socket; the getOutputStream
method returns an OutputStream:

public InputStream getInputStream() throws IOException

public OutputStream getOutputStream() throws IOException

Getting Socket Information
You can get information about the socket connection such as the address, the port it is con-
nected to, and its local port number.

Just as each telephone in a telephone connection has its own phone number, each end of
a socket connection has a host address and port number. The port number on the client

side, however, does not enter into the connection establishment. One difference between socket
communications and the telephone is that a client usually has a different port number every time it
creates a new connection, but you always have the same phone number when you pick up the phone
to make a call. ■

N O T E

N O T E

38 1529-5 CH33 9/23/98, 4:44 PM750

751

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

The getInetAddress and getPort methods return the host address and port number for the
other end of the connection:

public InetAddress getInetAddress()

public int getPort()

You can get the local port number of your socket connection from the getLocalPort method:

public int getLocalPort()

Setting Socket Options
Certain socket options modify the behavior of sockets. They are not often used, but it is nice to
have them available. The setSoLinger method sets the amount of time that a socket will spend
trying to send data after it has been closed:

public void setSoLinger(boolean on, int maxTime)
 throws SocketException

Normally, when you are sending data over a socket and you close the socket, any
untransmitted data is flushed. By turning on the Linger option, you can make sure that all data
has been sent before the socket connection is taken down. You can query the linger time with
getSoLinger:

public int getSoLinger() throws SocketException

If the Linger option is off, getSoLinger returns –1.

If you try to read data from a socket and there is no data available, the read method normally
blocks (it waits until there is data). You can use the setSoTimeout method to set the maximum
amount of time that the read method will wait before giving up:

public synchronized void setSoTimeout(int timeout)
 throws SocketException

A timeout of 0 indicated that the read method should wait forever (the default behavior). If the
read times out, rather than just returning, it will throw java.io.InterruptedIOException, but
the socket will remain open. You can query the current timeout with getSoTimeout:

public synchronized int getSoTimeout()
 throws SocketException

The TCP protocol used by socket connections is reasonably efficient in network utilization. If it
is sending large amounts of data, it usually packages the data into larger packets. The reason
this is more efficient is that there is a certain fixed amount of overhead per network packet. If
the packets are larger, the percentage of network bandwidth consumed by the overhead is
much smaller. Unfortunately, TCP can also cause delays when you are sending many small
packets in a short amount of time. If you are sending mouse coordinates over the network, for
instance, the TCP driver will frequently group the coordinates into larger packets while it is
waiting for acknowledgment that the previous packets were received. This makes the mouse
movement look pretty choppy. You can ask the socket to send information as soon as possible
by passing true to setTcpNoDelay:

public void setTcpNoDelay(boolean on)

The Socket Class

38 1529-5 CH33 9/23/98, 4:44 PM751

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

752 Chapter 33 java.net

The getTcpNoDelay method returns true if the socket is operating under the No Delay option
(if the socket sends things immediately):

public boolean getTcpNoDelay()

CAUTION

You should be very careful when using the No Delay option. If you send a flurry of small packets, you can
waste large amounts of network bandwidth. If you send a 1-byte message, given about 64 bytes of fixed
overhead, 98% of the bandwidth you use is for overhead. Even for a 64-byte message, 50% of the
bandwidth is overhead.

Closing the Socket Connection
The socket equivalent of “hanging up the phone” is closing down the connection, which is
performed by the close method:

public synchronized void close() throws IOException

Waiting for Incoming Data
Reading data from a socket is not quite like reading data from a file, even though both are input
streams. When you read a file, all the data is already in the file. But with a socket connection,
you may try to read before the program on the other end of the connection has sent some-
thing. Because the read methods in the different input streams all block—that is, they wait for
data if none is present—you must be careful that your program does not completely halt while
waiting. The typical solution for this situation is to spawn a thread to read data from the socket.
Listing 33.1 shows a thread that is dedicated to reading data from an input stream. It notifies
your program of new data by calling a dataReady method with the incoming data.

Listing 33.1 Source Code for ReadThread.java

import java.net.*;
import java.lang.*;
import java.io.*;

/**
 * A thread dedicated to reading data from a socket connection.
 */

public class ReadThread extends Thread
{
 protected Socket connectionSocket; // the socket you are reading from
 protected DataInputStream inStream; // the input stream from the socket
 protected ReadCallback readCallback;

/**
 * Creates an instance of a ReadThread on a Socket and identifies the callback
 * that will receive all data from the socket.
 *

38 1529-5 CH33 9/23/98, 4:44 PM752

753

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

 * @param callback the object to be notified when data is ready
 * @param connSock the socket this ReadThread will read data from
 * @exception IOException if there is an error getting an input stream
 * for the socket
 */
 public ReadThread(ReadCallback callback, Socket connSock)
 throws IOException
 {
 connectionSocket = connSock;
 readCallback = callback;
 inStream = new DataInputStream(connSock.getInputStream());
 }

/**
 * Closes down the socket connection using the socket’s close method
 */
 protected void closeConnection()
 {
 try {
 connectionSocket.close();
 } catch (Exception oops) {
 }
 stop();
 }

/**
 * Continuously reads a string from the socket and then calls dataReady in the
 * read callback. If you want to read something other than a string, change
 * this method and the dataReady callback to handle the appropriate data.
 */

 public void run()
 {
 while (true)
 {
 try {
// readUTF reads in a string
 String str = inStream.readUTF();
// Notify the callback that you have a string
 readCallback.dataReady(str);
 }
 catch (Exception oops)
 {
// Tell the callback there was an error
 readCallback.dataReady(null);
 }
 }
 }
}

Listing 33.2 shows the ReadCallback interface, which must be implemented by a class to re-
ceive data from a ReadThread object.

The Socket Class

38 1529-5 CH33 9/23/98, 4:44 PM753

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

754 Chapter 33 java.net

Listing 33.2 Source Code for ReadCallback.java

/**
 * Implements a callback interface for the ReadConn class
 */
public interface ReadCallback
{
/**
 * Called when there is data ready on a ReadConn connection.
 * @param str the string read by the read thread, If null, the
 * connection closed or there was an error reading data
 */
 public void dataReady(String str);
}

A Simple Socket Client
Using these two classes, you can implement a simple client that connects to a server and uses a
read thread to read the data returned by the server. The corresponding server for this client is
presented in the following section, “The ServerSocket Class.” Listing 33.3 shows the
SimpleClient class.

Listing 33.3 Source Code for SimpleClient.java

import java.io.*;
import java.net.*;

/**
 * This class sets up a Socket connection to a server, spawns
 * a ReadThread object to read data coming back from the server,
 * and starts a thread that sends a string to the server every
 * 2 seconds.
 */

public class SimpleClient extends Object implements Runnable, ReadCallback
{
 protected Socket serverSock;
 protected DataOutputStream outStream;
 protected Thread clientThread;
 protected ReadThread reader;

 public SimpleClient(String hostName, int portNumber)
 throws IOException
 {
 Socket serverSock = new Socket(hostName, portNumber);

// The DataOutputStream has methods for sending different data types
// in a machine-independent format. It is very useful for sending data
// over a socket connection.
 outStream = new DataOutputStream(serverSock.getOutputStream());

// Create a reader thread
 reader = new ReadThread(this, serverSock);

38 1529-5 CH33 9/23/98, 4:44 PM754

755

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

// Start the reader thread
 reader.start();
 }

// These are generic start and stop methods for a Runnable

 public void start()
 {
 clientThread = new Thread(this);
 clientThread.start();
 }

 public void stop()
 {
 clientThread.stop();
 clientThread = null;
 }

// sendString sends a string to the server using writeUTF

 public synchronized void sendString(String str)
 throws IOException
 {
 System.out.println(“Sending string: “+str);
 outStream.writeUTF(str);
 }

// The run method for this object just sends a string to the server
// and sleeps for 2 seconds before sending another string

 public void run()
 {
 while (true)
 {
 try {
 sendString(“Hello There!”);
 Thread.sleep(2000);
 } catch (Exception oops) {
// If there was an error, print info and disconnect
 oops.printStackTrace();
 disconnect();
 stop();
 }
 }
 }

// The disconnect method closes down the connection to the server

 public void disconnect()
 {
 try {
 reader.closeConnection();
 } catch (Exception badClose) {
 // should be able to ignore
 }

continues

The Socket Class

38 1529-5 CH33 9/23/98, 4:45 PM755

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

756 Chapter 33 java.net

 }

// dataReady is the callback from the read thread. It is called
// whenever a string is received from the server.

 public synchronized void dataReady(String str)
 {
 System.out.println(“Got incoming string: “+str);
 }

 public static void main(String[] args)
 {
 try {
/* Change localhost to the host you are running the server on. If it
 is on the same machine, you can leave it as localhost. */

 SimpleClient client = new SimpleClient(“localhost”,
 4331);
 client.start();
 } catch (Exception cantStart) {
 System.out.println(“Got error”);
 cantStart.printStackTrace();
 }
 }
}

The ServerSocket Class
The ServerSocket class listens for incoming connections and creates a Socket object for each
new connection. You create a server socket by giving it a port number to listen on:

public ServerSocket(int portNumber) throws IOException

If you do not care what port number you are using, you can have the system assign the port
number for you by passing in a port number of 0.

Many socket implementations have a notion of connection backlog. That is, if many clients
connect to a server at once, the number of connections that have yet to be accepted are the
backlog. After a server hits the limit of backlogged connections, the server refuses any new
clients. To create a ServerSocket with a specific limit of backlogged connections, pass the port
number and backlog limit to the Constructor:

public ServerSocket(int portNumber, int backlogLimit)
throws IOException

Because of current security restrictions in Netscape and other browsers, you may not be
able to accept socket connections with an applet. ■

Listing 33.3 Continued

N O T E

38 1529-5 CH33 9/23/98, 4:45 PM756

757

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

Accepting Incoming Socket Connections
After the server socket is created, the accept method will return a Socket object for each new
connection:

public Socket accept() throws IOException

If no connections are pending, the accept method will block until there is a connection. If you
do not want your program to block completely while you are waiting for connections, you
should perform the accept in a separate thread.

When you no longer want to accept connections, close down the ServerSocket object with the
close method:

public void close() throws IOException

The close method does not affect the existing socket connections that were made through this
ServerSocket. If you want the existing connections to close, you must close each one explicitly.

Getting the Server Socket Address
If you need to find the address and port number for your server socket, you can use the
getInetAddress and getLocalPort methods:

public InetAddress getInetAddress()

public int getLocalPort()

The getLocalPort method is especially useful if you had the system assign the port number.
You may wonder what use it is for the system to assign the port number because you somehow
must tell the clients what port number to use. There are some practical uses for this method,
however. One use is implementing the FTP protocol. If you have ever watched an FTP session
in action, you will notice that when you get or put a file, a message such as PORT command
accepted appears. What has happened is that your local FTP program created the equivalent of
a server socket and sent the port number to the FTP server. The FTP server then creates a
connection back to your FTP program using this port number.

Writing a Server Program
You can use many models when writing a server program. You can make one big server object
that accepts new clients and contains all the necessary methods for communicating with them,
for example. You can make your server more modular by creating special objects that commu-
nicate with clients but invoke methods on the main server object. Using this model, you can
have clients who all share the server’s information but can communicate using different
protocols.

Listing 33.4 shows an example client handler object that talks to an individual client and passes
the client’s request up to the main server.

The ServerSocket Class

38 1529-5 CH33 9/23/98, 4:45 PM757

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

758 Chapter 33 java.net

Listing 33.4 Source Code for ServerConn.java

import java.io.*;
import java.net.*;

/**
 * This class represents a server’s client. It handles all the
 * communications with the client. When the server gets a new
 * connection, it creates one of these objects, passing it the
 * Socket object of the new client. When the client’s connection
 * closes, this object goes away quietly. The server doesn’t actually
 * have a reference to this object.
 *
 * Just for example’s sake, when you write a server using a setup
 * like this, you will probably have methods in the server that
 * this object will call. This object keeps a reference to the server
 * and calls a method in the server to process the strings read from
 * the client and returns a string to send back.
 */

public class ServerConn extends Object implements ReadCallback
{
 protected SimpleServer server;
 protected Socket clientSock;
 protected ReadThread reader;
 protected DataOutputStream outStream;

 public ServerConn(SimpleServer server, Socket clientSock)
 throws IOException
 {
 this.server = server;
 this.clientSock = clientSock;
 outStream = new DataOutputStream(clientSock.getOutputStream());
 reader = new ReadThread(this, clientSock);
 reader.start();
 }

/**
 * This method received the string read from the client, calls
 * a method in the server to process the string, and sends back
 * the string returned by the server.
 */
 public synchronized void dataReady(String str)
 {
 if (str == null)
 {
 disconnect();
 return;
 }

 try {
 outStream.writeUTF(server.processString(str));
 } catch (Exception writeError) {
 writeError.printStackTrace();
 disconnect();
 return;
 }

38 1529-5 CH33 9/23/98, 4:45 PM758

759

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

 }

/**
 * This method closes the connection to the client. If there is an error
 * closing the socket, it stops the read thread, which should eventually
 * cause the socket to get cleaned up.
 **/
 public synchronized void disconnect()
 {
 try {
 reader.closeConnection();
 } catch (Exception cantclose) {
 reader.stop();
 }
 }
}

With the ServerConn object handling the burden of communicating with the clients, your
server object can concentrate on implementing whatever services it should provide. Listing
33.5 shows a simple server that takes a string and sends back the reverse of the string.

Listing 33.5 Source Code for SimpleServer.java

import java.io.*;
import java.net.*;

/**
 * This class implements a simple server that accepts incoming
 * socket connections and creates a ServerConn instance to handle
 * each connection. It also provides a processString method that
 * takes a string and returns the reverse of it. This method is
 * invoked by the ServerConn instances when they receive a string
 * from a client.
 */

public class SimpleServer extends Object
{
 protected ServerSocket listenSock;

 public SimpleServer(int listenPort)
 throws IOException
 {
// Listen for connections on port listenPort
 listenSock = new ServerSocket(listenPort);
 }

 public void waitForClients()
 {
 while (true)
 {
 try {
// Wait for the next incoming socket connection
 Socket newClient = listenSock.accept();

continues

The ServerSocket Class

38 1529-5 CH33 9/23/98, 4:45 PM759

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

760 Chapter 33 java.net

// Create a ServerConn to handle this new connection
 ServerConn newConn = new ServerConn(
 this, newClient);
 } catch (Exception badAccept) {
 badAccept.printStackTrace();
 // print an error, but keep going
 }
 }
 }

// This method takes a string and returns the reverse of it

 public synchronized String processString(String inStr)
 {
 StringBuffer newBuffer = new StringBuffer();
 int len = inStr.length();

// Start at the end of the string and move down towards the beginning
 for (int i=len-1; i >= 0; i--) {

// Add the next character to the end of the string buffer
// Since you started at the end of the string, the first character
// in the buffer will be the last character in the string

 newBuffer.append(inStr.charAt(i));
 }
 return newBuffer.toString();
 }

 public static void main(String[] args)
 {
 try {
// Crank up the server and wait for connection
 SimpleServer server = new SimpleServer(4321);
 server.waitForClients();
 } catch (Exception oops) {

// If there was an error starting the server, say so!
 System.out.println(“Got error:”);
 oops.printStackTrace();
 }
 }
}

The InetAddress Class
The InetAddress class contains an Internet host address. Internet hosts are identified one of
two ways:

■ Name

■ Address

Listing 33.5 Continued

38 1529-5 CH33 9/23/98, 4:45 PM760

761

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

The address is a 4-byte number usually written in the form a.b.c.d, like 192.100.81.100. When
data is sent between computers, the network protocols use this numeric address for determin-
ing where to send the data. Host names are created for convenience. They keep you from
having to memorize a lot of 12-digit network addresses. It is far easier to remember
netcom.com, for example, than it is to remember 192.100.81.100.

As it turns out, relating a name to an address is a science in itself. When you make a connec-
tion to netcom.com, your system needs to find out the numeric address for netcom. It will
usually use a service called Domain Name Service, or DNS. DNS is the telephone book service
for Internet addresses. Host names and addresses on the Internet are grouped into domains
and subdomains, and each subdomain may have its own DNS—that is, its own local phone
book.

You may have noticed that Internet host names are usually a number of names that
are separated by periods. These separate names represent the domain a host belongs
to. netcom5.netcom.com, for example, is the host name for a machine named netcom5 in
the netcom.com domain. The netcom.com domain is a subdomain of the .com domain. A
netcom.edu domain could be completely separate from the netcom.com domain, and
netcom5.netcom.edu would be a totally different host. Again, this is not too different from
phone numbers. The phone number 404-555-1017 has an area code of 404, for example, which
could be considered the Atlanta domain. The exchange 555 is a subdomain of the Atlanta do-
main, and 1017 is a specific number in the 555 domain, which is part of the Atlanta domain. Just
as you can have a netcom5.netcom.edu that is different from netcom5.netcom.com, you can
have an identical phone number in a different area code, such as 212-555-1017.

The important point to remember here is that host names are only unique within a particular
domain. Don’t think that your organization is the only one in the world to have named its ma-
chines after The Three Stooges, Star Trek characters, or characters from various comic strips.

Converting a Name to an Address
The InetAddress class handles all the intricacies of name lookup for you. The getByName
method takes a host name and returns an instance of InetAddress that contains the network
address of the host:

public static synchronized InetAddress getByName(String host)
 throws UnknownHostException

A host can have multiple network addresses. Suppose, for example, that you have your own
LAN at home as well as a Point-to-Point Protocol connection to the Internet. The machine with
the PPP connection has two network addresses: the PPP address and the local LAN address.
You can find out all the available network addresses for a particular host by calling
getAllByName:

public static synchronized InetAddress[] getAllByName(String host)
 throws UnknownHostException

The getLocalHost method returns the address of the local host:

public static InetAddress getLocalHost()
 throws UnknownHostException

The InetAddress Class

38 1529-5 CH33 9/23/98, 4:45 PM761

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

762 Chapter 33 java.net

Examining the InetAddress
The InetAddress class has two methods for retrieving the address that it stores. The
getHostName method returns the name of the host, and getAddress returns the numeric ad-
dress of the host:

public String getHostName()

public byte[] getAddress()

The getAddress method returns the address as an array of bytes. Under the current Internet
addressing scheme, an array of four bytes would be returned. If and when the Internet goes to
a larger address size, however, this method just returns a larger array. The following code
fragment prints out a numeric address using the dot notation:

byte[] addr = someInetAddress.getAddress();
System.out.println((addr[0]&0xff)+”.”+(addr[1]&0xff)+”.”+
 (addr[2]&0xff)+”.”+(addr[3]&0xff));

You may be wondering why the address values are ANDed with the hex value ff (255 in deci-
mal). The reason is that byte values in Java are signed 8-bit numbers. That means when the
leftmost bit is 1, the number is negative. Internet addresses are not usually written with nega-
tive numbers. By ANDing the values with 255, you do not change the value, but you suddenly
treat the value as a 32-bit integer value whose leftmost bit is 0, and whose rightmost 8 bits
represent the address.

Getting an Applet’s Originating Address
Under many Java-aware browsers, socket connections are restricted to the server where the
applet originated. In other words, the only host your applet can connect to is the one it was
loaded from. You can create an instance of an InetAddress corresponding to the applet’s origi-
nating host by getting the applet’s document base or code base URL and then getting the URL’s
host name. The following code fragment illustrates this method:

URL appletSource = getDocumentBase(); // must be called from applet
InetAddress appletAddress = InetAddress.getByName(
 appletSource.getHost());

The DatagramSocket Class
The DatagramSocket class implements a special kind of socket that is made specifically for
sending datagrams. A datagram is somewhat like a letter in that it is sent from one point to
another and can occasionally get lost. Of course, Internet datagrams are several orders of
magnitude faster than the postal system. A datagram socket is like a mailbox. You receive all
your datagrams from your datagram socket. Unlike the stream-based sockets you read about
earlier, you do not need a new datagram socket for every program you must communicate
with.

If the datagram socket is the network equivalent of a mailbox, the datagram packet is the
equivalent of a letter. When you want to send a datagram to another program, you create a

38 1529-5 CH33 9/23/98, 4:45 PM762

763

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

DatagramPacket object that contains the host address and port number of the receiving
DatagramSocket, just like you must put an address on a letter when you mail it. You then call
the send method in your DatagramSocket, and it sends your datagram packet off through the
ethernet network to the recipient.

Not surprisingly, working with datagrams involves some of the same problems as mailing
letters. Datagrams can get lost and delivered out of sequence. If you write two letters to some-
one, you have no guarantee which letter the person will receive first. If one letter refers to the
other, it could cause confusion. There is no easy solution for this situation, except to plan for
the possibility.

Another situation occurs when a datagram gets lost. Imagine that you have mailed off your
house payment, and a week later the bank tells you it hasn’t received it. You don’t know what
happened to the payment—maybe the mail is very slow, or maybe the payment was lost. If you
mail off another payment, maybe the bank will end up with two checks from you. If you don’t
mail it off and the payment really is lost, the bank will be very angry. This, too, can happen with
datagrams. You may send a datagram, not hear any reply, and assume it was lost. If you send
another one, the server on the other end may get two requests and become confused. A good
way to minimize the impact of this kind of situation is to design your applications so that mul-
tiple datagrams of the same information do not cause confusion. The specifics of this design
are beyond the scope of this book. You should consult a good book on network programming.

You can create a datagram socket with or without a specific port number:

public DatagramSocket() throws SocketException

public DatagramSocket(int portNumber) throws SocketException

As with the Socket class, if you do not give a port number, one will be assigned automatically.
You only need to use a specific port number when other programs need to send unsolicited
datagrams to you. Whenever you send a datagram, it has a return address on it, just like a
letter. If you send a datagram to another program, it can always generate a reply to you without
you explicitly telling it what port you are on. In general, only your server program needs to
have a specific port number. The clients who send datagrams to the server and receive replies
from it can have system-assigned port numbers because the server can see the return address
on their datagrams.

The mechanism for sending and receiving datagrams is about as easy as mailing a letter and
checking your mailbox—most of the work is in writing and reading the letter. The send method
sends a datagram to its destination (the destination is stored in the DatagramPacket object):

public void send(DatagramPacket packet) throws IOException

The receive method reads in a datagram and stores it in a DatagramPacket object:

public synchronized void receive(DatagramPacket packet)
 throws IOException

When you no longer need the datagram socket, you can close it down with the close method:

public synchronized void close()

The DatagramSocket Class

38 1529-5 CH33 9/23/98, 4:45 PM763

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

764 Chapter 33 java.net

Finally, if you need to know the port number of your datagram socket, the getLocalPort
method gives it to you:

public int getLocalPort()

The DatagramPacket Class
The DatagramPacket class is the network equivalent of a letter. It contains an address and other
information. When you create a datagram, you must give it an array to contain the data as well
as the length of the data. The DatagramPacket class is used in two ways:

■ As a piece of data to be sent out over a datagram socket. In this case, the array used to
create the packet should contain the data you want to send, and the length should be the
exact number of bytes you want to send.

■ As a holding place for incoming datagrams. In this case, the array should be large enough
to hold whatever data you are expecting, and the length should be the maximum number
of bytes you want to receive.

To create a datagram packet that is to be sent, you must give not only the array of data and the
length, but you must also supply the destination host and port number for the packet:

public DatagramPacket(byte[] buffer, int length, InetAddress destAddress,
 int destPortNumber)

When you create a datagram packet for receiving data, you only need to supply an array large
enough to hold the incoming data, as well as the maximum number of bytes you wish to
receive:

public DatagramPacket(byte[] buffer, int length)

The DatagramPacket class also provides methods to query the four components of the packet:

public InetAddress getAddress()

For an incoming datagram packet, getAddress returns the address that the datagram was
sent from. For an outgoing packet, getAddress returns the address where the datagram will
be sent.

public int getPort()

For an incoming datagram packet, this is the port number that the datagram was sent from.
For an outgoing packet, this is the port number where the datagram will be sent.

public byte[] getData()

public int getLength()

Broadcasting Datagrams
A datagram broadcast is the datagram equivalent of junk mail. It causes a packet to be sent to a
number of hosts at the same time. When you broadcast, you always broadcast to a specific port
number, but the network address you broadcast to is a special address.

38 1529-5 CH33 9/23/98, 4:45 PM764

765

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

Recall that Internet addresses are in the form a.b.c.d. Portions of this address are considered
your host address, and other portions are considered your network address. The network
address is the left portion of the address; the host address is the right portion. The dividing
line between them varies based on the first byte of the address (the a portion). If a is less than
128, the network address is just the a portion, and the b.c.d is your host address. This address
is referred to as a Class A address. If a is greater than or equal to 128 and less than 192, the
network address is a.b, and the host address is c.d. This address is referred to as a Class B
address. If a is greater than or equal to 192, the network address is a.b.c, and the host address
is d. This address is referred to as a Class C address.

Why is the network address important? If you want to be polite, you should only broadcast to
your local network. Broadcasting to the entire world is rather rude and probably won’t work
anyway because many routers block broadcasts past the local network. To send a broadcast to
your local network, use the numeric address of the network and put in 255 for the portions that
represent the host address. If you are connected to Netcom, for example, which has a network
address that starts with 192, you should only broadcast Netcom’s network of 192.100.81, which
means the destination address for your datagrams should be 192.100.81.255. On the other
hand, you might be on a network such as 159.165, which is a Class B address. On that network,
you would broadcast to 159.165.255.255. You should consult your local system administrator
about this, however, because many Class A and Class B networks are locally subdivided. You
are safest just broadcasting to a.b.c.255 if you must broadcast at all.

A Simple Datagram Server
Listing 33.6 shows a simple datagram server program that just echoes back any datagrams it
receives.

Listing 33.6 Source Code for DatagramServer.java

import java.net.*;

/**
 * This is a simple datagram echo server that receives datagrams
 * and echoes them back untouched.
 */

public class DatagramServer extends Object
{
 public static void main(String[] args)
 {
 try {
// Create the datagram socket with a specific port number
 DatagramSocket mysock = new DatagramSocket(5432);

// Allow packets up to 1024 bytes long
 byte[] buf = new byte[1024];

continues

The DatagramPacket Class

38 1529-5 CH33 9/23/98, 4:45 PM765

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

766 Chapter 33 java.net

// Create the packet for receiving datagrams
 DatagramPacket p = new DatagramPacket(buf,
 buf.length);
 while (true) {
// Read in the datagram
 mysock.receive(p);

 System.out.println(“Received datagram!”);

// A nice feature of datagram packets is that there is only one
// address field. The incoming address and outgoing address are
// really the same address. This means that when you receive
// a datagram, if you want to send it back to the originating
// address, you can just invoke send again.

 mysock.send(p);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 33.7 shows a simple client that sends datagrams to the server and waits for a reply. If
the datagrams get lost, however, this program will hang because it does not resend datagrams.

Listing 33.7 Source Code for DatagramClient.java

import java.net.*;

/**
 * This program sends a datagram to the server every 2 seconds and waits
 * for a reply. If the datagram gets lost, this program will hang since it
 * has no retry logic.
 */

public class DatagramClient extends Object
{
 public static void main(String[] args)
 {
 try {
// Create the socket for sending
 DatagramSocket mysock = new DatagramSocket();

// Create the send buffer
 byte[] buf = new byte[1024];

// Create a packet to send. Currently just tries to send to the local host.
// Change the inet address to make it send somewhere else.

Listing 33.6 Continued

38 1529-5 CH33 9/23/98, 4:45 PM766

767

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

33

IV
Part

Ch

 DatagramPacket p = new DatagramPacket(buf,
 buf.length, InetAddress.getLocalHost(), 5432);
 while (true) {
// Send the datagram
 mysock.send(p);
 System.out.println(“Client sent datagram!”);
// Wait for a reply
 mysock.receive(p);
 System.out.println(“Client received datagram!”);
 Thread.sleep(2000);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Multicast Sockets
IP multicasting is a fairly new technology that represents an improvement over simple broad-
casting. A multicast functions like a broadcast in that a single message gets sent to multiple
recipients, but it is only sent to recipients that are looking for it.

The idea behind multicasting is that a certain set of network addresses are set aside as being
multicast addresses. These addresses are in the range 225.0.0.0 to 239.255.255.255.

Actually, network addresses between 224.0.0.0 and 224.255.255.255 are also IP
multicast addresses, but they are reserved for non-application uses. ■

Each multicast address is considered a group. When you want to receive messages from a
certain address, you join the group. You may have set up the address 225.11.22.33 as the
multicast address for your stock quote system, for example. A program that wanted to receive
stock quotes would have to join the 225.11.22.33 multicast group.

To send or receive multicast data, you must first create a multicast socket. A multicast socket is
similar to a datagram socket (in fact, MulticastSocket is a subclass of DatagramSocket). You
can create the multicast socket with a default port number or you can specify the port number
in the Constructor:

public MulticastSocket() throws IOException

public MulticastSocket(int portNumber) throws IOException

To join a multicast address, use the joinGroup method; to leave a group, use the leaveGroup
method:

public void joinGroup(InetAddress multicastAddr) throws IOException

public void leaveGroup(InetAddress multicastAddr) throws IOException

Multicast Sockets

N O T E

38 1529-5 CH33 9/23/98, 4:45 PM767

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 33 LP#4

768 Chapter 33 java.net

On certain systems, you may have multiple network interfaces. This can cause a problem for
multicasting because you need to listen on a specific interface. You can choose which interface
your multicast socket uses by calling setInterface:

public void setInterface(InetAddress interface) throws SocketException

If your machine had IP addresses of 192.0.0.1 and 193.0.1.15, and you wanted to listen for
multicast messages on the 193 network, for example, you would set your interface to the
193.0.1.15 address. Of course, you need to know the host name for that interface. You might
have host names of myhost_neta for the 192 network and myhost_netb for the 193 network. In
this case, you would set your interface this way:

mysocket.setInterface(InetAddress.getByName(“myhost_netb”));

You can query the interface for a multicast socket by calling getInterface:

public InetAddress getInterface() throws SocketException

The key to multicast broadcasting is that you must send your packets out with a “time to live”
value (also called TTL). This value indicates how far the packet should go (how many networks
it should jump to). A TTL value of 0 indicates that the packet should stay on the local host. A
TTL value of 1 indicates that the packet should only be sent on the local network. After that,
the TTL values have more nebulous meanings. A TTL value of 32 means that the packet should
only be sent to networks at this site. A TTL value of 64 means the packet should remain within
this region, and a value of 128 means it should remain within this continent. A value of 255
means that the packet should go everywhere. Like broadcast datagrams, it is considered rude
to send your packets to everyone. Try to limit the scope of your packets to the local network or,
at least, the local site.

When you send a multicast datagram, you use a special version of the send method that takes a
TTL value (if you use the default send method, the TTL is always 1):

public synchronized void send(DatagramPacket packet,
 byte timeToLive) throws IOException

You should also bear in mind that untrusted applets are not allowed to create MulticastSocket
objects. ●

38 1529-5 CH33 9/23/98, 4:45 PM768

769

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

C H A P T E R

Java Security in Depth

What Necessitates Java Security? 770

The Java Security Framework 771

Applet Restrictions 774

Java Security Problems 780

The Java Security API: Expanding the Boundaries for Applets 783

The Security API 790

34

In this chapter

39 1529-5 CH34 9/23/98, 4:47 PM769

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

770 Chapter 34 Java Security in Depth

What Necessitates Java Security?
In any description of the features of the Java environment, a phrase such as “Java is secure” will
be found. Security can mean a lot of different things, and when you’re developing Java applets,
it is critical to understand the implications of Java security. Your applets are restricted to func-
tioning within the Java security framework, which affects your design while enabling the safe
execution of network-loaded code.

To ensure an uncompromised environment, the Java security model errs on the side of caution.
All applets loaded over the network are assumed to be potentially hostile and are treated with
appropriate caution. This fact will greatly restrict your design. To enable Java applets to expand
beyond these limitations, the Java Security API has been developed.

To appreciate the intent and rationale behind the framework on which Java is based, you must
investigate what makes security an issue at all. Java provides many solutions to matters of
security, many of which will have ramifications on how you approach the installation and
authoring of Java applications in your Internet network solutions.

The Internet forms a vast shared medium, allowing machines throughout the world to commu-
nicate freely. Trusted and untrusted computers, allowing access to millions of individuals with
unknown intentions, are linked together. One computer can send information to almost any
other on the Internet. Furthermore, Internet applications and protocols are not foolproof; at
various levels, the identities can be concealed through various techniques.

Adding Java to this scene opens tremendous potential for abuse. Java’s strengths present the
most problematic issues, specifically these:

■ Java is a full-fledged programming language that allows applications to use many
resources on the target machine, such as manipulating files, opening network sockets to
remote systems, and spawning external processes.

■ Java code is downloaded from the network, often from machines over which you have no
control. Such code could contain fatal flaws or could have been altered by a malicious
intruder. The original author could even have questionable motives that would have an
impact on your system.

■ Java code is smoothly, seamlessly downloaded by Java-enabled browsers such as
HotJava, Netscape, or Internet Explorer. These special programs, known as applets, can
be transferred to your machine and executed without your knowledge or permission.

This “executable content” can have capabilities that extend far beyond the original
limitations of your Web browser’s design, precisely because Java is intended to allow
your browser’s capabilities to be extended dynamically.

Given these characteristics, it is easy to see why Java code should be treated with great care.
Without a tightly controlled environment, one could envision a number of problematic sce-
narios:

39 1529-5 CH34 9/23/98, 4:47 PM770

771

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

■ A malicious piece of code damages files and other resources on your computer.

■ While perhaps presenting a useful application, code silently retrieves sensitive data from
your system and transmits it to an attacker’s machine.

■ When you merely visit a Web page, a virus or worm is loaded that proceeds to spread
from your machine to others.

■ A program uses your system as a launching pad for an attack on another system, thus
obscuring the identity of the real villain while perhaps misidentifying you as the true
source of the attack.

■ Code created by a programmer whose abilities are not equal to yours creates a buggy
program that unintentionally damages your system.

With these problems in mind, the overall problem can be seen. To be practical, Java must pro-
vide a controlled environment in which applications are executed. Avenues for abuse or unin-
tended damage must be anticipated and blocked. System resources must be protected. To be
safe, Java must assume code that is loaded over the network comes from an untrusted source;
only those capabilities known to be secure should be permitted. However, Java should not be
so restricted that its value goes unrealized.

For those who are familiar with Internet security systems, the issues Java faces are not new.
This situation presents the old paradox in which computers must have access to capabilities
and resources to be useful. However, in an inverse relationship, the more power you provide to
such systems, the greater the potential for abuse. In such a situation, a paranoid stance will
render the system useless. A permissive stance will eventually spell doom. A prudent stance
strives to find an intelligent middle ground.

The Java Security Framework
The security framework provides Java with a clear API to create secure execution environ-
ments. As you know, Java consists of many different layers that create the complete Java execu-
tion environment:

■ Java language

■ Feature-rich, standard API

■ Java compiler

■ Bytecode

■ Dynamic loading and checking libraries at runtime

■ Garbage collector

■ Bytecode interpreter

At critical points throughout this structure, specific features help ensure a safe execution envi-
ronment. In isolation, each portion might provide little or no benefit to the system. In concert,
these features work to create the solid and secure framework that makes Java a practical solu-
tion to executable content.

The Java Security Framework

39 1529-5 CH34 9/23/98, 4:47 PM771

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

772 Chapter 34 Java Security in Depth

Part One: The Safety Provided by the Language
The Java language itself provides the first layer of network security. This security provides the
features that are necessary to protect data structures and limit the likelihood of unintentionally
flawed programs.

Java-Enforced Adherence to the Object-Oriented Paradigm Private data structures and
methods are encapsulated within Java classes. Access to these resources is provided only
through a public interface that is furnished by the class. Object-oriented code often proves to
be more maintainable and follows a clear design. This helps ensure that your program does not
accidentally corrupt itself, or clobber other Java elements running in the same VM.

No Pointer Arithmetic Java references cannot be incremented or reset to point to specific
portions of the JVM’s memory. This means that you cannot unintentionally (or maliciously)
overwrite the contents of an arbitrary object. Nor can you write data into sensitive portions of
the system’s memory. Furthermore, every object that isn’t waiting for garbage collection must
have a reference defined to it, so objects can’t be accidentally lost.

Array-Bounds Checking Arrays in Java are bound to their known size. So in Java, if you have
an array int[5] and you attempt to reference [8], your program will throw an exception
(ArrayIndexOutOfBoundsException). Historically, because other languages did not pay atten-
tion to array bounds, many security problems were created. For instance, a flawed application
could be induced to iterate beyond the end of an array, and when beyond the end of the array,
the program would be referring to data that did not belong to the array. Java prevents this
problem by ensuring that any attempt to index an element before the beginning or after the
end of an array will throw an exception.

Java’s Typecasting System Java ensures that any cast of one object to another is actually a
legal operation. An object cannot be arbitrarily cast to another type. So, assuming that you have
an object such as a Thread, if you try to cast it to an incompatible class such as a System (that
is, System s = (System) new Thread()), the runtime will throw an exception
(ClassCastException). In languages that do not check for cast compatibility, it is possible to
cast two objects, and incorrectly manipulate objects, or thwart inheritance restrictions.

Language Support for Thread-Safe Programming Multithreaded programming is an intrin-
sic part of the Java language, and special semantics ensure that different threads of execution
modify critical data structures in a sequential, controlled fashion.

Final Classes and Methods Many classes and methods within the Java API are declared
final, preventing programs from further subclassing or overriding specific code.

Part Two: The Java Compiler
The Java compiler converts Java code to bytecode for the JVM. The compiler ensures that all
the security features of the language are imposed. A trustworthy compiler establishes that the
code is safe and establishes that a programmer has used many of the security features. The
compiler makes sure that any information that is known at compile time is legitimate—for
instance, by checking for typecasting errors.

39 1529-5 CH34 9/23/98, 4:47 PM772

773

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

Part Three: The Verifier
Java bytecode is the essence of what is transmitted over the network. It is machine code for the
JVM. Java’s security would be easy to subvert if only the policies defined previously were as-
sumed to have been enforced. A hostile compiler could be easily written to create bytecode that
would perform dangerous acts that the well-behaved Java compiler would prevent.

Thus, security checks on the browser side are critical to maintaining a safe execution environ-
ment. Bytecode cannot be assumed to be created from a benevolent compiler, such as javac,
within the JDK. Instead, a fail-safe stance assumes that class files are hostile unless clearly
proven otherwise.

To prove such an assertion, when Java bytecode is loaded, it first enters into a system known
as the verifier. The verifier performs several checks on all class files loaded into the Java execu-
tion environment. The verifier goes through these steps before approving any loaded code:

1. The first pass-over ensures that the class file is of the proper general format.

2. The second check ensures that various Java conventions are upheld, such as checking
that every class has a superclass (except the Object class) and that final classes and
methods have not been overridden.

3. The third step is the most detailed inspection of the class file. Within this step, the
bytecodes themselves are examined to ensure their validity. This mechanism within the
verifier is generally referred to as the bytecode verifier.

4. The last step performs some additional checks, such as ensuring the existence of class
fields and the signature of methods.

For more detailed information on the verifier, read the paper by Frank Yellin titled “Low
Level Security,” available at http://java.sun.com/sfaq/verifier.html. ■

Part Four: The ClassLoader
Bytecode that has reached this stage has been determined to be valid; it then enters the
ClassLoader, an object that subclasses the abstract class java.lang.ClassLoader. The
ClassLoader loads applets incoming from the net and subjects them to the restrictions of the
Applet Security Manager, described in the section titled “Part Five: Establishing a Security
Policy,” later in this chapter. It strictly allocates namespaces for classes that are loaded into the
runtime system. A namespace is conceptual real estate in which an object’s data structures can
reside.

The ClassLoader ensures that objects don’t intrude into each other’s namespaces in unautho-
rized fashions. Public fields and methods can be accessed, but unless such an interface is de-
fined, another object has no visibility to the variables. This point is important because system
resources are accessed through specific classes—ones that are trusted to behave well and are
installed within the JDK. If untrusted code was able to manipulate the data of the core Java API,
disastrous results would ensue.

N O T E

The Java Security Framework

39 1529-5 CH34 9/23/98, 4:47 PM773

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

774 Chapter 34 Java Security in Depth

The ClassLoader also provides a strategic gateway for controlling which class code can be
accessed. For example, applets are prevented from overriding any of the built-in Java classes,
such as those that are provided within the Java API. Imported classes are prevented from im-
personating built-in classes that are allowed to perform important system-related tasks. When a
reference to an object is accessed, the namespace of built-in classes is checked first, thwarting
any spoofing by network-loaded classes.

Part Five: Establishing a Security Policy
The previous pieces of the Java security framework ensure that the Java system is not sub-
verted by invalid code or a hostile compiler. Basically, they ensure that Java code plays by the
rules. Given such an assurance, you are now able to establish a higher-level security policy.
This security policy exists at the application level, allowing you to dictate what resources a Java
program can access and manipulate.

The Java API provides the java.lang.SecurityManager class as a means of creating a clearly
defined set of tasks an application can and cannot perform, such as access files or network
resources. Java applications don’t start out with a SecurityManager, meaning that all resources
it could restrict are freely available. However, by implementing a SecurityManager, you can
add a significant measure of protection.

Java-enabled browsers use the SecurityManager to establish a security policy that greatly
distinguishes what Java applets and Java applications can do. Later in this chapter, in the sec-
tion “The SecurityManager Class,” such special restrictions are described in detail.

Putting It All Together
Figure 34.1 illustrates how these separate pieces of the framework interlock to provide a safe,
secure environment. This careful structure establishes an intelligent, fail-safe stance for the
execution of Java programs:

■ The Java language provides features that make a safe system possible.

■ Such code is compiled into bytecode, where certain compile-type checks are enforced.

■ Code is loaded into the Java execution environment and checked for validity by the
verifier, which performs a multistep checking process.

■ The ClassLoader ensures separate namespaces for loaded class files, allowing the Java
interpreter to actually execute the program.

■ The SecurityManager maintains an application-level policy, selectively permitting or
denying certain actions.

Applet Restrictions
Java applets are programs that extend the java.applet.Applet class. They can be seamlessly
downloaded and executed by a Java-enabled browser, such as HotJava or Netscape. Prior to the
JDK 1.1, there was no mechanism for establishing proof of ownership and trust of authorship.
Thus, all applets were assumed to be from an untrustworthy source.

39 1529-5 CH34 9/23/98, 4:47 PM774

775

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

Then in JDK 1.1, Sun added the concept of a trusted applet. However, you could establish an
applet source as only completely trusted or completely untrusted. JDK 1.2 has added fine-
grained control to allow a particular applet source to be either partially trusted (so that it can
read a particular file, for instance, but not others), completely trusted, or untrusted.

Applets Versus Applications
An important point to realize when investigating Java security is the distinction between Java
applets and Java applications. Applets are special programs that extend the Applet class. They
can be dynamically executed within a browser merely by loading an HTML page that contains
an APPLET element.

Applications, on the other hand, are executed directly by the Java interpreter. They must be
manually installed on the local system and consciously executed by the user on that system. A
Java browser does not execute these programs.

FIG. 34.1
A safe environment is
created by different
pieces working in a
smooth fashion.

Security Manager
(if present)

Java
Interpreter

Class Loader

Four Step Verifier

Class Files
(bytecode)

Java Compiler

Java Code

Executed
Program

Transmission over network or
local file system

Applet Restrictions

39 1529-5 CH34 9/23/98, 4:47 PM775

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

776 Chapter 34 Java Security in Depth

◊ See “Developing Java Applications,” p. 291

Before JDK 1.2, because of the differences between applets and applications, the two were
allowed to execute under different security policies. It was assumed that during the manual
installation process, the user had approved of the application’s potential access to system re-
sources. The application was trusted to the degree that it could open and write files, connect to
various network resources, and execute various programs on the local system. Such a policy
was consistent with just about any other application that you would install on your personal
computer, and if you wanted, you could establish policies to mimic this. However, the fact was
that all applications were considered trusted, and there was no way to establish a limited secu-
rity policy for applications. The new security API for JDK allows you to establish a security
policy for an application, just as you do for applets.

The SecurityManager Class
Most of the security features that are added to Java applets are imposed by the class
java.lang.SecurityManager, although (as previously mentioned) the use of a ClassLoader
instance plays a significant role as well. The SecurityManager class allows you to establish a
specific security policy that is appropriate to the level of trust given to a particular program.
This abstract class provides the capability to create an object that determines whether an op-
eration that a program intends to perform is permitted.

The SecurityManager has methods for performing the following acts to enforce a security
policy:

■ Determine whether an incoming network connection from a specific host on a specific
port can be accepted.

■ Check whether one thread can manipulate another thread of ThreadGroup.

■ Check whether a socket connection can be established with a remote system on a
specific port.

■ Prevent a new ClassLoader from being created.

■ Prevent a new SecurityManager from being created, which could override the existing
policy.

■ Check whether a file can be deleted.

■ Check whether a program can execute a program on the local system.

■ Prevent a program from exiting the Java Virtual Machine.

■ Check whether a dynamic library can be linked.

■ Check whether a certain network port can be listened to for an incoming connection.

■ Determine whether a program can load in specific Java packages.

■ Determine whether a program can create new classes within a specific Java package.

■ Identify which system properties can be accessed through the System.getProperty()
method.

■ Check whether a file can be read.

39 1529-5 CH34 9/23/98, 4:47 PM776

777

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

■ Check whether data can be written to a file.

■ Check whether a program can create its own implementation of network sockets.

■ Establish whether a program can create a top-level window. If prevented from doing so,
any windows that are allowed to be created should include some sort of visual warning.

The Security Policy of Java Browsers
Within Web browsers, a specific policy has been identified for the loading of untrusted applets.
The SecurityManager performs various checks on a program’s allowed actions; the
ClassLoader, which loads Java classes over the network, ensures that classes loaded from
external systems do not subvert this security stance. By default, the following restrictions
apply:

■ Applets are not allowed to read files on the local system. For example, this fails in an
applet:
File readFile = new File(“/etc/passwd”);
FileInputStream readIn = new FileInputStream(readFile);

■ Applets are not allowed to create, modify, or delete files on the local system. For ex-
ample, this fails in an applet:
File writeData = new File(“write.txt”); // Can’t create files.
FileOutputStream out = new FileOutputStream(writeData);
out.write(1);
File oldName = new File(“one.txt”); // Can’t modify files,such as
File newName = new File(“two.txt”); // by changing their names
oldName.renameTo(newName); // within directories.
File removeFile = new File(“import.dat”); // Can’t delete files.
removeFile.delete();

■ Applets cannot check for the existence of a file on the local system. For example, this
fails in an applet:
File isHere = new File(“grades.dbm”);
isHere.exists();

■ Applets cannot create a directory on the local system. For example, this fails in an applet:
File createDir = new File(“mydir”);
createDir.mkdir();

■ Applets cannot inspect the contents of a directory. For example, this fails in an applet:
String[] fileNames;
File lookAtDir = new File(“/users/hisdir”);
fileNames = lookAtDir.list();

■ Applets cannot check various file attributes, such as a file’s size, its type, or the time of
the last modification. For example, this fails in an applet:
File checkFile = new File(“this.dat”);
long checkSize;
boolean checkType;
long checkModTime;

Applet Restrictions

39 1529-5 CH34 9/23/98, 4:47 PM777

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

778 Chapter 34 Java Security in Depth

checkSize = checkFile.length();
checkType = checkFile.isFile();
checkModTime = checkFile.lastModified();

■ Applets cannot create a network connection to a machine other than the one from which
the applet was loaded. This rule holds true for connections that are created through any
of the various Java network classes, including java.net.Socket, java.net.URL, and
java.net.DatagramSocket.

For example, assuming that the applet was downloaded from www.untrusted.org, the
following code will fail in an applet:
// Can’t open TCP socket.
Socket mailSocket = new Socket(“mail.untrusted.org”,25);
// The URL objects are similarly restricted.
URL untrustedWeb = new URL(“http://www.untrusted.org/”);
URLConnection agent = untrustedWeb.openConnection();
agent.connect();
// As are UDP datagrams.
InetAddress thatSite = new InetAddress(“www.untrusted.org”);
int thatPort = 7;
byte[] data = new byte[100];
DatagramPacket sendPacket =
new DatagramPacket(data,data.length,thatSite,thatPort);
DatagramSocket sendSocket = new DatagramSocket();
sendSocket.send(sendPacket);

■ Applets cannot act as network servers, listening for or accepting socket connections
from remote systems. For example, this fails in an applet:
ServerSocket listener = new ServerSocket(8000);
listener.accept();

■ Applets are prevented from executing any programs that reside on the local computer.
For example, this fails in an applet:
String command = “DEL \AUTOEXEC.BAT”;
Runtime systemCommands = Runtime.getRuntime();
systemCommands.exec(command);

■ Applets are not allowed to load dynamic libraries or define native method calls. For
example, this fails in an applet:
Runtime systemCommands = Runtime.getRuntime();
systemCommands.loadLibrary(“local.dll”);

■ Within the Java environment, various standard system properties are set. These
properties can be accessed with the java.lang.System.getProperty(String key)
method. Applets are allowed to read only certain system properties and are prevented
from accessing others. Table 34.1 shows these system properties.

■ Applets cannot manipulate any Java threads other than those within their own thread
group.

■ Applets cannot shut down the JVM. For example, this fails in an applet:
// This mechanism fails.
Runtime systemCommands = Runtime.getRuntime();

39 1529-5 CH34 9/23/98, 4:47 PM778

779

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

systemCommands.exit(0);
// As does this mechanism.
System.exit(0);

■ Applets cannot create a SecurityManager or ClassLoader instance. The Java browser
creates such an object and uses it to impose the security policy on all applets.

■ The java.net package uses factories to establish particular implementations of specific
concepts: protocol handlers, content handlers, and sockets. Applets cannot override the
specification of these classes: java.net.URLStreamHandlerFactory,
java.net.ContentHandlerFactory, and java.net.SocketImplFactory.

Table 34.1 System Properties and Java Applets

Normally
Accessible to

Key Purpose Applets?

file.separator The token used to separate files and
directories on the filesystem (for
example, / on UNIX and \ on
Windows NT/95) yes

java.class.path The CLASSPATH value used to search
for classes to load no

java.class.version The version of the Java API used yes

java.home The directory in which the Java
environment is installed no

java.vendor A vendor-specific string used for
identification purposes yes

java.vendor.url The URL of a resource identifying
the vendor yes

java.version The version number of the Java
interpreter yes

line.separator The character(s) that separate lines
on the system (for example, the
line-feed character on UNIX, or a
line-feed, carriage-return pair on
Windows NT/95) yes

os.arch The operating system’s hardware
architecture yes

os.name The name of the operating system yes

os.version Operating system version yes

continues

Applet Restrictions

39 1529-5 CH34 9/23/98, 4:47 PM779

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

780 Chapter 34 Java Security in Depth

Table 34.1 Continued

Normally
Accessible to

Key Purpose Applets?

path.separator The token used to separate directories
in a search-path specification (for
example, : on UNIX and ; on
Windows NT/95) yes

user.dir The current working directory no

user.home The user’s home directory no

user.name The account name of the user no

As you might imagine, this policy presents some severe limitations that affect what your
applets can and cannot do. One particular problem is that the Internet, by its very nature, is a
distributed system. However, Java applets are prevented from accessing this web of comput-
ers—they can connect only to the machine from which they were downloaded.

Furthermore, because data cannot be written to the local system, applets cannot maintain a
persistent state across executions on the client. As a workaround, applets must connect to a
server to store state information, reloading that information from the original server when
executed later.

The current Java API provides the framework for creating specialized security policies for
trusted applets loaded from known sources. This latter solution is described later in this
chapter.

Java Security Problems
Despite its success and significant attention, Java is still not a completely mature system. Since
the release of the first version of Java, various practical flaws have been identified, and subse-
quently fixed. Understanding these flaws will provide you with a feel for the medium into which
you are immersing yourself.

An important point to note in this regard is the degree of openness that has been encouraged
within the Java development arena. Obviously, companies such as Sun and others that have a
significant stake in promoting Java suffer when a bug or flaw is revealed. Nevertheless, public
scrutiny and critiques have been encouraged and generally well received.

Based on the experience of most security professionals, such public review is an essential
component of the development of a secure system. In most cases, it is impossible to prove that
a system is secure. A safe stance is to assume that a system with no known flaws is merely one
with flaws that are waiting to be exposed and exploited. Peer review allows for various experts
to search for these hidden flaws—a process that is very familiar within the Internet community.

39 1529-5 CH34 9/23/98, 4:47 PM780

781

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

Java’s evolution has followed this philosophy, and from most practical observations, it appears
that everyone has benefited.

The opposing argument is that exposing the implementation of the system to the public allows
untrusted and malicious individuals to identify and act on flaws before others can rectify the
situation; by keeping a system secret, it is less likely that abusive hackers will discover these
problems. Many people experienced with Internet security disagree, believing that obscuring
the implementation is unwise: secrecy in design creates a system that is ultimately poorer,
while providing more opportunity for malevolence.

CAUTION

A word to the wise: Always treat with caution any supposedly secure system whose designer claims that the
system’s security would be subverted by revealing the details of its implementation.

Known Flaws
During the first few months after the release of the Java Development Kit, a number of prob-
lematic issues were revealed. The following list is an overview of some of the flaws discovered
in Java since its release:

■ In February 1996, Drew Dean, Edward W. Felton, and Dan S. Wallach discovered a flaw
in the Java Applet Security Manager. This flaw inappropriately trusted data from the
Domain Name System—the Internet mechanism for associating IP addresses with
human-understandable host names. As an example, this flaw is further examined later in
this section.

This problem was fixed by a patch within the Netscape Navigator 2.01 and the JDK 1.0.1.

■ In March 1996, Dean, Felton, and Wallach discovered a flaw that allowed arbitrary
machine code to be executed by an applet loaded over the network. This exploitation
resided on the capability to load a new ClassLoader from within an applet. Although the
Java compiler within the JDK would not permit this operation, the Java verifier did not
prevent this problem. Thus, a hostile compiler was able to subvert the Java security
framework. After the new ClassLoader was created by the applet, arbitrary machine
code could be executed.

This issue was addressed within a patch in the Netscape Navigator 2.02 and the JDK
1.0.2.

■ In June 1996, David Hopwood of Oxford University identified a flaw in the way object
typecasting was implemented. The problem allows casting between arbitrary data types.
With this flaw, local files can be read from and written to. In addition, arbitrary native
code can be executed.

This problem was fixed in Java 1.1.

Of the three mentioned flaws, the DNS attack identified first received perhaps the most public
attention. The basic problem lies within the enforcement of the security policy by the
SecurityManager.

Java Security Problems

39 1529-5 CH34 9/23/98, 4:47 PM781

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

782 Chapter 34 Java Security in Depth

The applet policy enforced by Web browsers dictates that a network connection can be opened
only by the applet to the machine from which it was downloaded. As indicated in Chapter 30,
“Communications and Networking,” network computers identify each other on the Internet
with IP addresses. The Domain Name System allows IP addresses to be associated in various
ways, primarily enabling the use of human-understandable host names.
◊ See “Internet Protocol (IP),” p. 686

In the flawed SecurityManager, the IP address of the incoming applet would be used to look up
the host name of the remote machine. Then this host name would be used to look up the set of
IP addresses to which it is mapped. Such a lookup should return at least the original IP ad-
dress, but it might contain other IP addresses; such IP addresses can correspond to the same
physical machine or completely separate machines.

Such a system might allow some flexibility in designing applets, allowing machines that share
the same host name to spread out the responsibility for handling connections initiated from
downloaded applets. However, such a system subtly violates the original security policy in a
very significant way.

The DNS is a distributed resource. Various systems throughout the Internet are responsible
for maintaining the integrity of specific parts. You have no ability to guarantee that a specific
DNS server will not be broken into by hackers, and malicious individuals could easily set up
their own DNS servers, providing information that could exploit this leniency in the
SecurityManager.

By design, the DNS is insecure. One could claim that Java should not be to blame for the limi-
tations of such a commonly used system. This nature of the DNS is well-known to Internet
security specialists, however, and this problem should have been anticipated.

One final point should be made about the problems found with the Java security system. The
design of the system appeared inherently sound. It was the implementation of that design that
was not completely flawless.

Denial-of-Service Attacks
The term denial-of-service is a standard way of describing a particular type of security attack.
Such attacks are aimed at preventing you or anyone else from using your own computer, rather
than attempting to obtain sensitive data from your systems. These attacks often utilize “brute
force” to overload a system.

Denial-of-service attacks in areas other than Java include such factors as these:

■ A mail-bomb attack in which an individual is repeatedly mailed large documents to fill up
his or her mail system.

■ Use of an application such as ping to flood a particular system.

■ Use of an automated browser to repeatedly request resources from a Web server.

Most of these attacks exploit a resource’s own usefulness to make the system effectively use-
less. Because of this, it’s not completely practical or possible to completely prevent such at-
tacks. Only by removing the features that make the system useful can it be protected.

39 1529-5 CH34 9/23/98, 4:47 PM782

783

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

Denial-of-service attacks are quite possible with Java applets. These attacks don’t require much
imagination:

■ An applet can attempt to use your CPU so much that other applications slow to a crawl.

■ An applet can continually create objects, allocating more and more memory.

■ An applet can create a number of windows, exhausting the GUI system on your machine.

Currently, these types of attacks are identified as out of the scope of the Java security model.
Java must continue to be useful. If applets have interesting and powerful capabilities, they
could potentially exhaust the practical limitations of your computer. However, Sun continues to
investigate the feasibility of controlling more closely the amount of system resources an applet
can use.

The Java Security API: Expanding the Boundaries
for Applets

By now, you have come to realize the significant, though prudent, default limitations to which
Java applets are held. These policies create a safe but restricted environment. When you’re
designing an applet to accomplish certain tasks, you must create cumbersome workarounds,
and other goals just can’t be accomplished through applets.

This situation is necessary because all applets are treated as hostile—a fail-safe stance. In many
situations, however, you are able to assert that certain programs are not hostile. For instance,
applets distributed by a faithful vendor or provided from within your firewall can be reasonably
expected to have greater access to system resources than a random applet loaded from
someone’s Web page.

One of the key capabilities missing from the initial Java implementations was the capability to
establish trust relationships. Java 1.1 added the foundation of the Java Security API. Using the
Security API, you have the ability to create trusted relationships with program developers and
verify that code from these sources is not altered by an outside party. However, the 1.1 solution
simply said that a program was either trusted or untrusted; there was no incremental control
over how trusted an applet could be. With 1.2, the security model has been extended to enable
finite trusted control.

The features of the Java Security API are based on computer cryptography designs and algo-
rithms. A quick investigation of these concepts can help you understand how the Security API
works.

Symmetric Cryptography
The cryptographic scheme that is most familiar to many is symmetric cryptography, or private-
key encryption. The concept is that a special formula or process takes a piece of data and uses
a special key, such as a password, to produce an encrypted block of data.

The Java Security API: Expanding the Boundaries for Applets

39 1529-5 CH34 9/23/98, 4:47 PM783

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

784 Chapter 34 Java Security in Depth

Given only the encrypted data, or ciphertext, it is difficult or impossible to reproduce the origi-
nal copy. With the key, however, you can decrypt the ciphertext into the original message.

Thus, anyone with access to the key can easily decrypt the data. Because the security of this
system depends on the secrecy of this key, this scheme is referred to as private key encryp-
tion. It is symmetrical in nature because the same key that is used to encrypt the data is re-
quired to decrypt the message. Figure 34.2 illustrates the private key encryption scheme.

Private Key

Encrypted
Data

Data

Data

Encryption

Decryption

Private Key

Encrypted
Data

FIG. 34.2
Private key cryptography
uses the same key for
encryption and
decryption. To be
secure, the key must be
kept secret.

A number of cryptographic systems use private key cryptography. Data Encryption Standard
(DES) is a widely used system; however, cracking it is practical with today’s technology. IDEA
is a much newer algorithm and is believed to be much more secure than DES, although it has
not been as thoroughly tested as DES. RC2 and RC4 are propriety algorithms distributed by
RSA Data Security.

One of the problems with using private key encryption to protect communications is that both
parties must have the same key. However, this exchange of private keys must be protected.
Thus, to securely transmit documents, a secure mechanism of exchanging information must
already exist.

Public Key Cryptography
Public key cryptography is a phenomenal idea. It is a radical system that is based on break-
throughs made during the 1970s. The concept is based on special mathematical algorithms.

A special formula is used to create two keys that are mathematically related, but neither can be
induced from the other. One key is used to encrypt a particular message to produce a
ciphertext. The other key is used to decrypt the message; however, the original key cannot be
used to decrypt the ciphertext. Thus, this type of cryptography is referred to as asymmetric.

39 1529-5 CH34 9/23/98, 4:47 PM784

785

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

This system solves the problem of key distribution that limits private key cryptography. An
individual who expects to receive protected documents can advertise one of the keys, generally
referred to as the public key. Anyone who wants to send an encrypted message to this person
merely picks up the public key and creates the ciphertext. This encrypted message can be
safely transmitted because only the other key can decrypt it. The recipient keeps the corre-
sponding, or secret, key hidden from others because it is the only key that can be used to read
messages encrypted by the public key. Figure 34.3 shows this mechanism.

Data

Encryption

Decryption

Encrypted
Data

Encrypted
Data

Secret
Key

Encrypted
Data

Public
Key

Data

Public
Key

Garbage

FIG. 34.3
Public key cryptography
provides a solution to
key distribution.

Perhaps of more usefulness to Java applets, however, is the converse operation that is known as
signing. Given a message, the secret key is used to create an encrypted signature. The
unencoded message is transmitted along with the signature, and if the message is altered, the
signature cannot be decrypted. Anyone who receives the message can obtain the freely avail-
able public key to ensure two things:

■ The message truly was from the supposed author.

■ The message was not altered in any way after being signed.

The Java Security API: Expanding the Boundaries for Applets

39 1529-5 CH34 9/23/98, 4:47 PM785

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

786 Chapter 34 Java Security in Depth

The process of signing messages through public key cryptography is shown in Figure 34.4.

Data

Altered
Data

Garbage!

Altered
Data

Encrypted
Signature

Signing Validation

Public Key

Data

Signature!

Data

Encrypted
Signature

Data

Encrypted
Signature

Signing Validation

Signing

Secret Key

Public Key

FIG. 34.4
Digital signatures can
establish identity and
data integrity.

Certification Authorities
One of the limitations in the public key system is verifying that a public key truly belongs to the
individual you believe it belongs to. It is conceivable that a hostile individual could send you a
message signed with a secret key, claiming to be from another party. This attacker then adver-
tises a public key as belonging to the impersonated person. You retrieve this key and decrypt

39 1529-5 CH34 9/23/98, 4:47 PM786

787

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

the signature. Believing that you have verified the author, you now trust information that, unbe-
knownst to you, is written by a hostile source.

Secure transmission systems on the Web have turned to a system known as Certification Au-
thorities (CA) to overcome this limitation. Basically, a CA is an organization or company that is
very well known and goes to great lengths to ensure that its public key is properly advertised.
The CA then signs the key of other agencies that conclusively prove their identity. When you
receive the public key of this agency, you can use the CA’s public key to verify it. If successful,
you know that the CA believes that this agency is what it claims to be. Thus, the CA certifies
the agency.

If your Web browser implements a mechanism of secure communications, such as SSL, you
can see a list of some certificate authorities. Navigator is SSL enabled—if you choose Options,
Security Preferences, Site Certificates, you can see the certificates of the CAs distributed with
the browser.

What Is Accomplished
After this lengthy discussion, you might be wondering why encryption can expand the capabili-
ties of applets. As mentioned before, applets are assumed to be untrusted and potentially hos-
tile. However, if an applet was digitally signed with public key cryptography, you could identify
the company that created the applet and ensure that a hacker has not somehow altered what
the company claims to have written.

Now you can establish trust relationships. You can assign specific roles to applets from known
agents. For instance, you might purchase a stock quote service from a company. To use that
service, you download an applet. Because you already have a relationship with that company
and you want to trust the information it provides, you can feel comfortable in allowing the
applet greater access to your local system:

■ You can allow the applet to save its configuration on your local disk.

■ You can allow the applet to connect to various stock servers located throughout the
Internet.

■ You can allow the applet to write stock information into a spreadsheet residing on your
computer.

It is important to note that other parts of the Java security framework are still in place. The
bytecode is still verified to ensure validity. Furthermore, this isn’t an all-or-nothing proposition.
Applets from trusted sources can be given incrementally greater access to your computer.
(Review the various checks the SecurityManager class has available to get a feel for the grada-
tions of increased access that could be allowed.) Finally, unsigned applets are still untrusted;
they will still be subject to the same limitations that were in place before the release of the Java
Security API.

The Java Security API: Expanding the Boundaries for Applets

39 1529-5 CH34 9/23/98, 4:47 PM787

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

788 Chapter 34 Java Security in Depth

Key Management
Key management is an extremely important aspect of security. You must keep your database of
certificates up to date and keep your private keys secret. If you keep keys and certificates in
separate files scattered around your system, you might accidentally place a private key in a
public directory where someone could steal it. To help you with key management, Java 1.1
included a key database and a key management tool called javakey. Now, with JDK 1.2, the
database and the capability to sign code have been split into two separate tools: keytool and
jarsigner.

Unfortunately, the keytool and jarsigner tools are not compatible with the javakey tool from
JDK 1.1. So if you are using 1.1 for any reason, you need to look into how the javakey

works, and not use keytool and jarsigner. ■

The keytool program included with JDK 1.2 is designed to allow you to create, modify, and
remove keys and certificates. It stores these records in a new type of database called a
keystore.

A certificate is a digitally signed object that is issued by a known entity, which identifies the
public key of another entity. For instance, you could have a certificate from RSA that tells you
what someone’s public key is. Then, when data is digitally signed, you can verify that the signa-
ture was really generated by that person by checking the certificate.

You can do two things when verifying a signature. First, using the certificate, you can check
the data’s integrity. The integrity of the data means that the data has not been modified or
tampered with since the time it was signed. Second, you can verify the authenticity of the data.
Authenticity verifies that the person who signed the document is really who he claims to be.

A certificate is generally held by an entity. An entity is a person or an organization that is able
to digitally sign information. Because signing requires a key set, a signer has both a public key
and a private key, as well as a certificate authenticating the public key.

A key is a number that is associated with the entity. The public key is designed so that every-
one who needs to interact with the entity can have access to the number. A private key, on the
other hand, is designed so that only the entity will know it. The two keys are mathematically
matched so that when a value is encrypted by the public key, it can be unencrypted only by the
private key. In addition, they are designed so that the private key cannot be derived just by
knowing the public key.

To store keys for an entity, you must first create an entry in the keystore database. When you
create the entry, you must give the entity a name, and a password to access the entity. The
following command creates an entry for a signer named mark:

keytool –genkey –alias usingjava –keypass goodbooks
➥ –dname “cn=QUE” –storepass zippydoda

N O T E

39 1529-5 CH34 9/23/98, 4:47 PM788

789

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

The -genkey option indicates that you are creating an entry for a signer. The -aliase option
indicates that you are creating an entry for an alias that is identified directly after the option.
The -keypass is used to identify the password that will be required any time you want to access
or modify the key.

After you have created an entry for an entity, you can add keys and certificates for that entity.
For example, suppose you received Verisign’s public key in a file called vskey.key and the
certificate for that key in a file called vskey.cer. Use the -import flag on the keytool command
to import the public key into the key database:

keytool –import –alias verisign –file vskey.cer –keypass verisignpas

You can list the entities in the database with the -list option:

keytool –list –storepass zippydoda
–keytool -list

To remove an entity, use the -delete option:

keytool -delete -alias usingjava -storepass abcdefgh

Digitally Signing a JAR File
When you store your applet or application in a JAR file, you can digitally sign the JAR file. If an
applet is loaded from a JAR file signed by a trusted entity, the applet is not subject to the usual
security restrictions. In future releases of Java, you will be able to configure what a signed
applet can do, even assigning permissions based on who signed the applet.

To sign a JAR file, you first need to add an entry in the keystore database for an alias. After you
have defined the signer, you can use the jarsigner tool to sign the JAR file. To sign the
test.jar file with the alias usingjava that was created in the preceding “Key Management”
section, type this:

jarsigner -storepass abcdefgh test1.jar usingjava

Defining a Policy
The last piece of the puzzle for signing a JAR file is creating a policy file to define the permis-
sions to assign to a file. There are two ways to create a permissions file. The first method is to
create it manually. Listing 34.1 shows how to create a policy file that allows a JAR file signed by
“usingjava” to write to a file called newfile.

Listing 34.1 write.jp—Allow usingjava to Write to the New File

grant SignedBy “usingjava” {
 permission java.util.PropertyPermission “user.home”, “read”;
 permission java.io.FilePermission “${user.home}/newfile”,”write”;
};

The Java Security API: Expanding the Boundaries for Applets

39 1529-5 CH34 9/23/98, 4:47 PM789

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

790 Chapter 34 Java Security in Depth

The second way to write a policy is by using the policytool utility bundled with JDK 1.2.
Policytool is designed to ease the efforts of defining the policy file.

Running the Applet
Now that you have signed a JAR file and defined a policy file, you can run the program with the
new capabilities. To run the Test program with appletviewer, you can type this:

appletviewer -J-Djava.policy=Write.jp file:///test.html

The Security API
The Security API is focused on providing support for digitally signed applets. There is some
level of support for generating and checking digital signatures from a program, and future
versions will provide classes for encrypting and decrypting information.

The Security API exists for two reasons: to allow your programs to perform security functions
and to allow manufacturers of security software to create their own security provider services.
Java 1.1 ships with a single security provider, which is simply called “Sun.” Other vendors
might provide their own security services. These providers might provide additional services
beyond those defined in the Java 1.2 Security API.

Public and Private Key Classes
The Security API revolves around the manipulation of keys. As you might guess, interfaces are
defined for both public and private keys. Because these keys share many common features,
they both derive from a common super interface called Key. The three important features of a
key are its algorithm, its format, and the encoded key value. You can retrieve these values from
any key by using the following methods:

public String getAlgorithm()
public String getFormat()
public byte[] getEncoded()

The Signature Class
The Signature class performs two different roles—it can digitally sign a sequence of bytes, or
it can verify the signature of a sequence of bytes. Before you can perform either of these func-
tions, you must create an instance of a Signature class. The constructor for the Signature
class is protected. The public method for creating signatures is called getInstance, and it
takes the name of the security algorithm and the name of the provider as arguments:

public static Signature getInstance(String algorithm,
String provider)

For the default package provided with Java 1.2, the most common call to getInstance is this:

Signature sig = Signature.getInstance(“DSA”, “SUN”)

39 1529-5 CH34 9/23/98, 4:47 PM790

791

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

If you are creating a digital signature, call the initSign method in Signature with the private
key you are using to create the signature:

public final void initSign(PrivateKey key)

If you are verifying a signature, call initVerify with the public key you are verifying against:

public final void initVerify(PublicKey key)

Whether you are creating a signature or verifying one, you must give the Signature class the
sequence of bytes you are concerned with. For instance, if you are digitally signing a file, you
must read all the bytes from the file and pass them to the Signature class. The update method
allows you to pass data bytes to the Signature class:

public final void update(byte b)
public final void update(byte[] b)

The update methods are additive; that is, each call to update adds to the existing array of bytes
that will be signed or verified. The following code fragment reads bytes from a file and stores
them in a Signature object:

Signature sig = new Signature(“DSA”);
sig.initSign(somePrivateKey);
FileInputStream infile = new FileInputStream(“SignMe”);
int i;
while ((i = infile.read()) >= 0) {
sig.update(i);
}
byte signature[] = sig.sign(); // Do the signing

After you have stored the bytes in the Signature, use the sign method to digitally sign them,
or use verify to verify them:

public final byte[] sign()

public final boolean verify(byte[] otherSignature)

Identities and Signers
As you already know, two types of entities are stored in the key database: identities (public
keys only) and signers (public/private key pairs). The Identity class represents an identity,
whereas the Signer class represents a signer. These two classes are abstract classes; you can-
not create your own instances. Instead, you must go through your security provider to create
and locate these classes.

When you have an instance of an Identity, you can retrieve its public key with getPublicKey
or set its public key with setPublicKey:

public PublicKey getPublicKey()

public void setPublicKey(PublicKey newKey)

In addition, you can retrieve all the identity’s certificates using the certificates method:

public Certificate[] certificates()

The Security API

39 1529-5 CH34 9/23/98, 4:47 PM791

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

792 Chapter 34 Java Security in Depth

You can add and remove certificates with addCertificate and removeCertificate:

public void addCertificate(Certificate cert)

public void removeCertificate(Certificate cert)

The Signer class is a subclass of Identity, and it adds methods for retrieving the private key
and setting the key pair:

protected PrivateKey getPrivateKey()

protected final void setKeyPair(KeyPair pair)

Certificates
A certificate is little more than a digitally signed public key. It also contains the owner of the
key, and the signer. The owner and the signer are called principals, and they are generally
entities that are stored in the key database. You can retrieve the public key from a certificate
with getPublicKey:

public abstract PublicKey getPublicKey()

You can also retrieve the principals from a certificate. The Guarantor is the entity who is sign-
ing the public key (guaranteeing its authenticity), and the Principal is the owner of the key
that is being guaranteed:

public abstract Principal getPrincipal()
public abstract Principal getGuarantor()

The only interesting method in the Principal interface is getName, which returns the name of
the principal:

public abstract String getName()

The IdentityScope Class
The IdentityScope class represents a set of identities. Generally, this class represents the
identities in the key database. When you have an instance of an IdentityScope, you can add
entities, remove entities, and find entities. The getSystemScope method returns the default
identity scope for the security system:

public static IdentityScope getSystemScope()

You can locate identities by name, by public key, or using a Principal reference:

public Identity getIdentity(String name)
public Identity getIdentity(PublicKey key)
public Identity getIdentity(Principal principal)

The identities method returns an enumeration that allows you to enumerate through all the
identities in the scope:

public abstract Enumeration identities()

39 1529-5 CH34 9/23/98, 4:47 PM792

793

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

34

IV
Part

Ch

The addIdentity and removeIdentity methods allow you to add new identities to the scope, or
to remove old ones:

public abstract void addIdentity(Identity id)
public abstract void removeIdentity(Identity id)

Listing 34.2 shows a sample program that creates a digital signature for a file and writes the
signature to a separate file.

Listing 34.2 Source Code for SignFile.java

import java.security.*;
import java.io.*;
import java.util.*;

public class SignFile {
 public static void main(String[] args) {
 try {

 // Get the default identity scope
 IdentityScope scope = IdentityScope.getSystemScope();

 // Locate the entity named trustme
 Identity identity = scope.getIdentity(“usingjava”);

 // Create a signature and initialize it for creating a signature
 Signature sig = Signature.getInstance(“DSA”, “SUN”);
 Signer signer = (Signer) identity;
 sig.initSign(signer.getPrivateKey());

 // Open the file that will be signed
 FileInputStream infile = new FileInputStream(“SignFile.java”);

 // Read the bytes from the file and add them to the signature
 int i;
 while ((i = infile.read()) >= 0) {
 sig.update((byte)i);
 }

 infile.close();

 // Open the file that will receive the digital signature of the
 // input file
 FileOutputStream outfile = new FileOutputStream(
 “SignFile.sig”);
 // Generate and write the signature
 outfile.write(sig.sign());
 outfile.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The Security API

39 1529-5 CH34 9/23/98, 4:47 PM793

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH34 LP#4

794 Chapter 34 Java Security in Depth

The capability to generate digital signatures and verify them from a program allows you to
provide new levels of security in your programs. This is especially useful in the area of elec-
tronic commerce because you can now digitally sign orders and receipts. ●

39 1529-5 CH34 9/23/98, 4:47 PM794

795

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

35

IV
Part

Ch

C H A P T E R

Object Serialization

What Is Object Serialization? 796

Object Serialization Example 799

Writing and Reading Your Own Objects 804

Customizing Object Serialization 806

35

In this chapter

40 1529-5 CH35 9/23/98, 4:48 PM795

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

796 Chapter 35 Object Serialization

What Is Object Serialization?
Up to this point you have been working with objects, and you have learned to create classes so
you can manipulate the objects using their methods. However, when you have had to write an
object to a different source, say out to a network via a socket or to a file, you have only written
out native types like int or char. Object serialization is the tool that was added to Java to allow
you to fully utilize the OOP nature of Java and write those objects you’ve labored to produce to
a file or other stream.

To understand object serialization, first look at an example of how you would go about reading
in a simple object, such as a string, from another source. Normally when you open a stream to
and from a client program, the odds are fairly good that you are sending/receiving a byte.
You’re probably then adding that byte to a string. To do this you might have some code similar
to that in Listing 35.1.

Listing 35.1 Notice How Much Work the Computer Has to Do to Generate a
 String This Way

/*
 *
 * GetString
 *
 */

import java.net.*;
import java.io.*;

public class GetString
{

 //Read in a String from an URL
 public String getStringFromUrl (URL inURL){
 InputStream in;
 try{
 in = inURL.openStream();
 } catch (IOException ioe){
 System.out.println(“Unable to open stream to URL:”+ioe);
 return null;
 }
 return getString(in);
 }

 public String getStringFromSocket (Socket inSocket){
 InputStream in;
 try{
 in = inSocket.getInputStream();
 } catch (IOException ioe){
 System.out.println(“Unable to open stream to Socket:”+ioe);
 return null;
 }

40 1529-5 CH35 9/23/98, 4:48 PM796

797

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

35

IV
Part

Ch

 return getString(in);
 }

 public String getString (InputStream inStream){
 String readString = new String();
 DataInputStream in = new DataInputStream (inStream);
 char inChar;
 try{
 while (true){
 inChar = (char)in.readByte();
 readString = readString + inChar;
 }
 } catch (EOFException eof){
 System.out.println(“The String read was:”+readString);
 } catch (IOException ioe) {
 System.out.println(“Error reading from stream:”+ioe);
 }
 return readString;
 }
}

Most important in Listing 35.1, take a look at the getString() method. Inside of this method
you will see an indefinitely long while loop (which breaks once an exception is thrown). If you
look closely at what is happening here, you will realize you are reading character-by-character
each letter in the string and appending it until you reach the end of the file (EOF). Java has no
way without object serialization to actually read in a string as an object.

DataInputStream does have a readLine() which returns a String, but this is not really
the same for two reasons. First, readLine does not read in an entire file; second, the

readLine() method itself is actually very similar to readString() in Listing 35.1. ■

An even more dire situation arises when you want to read a heterogeneous object such as that
shown in Listing 35.2.

Listing 35.2 A Heterogeneous Object

class testObject {
 int x;
 int y;
 float angle;
 String name;
 public testObject (int x, int y, float angle, String name){
 this.x = x ;
 this.y = y;
 this.angle= angle;
 this.name = name;
}

N O T E

What Is Object Serialization?

40 1529-5 CH35 9/23/98, 4:48 PM797

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

798 Chapter 35 Object Serialization

To read and write testObject without object serialization, you would open a stream, read in a
bunch of data, and then use it to fill out the contents of a new object (by passing the read-in
elements to the constructor). You might even be able to deduce directly how to read in the first
three elements of testObject. But how would you read in the name? Well, because you just
wrote a readString class in Listing 35.1 you could use that, but how would you know when the
string ends and the next object starts? Even more importantly, what if testObject had even
more complicated references? For instance, if testObject looked like Listing 35.3, how would
you handle the constant recursion from nextObject?

Listing 35.3 testObject Becomes Even More Complicated

class testObject {
 int x;
 int y;
 float angle;
 String name;
 testObject nextNode;
 public testObject (int x, int y, float angle, String name, testObject
nextNode){
 this.x = x ;
 this.y = y;
 this.angle= angle;
 this.name = name;
 this.nextNode = nextNode;
 }
}

If you really wanted to, you could write a method (or methods) to read and write Listing 35.3,
but wouldn’t it be great if, instead, you could grab an object a whole class at a time?

That’s exactly what object serialization is all about. Do you have a class structure that holds all
of the information about a house for a real estate program? No problem—simply open the
stream and send or receive the whole house. Do you want to save the state of a game applet?
Again, no problem. Just send the applet object down the stream.

The ability to store and retrieve whole objects is essential to the construction of all but the
most ephemeral of programs. While a full-blown database might be what you need if you’re
storing large amounts of data, frequently that’s overkill. Even if you want to implement a data-
base, it would be easier to store objects as BLOB types (byte streams of data) than to break out
an int here, a char there, and a byte there.

How Object Serialization Works
The key to object serialization is to store enough data about the object to be able to reconstruct
it fully. Furthermore, to protect the user (and programmer), the object must have a “finger-
print” that correctly associates it with the legitimate object from which it was made. This is an
aspect not even discussed when looking at writing our own objects. But it is critical for a com-
plete system so that when an object is read in from a stream, each of its fields will be placed
back into the correct class in the correct location.

40 1529-5 CH35 9/23/98, 4:48 PM798

799

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

35

IV
Part

Ch

If you are a C or C++ programmer, you’re probably used to accomplishing much of object
serialization by taking the pointer to a class or struct, doing a sizeOf(), and writing out

the entire class. Unfortunately, Java does not support pointers or direct-memory access, so this
technique will not work in Java, and object serialization is required. ■

It’s not necessary, however, for a serialization system to store the methods or the transient
fields of a class. The class code is assumed to be available any time these elements are re-
quired. In other words, when you restore the class Date, you are not also restoring the method
getHours(). It’s assumed that you have restored the values of the Date into a Date object and
that object has the code required for the getHours() method.

Dealing with Objects with Object References
Objects frequently refer to other objects by using them as class variables (fields). In other
words, in the more complicated testObject class (refer to Listing 35.3), a nextNode field was
added. This field is an object referenced within the object. In order to save a class, it is also
necessary to save the contents of these reference objects. Of course, the reference objects may
also refer to yet even more objects (such as with testObject if the nextNode also had a valid
nextNode value). So, as a rule, to serialize an object completely, you must store all of the infor-
mation for that object, as well as every object that is reachable by the object, including all of the
recursive objects.

CAUTION

Object serialization and Remote Method Invocation are not available under Netscape Navigator 3.0,
Microsoft Internet Explorer 3.0, or the Java Develpment Kit 1.0. The first version of the JDK that supports
object serialization and RMI is JDK 1.02, and that only with a patch. It is recommended that you use the
JDK 1.1 when trying any of these features.

If you are using the JDK 1.02, you must obtain the object serialization and RMI classes separately, and these
must be added to your existing class library. These classes can be downloaded from the following URL:

http://chatsubo.javasoft.com/current/download.html

Object Serialization Example
As a simple example, store and retrieve a Date class to and from a file. To do this without object
serialization, you would probably do something on the order of getTime() and write the result-
ing long integer to the file. However, with object serialization the process is much, much easier.

An Application to Write a Date Class
Listing 35.4 shows an example program called DateWrite. DateWrite creates a Date Object and
writes the entire object to a file.

N O T E

Object Serialization Example

40 1529-5 CH35 9/23/98, 4:48 PM799

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

800 Chapter 35 Object Serialization

Listing 35.4 DateWrite.java—An Application that Writes a Date Object to a File

import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import java.util.Date;
public class DateWrite {
 public static void main (String args[]){
 try{
 // Serialize today’s date to a file.
 FileOutputStream outputFile = new
 FileOutputStream(“dateFile”);
 ObjectOutputStream serializeStream = new
 ➥ObjectOutputStream(outputFile);
 serializeStream.writeObject(“Hi!”);
 serializeStream.writeObject(new Date());
 serializeStream.flush();
 } catch (Exception e) {
 System.out.println(“Error during serialization”);
 }
 }
}//end class DateWrite

Take a look at the code in Listing 35.4. First, notice that the program creates a
FileOutputStream. In order to do any serialization it is first necessary to declare an
outputStream of some sort to which you will attach the ObjectOutputStream. (As you see in
Listing 35.5, you can also use the OutputStream generated from any other object, including a
URL.)

Once you have established a stream, it is necessary to create an ObjectOutputStream with it.
The ObjectOutputStream contains all of the necessary information to serialize any object and
to write it to the stream.

In the example of the previous short code fragment, you see two objects being written to the
stream. The first object that is written is a String object; the second is the Date object.

To compile Listing 35.4 using the JDK 1.02, you need to add some extra commands that
you’re probably not used to. Before you do this, though, first verify that you have down-

loaded the RMI/object serialization classes and unzipped the file into your Java directory. Now, type the
following command:

javac -classpathc:\java\lib\classes.zip;c:\java\lib\

➥objio.zip;. DateWrite.java

The previous compiler command assumes you are using a Windows machine and that the directory in
which your Java files exist is C:\JAVA. If you have placed it in a different location or are using a system
other than Windows, you need to substitute C:\JAVA\LIB with the path that is appropriate for your Java
installation. As always, it’s a good idea to take a look at the README file included with your installa-
tion, and to read the release notes to learn about any known bugs or problems.

This should compile DateWrite cleanly. If you receive an error, though, make sure that you have a
OBJIO.ZIP file in your JAVA\LIB directory. Also, make sure that you have included both the
CLASSES.ZIP and the OBJIO.ZIP files in your class path. ■

N O T E

40 1529-5 CH35 9/23/98, 4:48 PM800

801

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

35

IV
Part

Ch

Running DateWrite Under JDK 1.02
Once you have compiled the DateWrite program you can run it. However, just as you had to
include the OBJIO.ZIP file in the classpath when you compiled the DateWrite class, you must
also include it in order to run the class.

java -classpath c:\java\lib\classes.zip;c:\java\lib\objio.zip;. DateWrite

If you fail to include the OBJIO.ZIP file in your class path, you will likely get an error
such as:

java.lang.NoClassDefFoundError: java/io/ObjectOutputStream
 at DateWrite.main (DateWrite.java: 9)

This is the result of the virtual machine being unable to locate the class files that are required for
object serialization. ■

Compiling and Running DateWrite
To compile and run DateWrite using the JDK 1.1, simply copy the contents of Listing 35.4 to a
file called DateWrite and compile it with javac as you would any other file:

javac DateWrite.java

You can run it just as you would any other Java application as well:

java DateWrite

No real output is generated by the DateWrite class, so when you run this program you should
be returned to the command prompt fairly quickly. However, if you now look in your directory
structure, you should see a file called dateFile. This is the file you just created. If you attempt
to type out the file, you will see something that looks mostly like gobbledygook.

However, a closer inspection reveals that this file contains several things. The stuff that looks
like gobbledygook is actually what the serialization uses to store information about the class,
such as the value of the fields and the class signature that was discussed earlier.

A Simple Application to Read in the Date
The next step, of course, is to read the Date and String back in from the file. See how compli-
cated this could be. Listing 35.5 shows an example program that reads in the String and Date.

Listing 35.5 DateRead.java—An Application that Reads the String and Date
Back In

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Date;
public class DateRead {
 public static void main (String args[]){
 Date wasThen;
 String theString;

N O T E

continues

Object Serialization Example

40 1529-5 CH35 9/23/98, 4:48 PM801

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

802 Chapter 35 Object Serialization

 try{
 // Serialize date from a file.
 FileInputStream inputFile = new FileInputStream(“dateFile”);
 ObjectInputStream serializeStream = new
 ObjectInputStream(inputFile);
 theString = (String) serializeStream.readObject();
 } catch (Exception e) {
 System.out.println(“Error during serialization”);
 return;
 }
 System.out.println(“The string is:”+theString);
 System.out.println(“The old date was:”+wasThen);
 }
}

Listings 35.4 and 35.5 differ primarily in the ways that you would expect. Listing 35.4 is writing,
and Listing 35.5 is reading. In DateRead, you first declare two variables to store the objects in.
You need to remember to do this because if you were to create the variables inside the try-
catch block, they would go out of scope before reaching the System.out line. Next, a
FileInputStream and ObjectInputStream are created, just as the FileOutputStream and
ObjectOutputStreams were created for DateWrite.

The next two lines of the code are also probably fairly obvious, but pay special attention to the
casting operator. readObject() returns an Object class. By default, Java does not polymorph-
cast any object, so you must implicitly direct it to do so. The rest of the code should be fairly
obvious to you by now.

You can compile and run DateRead, so simply follow the same directions for DateWrite.

To compile the code using JDK 1.02, this time set a classpath variable so that you don’t
always have to use the -classpath option with javac. You can use the -classpath

option as done in the previous example, but this solution is a bit more efficient. In either case these
solutions are interchangeable. To set the classpath this way do the following:

On a Windows machine, type:

set classpath=c:\java\lib\classes.zip;c:\java\lib\objio.zip;.

On other platforms, the syntax is slightly different. For instance, under UNIX you might type:

classpath=/usr/java/lib/classes.zip:/usr/java/lib/objio.zip:.

export classpath

In either case, don’t forget to add the current directory (.) to the end of the classpath statement.
javac will run without the current directory being listed, but the java command won’t work. ■

Compiling and Running DateRead
You can compile and run DateRead, simply by following the same directions for DateWrite.

javac DateRead.java

Listing 35.5 Continued

N O T E

40 1529-5 CH35 9/23/98, 4:48 PM802

803

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

35

IV
Part

Ch

You can also run it by using the familiar java command:

java DateRead

Here’s an example of the resulting output from this code:

The String is:Hi!
The old date was:Wed Dec 1 23:36:26 edt 1996

Notice that the String and Date are read in just as they were when you wrote them out. Now
you can write out and read entire objects from the stream without needing to push each ele-
ment into the stream.

CAUTION

As you may have already guessed, it is imperative that you read in objects in exactly the same order as you
wrote them out. If you fail to do this, a runtime error will occur that says something such as the following:

Error during serialization

Reading In the Date with an Applet
Object serialization is not limited to applications. Listing 35.6 shows DateRead changed so that
it can also be run as an applet.

Listing 35.6 DataReadApp.java—An Applet That Reads a Date Object to a File

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Date;
import java.awt.Graphics;
public class DateReadApp extends java.applet.Applet {
 public void paint (Graphics g){
 Date wasThen;
 String theString;
 try{
 // Serialize date from a file.
 FileInputStream inputFile = new FileInputStream(“dateFile”);
 ObjectInputStream serializeStream = new
 ObjectInputStream(inputFile);
 theString = (String) serializeStream.readObject();
 wasThen = (Date)serializeStream.readObject();
 } catch (Exception e) {
 System.out.println(“Error during serialization”);
 return;
 }
 g.drawString((“The string is:”+theString),5,100);
 g.drawString((“The old date was:”+wasThen),5,150);
 }
}

Object Serialization Example

40 1529-5 CH35 9/23/98, 4:48 PM803

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

804 Chapter 35 Object Serialization

After you have compiled Listing 35.6, the resulting output should look like Figure 35.1. Remem-
ber that you will have to use Applet Viewer to run this applet, because other browsers don’t yet
support object serialization.

While you can run DateReadApp with Applet Viewer, you cannot run it using Netscape
because some changes need to be made to the virtual machine in order to make object

serialization possible. These changes have not yet been adopted by Netscape. ■

Writing and Reading Your Own Objects
By default, you have the ability to write and read most of your own objects, just as you did with
the Date class. There are certain restrictions right now (such as if the object refers to a native
peer), but for the most part, any class that you create can be serialized.

Listings 35.7 through 35.9 show the source code for serializing an example class called
SerializeObject.

Listing 35.7 SerializeObject—A Simple Class with a Couple of Fields

public class SerializeObject implements java.io.Serializable{
 public int first;
 public char second;
 public String third;
 public SerializeObject (int first, char second, String third){
 this.first= first;
 this.second = second;
 this.third = third;
 }
}

FIG. 35.1
The Date and String
have been read in using
serialization.

N O T E

40 1529-5 CH35 9/23/98, 4:48 PM804

805

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

35

IV
Part

Ch

Listing 35.8 ObjWrite—Write Out a Sample SerializeObject to a File

import java.io.FileOutputStream;
import java.io.ObjectOutputStream;
import SerializeObject;
public class ObjWrite {
 public static void main (String args[]){
 try{
 FileOutputStream outputFile = new FileOutputStream(“objFile”);
 ObjectOutputStream serializeStream = new
ObjectOutputStream(outputFile);
 SerializeObject obj = new SerializeObject (1,’c’,new String
(“Hi!”));
 serializeStream.writeObject(obj);
 serializeStream.flush();
 } catch (Exception e) {
 System.out.println(“Error during serialization”);
 }
 }
}

Listing 35.9 ObjRead—Read in the Same Object from the File

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import SerializeObject;
public class ObjRead extends java.applet.Applet {
 public void init(){
 main(null);
 }

 public static void main (String args[]){
 SerializeObject obj;
 try{
 FileInputStream inputFile = new FileInputStream(“objFile”);
 ObjectInputStream serializeStream = new
ObjectInputStream(inputFile);
 obj = (SerializeObject)serializeStream.readObject();
 } catch (Exception e) {
 System.out.println(“Error during serialization”);
 return;
 }
 System.out.println(“first is:”+obj.first);
 System.out.println(“second is:”+obj.second);
 System.out.println(“third is:”+obj.third);
 }
}

Writing and Reading Your Own Objects

40 1529-5 CH35 9/23/98, 4:48 PM805

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

806 Chapter 35 Object Serialization

N O T E

In the previous example classes, notice that the SerializeObject class refers to a number of
things, including another class—String. As you might already suspect, once you have com-
piled and run each of these classes, the resulting output is

First is:1
Second is:c
Third is:Hi!

What’s most amazing about all this code is how easy it is to transfer the object.

Customizing Object Serialization
Sometimes it is useful, or even necessary, to control how an individual object is serialized. If for
instance you want to encrypt the data held by this object in a proprietary form to control access
to the objects data, you would not want to use the default serialization mechanisms.

Special Serialization changed in JDK 1.2. If you are using a previous version of the JDK, the
methods shown here will not work for you. Instead, you should refer to the API to learn how

to change the serialization for your objects. Look for the interfaces java.io.Replaceable and
java.io.Resolvable. ■

To override how an object is serialized, you must define two methods in your class with the
signatures:

private void writeObject(java.io.ObjectOutputStream out)
 throws IOException
 private void readObject(java.io.ObjectInputStream in)
 throws IOException, ClassNotFoundException;

The first question you’re probably asking yourself at this point is, if writeObject() and
readObject() are not in the Serializable interface, how does the serialization system manage
to call these methods? The answer is that it uses what is know as Reflection. Reflection is cov-
ered in Chapter 48, “Reflection,” but essentially it allows programs to access methods and
constructors of components based on knowing their signature. Reflection is generally a compli-
cated API, and for most of your programs you will not need to be concerned with actually get-
ting Reflection to work. However, you do need to know that Reflection requires the signatures
of the methods to be exact. Therefore, it is critical that you use exactly these signatures. Fail-
ure to make the methods private will cause the serialization mechanism to use it’s default algo-
rithms.

Your classes do not need to be concerned with calling super.writeObject() or
super.readObject(), nor do you need to be concerned about how subclasses will serialize the
class as each portion of the object will be handled separately by the serialization mechanism.

On the other hand, if you want to use the default mechanism within the writeObject()
method, you can do so by calling out.defaultWriteObject(). Or from the readObject()
method you can call in.defaultReadObject().

40 1529-5 CH35 9/23/98, 4:48 PM806

807

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

35

IV
Part

Ch

Listing 35.10 contains a class called DateTest that writes out the value of a date as three sepa-
rate integers—the year, the month, and the day of the month—instead of using the default
serialization. Listings 35.11 and 35.12 contain sample classes for testing the DateTest class.

Listing 35.10 DateTest—A Class with Special Serialization

import java.io.*;
import java.util.*;
import java.text.*;

public class DateTest implements Serializable{
 transient GregorianCalendar myDate;

 public void newDate(){
 myDate = new GregorianCalendar();
 }

 private void writeObject(ObjectOutputStream out) throws IOException{
 int year = myDate.get(Calendar.YEAR);
 int month = myDate.get(Calendar.MONTH);
 int day = myDate.get(Calendar.DAY_OF_MONTH);
 out.writeInt(year);
 out.writeInt(month);
 out.writeInt(day);
 }

 private void readObject(ObjectInputStream in) throws IOException,
➥ClassNotFoundException{
 int year = in.readInt();
 int month = in.readInt();
 int day = in.readInt();
 myDate = new GregorianCalendar(year,month,day);
}

 public String toString(){
 DateFormat df = DateFormat.getDateInstance();
 return “DateTest:”+df.format(myDate.getTime());
 }

}

Listing 35.11 DateWriter—A Class That Writes Out a DateTest

import java.io.*;

public class DateWriter{
 public static void main(String args[]){
 try{
 DateTest test = new DateTest();
 test.newDate();
 System.out.println(“Writting test:”+test);

continued

Customizing Object Serialization

40 1529-5 CH35 9/23/98, 4:48 PM807

P2/VB mpprp11 UsingJava1.2 1529-5 8.7.98 ayanna chapter 35 LP#3

808 Chapter 35 Object Serialization

 FileOutputStream fout = new FileOutputStream(“test.out”);
 ObjectOutputStream oout = new ObjectOutputStream (fout);
 oout.writeObject(test);
 }catch (Exception ioe){
 ioe.printStackTrace(System.err);
 }
 }
}

Listing 35.12 DateReader—A Class That Reads in a Datetest

import java.io.*;
public class DateReader{
 public static void main(String args[]){
 try{
 FileInputStream fin = new FileInputStream(“test.out”);
 ObjectInputStream oin = new ObjectInputStream (fin);
 DateTest test = (DateTest)oin.readObject();
 System.out.println(“Read dateTest as “+test);
 }catch (Exception e){
 e.printStackTrace(System.err);
 }
 }
}

Listing 35.11 Continued

40 1529-5 CH35 9/23/98, 4:48 PM808

809

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

C H A P T E R

Remote Method Invocation

What Is Remote Method Invocation? 810

Creating an Applet Client 817

Creating a Custom Socket 818

Using the Activation Model 825

36

In this chapter

41 1529-5 CH36 9/23/98, 4:49 PM809

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

810 Chapter 36 What is Remote Method Invocation?

What Is Remote Method Invocation?
One of the features that really helps push forward the client/server model in many systems is
known as Remote Procedure Calls (RPC). Since JDK 1.1, Java has a similar feature called Re-
mote Method Invocation, which allows you to create objects that actually exist and process on
machines other than the client computer. This chapter covers this exciting and extremely
powerful feature.

First, it’s necessary to define Remote Method Invocation (RMI). With object serialization, you
learned that you could take an entire object and pass it along a stream. RMI is a sister to object
serialization that allows you to pass an object along a stream, and to allow that object to exist on
a separate computer and invoke methods on those other systems as well.

In other words, RMI allows you to create Java objects whose methods can be invoked by the
Virtual Machine on a different computer. Although these objects live and process on a different
computer, they are used on the remote machine just like any local object.

Creating a Remote Object
Any object that can be called remotely must implement the Remote interface. However, the
Remote interface itself does not have any methods, so obviously just implementing Remote
isn’t going to buy you a whole lot.

In order to have a useful interface you must create a new interface for your object, that inter-
face must extend Remote. The new interface will contain all of the methods that can be called
remotely. As you have probably already guessed, the remote object must then implement your
new interface. Since the new interface extends the Remote interface, implementing the new
interface fulfills the requirement for the remote object to implement Remote. Each of these
implementing objects is then referred to as a remote object. So, to create and implement Re-
mote Object there are five simple steps:

1. Define an interface that extends the Remote interface. Each method of this new interface
must declare that it will throw a RemoteExecption.

◊ See “Extending Other Interfaces,” p. 195

2. Define a class that implements the interface. Because the new interface extends Remote,
this fulfills the requirements for making the new class a remote object. The class must
provide a means to marshal references to the instances of the class.

3. Generate the stubs and skeletons that are needed for the remote implementations by
using the rmic program.

4. Create a client program that will make RMI calls to the server.

5. Start the Registry and run your remote server and client.

When parameters are required by an RMI method, the objects are passed using object
serialization, as discussed in Chapter 35, “Object Serialization.” ■

N O T E

41 1529-5 CH36 9/23/98, 4:49 PM810

811

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

A Sample RMI Application
To understand RMI, take a look at a complete example. As is so frequently the case, the ex-
ample used is a fairly simple one, which simply creates a string and returns it.

Creating a Remote Interface
The first step to creating an RMI application is to create an interface, which extends the Re-
mote interface. Each of the methods in this interface will be able to be called remotely. If you’re
already thinking ahead, you may have realized that the use of an interface in this system is an
amazingly elegant use of object-oriented programming. With an interface, the system that calls
the Remote object works with the interface just like any other class, but the compiler doesn’t
need to know anything about the code within the body of the methods. Just as when you create
any interface, you want to make sure that the prototype for each of the methods matches ex-
actly with the method headers you will use in the final class. Listing 36.1 shows a simple re-
mote interface for this example.

Listing 36.1 RemoteInterface—A Sample Interface that Extends Remote

public interface RemoteInterface extends java.rmi.Remote {
 String message (String message) throws java.rmi.RemoteException;
}

Here, you have defined an interface with a single method. Remember that the Remote inter-
face does not actually have any methods of its own, so message is the only method that needs
to be defined by any class that implements the RemoteInterface.

An interface that will be utilized remotely can use any class as a parameter or a return
type, so long as that type implements the Serializable. ■

Creating an Implementing Class
The second step is to define a class that implements your new RemoteInterface. This class is
defined in Listing 36.2. In this example you will have message simply return a string, which will
contain information from both the passed in string and one that is local to the object (name).
Doing this should help to prove that you are, in fact, doing the processing on the remote com-
puter. To further emphasize the point, you will do a println, which you will see later is dis-
played on the remote computer, not the client one.

Listing 36.2 RemoteObject—A Sample Remote Object that Receives and
Sends a String

import java.rmi.Naming;
import java.rmi.server.UnicastRemoteObject;

N O T E

What Is Remote Method Invocation?

continues

41 1529-5 CH36 9/23/98, 4:49 PM811

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

812 Chapter 36 What is Remote Method Invocation?

import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;

public class RemoteObject extends UnicastRemoteObject implements
RemoteInterface{
 String name;
 public RemoteObject(String name) throws RemoteException{
 super();
 this.name = name;
 }

 public String message(String message) throws RemoteException{
 String returnString = “My Name is:”+name+”,thanks for your
message:”+message;
 System.out.println(“Returning:”+returnString);
 return “My Name is:”+name+”,thanks for your message:”+message;
 }

 public static void main (String args[]){
 System.setSecurityManager (new RMISecurityManager());
 try{
 String myName = “ServerTest”;
 RemoteObject theServer = new RemoteObject (myName);
 Naming.rebind(myName,theServer);
 System.out.println(“Ready to continue”);
 } catch (Exception e){
 System.out.println(“An Exception occured while creating server”);
 }
 }
}

Several key things need to be noticed about the RemoteObject class. First, the RemoteObject
extends the UnicastRemoteObject. For the scope of this chapter, you can think of the
UnicastRemoteObject as the java.applet.Applet for RMI servers. You can create your own
RemoteObject classes, but that’s beyond the scope of this chapter. Next, the server implements
the RemoteInterface that you defined in Listing 36.1.

CAUTION

Under JDK 1.02, you will need to import and extend java.rmi.UnicastRemoteObject, not
java.rmi.server.UnicastRemoteObject. So the header for the class under JDK 1.02 is

public class RemoteObject extends UnicastRemoteObject implements
RemoteInterface{

Unfortunately, this change can cause a number of incompatibilities if, for some reason, you must use a
JDK 1.02 VM.

Listing 36.2 Continued

41 1529-5 CH36 9/23/98, 4:49 PM812

813

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

Each method in the RemoteObject that can be called via RMI must declare that it will throw a
RemoteException. Notice that even the constructor method must be defined to throw a
RemoteException. The reason for this isn’t immediately obvious. After all, which of the com-
mands in the constructor method could possibly throw an exception? It’s certainly not the
assignment of name, so that leaves: the super() constructor call, of course. Sure enough, what
UnicastRemoteObject’s constructor does is export the remote object (the one just created) by
listening for incoming requests for the object on the anonymous port (1099). Unfortunately,
this export may fail if the resources to do communication are unavailable, causing an
Exception, which your class must throw.

As with all classes which extend other classes, the super() call occurs implicitly by
default (assuming one is available) but, to help you see where the exception is called from,

it’s included here explicitly. ■

Of course the RemoteObject must define the message method of RemoteInterface because it
implemented RemoteInterface. You are most concerned with this method because this is the
method you try to call using RMI. To make things simple, the message method simply returns
a String, which includes the message that is received. If our client program receives the String
back, you can be sure that the server received your original String.

The first thing the main method does is establish a new SecurityManager. This security man-
ager does not necessarily have to be RMISecurityManager, but the new security manager does
have to allow RMI objects to be loaded. This is important to make sure that RMI objects do not
perform operations that might be considered sensitive. The default security manager does not
allow any RMI objects to be exported.

The next thing the main method does is create an instance of RemoteObject, which will actually
be the instance that is “attached” to by the client program. This object must then be bound into
the Registry. Now, there are some important things to notice about how this is done. The
rebind() method has two parameters. The first is the name by which the object will be known,
the second is the object itself. In this case you are binding the object to the local machine and
it’s not really necessary to fully qualify the name. To use a fully qualified URL, the syntax
would be

//host.name.com/bindname

However, as in the previous example, only the bind name is really required.

Using 1.02, you could have a space in the name of the object; however, this is no longer
supported. ■

N O T E

N O T E

What Is Remote Method Invocation?

41 1529-5 CH36 9/23/98, 4:49 PM813

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

814 Chapter 36 What is Remote Method Invocation?

CAUTION

If you happen to still be using JDK 1.02, you will need to set the security manager to java.rmi.server.
StubSecurityManager, not java.rmi.RMISecurityManager. So you will need to change the first
line of the main() method to read:

System.setSecurityManager (new StubSecurityManager());

Also note that you must import this class, and not the RMISecurityManager one, as well.

Compiling the RemoteSever
As with Object Serialization, it is once again necessary to include additional classes when com-
piling RemoteObject.

For users of JDK 1.02, before compiling RemoteObject, you will need to download the
Remote Method patch as detailed in the previous chapter with Object Serialization, and

add the rmi.zip file to your classpath as indicated here:

set classpath=c:\java\lib\classes.zip;c:\java\lib\rmi.zip;c:\objio.zip;.

It’s not technically necessary to include the OBJIO.ZIP file at this point, but it’s not a bad idea to
keep it there for good measure. ■

You can now compile the RemoteObject by typing the following:

javac RemoteObject.java

Creating the Stubs
The next step to creating an RMI server is to create the stubs and skeletons for the
RemoteObject. You can do this using the rmic compiler by typing the following:

rmic RemoteObject

As you can see, the syntax for the rmic compiler is nearly identical to that for the java com-
mand. In fact, many of the same command-line options that you have available to you when
running the java command are available to you when running rmic.

Unfortunately, under JDK 1.1 a small quirk in the Windows version of the JDK did not
automatically include the current directory (.) in the classpath as it does in java or

javac. If you are running JDK 1.1, you will need to use the classpath option as shown below (which
assumes you have the JDK1.1 installed in the c:\java directory).

rmic -classpath c:\java\lib\classes.zip;. RemoteObject

Fortunately, JDK 1.2 does not have this same problem. ■

N O T E

N O T E

41 1529-5 CH36 9/23/98, 4:49 PM814

815

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

The rmic compiler produces two files for you:

RemoteObject_Skel.class
RemoteObject_Stub.class

Creating a Client
The next step to creating an RMI program is to create the client that will actually invoke the
remote methods. Listing 36.3 shows an example class.

Listing 36.3 RemoteClient.java—An Example Client that Interfaces to the
RemoteObject Class

import java.rmi.RMISecurityManager;
import java.rmi.Naming;
public class RemoteClient {
 public static void main(String args[]){
 System.setSecurityManager(new RMISecurityManager());
 try{
 RemoteInterface server = (RemoteInterface)
 ➥ Naming.lookup(“ServerTest”);
 String serverString = server.message(“Hello There”);
 System.out.println(“The server says :\n”+serverString);
 } catch (Exception e){
 System.out.println(“Error while performing RMI”);
 }
 }
}

The most important portions of the RemoteClient class are the two lines in the middle of the
try-catch block:

RemoteInterface server = (RemoteInterface) Naming.lookup(“Server Test”);
String serverString = server.message(“Hello There”);

The first line of code looks to the Registry to locate the stub called “Server Test” (if you look
back to the RemoteObject program in Listing 36.2, line 21, you will see that you bound it using
this name). Once the program has created an instance of the RemoteInterface, it then calls the
message method with the string “Hello There”. Notice that this is actually a method call. You
are invoking a method on a completely different system. The method then returns a string that
is stored in serverString and later printed out.

You can now compile the client program just as you did for RemoteObject:

javac RemoteClient.java

This, of course, assumes that you have already set your classpath for the RemoteObject class.

What Is Remote Method Invocation?

41 1529-5 CH36 9/23/98, 4:49 PM815

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

816 Chapter 36 What is Remote Method Invocation?

Starting the Registry and Running the Code
Before you can actually run the RemoteObject and RemoteClient classes, you must first start
the RMI Registry program on the computer that will be hosting the RemoteObject. This step is
required even if the computer that you will be running the RemoteObject on is the same as the
RemoteClient (as you will do in this case for demonstration purposes). In order for the Regis-
try to work, the directory with the stub and skeleton files must be in the classpath for the
rmiregistry program.

To start the Registry under Windows type:

start rmiregistry

TROUBLESHOOTING

If after typing start rmiregistry you get a “Bad command or file name” error, it’s not
because of the Registry, but rather because you don’t have Windows’ start program in your path. Since
start is generally located in your windows\command directory, try adding that to your path or typing:

C:\windows\command\start rmiregistry

Unfortunately, for JDK 1.1 users under Windows, just as with rmic, the Registry program
does not even include the current directory in the path, so if you haven’t upgraded to 1.2,

to start the Registry program, type:

set classpath=c:\java\lib\classes.zip;.
start rmiregistry ■

On most UNIX machines, you can start the Registry and push it into the background by typing:

set classpath=/usr/java/lib/classes.zip;.
rmiregistry &

If you want to start the Registry out of a different directory than the skeleton/stub directory,
you should substitute the period (.) with the directory containing these files. Also, you should
make sure that the location of classes.zip matches your installation.

If you are still using JDK 1.02, you need to start the Registry in a slightly different fashion.
Under 1.02, the following command will start the Registry up.

java java.rmi.registry.RegistryImpl ■

Binding RemoteObject into the Registry
Once the Registry has been started, you need to start the RemoteObject program.

In this case start the RemoteObject like you would any other Java program:

java RemoteObject

N O T E

N O T E

41 1529-5 CH36 9/23/98, 4:49 PM816

817

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

In the future, you will probably want to push the object into the background. Under Windows
you can start the RemoteObject program in the background by typing:

javaw RemoteObject

You can start it in the background on a UNIX machine by running instead as:

java RemoteObject &

Running the Client Program
The last task is to start the RemoteClient. However, before you do, make sure that the
RemoteObject program has printed:

Ready to continue

This is your clue that the RemoteObject has been exported and bound into the Registry. Be
patient, especially if you don’t have an active Internet connection, because this can take a while.
Also, if you started the object in the background obviously you will never see the output.

Once the RemoteObject has let you know it’s okay to continue, you want to start the
RemoteClient. To do this, if you’re running under Windows you will need to open another DOS
prompt window. If you’re using a UNIX machine, even if you have put the RemoteObject in the
background, you will probably want another session (or x-terminal) so that you can tell the
difference between the outputs from the server and the client.

Finally, to run the RemoteClient type:

java RemoteClient

The following output should appear on the screen.

The Server Says:
My Name is:ServerTest, thanks for your message:Hello There

Notice that the string was produced on the server and returned to you. If you look at the
RemoteObject window, what you will see is output that says:

Ready to continue

Returning: My Name is:ServerTest, thanks for your message:Hello There

Creating an Applet Client
Now that you have created an application that utilizes the RemoteObject, try doing this with an
Applet as shown in Listing 36.4. As you will soon see, there really isn’t much difference.

Due to the changes in the Virtual Machine that are required for RMI and Object Serializa-
tion, at the time of this writing you can only run these applets using Appletviewer.

Neither Netscape Navigator nor Microsoft Internet Explorer have support for RMI or Object
Serialization. ■

N O T E

Creating an Applet Client

41 1529-5 CH36 9/23/98, 4:49 PM817

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

818 Chapter 36 What is Remote Method Invocation?

Listing 36.4 RemoteAppletClient.java—An Applet that Uses a Remote Object

/*
 *
 * RemoteAppletClient
 *
 */
import java.applet.Applet;
import java.rmi.RMISecurityManager;
import java.rmi.Naming;

public class RemoteAppletClient extends Applet {
 public void init(){
 System.setSecurityManager(new RMISecurityManager());
 try{
 RemoteInterface server = (RemoteInterface) Naming.lookup(“ServerTest”);
 String serverString = server.message(“Hello There”);
 System.out.println(“The server says :\n”+serverString);
 } catch (Exception e){
 System.out.println(“Error while performing RMI:”+e);
 }
 }
}

Creating a Custom Socket
Occasionally, you may want to change the way that RMI communicates from one machine to
the other. In Chapters 30 through 34, you explored the use of sockets and learned about Java’s
built-in networking capabilities. Some of these capabilities are exploited by default with RMI.
However, the default implementation may not provide some features you would like such as
compression or security.

You can now create a custom socket implementation for your RMI connections. To do this you
need to follow three steps:

1. Create a custom socket, or choose one to use.

2. Create a custom RMISocketFactory with the new socket.

3. Set the socket factory in both your client and server.

Creating a Custom Socket
To create a custom socket, generally, you need to go through two steps. First, create a custom
stream and second, create a socket which uses that stream. You can skip this step if you are
actually using a socket from a third party, such as Sun’s SSLSocket class.

Creating a Custom Stream The real goal of using a custom socket with RMI is to provide
some additional functionality such as compression or security. Since the socket itself doesn’t do
much good without a stream that provides the additional functionality, you must first define a
Stream for your purposes. Actually you must define two streams: an InputStream and an
OutputStream.

41 1529-5 CH36 9/23/98, 4:49 PM818

819

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

For this example, you will create a set of sockets that perform perhaps the simplest set of secu-
rity, you will perform a Boolean NOT on each byte as it goes in and out. It’s a convenient little
algorithm, because it’s so simple. However, since Java doesn’t have a bytewise NOT operator
instead you will XOR the byte with 0xFF which has the same net result.

In this case, since you want to see the simplest example, you’ll extend java.io.InputStream;
however, if you were doing this for real you’d likely extend a more appropriate stream such as
BufferedInputStream, FilteredInputStream, or ObjectInputStream, depending on what
would make the most sense for your particular implementation.

Listing 36.6 shows the new CustomOutputStream. For more information about Stream classes
please refer back to Chapter 27.

Listing 36.5 CustomInputStream.java—Creates a Stream that Reads a
NOTed Stream

import java.io.*;
public class CustomInputStream extends FilterInputStream{

 public CustomInputStream(InputStream in) {
 super(in);
 }

 public int read() throws IOException {
 int code;
 try{
 code = in.read();
 } catch (EOFException e) {
 System.out.println(“EOF”);
 return -1;
 }
 //Don’t invert a negative one, leave it as is.
 if (code != -1){
 //NOT the result
 code = (0xff^code);
 //mask off the top bits
 code = (0xff)& code;
 }
 return code;
 }

 public int read(byte b[], int off, int len) throws IOException {
 int num = in.read(b,off,len);
 if (len <= 0) {
 return 0;
 }

 int i = 0;
 //convert the bytes
 for (;i<num;i++){
 b[off+i]= (byte)(b[off+i]^0xff);

continues

Creating a Custom Socket

41 1529-5 CH36 9/23/98, 4:49 PM819

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

820 Chapter 36 What is Remote Method Invocation?

 }
 return num;

 }

}

Listing 36.6 CustomOutputStream.java—Creates a Stream that Writes a
NOTed Stream

import java.io.*;
public class CustomOutputStream extends FilterOutputStream {
 public CustomOutputStream (OutputStream out){
 super(out);
 }

 public void write(int b) throws IOException{
 out.write(b ^ 0xff);
 out.flush();
 }

 public void write (byte b[],int off, int len) throws IOException{
 for (int i = 0; i < len; i++) {
 byte b2 = b[off + i];
 write(b2);//[off + i]);
 }
 }
}

Creating a Custom Socket Now that you have a new type of stream, you can create the new
Socket classes. Your new Socket class will use the new streams, but otherwise isn’t much
different from a standard Socket class. Listing 36.7 shows just such an implementation. Notice
in the getInputStream() and getOutputStream() methods that your new custom streaming
classes are returned instead of the original (super.getInputStream() or
super.getOutputStream()).

Listing 36.7 CustomSocket.java—Extends Socket and Uses the New Streams

import java.io.*;
import java.net.*;
public class CustomSocket extends Socket {
 //The InputStream of the socket
 private InputStream in;
 //The output stream for the socket.
 private OutputStream out;

Listing 36.5 Continued

41 1529-5 CH36 9/23/98, 4:49 PM820

821

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

 //null constructor, since you want to support both types of
➥socket constructors
 //you need to prototype both of them.
 public CustomSocket() {
 super();
 }

 public CustomSocket(String host, int port) throws IOException {
 super(host, port);
 }

 public InputStream getInputStream() throws IOException {
 if (in == null) {
 //create a new stream from the normal socket stream
 in = new CustomInputStream(super.getInputStream());
 }
 return in;
 }

 public OutputStream getOutputStream() throws IOException{
 if (out == null) {
 //create a new stream from the normal socket stream
 out = new CustomOutputStream(super.getOutputStream()); }
 return out;
 }

}

Creating a Custom ServerSocket The RMI System must be able to listen for new connec-
tions (ServerSockets). Clearly, you want these connections to be of the same Socket class that
you just created. Therefore, you must also create a custom ServerSocket which will utilize the
CustomSocket class. To do this the new class really only needs to override the accept() method
and force it to use the CustomSocket in Listing 36.7. Listing 36.8 shows how the new
ServerSocket should look for our CustomSocket implementation.

Listing 36.8 CustomServerSocket.java—Extends ServerSocket and Uses the
CustomSocket Class

import java.io.*;
import java.net.*;
public class CustomServerSocket extends ServerSocket {
 public CustomServerSocket(int port) throws IOException {
 super(port);
 }

 public Socket accept() throws IOException {
 Socket s = new CustomSocket();
 implAccept(s);
 return s;
 }
}

Creating a Custom Socket

41 1529-5 CH36 9/23/98, 4:49 PM821

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

822 Chapter 36 What is Remote Method Invocation?

Creating a Custom RMISocketFactory
Now that you have created your own Socket class, you can use it to create the
RMISocketFactory. The RMISocketFactory actually provides the sockets that will be used in
the RMI application. RMISocketFactory has two abstract methods that your new socket factory
must provide implementations for: createSocket() and createServerSocket(). Obviously the
goal here is to have the methods return either CustomSockets or CustomServerSockets. So, in
Listing 36.9 you will see that CustomRMISocketFactory does just that.

When you read Listing 36.9 you will notice that there are actually four methods. The last
two should make sense to you (they create sockets of a particular type), and in Listing

36.9 they are overridden to provide CustomSockets and CustomServerSockets. What may throw
you for a loop though are the first two methods. These methods must return the default sockets. Why is
this? Well, the answer is that the RMI system still needs to be able to get “clean” sockets when it
performs its initial “look up” with the Registry. You see, the Registry doesn’t care how the remote object
and the client talk, but it expects you to talk to it on a standard socket.

The Registry is really only responsible for letting each of the objects know where the other one is. After
that the objects talk directly to each other without having the Registry in the middle. To make this work
though, you must still provide a default socket implementation if the specific socket type is not
known. ■

Listing 36.9 CustomRMISocketFactory—Extends the RMISocketFactory
Class and Uses the Custom Sockets

import java.io.*;
import java.net.*;
import java.rmi.server.*;
public class CustomRMISocketFactory extends RMISocketFactory {

 private RMISocketFactory defaultFactory =
➥ RMISocketFactory.getDefaultSocketFactory();

 public Socket createSocket(String host, int port) throws IOException {
 return defaultFactory.createSocket(host, port);
 }

 public ServerSocket createServerSocket(int port) throws IOException {
 return defaultFactory.createServerSocket(port);

 }

 public Socket createSocket(String host, int port,
➥SocketType type) throws IOException {
 String protocol = type.getProtocol();
 if(protocol.equals(“custom”))
 // Use default bit pattern for the XorSocket.
 return new CustomSocket(host, port);
 return createSocket(host,port);
 }

N O T E

41 1529-5 CH36 9/23/98, 4:49 PM822

823

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

 public ServerSocket createServerSocket(int port,SocketType type)
➥ throws IOException {
 String protocol = type.getProtocol();
 if(protocol.equals(“custom”))
 return new CustomServerSocket(port);
 return createServerSocket(port);
 }
}

Specifying the Socket Factory in Your Applications
The last step in the process is to actually tell your applications to use the new socket factory.
The only real trick to this is that you need to be sure to modify both the client and server com-
ponents. If you fail to do this, obviously you’ll end up with corrupted data on one end or the
other.

To change the socket factory all you need to do is call the setSocketFactory() method.
setSocketFactory() is a static method of RMISocketFactory. So the line of code your going to
add will look like:

RMISocketFactory.setSocketFactory(new CustomRMISocketFactory());

The setSocketFactory() method will generally be the first line in the main methods for both
your new client and server pieces. Listings 36.10 and 36.11 below show our HelloWorld applica-
tion from Listings 36.2 and 36.3. Notice the only change is the insertion of the one line (that
and RMISocketFactory now needs to be imported).

The second change that you must make is in calling the constructor for UnicastRemoteObject.
This constructor can either be called without any parameters (like you will do normally if you
aren’t using a custom socket), or you can specify the port and socket type.

In this case you can specify the port to be 0 (which will refer to the default port), and then you
must provide a SocketType object. The SocketType will tell the RMISocketFactory what type of
socket you want to use for this transaction. The SocketType constructor looks like this:

public SocketType(String protocol, byte[] refData, Object serverData)

The refData can provide some additional protocol data, and the serverData can provide addi-
tional server protocol information. But in this case, you don’t need to worry about either. The
only thing you need to be concerned with is the protocol name, which I’ve chosen to call “cus-
tom” through out this chapter. Now, to actually be able to call the UnicastRemoteObject’s con-
structor you need to modify the RemoteObject’s constructor as follows.

public RemoteObject(String name) throws RemoteException{
 super(0, new SocketType(“custom”, null, null));
 this.name = name;
 }

You’ll find a complete listing of all these changes in Listings 36.10 and 36.11. Once you have
compiled Listings 36.10 and 36.11, you can run the application just as you did earlier in this

Creating a Custom Socket

41 1529-5 CH36 9/23/98, 4:49 PM823

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

824 Chapter 36 What is Remote Method Invocation?

chapter with the normal socket implementation. Don’t forget to compile the stub before you
start it up, though.

Listing 36.10 RemoteObject.java—Uses the New CustomSocket

import java.rmi.server.SocketType;

public class RemoteObject extends UnicastRemoteObject implements
➥RemoteInterface{
 String name;
 public RemoteObject(String name) throws RemoteException{
 super(0, new SocketType(“custom”, null, null));
 this.name = name;
 }

 public String message(String message) throws RemoteException{
 String returnString = “My Name is:”+name+
➥”,thanks for your message:”+message;
 System.out.println(“Returning:”+returnString);
 return “My Name is:”+name+”,thanks for your message:”+message;
 }

 public static void main (String args[]){
 try{
 RMISocketFactory.setSocketFactory(new CustomRMISocketFactory());
 System.setSecurityManager (new RMISecurityManager());
 //RMISocketFactory.setSocketFactory(new XorSocketFactory());
 //CustomRMISocketFactory());
 String myName = “ServerTest”;
 RemoteObject theServer = new RemoteObject (myName);
 Naming.rebind(“/”+myName,theServer);
 System.out.println(“Ready to continue”);
 } catch (Exception e){
 System.out.println(“An Exception occurred while creating server”);
 e.printStackTrace(System.out);
 }
 }
}

Listing 23.11 RemoteClient.java—Now Uses the New CustomSocket

import java.rmi.RMISecurityManager;
import java.rmi.server.RMISocketFactory;
import java.rmi.Naming;
public class RemoteClient {
 public static void main(String args[]){
 try{
 System.setSecurityManager(new RMISecurityManager());
 RMISocketFactory.setSocketFactory(new CustomRMISocketFactory());

 RemoteInterface server = (RemoteInterface) Naming.lookup(“ServerTest”);
 String serverString = server.message(“Hello There”);

41 1529-5 CH36 9/23/98, 4:49 PM824

825

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

 System.out.println(“The server says :\n”+serverString);
 } catch (Exception e){
 System.out.println(“Error while performing RMI:”+e);
 e.printStackTrace(System.out);
 }
 }
}

Using the Activation Model
Another new feature in the implementation of RMI is the capability to remotely activate an
object. The problem that RMI had before the Activator is that you always had to start an object
and register it into the Registry as I have done in this chapter. However, there are often rea-
sons why this solution isn’t good enough.

If the remote object dies for some reason (because of a fault of exception), or if it thinks it’s
done processing (for example, if a state machine didn’t reset), the object will not be available
when your remote application attempts to use it. It’s also possible that something might cause a
remote object to fail to start all together.

Activation helps to solve this problem by giving the Registry the capability to use an Activator.
The Activator will check the status of the remote object and perform whatever initialization is
necessary to get it running again.

Building an Activatable Object
The first step to building a set of remote objects which can be Activated is to have each of the
remote objects extend from the java.rmi.activation.Activatable, instead of the
UnicastRemoteObject that you’ve seen through out this chapter.

Since your object is now extending Activatable, though, it must also alter its constructor signa-
ture.

public MyRemoteInterfaceImpl(ActivationID id, MarshalledObject data)
throws RemoteException {
// Register the object with the activation system
// then export it on an anonymous port
super(id, 0);
}

The major changes, however, need to go into the new main method. The setup for the Activator
needs to perform several additional operations.

The first task is to define the location where the Activatable object will be found. This URL
will be used by the remote deamon to create the object when it is required.

java.net.URL location = new java.net.URL(“file:/src/se4/”);

Once you know the location where the stub and skeleton files are located you next need to
define a CodeSource object. The CodeSource constructor requires two items. The first is the

Using the Activation Model

41 1529-5 CH36 9/23/98, 4:49 PM825

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

826 Chapter 36 What is Remote Method Invocation?

location URL you just defined, and the second is a public key. You don’t need to define the
public key necessarily, so in this case it can be set to null.

CodeSource source = new CodeSource(location, null);

The next step is to get the system properties, and create an ActivationGroupID. The
ActivationGroupID will be used to create an ActivationDesc. Now the ActivationDesc must
be used to actually register the new object with the activatable object.

 Properties props = (Properties)System.getProperties().clone();
 ActivationGroupID agid = ActivationGroup.getSystem().registerGroup(
 new ActivationGroupDesc(props));
 MarshalledObject data = null;
 ActivationDesc desc = new ActivationDesc
➥(agid, “RemoteActivatableObject”, source, data);
 RemoteInterface remoteInterface = (RemoteInterface)
➥Activatable.register(desc);

Now that you have a remote interface object you can rebind it, just like you did in the previous
sections. However, once you bound the object, instead of having the system continue to wait for
a connection, you can now exit the system.

Naming.rebind(“ServerTest”, remoteInterface);
System.out.println(“Exported interface, ready to go”);

//Now exit the program, the rmid will take over from here
System.exit(0);

When running the examples in this section make sure you are using the RemoteClient
from Listing 36.3, not from Listing 36.11. ■

Listing 36.12 RemoteActivatableObject.java—Exporting Activatable and
Performing Several Modifications Will Make the Object Activatable

import java.rmi.Naming;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;
import java.rmi.server.RMISocketFactory;
import java.rmi.activation.*;
import java.rmi.server.SocketType;
import java.rmi.MarshalledObject;
import java.security.CodeSource;
import java.util.Properties;

public class RemoteActivatableObject extends Activatable
➥ implements RemoteInterface{

N O T E

41 1529-5 CH36 9/23/98, 4:49 PM826

827

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

36

IV
Part

Ch

 public RemoteActivatableObject(ActivationID id, MarshalledObject data)
 throws RemoteException {
 super(id, 0);
 }

 public String message(String message) throws RemoteException{
 String returnString = “Thanks for your message:”+message;
 System.out.println(“Returning:”+returnString);
 return “Thanks for your message:”+message;
 }

 public static void main(String[] args) throws Exception {
 System.setSecurityManager(new RMISecurityManager());

 java.net.URL location = new java.net.URL(“file:/src/se4/”);
 CodeSource source = new CodeSource(location, null);
 Properties props = (Properties)System.getProperties().clone();
 ActivationGroupID agid = ActivationGroup.getSystem().registerGroup(
 new ActivationGroupDesc(props));
 MarshalledObject data = null;
 ActivationDesc desc = new ActivationDesc (agid,
➥ “RemoteActivatableObject”, source, data);
 RemoteInterface remoteInterface = (RemoteInterface)
➥Activatable.register(desc);
 Naming.rebind(“ServerTest”, remoteInterface);
 System.out.println(“Exported interface, ready to go”);

 //Now exit the program, the rmid will take over from here
 System.exit(0);
 }
}

Listing 36.12 shows the new RemoteActivatableObject. To build the new program you must
first compile RemoteActivatableObject.java, and then run rmic on it.

Finally, you can start the program by first starting the rmiregistry, then you must start the
rmid which will actually instantiate the remote objects when they are required. Finally, you can
run the RemoteActivatableObject and the Remote Client as you did before. So, roughly
speaking you can create them as follows:

javac RemoteActivatableObject.java
rmic RemoteActivatableObject
start rmiregistry
rmid

Now the rmid will actually run continuously just like your previous RemoteObject, so you will
now need another terminal window (or DOS prompt). From there you can start the
Activatable object and run the client:

Using the Activation Model

41 1529-5 CH36 9/23/98, 4:49 PM827

P2/VB mpprp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 36 LP#5

828 Chapter 36 What is Remote Method Invocation?

java RemoteActivatableObject
java RemoteClient

The results should be as follows:

G:\src\se4>java -Djava.rmi.server.codebase=file:/src/se4/
➥RemoteActivatableObject
Exported interface, ready to go

G:\src\se4>java RemoteClient
The server says :
Thanks for your message:Hello There

41 1529-5 CH36 9/23/98, 4:49 PM828

829

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

C H A P T E R

Management API

JMAPI Components 830

JMAPI Applets 830

Creating a Managed Object 832

The Admin View Module 834

37

In this chapter

42 1529-5 CH37 9/23/98, 4:50 PM829

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

830 Chapter 37 Management API

JMAPI Components
The Java Management API (JMAPI) is a comprehensive subsystem for creating Java objects
that can be managed by a central management tool, and also for creating the management tools
themselves.

Within the Java management framework, there are three main components:

The Managed Object Server

Any number of managed “appliances”

A JMAPI applet presenting a user interface for managing appliances (which can range
from toasters to mainframes)

The Managed Object Server contains a Managed Object Factory, which creates managed
objects. Although the JMAPI system is managing appliances, most of the management logic
resides in these managed objects.

The managed objects communicate with agent objects, usually residing on the appliances.
These agent objects implement the requests of the managed objects. Agent objects sometimes
need native libraries to control appliances. JMAPI includes special support for native libraries,
allowing the agents to download native libraries for whatever hardware platform they are run-
ning on (assuming that a native library exists for that platform). Sun uses the term “appliances”
in describing the devices managed by JMAPI—although most of the devices you deal with
today may be computers, in the future you may be able to manage everyday household appli-
ances with JMAPI.

A JMAPI applet presents the management user interface. Network management applications
are often very complex, requiring many ways of presenting data and receiving input. The
Admin View Module (AVM) contains many of these components. A JMAPI applet com-
municates with managed objects via managed object interfaces, which use RMI to transmit
information.

JMAPI Applets
A JMAPI applet represents the user interface of the Java Management API. A typical applet
enables a user to view available managed appliances and change various settings on those
appliances. Unlike normal Web applets, JMAPI applets require some special applet parameters
in order to communicate with the managed object server. JMAPI provides three different
startup Web pages that can launch other JMAPI applets:

■ JmapiHome.html

■ MOContentManagerApplet.html

■ MOPropertyBookApplet.html

42 1529-5 CH37 9/23/98, 4:50 PM830

831

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

JmapiHome.html
The JmapiHome.html page contains a launcher that can start other management applets. The
launcher can use an optional page Registry object to limit the available applets. By default, the
launcher displays all available pages. JmapiHome.html has several configuration parameters
that are specified using the <PARAM> tag. The name values for these parameters are as follows:

■ host The host name where the managed object server is running (required)

■ port The port number of the managed object server (required)

■ domainName The name of the management domain that this applet is managing
(optional)

■ contextName The name of a persistent context that is used to initialize the local
management context (optional)

■ pageRegistry The name of a page Registry object containing the information to be
displayed by the launcher

MOContentManagerApplet.html
The MOContentManagerApplet.html page displays a content manager for a class of managed
objects. Each type of managed object can have a presentation object for managing objects of
that type. To manage an object from the MOContentManagerApplet, the object’s type must have
a presentation object defined. In the <PARAM> tag for MOContentManagerApplet.html, specify
the ManagedObjectClassName parameter telling what type of object you want to manage.

MOPropertyBookApplet.html
The MOPropertyBookApplet displays a property book for a single object. This applet also re-
quires that a presentation object is defined for any type of object you want to manage.

Accessing Managed Objects
The MOFactory class provides access to the managed object factory running on the managed
object server. Using this class, you can create, modify, and delete managed objects. You can
also enumerate through a set of objects, and query for objects matching a specific set of
criteria.

Before you can perform any management functions, you must use the initialize method in
MOFactory to specify the host name and port number of the managed object server:

MOFactory.initialize(“mgmt_server”, 1234);

To create a new instance of a management object, call the newObj method with the full name of
the class:

MyManagedObject obj = (MyManagedObject) MOFactory.newObj(
 “demopkg.mgmt.MyManagedObject”);

JMAPI Components

42 1529-5 CH37 9/23/98, 4:50 PM831

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

832 Chapter 37 Management API

The get and set methods for managed objects require a security context to perform opera-
tions. You can pass null as a security context; for a production system, however, you should
have a proper security context:

SecurityContext context = null;

obj.setSomething(context, “somethingValue”);
obj.setSomethingElse(context, “otherValue”);

After you create the object, you need to add it to the management server with the addObject
method:

obj.addObject(context)

The modifyObject and deleteObject register object changes and object deletions with the
managed object server:

obj.modifyObject(context);

obj.deleteObject(context);

The listMOClass method returns a vector containing all managed objects of a particular class:

Vector v = MOFactory.listMOClass(“demopkg.mgmt.MyManagedObject”);

You can specify an optional query object to search for managed objects with certain attributes.
The QueryExp class contains methods for creating query expressions. You can pass a query
expression to the listMOClass method to limit the search. This could be an enormous time
saver. If there are a large number of managed objects, you don’t want the server to send each
object to your client program when you only need a small subset. It is better to let the server
weed out the objects you don’t want and only send you the ones you do.

Creating a Managed Object
Most of the time when you use JMAPI, you will be working with existing managed objects.
Sometimes, however, you will need to create a managed object that is then visible to JMAPI
applets.

Defining Properties Within Managed Objects
To make a property that is visible to JMAPI applets, you just provide get and set methods just
like you do in the JavaBeans API. One difference between the JMAPI get/set methods and the
Beans get/set methods is that the JMAPI methods take an additional SecurityContext param-
eter. The class definition shown in Listing 37.1 creates a managed object with a single property
called “address”.

Listing 37.1 Source Code for SimpleAddressMO.mo

public class SimpleAddressMOImpl extends LogicalElementMOImpl
 implements SimpleAddressMOImpl
{

42 1529-5 CH37 9/23/98, 4:50 PM832

833

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

 PrismVar String address;

 public String getName(SecurityContext context)
 {
 return (String) getAttribute(“address”);
 }

 public void setName(SecurityContext context, String hostName)
 {
 setKnownAttribute(“address”, hostName);
 }
}

Notice that instead of the normal .java ending, managed objects within JMAPI are
defined in files ending with .mo. ■

The PrismVar keyword in a managed object file identifies attributes within the managed object.
Also, the setKnownAttribute enables you to set attributes persistently. In other words, when
you set a known attribute, it gets saved in the database, and the next time the object is instanti-
ated, it will retain that attribute value.

Defining Methods Within Managed Objects
Managed objects are implemented as RMI servers, and any method defined in the object’s .mo
file will be defined within RMI and can be called from a management applet. You only need to
provide the implementation of the method; the JMAPI framework takes care of the rest.

Compiling a Managed Object
Because managed objects are defined in .mo files, you need a way to convert one of these files
into a set of Java classes. You do this with the Moco program (the Managed Object COmpiler).
To compile a managed object, just type:

java moco.Moco YourManagedObject.mo

The managed object compiler creates three Java source files for each managed object: the
interface definition, the implementation, and the database operations. For a file named
SimpleAddressMO.mo, the Java source files generated would be as follows:

■ SimpleAddressMO.java

■ SimpleAddressMOImpl.java

■ DBSimpleAddressMO.java

CAUTION

If your managed object references other managed objects, you must include the .mo files on the command
line for Moco.

N O T E

Creating a Managed Object

42 1529-5 CH37 9/23/98, 4:50 PM833

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

834 Chapter 37 Management API

Importing Managed Objects
Before a managed object can be used in the JMAPI system, you must import into the JMAPI
database. The importclasses command enables you to import one or more class files into the
system. If your class references other managed objects that are not yet in the database, you
must import them all at once. The following command imports SimpleAddressMO into the
JMAPI database:

importclasses SimpleAddressMO

After the managed object has been loaded into the system, a JMAPI applet can access it.

The Admin View Module
Although you may occasionally need to create new managed objects, you are more likely to
create JMAPI applets. After all, there are only so many new kinds of objects to manage, but
there are always new ways to display and manipulate objects.

Because management applications tend to require complex user interfaces, JMAPI provides a
set of useful components called the Admin View Module (AVM). Although these components
were originally intended for JMAPI applications, they do not depend on any other parts of
JMAPI. In other words, you can use the AVM in any application you want without being depen-
dent on the rest of JMAPI.

Content Managers and Selectable Objects
In a typical management application, you have a set of items that you can select and perform
operations on. The Java AWT doesn’t provide these capabilities by itself. Instead, that is left up
to you, or in this case, to the AVM.

The AVM defines a ContentManager class, which is an abstract class responsible for displaying
a set of objects, enabling you to select some of them and execute commands on them. Creating
a content manager is a fairly complex job, but because the AVM provides several useful ones,
you may not have to create one at all.

The ContentManager class uses Selectable interface to notify objects that they have been
selected or deselected, and to find out what commands each object supports. Each object can
support its own set of commands, which will be available on a menu when the object is se-
lected. The Selectable interface contains the following methods:

public void select()

public void deselect()

public boolean isSelected()

public void toggleSelection()

public Command[] getCommands(String commandType)

public Command[] setCommands(String commandType, Commands[] commands)

42 1529-5 CH37 9/23/98, 4:50 PM834

835

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

The select, deselect, toggleSelection, and isSelected methods are used by content manag-
ers and other objects to control whether an object is selected. If the object needs to change its
appearance based on its selection, it can do so in the implementation of these methods.

The getCommands and setCommands methods control the array of Command objects that the ob-
ject supports. When an object is selected, its commands are presented on a menu. When a
command is selected from the menu, the execute method in that command is executed to
carry out the request.

In addition to the selection and command methods, the Selectable interface defines three
string constants: SELECTED_COMMANDS, CREATE_COMMANDS, and VIEW_COMMANDS. When you get or
set commands in a selectable, you must specify whether you want the commands for the cre-
ate, view, or selected menu. These command types are used by content managers, which main-
tain these three menus.

The Command interface is very simple, containing only three methods:

public void execute(Object executor)

public String getLabel()

public String getName()

The execute method is called as a result of a menu selection and should carry out the re-
quested operation. The getLabel method returns the string that is displayed on the menu. The
getName method returns the name you have assigned to the command. This enables you to
keep an internal version of a name while varying the label (the visual part), depending on the
environment.

Listing 37.2 shows an applet that uses the SimpleContentManager class to demonstrate how to
set up a command.

Listing 37.2 Source Code for SimpleCMApplet.java

import sunw.admin.avm.base.*;
import java.applet.*;
import java.awt.*;
import java.util.Vector;
import java.net.URL;

public class SimpleCMApplet extends Applet
{
 Frame currFrame;

 static String[] playmateInfo = {
 “Katy”, “Sammy”, “Bunnie”
 };

// For the play command, just print a dialog

 class PlayCommand implements Command {
 public String getLabel() { return “Play”; };

continues

The Admin View Module

42 1529-5 CH37 9/23/98, 4:50 PM835

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

836 Chapter 37 Management API

 public String getName() { return “playCommand”; };

 public void execute(Object executor) {
 play(executor);
 }
 };

 public void init()
 {

// Load an image to display for the icon part of the simple content manager

 URL imgURL = null;
 try {
 imgURL = new URL(getDocumentBase(), “katyface.GIF”);
 } catch (Exception ignore) {
 }

 Image img = getImage(imgURL);

 MediaTracker tracker = new MediaTracker(this);
 try {
 tracker.addImage(img, 0);
 tracker.waitForAll();
 } catch (Exception e) {
 e.printStackTrace();
 }

// Create a simple content manager

 SimpleContentManager cm = new SimpleContentManager(
 “Play Manager”, img);

// Create the data for the content manager’s table

 TableData data = new TableData(playmateInfo, “|”);

 cm.setTableData(data);

// Create an array of column names
 String[] cols = new String[1];
 cols[0] = “Name”;

// Set up a filter to display the column names
 cm.setFilterPipe(new TableFilterPipe(data, cols));

// Create an empty query space
 cm.setQuerySpace(new QuerySpace());

// Set up the default sort pipe
 cm.setSortPipe(new TableSortPipe(cm.getFilterPipe(), cols));

// Cerate an array of column widths
 int[] widths = new int[1];

Listing 37.2 Continued

42 1529-5 CH37 9/23/98, 4:50 PM836

837

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

 widths[0] = 20;

// Set up the view properties pipe, which sets the column widths
 cm.setViewPipe(new TableViewPropertiesPipe(cm.getSortPipe(),
 cols, widths));

// Make the Content Manager look at the view pipe to get the column data
 cm.getViewPipe().addObserver(cm);

// Create an array of commands
 Command commands[] = new Command[1];
 commands[0] = new PlayCommand();

// Assign the commands to the content manager
 cm.setCommands(Selectable.SELECTED_COMMANDS,
 commands);

// Make the content manager process the data
 data.changed();

 setLayout(new GridLayout(1, 0));

// Create a top-level content manager to contain the simple manager
 TopLevelContentManager topCM = new TopLevelContentManager();

 add(topCM);

// Add the simple manager to the top manager
 topCM.add(“Center”, cm);

// Make the top-level manager receive events from the simple manager
 cm.addItemListener(topCM);

// Activate the simple manager (make it the current panel)
 topCM.select(cm);

// The command classes need a reference to this applet’s frame
 currFrame = Util.findFrame(this);
 }

 protected void play(Object executor)
 {
 if (!(executor instanceof SimpleContentManager)) return;

// Get a reference to the current content manager
 SimpleContentManager cm = (SimpleContentManager) executor;

// Get the data table
 Table table = cm.getTable();

// Find the selected row
 int index = table.getSelectedIndex();

// Get the first column in the row
 String whichSelection = (String) table.getItem(index, 0);

continues

The Admin View Module

42 1529-5 CH37 9/23/98, 4:50 PM837

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

838 Chapter 37 Management API

// Just put up a dialog showing who the playmate is
 InformationDialog info = new InformationDialog(
 currFrame, “Playing with “+ whichSelection);
 info.setVisible(true);
 }
}

In a typical management application, the command objects would invoke methods on managed
objects. Because the content managers are not tied to the rest of the JMAPI framework, how-
ever, your command objects can perform any function you like. If you work at an airline, for
example, you might create a content manager that displays a table of flights with commands
such as “create flight plan”, “cancel”, or “divert”.

Icons
When creating a complex user interface, you often need to represent items graphically using
an icon. Although you could create a subclass of the AWT’s Canvas class, you would soon find
yourself writing far more code than you like. The Icon class in the AVM implements the
Selectable interface, allowing it to be managed by content managers. The IconCanvas class
manages the display and possible selection of multiple icons.

To create an Icon object, just supply a name and an image or an AWT component. The follow-
ing line creates an Icon:

Icon myIcon = new Icon(myImage, “My Image”);

An IconCanvas object is actually a subclass of Panel, not Canvas. To put icons on the canvas,
you just call the add method like you would for any other panel. You can also set up a layout
manager for an IconCanvas to determine where to place the icons. You cannot add any objects
other than icons to the canvas, however.

Listing 37.3 shows a sample applet that creates three icons and displays them.

Listing 37.3 Sample Applet

import sunw.admin.avm.base.*;
import java.applet.*;
import java.awt.*;
import java.net.URL;

public class IconApplet extends Applet
{

 public void init()
 {

// Load images to display in applet

 URL imgURL = null;

Listing 37.2 Continued

42 1529-5 CH37 9/23/98, 4:50 PM838

839

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

 try {
 imgURL = new URL(getDocumentBase(), “moeicon.gif”);
 } catch (Exception ignore) {
 }

 Image moeImg = getImage(imgURL);

 try {
 imgURL = new URL(getDocumentBase(), “larryicon.gif”);
 } catch (Exception ignore) {
 }

 Image larryImg = getImage(imgURL);

 try {
 imgURL = new URL(getDocumentBase(), “curlyicon.gif”);
 } catch (Exception ignore) {
 }

 Image curlyImg = getImage(imgURL);

 MediaTracker tracker = new MediaTracker(this);
 try {
 tracker.addImage(moeImg, 0);
 tracker.addImage(larryImg, 0);
 tracker.addImage(curlyImg, 0);
 tracker.waitForAll();
 } catch (Exception e) {
 e.printStackTrace();
 }

// Create a canvas for the icons

 IconCanvas canvas = new IconCanvas();
 canvas.setLayout(new FlowLayout());

// Create the icons
 Icon moeIcon = new Icon(moeImg, “Moe”);
 Icon larryIcon = new Icon(larryImg, “Larry”);
 Icon curlyIcon = new Icon(curlyImg, “Curly”);

// Add the icons to the canvas
 canvas.add(moeIcon);
 canvas.add(larryIcon);
 canvas.add(curlyIcon);

// Add the canvas to the applet
 setLayout(new GridLayout(1, 0));
 add(canvas);
 }
}

Figure 37.1 shows IconApplet in action. Notice that the Icon class displays both the image and
the label.

The Admin View Module

42 1529-5 CH37 9/23/98, 4:50 PM839

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

840 Chapter 37 Management API

The Property Book
A property book is a way to separate information into logically separated “pages.” Usually, a
property book is associated with a particular object and contains the configuration information
for that object. There is no requirement that a property book be associated with a specific item,
however. A property book is similar to a tabbed panel, which you may have seen already in the
Java Foundation Classes.

The property book has a column on the left side listing the various pages available. This listing
is referred to as the index, and it is implemented by the PropertyBookIndexPanel class.

The bottom part of the property book can contain buttons that apply to each page in the book.
Typically, you will have buttons such as Apply, Cancel, and Default. The
PropertyBookButtonsPanel controls these buttons, and it cannot contain anything except
buttons. This forces a fairly standard user interface for property books.

The top part of the book contains a menu bar but also has space for an “identity panel,” which
can contain information about the property book.

The main part of the property book displays one of many property book sections. Each section
is an instance of the PropertyBookSection class, which is essentially a Panel but also contains
two methods specific to properties: apply and reset. It is up to you how you implement these
two methods.

In the simple case, you just need to create subclasses of PropertyBookSection for each differ-
ent section you want, and then add the sections to the property book. Listing 37.4 shows a very
simple and completely useless property book applet.

Listing 37.4 Source Code for PropertyApplet.java

import sunw.admin.avm.base.*;
import java.applet.*;
import java.awt.*;

public class PropertyApplet extends Applet
{
 public class InfoSection extends PropertySection
 {
 String who;

 public InfoSection(String who)
 {
 this.who = who;

FIG. 37.1
The Icon class makes it
easy to display labeled,
selectable images.

42 1529-5 CH37 9/23/98, 4:50 PM840

841

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

 setLayout(new BorderLayout());

 add(“Center”,
 new Label(“Here is the information about “+who));
 }
 }

 public void init()
 {
 PropertyBook book = new PropertyBook();

 PropertySection moeSection = new InfoSection(“Moe”);
 book.addSection(“Moe”, moeSection);

 PropertySection larrySection = new InfoSection(“Larry”);
 book.addSection(“Larry”, larrySection);

 PropertySection curlySection = new InfoSection(“Curly”);
 book.addSection(“Curly”, curlySection);

 PropertySection shempSection = new InfoSection(“Shemp”);
 book.addSection(“Shemp”, shempSection);

 PropertySection curlyJoeSection = new InfoSection(“Curly Joe”);
 book.addSection(“Curly Joe”, curlyJoeSection);

 setLayout(new GridLayout(1, 0));
 add(book);
 }
}

Task Pages
Task pages are a little bit like property books. They consist of multiple panels with different
information. The big difference is that the task pages represent a sequence of steps. You most
often encounter this kind of interface when installing new software. You usually have to enter
your name and your product serial number, set the installation directory, and so on. A
TaskPage object presents this same kind of interface, showing you one TaskSection at a time,
enabling you to go forward and backward, and allowing you to cancel at any time. On the last
step, you can also click on Finish to complete your task.

The TaskSection class is just a container class for two panels, including a graphics panel,
which shows an image or a description of the current task. If this were the step where you
enter your address, for example, you might put an image of an addressed envelope into the
graphics panel. The directions panel contains all the fields involved in this particular step.

You create TaskSection by passing the graphics and directions panels to the Constructor:

public TaskSection(Panel graphics, Panel directions)

The TaskSection class is abstract, so you must create your own subclass.

The Admin View Module

42 1529-5 CH37 9/23/98, 4:50 PM841

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

842 Chapter 37 Management API

The TaskPage class is a container for TaskSection objects. You just create it and call the
addSection method with each new task section and a name for the section:

public void addSection(String sectionName, TaskSection section)

The buttonPress method is called whenever the user presses one of the buttons at the bottom
of the task page:

public void buttonPress(int whichButton)

The possible values for the whichButton parameter are BACK, CANCEL, FINISH, HELP, and NEXT.

Like the TaskSection class, the TaskPage class is abstract, so you must create your own sub-
class of it. Listing 37.5 shows an applet that outlines the steps for doing the hokey pokey and
prints a dialog when you press Finish.

Listing 37.5 Source Code for TaskApplet.java

import sunw.admin.avm.base.*;
import java.applet.*;
import java.awt.*;

public class TaskApplet extends Applet
{
 class DirectionsTaskSection extends TaskSection
 {
 DirectionsTaskSection(Panel titlePanel, Panel directionsPanel)
 {
 super(titlePanel, directionsPanel);
 }
 }

 class HokeyPokeyTask extends TaskPage
 {
 public void buttonPress(int whichButton)
 {

// See if the Finish button was the one pressed

 if (whichButton == TaskPage.FINISH) {
 InformationDialog dialog = new InformationDialog(
 Util.findFrame(this),
 “That’s what it’s all about!”);
 dialog.setVisible(true);
 }
 }
 }

 protected TaskSection createDirections(String title, String directions)
 {

// Create the title panel
 Panel titlePanel = new Panel();
 titlePanel.setLayout(new FlowLayout());

42 1529-5 CH37 9/23/98, 4:50 PM842

843

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

 titlePanel.add(new Label(title));

// Create the directions panel
 Panel directionsPanel = new Panel();
 directionsPanel.setLayout(new GridLayout(1, 0));

 TextArea area = new TextArea(directions, 10, 40);
 area.setEditable(false);

 directionsPanel.add(area);

 return new DirectionsTaskSection(titlePanel, directionsPanel);
 }

 public void init()
 {
 TaskPage page = new HokeyPokeyTask();

 TaskSection section = createDirections(
 “Step 1”, “Put your left foot in”);
 page.addSection(“Step 1”, section);

 section = createDirections(“Step 2”, “Take your left foot out”);
 page.addSection(“Step 2”, section);

 section = createDirections(“Step 3”, “Put your left foot in”);
 page.addSection(“Step 3”, section);

 section = createDirections(“Step 4”, “Shake it all about”);
 page.addSection(“Step 4”, section);

 section = createDirections(“Step 5”, “Do the hokey pokey”);
 page.addSection(“Step 5”, section);

 section = createDirections(“Step 6”, “Turn yourself around”);
 page.addSection(“Step 6”, section);

 setLayout(new GridLayout(1, 0));
 add(page);
 }
}

Dialogs
Dialogs are a mainstay of form-based user interface. The AVM provides a number of commonly
used dialogs, saving you the trouble of coding your own. One of the frustrating things encoun-
tered by developers when writing applets is that AWT dialogs require a Frame object. The Util
class provides a handy way to get the Frame from an applet or any other AWT component. Just
call findFrame and pass it a component (like the applet) in the Frame you are looking for:

Frame currentFrame = Util.findFrame(this);

The Admin View Module

42 1529-5 CH37 9/23/98, 4:50 PM843

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

844 Chapter 37 Management API

InformationDialog The InformationDialog class presents a text message and an OK button.
It also displays an icon indicating that it is an information message as opposed to an error.
There are three different ways to create an information dialog:

public InformationDialog(Frame f)

public InformationDialog(Frame f, String message)

public InformationDialog(Frame f, String message, String title,
 boolean modal)

The following code fragment creates an information dialog with the infamous Hello World!
message:

InformationDialog dialog = new InformationDialog(
 Util.findFrame(this), “Hello World!”);

The modal flag in this example is true, indicating that no activity in the parent Frame may take
place while the dialog is displayed. In other words, you must click OK before proceeding.
Figure 37.2 shows the Hello World! dialog.

ErrorDialog and WarningDialog The ErrorDialog class displays a dialog almost identical to
the InformationDialog class, except that the icon next to the message and the title of the
dialog indicate that it represents an error. The Constructors for the ErrorDialog are the same
as for the InformationDialog:

public ErrorDialog(Frame f)

public ErrorDialog(Frame f, String message)

public ErrorDialog(Frame f, String message, String title,
 boolean modal)

Figure 37.3 shows an error dialog.

The WarningDialog class is identical to the ErrorDialog class, except that the icon and default
title indicate a warning instead of an error. The Constructors for WarningDialog take the same
form as the ErrorDialog.

FIG. 37.2
An information dialog
presents a message and
an OK button.

42 1529-5 CH37 9/23/98, 4:50 PM844

845

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

QuestionDialog Sometimes you need a dialog to do more than just present information. After
all, the term dialog indicates two-way communication. The QuestionDialog class presents
three buttons, Yes, No, and Cancel. Use the JavaBeans ActionListener class to retrieve the
results from the dialog. Listing 37.6 shows an application that asks a question and then displays
the result in an information dialog.

Listing 37.6 Source Code for QuestionApplet.java

import sunw.admin.avm.base.*;
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class QuestionApplet extends Applet implements ActionListener
{
 public void start()
 {
 QuestionDialog dialog = new QuestionDialog(
 Util.findFrame(this), “Do you want to go on the cart?”,
 “I’m not dead”, true);

 dialog.addActionListener(this);

 dialog.setVisible(true);
 }

 public void actionPerformed(ActionEvent evt)
 {
 Object ob = evt.getSource();

 if (!(ob instanceof QuestionDialog)) return;

 String command = evt.getActionCommand();
 String response = null;

 if (command.equals(“yes”)) {
 response = “Why yes, I’ll go on the cart.”;

FIG. 37.3
An error dialog is
similar to an informa-
tion dialog.

continues

The Admin View Module

42 1529-5 CH37 9/23/98, 4:51 PM845

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

846 Chapter 37 Management API

 } else if (command.equals(“no”)) {
 response = “I don’t want to go on the cart.”;
 } else if (command.equals(“cancel”)) {
 response = “I’m not dead.”;
 }

 InformationDialog info = new InformationDialog(
 Util.findFrame(this), response, “Cart result”, true);
 info.setVisible(true);
 }
}

Figure 37.4 shows the Question applet in action.

Listing37.6 Continued

ButtonDialog The QuestionDialog class is really just a special case of the more generic
ButtonDialog class. A button dialog is laid out with a border layout, and any message you want
to display should be added to the center section. The buttons appear along the south section of
the dialog and can be any of the following standard buttons: Apply, Cancel, OK, and Reset. By
default, only the OK and Cancel buttons are displayed. You can activate and deactivate the
various buttons by calling setVisible on each button.

If you create a subclass of the a ButtonDialog, you can access the various buttons using the
following local variables:

protected Button applyButton;

protected Button cancelButton;

protected Button helpButton;

protected Button okButton;

protected Button resetButton;

If you want to enable the Help button in a subclass of ButtonDialog, for example, just call
setVisible like this:

helpButton.setVisible(true);

FIG. 37.4
A Question dialog waits
for Yes, No, or Cancel.

42 1529-5 CH37 9/23/98, 4:51 PM846

847

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

Because you sometimes want to use the dialog without creating a subclass (and if you’ve been
using Java AWT since version 1.0, you’re probably tired of creating subclasses), you can use
the following methods to locate the buttons you may need:

public Button getApplyButton()

public Button getCancelButton()

public Button getHelpButton()

public Button getOKButton()

public Button getResetButton()

As with the QuestionDialog, you can get the results of a ButtonDialog by adding an action
listener and examining the action command. The command values will be apply, cancel, help,
ok, and reset—as you might expect.

ProgressDialog When an operation may take a long time, or you just want to keep the user
informed as to what is going on, you can use a ProgressDialog object, which displays a
progress bar on the screen. Typically, you call setValues to set the start, end, and current
values of the dialog, and then call setValue to update the current value. Also, if you call
setIntervals, you can make the progress bar appear as a series of blocks rather than a solid
line. Listing 37.9 shows a progress dialog applet that uses a thread to update the dialog.

Listing 37.9 Source Code for GaugeApplet.java

import sunw.admin.avm.base.*;
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class GaugeApplet extends Applet implements ActionListener
{
 ProgressDialog progress;
 Thread progressThread;
 boolean done;

 class ProgressThread implements Runnable
 {
 public void run()
 {
 int direction = 1;
 int value = 0;
 done = false;

 while (!done) {
 value = value + direction;
 if (value < 0) {
 value = 0;
 direction = 1;
 } else if (value > 100) {
 value = 100;
 direction = -1;

continues

The Admin View Module

42 1529-5 CH37 9/23/98, 4:51 PM847

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

848 Chapter 37 Management API

 }
 progress.setValue(value);

 try {
 Thread.sleep(250);
 } catch (Exception ignore) {
 }
 }
 }
 }

 public void init()
 {
 progress = new ProgressDialog(Util.findFrame(this),
 “Making progress”);

 progress.setValues(0, 0, 100);
 progress.setIntervals(10);
 progress.addActionListener(this);

 }

 public void start()
 {
 progressThread = new Thread(new ProgressThread());
 progressThread.start();

 progress.setVisible(true);
 }

 public void stop()
 {
 if (progressThread != null) {

 done = true;
 progressThread = null;
 progress.setVisible(false);
 }
 }

 public void actionPerformed(ActionEvent evt)
 {
 Object ob = evt.getSource();

 if (!(ob instanceof ProgressDialog)) return;

 if (progressThread != null) {

 done = true;
 progressThread = null;
 progress.setVisible(false);
 }
 }
}

Listing 37.9 Continued

42 1529-5 CH37 9/23/98, 4:51 PM848

849

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

Figure 37.5 shows the GaugeApplet program in action.

Self-Validating Fields
The AWT TextField class is certainly useful for getting information from the user; when you
want something other than text strings, however, you must write code to make sure that the
data in the field is in the correct format. Because you frequently need to read integers, doubles,
and dates, the AVM provides the DateField, IntegerField, and DoubleField classes to auto-
matically make sure that the text in the field is in the proper format.

IntegerField An integer field accepts only the digits 0–9 and returns the current value
through the getValue method:

public int getValue();

Likewise, the setValue method enables you to change the value of the field:

public void setValue(int newValue);

There are a number of ways to create an integer field. You can create an empty field, initialize
from an integer or a string, and also set the maximum number of columns in the field. The
Constructors for IntegerField are as follows:

public IntegerField()

public IntegerField(int value)

public IntegerField(String text)

public IntegerField(int value, int cols)

public IntegerField(String text, int cols)

DoubleField The DoubleField class is almost identical to the IntegerField class except that
it accepts floating-point numbers. The getValue method returns the current value and
setValue changes it, just as with the IntegerField class:

public double getValue();

public void setValue(double newValue);

FIG. 37.5
A Progress dialog
displays a progress bar
and a message.

The Admin View Module

42 1529-5 CH37 9/23/98, 4:51 PM849

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

850 Chapter 37 Management API

The Constructors for DoubleField are in the same form as IntegerField, except that the
initial values are specified as doubles rather than integers:

public DoubleField()

public DoubleField (int value)

public DoubleField (String text)

public DoubleField (int value, int cols)

public DoubleField (String text, int cols)

DateField The DateField class provides validation for dates in a text field. Because dates are
a little more complex than simple numbers, the DateField class is more complex than
IntegerField or DoubleField. Although it has more methods than its numeric counterparts,
DateField actually has fewer variations on its Constructor:

public DateField()

public DateField(Date date)

public DateField(String date)

You can retrieve the current date value as a Date object with getDate, or as a string with
getDateString:

public Date getDate();

public String getDateString();

You can also set the date with either a Date object or a string:

public void setDate(Date newValue)

public void setDate(String newValue)

You can also manipulate the individual components of the date separately:

public int getDay()
public int getMonth()
public int getYear()

public boolean setDay(int day)
public boolean setDay(String day)
public boolean setMonth(int month)
public boolean setMonth(String month)
public boolean setYear(int year)
public boolean setYear(String year)

New Layout Managers
Along with all the new panels, the AVM has a few really useful new layout managers:
BulletinLayout, RowLayout, ColumnLayout, and FieldLayout. Several of these layout man-
agers are geared toward the kinds of interfaces usually found in network management
applications.

BulletinLayout One of the lesser-known ways to lay out components in a panel is through
the null layout manager. If you set the layout manager in a panel to null, you can move the

42 1529-5 CH37 9/23/98, 4:51 PM850

851

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

37

IV
Part

Ch

components around manually using setLocation, setSize, and setBounds. Apparently, some-
one working on the AVM design decided that the null layout manager needed to come out of
the closet, and now you have the BulletinLayout (think of it as the Nulletin layout). After you
set the layout manager of your panel to be a BulletinLayout, just add components and set
their positions, like this:

setLayout(new BulletinLayout());

button b1 = new Button(“Push Me”);
add(b1);
b1.setSize(100,75);
b1.setLocation(200, 200);

button b2 = new Button(“No, Push Me!”);
add(b2);
b2.setBounds(30, 250, 100, 50);

If you have been fretting about whether the null layout manager will be removed in future
versions of Java, use the BulletinLayout—it stands a better chance of being supported.

RowLayout and ColumnLayout Many times you just want to lay out all your columns in a row
or a column. You could use a grid layout, but what if you don’t know how many items you will
have? The grid layout will start a new row or column if you add too many. The RowLayout and
ColumnLayout classes enable you to create one long row or column of items. The height of the
row is determined by the tallest component, just as the width of the column is determined by
the widest component.

When you create a row or column layout, you can specify a layout alignment that specifies how
each component will be aligned. These values tell whether the components should be left-
aligned, right-aligned, centered, and so forth. The LAYOUT_ALIGNMENT class defines the possible
layout values, which are CENTER, LEFT, RIGHT, TOP, BOTTOM, FIT, and EXPAND.

The Constructors for RowLayout are as follows:

public RowLayout();
public RowLayout(LAYOUT_ALIGNMENT alignment)
public RowLayout(LAYOUT_ALIGNMENT alignment, int hgap, int vgap)

Likewise, these are the Constructors for ColumnLayout:

public ColumnLayout();
public ColumnLayout(LAYOUT_ALIGNMENT alignment)
public ColumnLayout(LAYOUT_ALIGNMENT alignment, int hgap, int vgap)

After you set up these layout managers, you can add components by using the normal add
method, without any special parameters.

ButtonLayout The ButtonLayout class is usually used for setting up rows of buttons, but it
can handle any kind of component. It arranges the components from left to right in lines, cen-
tering each line. When no more components fit on a line, it moves down to the next line. Like
the RowLayout and ColumnLayout classes, the Constructors for ButtonLayout come in three
flavors:

The Admin View Module

42 1529-5 CH37 9/23/98, 4:51 PM851

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 37 LP#3

852 Chapter 37 Management API

public ButtonLayout();
public ButtonLayout(LAYOUT_ALIGNMENT alignment)
public ButtonLayout(LAYOUT_ALIGNMENT alignment, int hgap, int vgap)

FieldLayout The FieldLayout class provides an incredibly simple, yet incredibly useful func-
tion. When you create data-entry forms, you typically create a label and an input field. The
FieldLayout class assumes that you want to do exactly that, and expects you to add a label
followed by a field, over and over. The following code fragment adds a series of fields and their
labels:

setLayout(new FieldLayout());
add(new Label(“First Name: “);
textField firstNameField = new TextField(20);
add(firstNameField);
add(new Label(“Last Name: “);
textField lastNameField = new TextField(20);
add(lastNameField);

A FieldLayout object has no alignment options, but you can still specify the hgap and vgap
values in the Constructor if you like:

public FieldLayout();

public FieldLayout(int hgap, int vgap);

Parts of the Admin View Module have evolved into the Java Foundation Classes since it was
originally designed. The remaining parts may also find themselves within JFC one day, al-
though that remains to be seen. For now, the AVM provides a useful framework for displaying
and manipulating managed objects within the JMAPI framework. ●

42 1529-5 CH37 9/23/98, 4:51 PM852

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTV LP#2

VP A R T

Databases

38 Databases Introduced 855

39 JDBC: The Java Database Connectivity 873

40 JDBC Explored 895

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTV LP#2

855

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

C H A P T E R

Databases Introduced

ODBC and JDBC 856

Relational Database Concepts 856

An ODBC Technical Overview 862

Advanced Client/Server Concepts 867

38

In this chapter

44 1529-5 CH38 9/23/98, 4:53 PM855

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

856 Chapter 38 Databases Introduced

ODBC and JDBC
This chapter is the introduction to a trilogy of chapters dealing with database access from a
Java program. Standard relational data access is very important for Java programs because the
Java applets by nature are not monolithic, all-consuming applications. Because applets by na-
ture are modular, they need to read persistent data from data stores, process the data, and
write the data back to data stores for other applets to process. Monolithic programs can afford
to have their own proprietary schemes of data handling, but because Java applets cross operat-
ing system and network boundaries, you need published open data access schemes.

Java database connectivity (JDBC) is a part of the Java Enterprise APIs and provides cross-
platform, cross-database access to databases from Java programs. The Enterprise APIs also
consist of Remote Method Invocation (RMI) and serialization APIs (for Java programs to mar-
shal objects across namespaces and invoke methods in remote objects), Java IDL (Interface
Definition Language) for communicating with CORBA and other object-oriented systems, and
Java JNDI (Java Naming and Directory Interface) for access to naming and directory services
across the enterprise.

This chapter introduces relational concepts, as well as Microsoft’s open database connectivity
(ODBC). This chapter describes ODBC because of two major reasons:

■ JDBC and ODBC are both based on SAG CLI (SQL Access Group Call Level Interface)
specifications.

■ JDBC design uses major abstractions and methods from ODBC.

The idea of basing JDBC design on ODBC is that because ODBC is so popular with ISVs (inde-
pendent software vendors) as well as users, implementing and using JDBC will be easier for
database practitioners who have earlier experience with ODBC. Also, Sun and Intersolv have
developed a JDBC-ODBC bridge layer to take advantage of the ODBC drivers available in the
market. So with the JDBC APIs and the JDBC-ODBC bridge, you can access and interact effec-
tively with almost all databases from Java applets and applications.

Relational Database Concepts
Databases, as you know, contain data that’s specifically organized. A database can be as simple
as a flat file (a single computer file with data usually in a tabular form) containing names and
telephone numbers of your friends or as elaborate as the worldwide reservation system of a
major airline. Many of the principles discussed in this chapter are applicable to a wide variety of
database systems.

Structurally, there are three major types of databases:

■ Hierarchical

■ Relational

■ Network

44 1529-5 CH38 9/23/98, 4:53 PM856

857

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

Relational Database Concepts

During the 1970s and 1980s, the hierarchical scheme was very popular. This scheme treats
data as a tree-structured system with data records forming the leaves. Examples of the hierar-
chical implementations are schemes like b-tree and multitree data access. In the hierarchical
scheme, to get to data, users need to traverse down and up the tree structure. The most com-
mon relationship in a hierarchical structure is a one-to-many relationship between the data
records, and it is difficult to implement a many-to-many relationship without data redundancy.

Relationships of the Database Kind
Establishing and keeping track of relationships between data records in database tables can be
more difficult than maintaining human relationships!

There are three types of data record relationships between records:

● One-to-one—One record in a table is related to at least one record in another table. The book/
ISBN relationship (where a book has only one ISBN and an ISBN is associated with only one
book) is a good example of a one-to-one relationship.

● One-to-many—One record in a table can be associated with many records in another table.
The purchase order/line items relationship (where a purchase order can have many line items
but one line item can be associated with only a single purchase order) is an example of a
one-to-many relationship.

● Many-to-many—This is similar to the student/class relationship (where a student is taking
many courses with different teachers in a semester and a course has many students).

You might wonder how a database can remember these data relationships. This is usually accom-
plished either by keeping a common element like the student ID/class ID in both tables or by
keeping a record ID table (called the index) of both records. Modern databases have many other
sophisticated ways of keeping data record relationships intact to weather updates, deletes, and
so on.

The network data model solved this problem by assuming a multirelationship between data
elements. In contrast to the hierarchical scheme in which there is a parent-child relationship, in
the network scheme, there is a peer-to-peer relationship. Most of the programs developed
during those days used a combination of the hierarchical and network data storage and access
models.

During the 1990s, the relational data access scheme came to the forefront. The relational
scheme views data as rows of information; each row contains columns of data, called fields. The
main concept in the relational scheme is that the data is uniform. Each row contains the same
number of columns. One such collection of rows and columns is called a table. Many such
tables (which can be structurally different) form a relational database.

Figure 38.1 shows a sample relational database schema (or table layout) for an enrollment
database. In this example, the database consists of three tables: the Students table, which con-
tains student information; the Courses table, which contains course information; and the
StudentsCourses table, which has the student-course relationship. The Students table contains
information such as student ID, name, address, and so on; the Courses table contains the
course ID, subject name or course title, term offered, location, and so on.

44 1529-5 CH38 9/23/98, 4:53 PM857

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

858 Chapter 38 Databases Introduced

Now that you have the Students and Courses tables of data, how do you relate the tables? This
is where the relational part of the relational database comes into the picture. To relate two
tables, either the two tables will have a common column, or you will need to create a third table
with two columns—one from the first table and the second from the second table.

Let’s look at how this is done. In this example, to relate the Students table with the Courses
table, you need to make a new table, StudentsCourses, which has two columns: Student_ID and
Course_ID. Whenever a student takes a course, create a row in the StudentsCourses table with
that Student_ID and the Course_ID. Thus the table has the student and course relationship. If
you want to find a list of students and the subjects they take, go to the StudentsCourses table,
read each row, find the student name corresponding to the Student_ID, from the Courses table
find the course title corresponding to the Course_ID, and select the Student_Name and the
Course_Title columns.

SQL
When relational databases started becoming popular, database experts wanted a universal
database language to perform actions on data. The answer was Structured Query Language
(SQL). SQL has grown into a mainstream database language that has constructs for data ma-
nipulation such as creating, updating, and deleting; data definition such as creating tables and
columns; security for restricting access to data elements, creating users and groups; data man-
agement including backup, bulk copy, and bulk update; and most importantly, transaction
processing. SQL is used along with programming languages such as Java, C++, and others and
is used for data handling and interaction with the back-end database management system.

FIG. 38.1
A sample relational
database schema for an
enrollment database.

1 1

N

N

Enrollment Database

StudentsCourses Table

Student_ID
Course_ID

...

...

Courses Table

Course_ID
Course_Title
Course_Day
Course_Time
Course_Room

Course_Max_Students
...
...

Students Table

Student_ID
Student_Name

Address
...
...

44 1529-5 CH38 9/23/98, 4:53 PM858

859

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

Relational Database Concepts

Each database vendor has its own implementation of SQL. For Microsoft SQL Server, which
is one of the client/server relational DBMSs, SQL is called Transact-SQL, whereas Oracle

SQL is called PL/SQL.

SQL became an ANSI (American National Standards Institute) standard in 1986 and later was revised
to become SQL-92. JDBC is SQL-92–compliant. ■

Joins
Just because a database consists of tables with rows of data does not mean that you are limited
to view the data in the fixed tables in the database. A join is a process in which two or more
tables are combined to form a single table. A join can be dynamic, where two tables are merged
to form a virtual table, or static, where two tables are joined and saved for future reference. A
static join is usually a stored procedure that can be invoked to refresh the saved table, and then
the saved table is queried. Joins are performed on tables that have a column of common infor-
mation. Conceptually, there are many types of joins, which are discussed later in this section.

Before you dive deeper into joins, look at the following example, in which you fill the tables of
the database schema in Figure 38.1 with a few records as shown in Tables 38.1, 38.2, and 38.3.
These tables show only the relevant fields or columns.

Table 38.1 Students Table

Student_ID Student_Name

1 John

2 Mary

3 Jan

4 Jack

Table 38.2 Courses Table

Course_ID Course_Title

S1 Math

S2 English

S3 Computer

S4 Logic

N O T E

44 1529-5 CH38 9/23/98, 4:53 PM859

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

860 Chapter 38 Databases Introduced

Table 38.3 StudentsCourses Table

Student_ID Course_ID

2 S2

3 S1

4 S3

The Inner Join A simple join, called an inner join, with the Students and StudentsCourses
tables gives you a table like the one shown in Table 38.4. You get a new table that combines the
Students and StudentsCourses tables by adding the Student_Name column to the
StudentsCourses table.

Table 38.4 Inner Join Table

Student_ID Student_Name Course_ID

2 Mary S2

3 Jan S1

4 Jack S3

Just because you are using the Student_ID to link the two tables doesn’t mean you should fetch
that column. You can exclude the key field from the result table of an inner join. The SQL state-
ment for this inner join is as follows:

SELECT Students.Student_Name, StudentsCourses.Course_ID
FROM Students, StudentsCourses
WHERE Students.Student_ID = StudentsCourses.Student_ID

The Outer Join An outer join between two tables (such as Table1 and Table2) occurs when
the result table has all the rows of the first table and the common records of the second table.
(The first and second table are determined by the order in the SQL statement.) If you assume a
SQL statement with the FROM Table1,Table2 clause, in a left outer join, all rows of the first
table (Table1) and common rows of the second table (Table2) are selected. In a right outer
join, all records of the second table (Table2) and common rows of the first table (Table1) are
selected. A left outer join with the Students table and the StudentsCourses table creates Table
38.5.

Table 38.5 Outer Join Table

Student_ID Student_Name Course_ID

1 John <null>

2 Mary S2

44 1529-5 CH38 9/23/98, 4:53 PM860

861

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

Relational Database Concepts

3 Jan S1

4 Jack S3

This join is useful if you want the names of all students regardless of whether they are taking
any subjects this term and the subjects taken by the students who have enrolled in this term.
Some people call it an if-any join, as in, “Give me a list of all students and the subjects they are
taking, if any.”

The SQL statement for this outer join is as follows:

SELECT Students.Student_ID,Students.Student_Name,StudentsCourses.Course_ID
FROM {
oj c:\enrol.mdb Students
LEFT OUTER JOIN c:\enrol.mdb
StudentsCourses ON Students.Student_ID = StudentsCourses .Student_ID
}

The full outer join, as you might have guessed, returns all the records from both the tables
merging the common rows, as shown in Table 38.6.

Table 38.6 Full Outer Join Table

Student_ID Student_Name Course_ID

1 John <null>

2 Mary S2

3 Jan S1

4 Jack S3

<null> <null> S4

The Subtract Join What if you want only the students who haven’t enrolled in this term or
the subjects who have no students (the tough subjects or professors)? Then you resort to the
subtract join. In this case, the join returns the rows that are not in the second table. Remember,
a subtract join has only the fields from the first table. By definition, there are no records in the
second table. The SQL statement looks like the following:

SELECT Students.Student_Name
FROM {
oj c:\enrol.mdb Students
LEFT OUTER JOIN c:\enrol.mdb
StudentsCourses ON Students.Student_ID = StudentsCourses.Student_ID
}
WHERE (StudentsCourses.Course_ID Is Null)

Joins and SQL Statements There are many other types of joins, such as the self join, which is
a left outer join of two tables with the same structure. An example is the assembly/parts explo-
sion in a bill of materials application for manufacturing. But usually, the join types you have

44 1529-5 CH38 9/23/98, 4:53 PM861

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

862 Chapter 38 Databases Introduced

learned about already are enough for normal applications. As you gain more expertise in SQL
statements, you will start developing exotic joins.

In all these joins, you compared columns that have the same values; these joins are called equi-
joins. Joins are not restricted to comparing columns of equal values. You can join two tables
based on column value conditions (such as the column of one table greater than the other).

For equi-joins, because the column values are equal, you retrieve only one copy of the common
column; then the joins are called natural joins. When you have a non–equi-join, you might need
to retrieve the common columns from both tables.

When a SQL statement reaches a database management system, the DBMS parses the SQL
statement and translates it to an internal scheme called a query plan to retrieve data from the
database tables. This internal scheme generator, in all the client/server databases, includes an
optimizer module. This module, which is specific to a database, knows the limitations and
advantages of the database implementation.

In many databases—for example, Microsoft SQL Server—the optimizer is a cost-based query
optimizer. When given a query, this optimizer generates multiple query plans, computes the
cost estimates for each (knowing the data storage schemes, page I/O, and so on), and then
determines the most efficient access method for retrieving the data, including table join order
and index usage. This optimized query is converted into a binary form called the execution
plan, which is executed against the data to get the result. There are known cases in which
straight queries that take hours to perform are run through an optimizer and result in an opti-
mized query that is performed in minutes. All the major client/server databases have a built-in
query optimizer module that processes all the queries. A database system administrator can
assign values to parameters such as cost, storage scheme, and so on and can fine-tune the
optimizer.

An ODBC Technical Overview
ODBC is one of the most popular database interfaces in the PC world and is slowly moving into
all other platforms. ODBC is Microsoft’s implementation of the X/Open and SQL Access
Group Call Level Interface specification. ODBC provides functions to interact with databases
from a programming language, including adding, modifying, and deleting data and obtaining
details about the databases, tables, views, and indexes.

This discussion on ODBC is relevant from the Java and JDBC point of view. It is instructive to note the
similarities and differences between the JDBC and ODBC architectures. Also, the study of ODBC might
give you some clues as to where JDBC is heading in the future.

Figure 38.2 shows a schematic view of the ODBC architecture. An ODBC application has five
logical layers: application, ODBC interface, driver manager, driver, and the data source.

The application layer provides the GUI and the business logic and is written in languages such
as Java, Visual Basic, and C++. The application uses the ODBC functions in the ODBC inter-
face to interact with the databases.

T I P

44 1529-5 CH38 9/23/98, 4:53 PM862

863

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

An ODBC Technical Overview

The driver manager layer is part of the Microsoft ODBC. As the name implies, it manages
various drivers present in the system including loading, directing calls to the right driver, and
providing driver information to the application when needed. Because an application can be
connected to more than one database (such as legacy systems and departmental databases),
the driver manager makes sure that the right DBMS gets all the program calls directed to it
and that the data from the data source is routed to the application.

The driver is the actual component that knows about specific databases. Usually the driver is
assigned to a specific database such as the Access driver, SQL Server driver, or Oracle driver.
The ODBC interface has a set of calls such as SQL statements, connection management, infor-
mation about the database, and so on. It is the driver’s duty to implement all these
functionalities. That means for some databases, the driver has to emulate the ODBC interface
functions not supported by the underlying DBMS. The driver does the work of sending queries
to the database, getting the data back, and routing the data to the application. For databases
that are in local networked systems or on the Internet, the driver also handles the network
communication.

FIG. 38.2
An architecture
schematic showing the
five ODBC layers.

SQL
Server

Database

Oracle
Database

Driver Manager

ODBC Interface

Application Layer

Oracle
Driver

SQL
Server
Driver

Data Sources

44 1529-5 CH38 9/23/98, 4:53 PM863

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

864 Chapter 38 Databases Introduced

In the context of ODBC, the data source can be a database management system or just the data
store, which usually is a set of files in the hard disk. The data source can be as simple as a
Microsoft Access database for the expense data of a small company or as exotic as a
multiserver, multigigabyte data store of all the customer billing details of a telephone company.
The data source might be handling a data warehouse or a simple customer list.

ODBC Conformance Levels
The major piece of an ODBC system is the driver, which knows about the DBMS and commu-
nicates with the database. ODBC doesn’t require the drivers to support all the functions in the
ODBC interface. Instead, ODBC defines API and SQL grammar conformance levels for driv-
ers. The only requirement is that when a driver conforms to a certain level, it should support
all the ODBC-defined functions on that level, regardless of whether the underlying database
supports them.

The ODBC driver specification sets no upper limits of supported functionalities. This means
a driver that conforms to Level 1 can and might support a few of the Level 2 functionalities.

The driver is still considered Level 1 conformance because it doesn’t support all Level 2 functions. An
application, however, can use the partial Level 2 support provided by that driver. ■

As mentioned in the ODBC technical overview, it is the driver’s duty to emulate the ODBC
functions not supported by the underlying DBMS so that the ODBC interface is shielded from
the DBMS implementation. As far as the ODBC interface and the application are concerned, a
conformance to an ODBC level means all the functionalities are available regardless of the
underlying DBMS.

Applications use API calls such as SQLGetFunctions and SQLGetInfo to get the
functions supported by a driver. ■

Table 38.7 summarizes the levels of conformance for API and SQL.

Table 38.7 API and SQL Conformance Levels for ODBC

Type Conformance Level Description

API Conformance Core All functions in SAG CLI specification.
Levels Allocates and frees connection, state-

ment, and environment handles.
Prepares and executes SQL statements.
Retrieves the result set and information
about the result set. Retrieves error
information. Capability to commit and
roll back transactions.

N O T E

N O T E

44 1529-5 CH38 9/23/98, 4:53 PM864

865

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

An ODBC Technical Overview

Level 1 Extended Set 1 is Core API plus capabili-
ties to send and retrieve partial data set,
retrieve catalog information, get driver
and database capabilities, and more.

Level 2 Extended Set 2 is Level 1 plus capabilities
to handle arrays as parameters, scrollable
cursor, call transaction DLL, and more.

SQL Grammar Minimum Grammar CREATE TABLE and DROP TABLE functions
Conformance in the Data Definition Language.
Levels SELECT, INSERT, UPDATE, and DELETE

functions (simple) in the Data Manipula-
tion Language.
Simple expressions.

Core Grammar Conformance to SAG CAE 1992
specification.
Minimum grammar plus ALTER TABLE,
CREATE and DROP INDEX, and CREATE and
DROP VIEW for the DDL.
Full SELECT statement capability for the
DML.
Functions such as SUM and
MAX in the expressions.

Extended Grammar Adds capabilities such as outer joins,
positioned UPDATE, DELETE, more
expressions, more data types, procedure
calls, and so on to the Core grammar.

ODBC Functions and Command Set
The ODBC has a rich set of functions. They range from simple connect statements to handling
multi–result set stored procedures. All the ODBC functions have the SQL prefix and can have
one or more parameters, which can be of type input (to the driver) or output (from the driver).
Let’s look at the general steps required to connect to an ODBC source and then the actual
ODBC command sequence.

Typical ODBC Steps In a typical ODBC program, the first steps are to allocate environment
and connection handles using the functions SQLAllocEnv(<envHandle>) and
SQLAllocConnect(<envHandle>,<databaseHandle>). After you get a valid database handle, you
can set various options using SQLSetConnectOption(<databaseHandle>,
<optionName>,<optionValue>). Then you can connect to the database using
SQLConnect(<dataSourceName>,<UID>,<PW>, .. etc.).

Type Conformance Level Description

44 1529-5 CH38 9/23/98, 4:53 PM865

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

866 Chapter 38 Databases Introduced

The ODBC Command Sequence Now you are ready to work with statements. Figure 38.3
shows the ODBC command sequence to connect to a database, execute a SQL statement,
process the result data, and close the connection.

First, allocate the statement handle using SQLAllocStmt(<databaseHandle>,
<statementHandle>). After the statement handle is allocated, you can execute SQL statements
directly using the SQLExecDirect function, or you can prepare a statement using SQLPrepare
and then execute with the SQLExec function. You first bind the columns to program variables
and then read these variables after a SQLFetch statement for a row of data. SQLFetch returns
SQL_NO_DATA_FOUND when there is no more data.

JDBC also follows similar strategy for handling statements and data. But JDBC differs in the
data binding to variables. ■

FIG. 38.3
The ODBC program flow
schematic for a typical
program.

N O T E

SQLAllocEnv(<envHandle>)

SQLAllocStmt(<databaseHa
ndle>,<statementHandle>)

SQLExecuteDirect(<stateme
ntHandle>,<SQL String)>,..)

SQLExecute(<statementHan
dle>)

SQLSet Param(<statementH
andle>,<parameter number

(1,2,3...)>,...)

SQLPrepare(<statementHan
dle>,<SQL String with

parameters)

SQLFreeStmt(<statementHandle>,..)
SQLDisconnect(<databaseHandle>);
SQLFreeConnect(<databaseHandle>);
SQLFreeEnv(<envHandle>);

SQLFetch(<statementHandle
>)

SQLBindColumn(<statement
Handle>,..)

SQLAllocConnect(<envHandle>,<databaseHandle>)
SQLSetConnectOption(<databaseHandle>,..)

SQLConnect(<databaseHandle>,<dataSourceName,UI
D,PW>

Deallocate
and
cleanup

Process
results

Statement
handling

Initialize
and
allocate

44 1529-5 CH38 9/23/98, 4:53 PM866

867

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

Advanced Client/Server Concepts

Now that you have processed the data, it is time to deallocate the handles and close the data-
base by using the following statement sequence:

SQLFreeStmt(<statementHandle>, ..)
SQLDisconnect(<databaseHandle>);
SQLFreeConnect(<databaseHandle>);
SQLFreeEnv(<envHandle>);

In JDBC, the allocate statements and handles are not required.

Because Java is an object-oriented language, you get the connection object, which then
gives you the statement object.

As Java has automatic garbage collection, you don’t need to free handles, delete objects, and so on.
When an object loses scope, the JVM will reclaim the memory used by that object as a part of the
automatic garbage collection. ■

Advanced Client/Server Concepts
A typical client/server system is at least a departmentwide system, and most likely an organi-
zational system spanning many departments in an organization. Mission-critical and line-of-
business systems such as brokerage, banking, manufacturing, and reservation systems fall into
this category. Most systems are internal to an organization and also span the customers and
suppliers. Almost all such systems are on a local area network (LAN), and they have wide area
network (WAN) connections and dial-in capabilities. With the advent of the Internet/intranet
and Java, these systems are getting more and more sophisticated and are capable of doing
business in many new ways.

Take the case of Federal Express. Its Web site can now schedule package pickups, track a
package from pickup to delivery, and get delivery information and time. You are now in the
threshold of an era in which online commerce will be as common as shopping malls. Let’s look
at some of the concepts that drive these kinds of systems.

Client/Server System Tiers
Most of the application systems will involve modules with functions for a front-end GUI,
business rules processing, and data access through a DBMS. In fact, major systems such as
online reservation, banking and brokerage, and utility billing involve thousands of business
rules, heterogeneous databases spanning the globe, and hundreds of GUI systems. The
development, administration, maintenance, and enhancement of these systems involve
handling millions of lines of code, multiple departments, and coordinating the work of
hundreds if not thousands of personnel across the globe. The multitier system design and
development concepts are applied to a range of systems from departmental systems to such
global information systems.

N O T E

44 1529-5 CH38 9/23/98, 4:53 PM867

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

868 Chapter 38 Databases Introduced

In the two- and three-tier systems, an application is logically divided into three parts:

● GUI (graphical user interface)—Consists of the screens, windows, buttons, list boxes,
and more.

● Business logic—The part of the program that deals with the various data element
interactions. All processing is done based on values of data elements, such as the logic
for determining the credit limit depending on annual income, the calculation of income
tax based on tax tables, or a reorder point calculation logic based on the material
usage belonging to this category.

● DBMS—Deals with the actual storage and retrieval of data. ■

Two-Tier Systems On the basic level, a two-tier system involves the GUI and business logic
directly accessing the database. The GUI can be on a client system, and the database can be on
the client system or on a server. Usually, the GUI is written in languages such as C++, Visual
Basic, PowerBuilder, Access Basic, and LotusScript. The database systems typically are
Microsoft Access, Lotus Approach, Sybase SQL Anywhere, or Watcom DB Engine and Per-
sonal Oracle.

Three-Tier Systems Most of the organizational and many of the departmental client/server
applications today follow the three-tier strategy in which the GUI, business logic, and DBMS
are logically in three layers. Here the GUI development tools are Visual Basic, C++, and
PowerBuilder. The middle-tier development tools also tend to be C++ or Visual Basic, and the
back-end databases are Oracle, Microsoft SQL Server, or Sybase SQL Server. The three-tier
concept gave rise to an era of database servers, application servers, and GUI client machines.
Operating systems such as UNIX, Windows NT, and Solaris rule the application server and
database server world. Client operating systems such as Windows are popular for the GUI
front end.

Multitier Systems Now with Internet and Java, the era of “network is the computer” and
“thin client” paradigm shifts has begun. The Java applets with their own objects and methods
created the idea of a multitiered client/server system. Theoretically, a Java applet can be a
business rule, GUI, or DBMS interface. Each applet can be considered a layer. In fact, the
Internet and Java were not the first to introduce the object-oriented, multitiered system con-
cept. OMG’s CORBA architecture and Microsoft’s OLE (now ActiveX) architecture are all
proponents of modular object-oriented, multiplatform systems. With Java and the Internet,
these concepts became much easier to implement.

In short, the systems design and implementation progressed from the two-tiered architecture
to the three-tiered architecture to the current internetworked, Java applet– driven, multitier
architecture.

Transactions
The concept of transactions is an integral part of any client/server database. A transaction is a
group of SQL statements that update, add, and delete rows and fields in a database. Transac-
tions have an all or nothing property—either they are committed if all statements are

N O T E

44 1529-5 CH38 9/23/98, 4:53 PM868

869

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

Advanced Client/Server Concepts

successful, or the whole transaction is rolled back if any of the statements cannot be executed
successfully. Transaction processing ensures the data integrity and data consistency in a database.

JDBC supports transaction processing with the commit() and rollback() methods.
Also, JDBC has autocommit(), which when on, automatically commits all changes and

when off, the Java program has to use the commit() or rollback() method to effect the changes to
the data. ■

Transaction ACID Properties The characteristics of a transaction are described in terms of
the Atomicity, Consistency, Isolation, and Durability (ACID) properties.

A transaction is atomic in the sense that it is an entity. All the components of a transaction
occur or do not occur; there is no partial transaction. If only a partial transaction can happen,
the transaction is aborted. The atomicity is achieved by the commit() or rollback() method.

A transaction is consistent because it doesn’t perform any actions that violate the business logic
or relationships between data elements. The consistent property of a transaction is very impor-
tant when you develop a client/server system because there will be many transactions to a data
store from different systems and objects. If a transaction leaves the data store inconsistent, all
other transactions also will potentially be wrong, resulting in a systemwide crash or data cor-
ruption.

A transaction is isolated because the results of a transaction are self-contained. They don’t
depend on any preceding or succeeding transaction. This is related to a property called
serializability, which means the sequence of transactions are independent; in other words, a
transaction doesn’t assume any external sequence.

Finally, a transaction is durable, meaning the effects of a transaction are permanent even in the
face of a system failure. This means that some form of permanent storage should be a part of a
transaction.

The Distributed Transaction Coordinator A related topic in transactions is the coordination
of transactions across heterogeneous data sources, systems, and objects. When the transac-
tions are carried out in one relational database, you can use the commit(), rollback(),
beginTransaction(), and endTransaction() statements to coordinate the process. But what if
you have diversified systems participating in a transaction? How do you handle such a system?
As an example, let’s look at the Distributed Transaction Coordinator (DTC) available as a part
of the Microsoft SQL Server 6.5 database system.

In the Microsoft DTC, a transaction manager facilitates the coordination. Resource managers
are clients that implement resources to be protected by transactions—for example, relational
databases and ODBC data sources.

An application begins a transaction with the transaction manager and then starts transactions
with the resource managers, registering the steps (enlisting) with the transaction manager.

The transaction manager keeps track of all enlisted transactions. The application, at the end of
the multi–data source transaction steps, calls the transaction manager to either commit or
abort the transaction.

N O T E

44 1529-5 CH38 9/23/98, 4:53 PM869

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

870 Chapter 38 Databases Introduced

When an application issues a commit command to the transaction manager, the DTC performs
a two-phase commit protocol:

1. It queries each resource manager if it is prepared to commit.

2. If all resources are prepared to commit, the DTC broadcasts a commit message to all of
them.

The Microsoft DTC is an example of a very powerful, next-generation transaction coordinator
from the database vendors. As more and more multiplatform, object-oriented Java systems are
being developed, this type of transaction coordinator will gain importance. Already many
middleware vendors are developing Java-oriented transaction systems.

Cursors
A relational database query normally returns many rows of data. But an application program
usually deals with one row at a time. Even when an application can handle more than one
row—for example, by displaying the data in a table or spreadsheet format—it can still handle
only a limited number of rows. Also, updating, modifying, deleting, or adding data is done on a
row-by-row basis.

This is where the concept of cursors come into the picture. In this context, a cursor is a pointer
to a row. It is like the cursor on the CRT—a location indicator.

Data Concurrency and Cursor Schemes
Different types of multiuser applications need different types of data sets in terms of data
concurrency. Some applications need to know as soon as the data in the underlying database is
changed. For example, in reservation systems, the dynamic nature of the seat allocation information
is extremely important. Other applications such as statistical reporting systems need stable data; if
data is constantly changing, these programs cannot effectively display any results. The different
cursor designs support the need for the various types of applications.

A cursor can be viewed as the underlying data buffer. A fully scrollable cursor is one where the
program can move forward and backward on the rows in the data buffer. If the program can
update the data in the cursor, it is called a scrollable, updatable cursor.

CAUTION

An important point to remember when you think about cursors is transaction isolation. When a user is
updating a row, another user might be viewing the row in a cursor of his own. Data consistency is important
here. Worse, the second user also might be updating the same row!

The ResultSet in JDBC API is a cursor. But it is only a forward scrollable cursor—this
means you can only move forward using the getNext() method. ■

N O T E

44 1529-5 CH38 9/23/98, 4:53 PM870

871

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

38

V
Part

Ch

Advanced Client/Server Concepts

ODBC Cursor Types ODBC cursors are very powerful in terms of updatability, concurrency,
data integrity, and functionality. The ODBC cursor scheme allows positioned delete and update
and multiple row fetch (called a rowset) with protection against lost updates.

ODBC supports static, keyset-driven, and dynamic cursors.

In the static cursor scheme, the data is read from the database once, and the data is in the
snapshot recordset form. Because the data is a snapshot (a static view of the data at a point of
time), the changes made to the data in the data source by other users are not visible. The dy-
namic cursor solves this problem by keeping live data, but this takes a toll on network traffic
and application performance.

The keyset-driven cursor is the middle ground in which the rows are identified at the time of
fetch, and thus changes to the data can be tracked. Keyset-driven cursors are useful when you
implement a backward scrollable cursor. In a keyset-driven cursor, additions and deletions of
entire rows are not visible until a refresh. When you do a backward scroll, the driver fetches
the newer row if any changes are made.

ODBC also supports a modified scheme, in which only a small window of the keyset is
fetched, called the mixed cursor, which exhibits the keyset-driven cursor for the data

window and a dynamic cursor for the rest of the data. In other words, the data in the data window
(called a RowSet) is keyset-driven, and when you access data outside the window, the dynamic
scheme is used to fetch another keyset-driven buffer. ■

Cursor Applications You might be wondering where these cursor schemes are applied and
why you need such elaborate schemes. In a short sentence, all the cursor schemes have their
place in information systems.

Static cursors provide a stable view of the data because the data doesn’t change. They are good
for data mining and data warehousing types of systems. For these applications, you want the
data to be stable for reporting executive information systems or for statistical or analysis pur-
poses. Also, the static cursor outperforms other schemes for large amounts of data retrieval.

On the other hand, for online ordering systems or reservation systems, you need a dynamic
view of the system with row locks and views of data as changes are made by other users. In
such cases, you will use the dynamic cursor. In many of these applications, the data transfer is
small, and the data access is performed on a row-by-row basis. For these online applications,
aggregate data access is very rare.

Bookmarks The bookmark is a concept related to the cursor model, but is independent of the
cursor scheme used. A bookmark is a placeholder for a data row in a table. The application
program requests that the underlying database management system be a bookmark for a row.
The DBMS usually returns a 32-bit marker that can later be used by the application program to
get to that row of data. In ODBC, you use the SQLExtendedFetch function with the
SQL_FETCH_BOOKMARK option to get a bookmark. The bookmark is useful for increasing
performance of GUI applications, especially the ones in which the data is viewed through a
spreadsheet-like interface.

N O T E

44 1529-5 CH38 9/23/98, 4:53 PM871

P2/Vb/mp12 SE Using Java 1.2, 4E #1529-5 8.7.98 ayanna CH38 LP#3

872 Chapter 38 Databases Introduced

Positioned UPDATE/DELETE This is another cursor-related concept. If a cursor model sup-
ports positioned UPDATE/DELETE, you can update/delete the current row in a ResultSet with-
out any more processing, such as a lock, read, and fetch.

In SQL, a positioned UPDATE or DELETE statement is of the form

UPDATE/DELETE <Field or Column values etc.> WHERE CURRENT OF <cursor name>

The positioned UPDATE statement to update the fields in the current row is

UPDATE <table> SET <field> = <value> WHERE CURRENT OF <cursor name>

The positioned DELETE statement to delete the current row takes the form

DELETE <table> WHERE CURRENT OF <cursor name>

Generally, for this type of SQL statement to work, the underlying driver or the DBMS has to
support updatability, concurrency, and dynamic scrollable cursors. But there are many other
ways of providing the positioned UPDATE/DELETE capability at the application program level.
Presently, JDBC doesn’t support any of the advanced cursor functionalities. However, as the
JDBC driver development progresses, I am sure there will be very sophisticated cursor man-
agement methods available in the JDBC API.

Replication
Data replication is the distribution of corporate data to many locations across the organization,
and it provides reliability, fault-tolerance, data access performance due to reduced communica-
tion, and in many cases, manageability because the data can be managed as subsets.

As you have seen, the client/server systems span an organization, possibly its clients and
suppliers—most probably in a wide geographic location. Systems spanning the entire globe
aren’t uncommon when you’re talking about mission-critical applications, especially in today’s
global business market. If all the data were concentrated in a central location, it would be al-
most impossible for the systems to effectively access data and offer high performance. Also, if
data were centrally located, in the case of mission-critical systems, a single failure would bring
the whole business down. So, replicating data across an organization at various geographic
locations is a sound strategy.

Different vendors handle replication differently. For example, the Lotus Notes groupware
product uses a replication scheme in which the databases are considered peers and additions/
updates/deletions are passed between the databases. Lotus Notes has replication formulas that
can select subsets of data to be replicated based on various criteria.

Microsoft SQL Server, on the other hand, employs a publisher/subscriber scheme in which a
database or part of a database can be published to many subscribers. A database can be a pub-
lisher and a subscriber. For example, the western region can publish its slice of sales data
while receiving (subscribing to) sales data from other regions.

There are many other replication schemes from various vendors to manage and decentralize
data. Replication is a young technology that is slowly finding its way into many other
products. ●

44 1529-5 CH38 9/23/98, 4:54 PM872

873

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

C H A P T E R

JDBC: The Java Database Connectivity

JDBC Overview 874

JDBC Implementation 877

The Connection Class 883

Metadata Functions 885

The SQLException Class 893

The SQLWarnings Class 893

39

In this chapter

45 1529-5 CH39 9/23/98, 4:55 PM873

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

874 Chapter 39 JDBC: The Java Database Connectivity

JDBC Overview
JDBC is a Java Database Connectivity API that is a part of the Java Enterprise APIs from Sun
Microsystems, Inc. From a developer’s point of view, JDBC is the first standardized effort to
integrate relational databases with Java programs. JDBC has opened all the relational power
that can be mustered to Java applets and applications. In this chapter and the next, you take an
in-depth look at the JDBC classes and methods.

Java Database Connectivity is a set of relational database objects and methods for interacting
with SQL data sources. The JDBC APIs are part of the Enterprise APIs of Java 1.1 and, thus,
are a part of all Java Virtual Machine (JVM) implementations.

Even though the objects and methods are based on the relational database model, JDBC makes no
assumption about the underlying data source or the data storage scheme. You can access and retrieve
audio or video data from many sources and load into Java objects using the JDBC APIs. The only
requirement is that there should be a JDBC implementation for that source.

Sun introduced the JDBC API specification in March 1996 as a draft Version 0.50 and open for
public review. The specification went from Version 0.50 through 1.0 to 1.10 and now to 1.22.
The JDK 1.1 includes JDBC. Therefore, you need not download JDBC separately. The JDBC
Version 1.22 specification available at http://java.sun.com/products/jdbc/ includes all the
improvements from the review by vendors, developers, and the general public.

The JDBC Web site has four important documents related to the JDBC specification. They
are JDBC Specification (jdbc.spec-0122.pdf), JDBC API documentation Part I—JDBC

interfaces (jdbc.api.1-0122.pdf), and JDBC API documentation Part II—Classes and Exceptions
(jdbc.api.2-0122.pdf). Also available with the JDK 1.1 documentation (jdbc.pdf) is the JDBC
Guide: Getting Started. ■

Now look at the origin and design philosophies. The JDBC designers based the API on
X/Open SQL Call Level Interface (CLI). It is not coincidental that ODBC is also based on the
X/Open CLI. The Sun engineers wanted to gain leverage from the existing ODBC implementa-
tion and development expertise, and thus make it easier for independent software vendors
(ISVs) and system developers to adopt JDBC. But ODBC is a C interface to Database Manage-
ment Systems (DBMS), and thus is not readily convertible to Java. Therefore, JDBC design
followed ODBC in spirit as well as in its major abstractions and implemented the SQL CLI with
“a Java interface that is consistent with the rest of the Java system,” as the JDBC specification
describes it in section 2.4. Instead of the ODBC SQLBindColumn and SQLFetch to get column
values from the result, for example, JDBC used a simpler approach (which you learn about
later in this chapter).

How Does JDBC Work?
As previously discussed, JDBC is designed on the CLI model. JDBC defines a set of API ob-
jects and methods to interact with the underlying database. A Java program first opens a

T I P

N O T E

45 1529-5 CH39 9/23/98, 4:55 PM874

875

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

connection to a database, makes a Statement object, passes SQL statements to the underlying
DBMS through the Statement object, and retrieves the results as well as information about the
result sets. Typically, the JDBC class files and the Java applet reside in the client. They can be
downloaded from the network also. To minimize the latency during execution, it is better to
have the JDBC classes in the client. The DBMS and the data source are typically located in a
remote server.

Figure 39.1 shows the JDBC communication layer alternatives. The applet and the JDBC layers
communicate in the client system, and the driver takes care of interacting with the database
over the network.

Oracle
Database

JDBC (java,sql.*)

Oracle ODBC
Driver

SQL Server
ODBC Driver

JDBC-ODBC
Bridge

Java Applet /
Application

IBM Compatiable

The Internet

SQL
Server

Database

JDBC (java,sql.*)

Java Applet /
Application

The Internet

Database/HTTP
Listener Process /

RPC

Database Server

Database

Pen computer

The JDBC classes are in the java.sql package, and all Java programs use the objects and
methods in the java.sql package to read from and write to data sources. A program using the
JDBC will need a driver for the data source with which it wants to interface. This driver can be
a native module (like the JDBCODBC.DLL for the Windows JDBC-ODBC bridge developed by
Sun/Intersolv), or it can be a Java program that talks to a server in the network by using some
RPC or an HTTP talker-listener protocol. Both schemes are shown in Figure 39.1.

It is conceivable that an application will deal with more than one data source—possibly hetero-
geneous data sources. (A database gateway program is a good example of an application that
accesses multiple heterogeneous data sources.) For this reason, JDBC has a DriverManager

FIG. 39.1
JDBC communication
layer alternatives: The
JDBC driver can be a
native library, like the
JDBC-ODBC bridge, or a
Java class talking
across the network to
an RPC or HTTP listener
process in the
database server.

JDBC Overview

45 1529-5 CH39 9/23/98, 4:55 PM875

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

876 Chapter 39 JDBC: The Java Database Connectivity

whose function is to manage the drivers and provide a list of currently loaded drivers to the
application programs.

Data Source, Database, or DBMS?
Although the word database is in the name JDBC, the form, content, and location of the data is
immaterial to the Java program using JDBC so long as there is a driver for that data. Hence the
notation data source to describe the data is more accurate than database, DBMS, DB, or just file. In
the future, Java devices such as televisions, answering machines, or network computers will access,
retrieve, and manipulate different types of data (audio, video, graphics, time series, and so on) from
various sources that are not relational databases at all. Much of the data might not even come from
mass storage. The data could be video stream from a satellite, for example, or audio stream from a
telephone.

ODBC also refers to data sources rather than databases when describing in general terms.

Security Model
Security is always an important issue, especially when databases are involved. As of the writing
of this book, JDBC follows the standard security model in which applets can connect only to
the server from where they are loaded; remote applets cannot connect to local databases. Ap-
plications have no connection restrictions. For pure Java drivers, the security check is auto-
matic. For drivers developed in native methods, however, the drivers must have some security
checks.

With Java 1.1 and the Java Security API, you have the ability to establish “trust relation-
ships,” which enable you to verify trusted sites. You can then give applets downloaded from

trusted sources more functionality by giving them access to local resources. For more information on
Java security, refer to Chapter 34, “Java Security in Depth.” ■

JDBC-ODBC Bridge
As a part of JDBC, Sun also delivers a driver to access ODBC data sources from JDBC. This
driver is jointly developed with Intersolv and is called the JDBC-ODBC bridge. The JDBC-
ODBC bridge is implemented as the JdbcOdbc.class and a native library to access the ODBC
driver. For the Windows platform, the native library is a DLL (JDBCODBC.DLL).

Because JDBC is close to ODBC in design, the ODBC bridge is a thin layer over JDBC. Inter-
nally, this driver maps JDBC methods to ODBC calls and, thus, interacts with any available
ODBC driver. The advantage of this bridge is that now JDBC has the capability to access al-
most all databases, as ODBC drivers are widely available. You can use this bridge (Version
1.2001) to run the sample programs in this and the next chapter.

N O T E

45 1529-5 CH39 9/23/98, 4:55 PM876

877

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

JDBC Implementation
JDBC is implemented as the java.sql package. This package contains all the JDBC classes
and methods, as shown in Table 39.1.

Table 39.1 JDBC Classes

Type Class

Driver java.sql.Driver
java.sql.DriverManager
java.sql.DriverPropertyInfo

Connection java.sql.Connection

Statements java.sql.Statement
java.sql.PreparedStatement
java.sql.CallableStatement

ResultSet java.sql.ResultSet

Errors/Warning java.sql.SQLException
java.sql.SQLWarning

Metadata java.sql.DatabaseMetaData
java.sql.ResultSetMetaData

Date/Time java.sql.Date
java.sql.Time
java.sql.Timestamp

Miscellaneous java.sql.Types
java.sql.DataTruncation

Now look at these classes and see how you can develop a simple JDBC application.

JDBC Classes—Overview
When you look at the class hierarchy and methods associated with it, the topmost class in the
hierarchy is the DriverManager. The DriverManager keeps the driver information, state infor-
mation, and more. When each driver is loaded, it registers with the DriverManager. The
DriverManager, when required to open a connection, selects the driver depending on the
JDBC URL.

JDBC Implementation

45 1529-5 CH39 9/23/98, 4:55 PM877

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

878 Chapter 39 JDBC: The Java Database Connectivity

JDBC URL
True to the nature of the Internet, JDBC identifies a database with an URL. The URL’s form is as
follows:

jdbc:<subprotocol>:<subname related to the DBMS/Protocol>

For databases on the Internet or intranet, the subname can contain the Net URL //hostname:port/.
The <subprotocol> can be any name that a database understands. The odbc subprotocol name is
reserved for ODBC-style data sources. A normal ODBC database JDBC URL looks like the following:

jdbc:odbc:<ODBC DSN>;User=<username>;PW=<password>

If you are developing a JDBC driver with a new subprotocol, it is better to reserve the subprotocol
name with Sun, which maintains an informal subprotocol registry.

The java.sql.Driver class is usually referred to for information such as PropertyInfo, ver-
sion number, and so on. This class could be loaded many times during the execution of a Java
program using the JDBC API.

Looking at the java.sql.Driver and java.sql.DriverManager classes and methods as listed
in Table 39.2, you see that the DriverManager returns a Connection object when you use the
getConnection() method.

Table 39.2 Driver, DriverManager, and Related Methods

Return Type Method Name Parameter

java.sql.Driver

Connection connect (String url, java.util.Properties
info)

boolean acceptsURL (String url)

DriverPropertyInfo[] getPropertyInfo (String url, java.util.Properties
info)

int getMajorVersion ()

int getMinorVersion ()

boolean jdbcCompliant ()

java.sql.DriverManager

Connection getConnection (String url, java.util.Properties
info)

Connection getConnection (String url, String user, String
password)

Connection getConnection (String url)

Driver getDriver (String url)

45 1529-5 CH39 9/23/98, 4:55 PM878

879

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

void registerDriver (java.sql.
Driver driver)

void deregisterDriver (Driver driver)

java.util.Enumeration getDrivers ()

void setLoginTimeout (int seconds)

int getLoginTimeout ()

void setLogStream (java.io.
PrintStream out)

java.io.PrintStream getLogStream ()

void println (String message)

Class Initialization Routine

void initialize ()

Other useful methods include the registerDriver(), deRegister(), and getDrivers() meth-
ods. By using the getDrivers() method, you can get a list of registered drivers. Figure 39.2
shows the JDBC class hierarchy, as well as the flow of a typical Java program using the JDBC
APIs.

In the following section, you will follow the steps required to access a simple database by using
JDBC and the JDBC-ODBC driver.

Anatomy of a JDBC Application
To handle data from a database, a Java program follows these general steps. (Figure 39.2
shows the general JDBC objects, the methods, and the sequence.) First, the program calls the
getConnection() method to get the Connection object. Then it creates the Statement object
and prepares a SQL statement.

A SQL statement can be executed immediately (Statement object), can be a compiled statement
(PreparedStatement object), or can be a call to a stored procedure (CallableStatement ob-
ject). When the method executeQuery() is executed, a ResultSet object is returned. SQL
statements such as update or delete will not return a ResultSet. For such statements, the
executeUpdate() method is used. The executeUpdate() method returns an integer that de-
notes the number of rows affected by the SQL statement.

The ResultSet contains rows of data that are parsed using the next() method. In case of a
transaction processing application, methods such as rollback() and commit() can be used
either to undo the changes made by the SQL statements or permanently affect the changes
made by the SQL statements.

java.sql.DriverManager

JDBC Implementation

45 1529-5 CH39 9/23/98, 4:55 PM879

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

880 Chapter 39 JDBC: The Java Database Connectivity

JDBC Examples
These examples access the Student database, the schema of which is shown in Figure 39.3.
The tables in the examples that you are interested in are the Students table, Classes table,
Instructors table, and Students_Classes table. This database is a Microsoft Access database.
The full database and sample data are generated by the Access Database Wizard. You access
the database by using JDBC and the JDBC-ODBC bridge.

Before you jump into writing a Java JDBC program, you need to configure an ODBC data
source. As you saw earlier, the getConnection() method requires a data source name (DSN),
user ID, and password for the ODBC data source. The database driver type or subprotocol
name is odbc. So the driver manager finds out from the ODBC driver the rest of the details.

But wait, where do you put the rest of the details? This is where the ODBC setup comes into
the picture. The ODBC Setup program runs outside the Java application from the Microsoft
ODBC program group. The ODBC Setup program enables you to set up the data source so
that this information is available to the ODBC Driver Manager, which in turn loads the
Microsoft Access ODBC driver. If the database is in another DBMS form—say, Oracle—you
configure this source as Oracle ODBC driver. In Windows 3.x, the Setup program puts this
information in the ODBC.INI file. With Windows 95 and Windows NT 4.0, this information is in
the Registry. Figure 39.4 shows the ODBC Setup screen.

FIG. 39.2
JDBC class hierarchy
and a JDBC API flow.

getResultSet()

getConnection()

Driver Manager

prepareCall()

createStatement()

Connection

execute()

executeUpdate() Statement
Callable

Statement
Prepared
Statement

getMoreResults()
next()

getFloat()

getString()ResultSet

prepareStatement()

executeQuery()

Deallocation
and

cleanup

Process
results

Statement
handling

Initialize
and

allocate

45 1529-5 CH39 9/23/98, 4:55 PM880

881

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

JDBC Query Example In this example, you list all the students in the database with a SQL
SELECT statement. The steps required to accomplish this task using the JDBC API are listed
here. For each step, the Java program code with the JDBC API calls follows the description of
the steps.

FIG. 39.3
JDBC example
database schema.

FIG. 39.4
ODBC Setup for the
example database.
After this setup, the
example database URL
is jdbc:odbc:
Student DB;uid=
”admin”;pw=”sa”.

JDBC Implementation

45 1529-5 CH39 9/23/98, 4:55 PM881

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

882 Chapter 39 JDBC: The Java Database Connectivity

//Declare a method and some variables.
public void ListStudents() throws SQLException {
 int i, NoOfColumns;
 String StNo,StFName,StLName;
 //Initialize and load the JDBC-ODBC driver.
 Class.forName (“jdbc.odbc.JdbcOdbcDriver”);
 //Make the connection object.
 Connection Ex1Con = DriverManager.getConnection
➥(“jdbc:odbc:StudentDB;uid=”admin”;pw=”sa”);
 //Create a simple Statement object.
 Statement Ex1Stmt = Ex1Con.createStatement();
 //Make a SQL string, pass it to the DBMS, and execute the SQL statement.
 ResultSet Ex1rs = Ex1Stmt.executeQuery(
 “SELECT StudentNumber, FirstName, LastName FROM Students”);
 //Process each row until there are no more rows.
 // Displays the results on the console.
 System.out.println(“Student Number First Name Last Name”);
 while (Ex1rs.next()) {
 // Get the column values into Java variables
 StNo = Ex1rs.getString(1);
 StFName = Ex1rs.getString(2);
 StLName = Ex1rs.getString(3);
 System.out.println(StNo,StFName,StLName);
 }
 }

As you can see, it is a simple Java program using the JDBC API. The program illustrates the
basic steps needed to access a table and lists some of the fields in the records.

JDBC Update Example In this example, you update the FirstName field in the Students table
by knowing the student’s StudentNumber. As in the preceding example, the code follows the
description of the step.

//Declare a method and some variables and parameters.
public void UpdateStudentName(String StFName, String StLName,
 String StNo) throws SQLException {
 int RetValue;
 // Initialize and load the JDBC-ODBC driver.
 Class.forName (“jdbc.odbc.JdbcOdbcDriver”);
 // Make the connection object.
 Connection Ex1Con = DriverManager.getConnection
➥(“jdbc:odbc:StudentDB;uid=”admin”;pw=”sa”);
 // Create a simple Statement object.
 Statement Ex1Stmt = Ex1Con.createStatement();
 //Make a SQL string, pass it to the DBMS, and execute the SQL statement
 String SQLBuffer = “UPDATE Students SET FirstName = “+
 StFName+”, LastName = “+StLName+
 “ WHERE StudentNumber = “+StNo
 RetValue = Ex1Stmt.executeUpdate(SQLBuffer);
 System.out.println(“Updated “ + RetValue + “ rows in the Database.”);
 }

In this example, you execute the SQL statement and get the number of rows affected by the SQL
statement back from the DBMS.

45 1529-5 CH39 9/23/98, 4:55 PM882

883

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

The previous two examples show how you can do simple yet powerful SQL manipulation of the
underlying data by using the JDBC API in a Java program. In the following sections, you exam-
ine each JDBC class in detail.

The Connection Class
The Connection class is one of the major classes in JDBC. It packs a lot of functionality, rang-
ing from transaction processing to creating statements, in one class as seen in Table 39.3.

Table 39.3 java.sql. Connection Methods and Constants

Return Type Method Name Parameter

Statement-Related Methods

Statement createStatement ()

PreparedStatement prepareStatement (String sql)

CallableStatement prepareCall (String sql)

String nativeSQL (String sql)

void close ()

boolean isClosed ()

Metadata-Related Methods

DatabaseMetaData getMetaData ()

void setReadOnly (boolean readOnly)

boolean isReadOnly ()

void setCatalog (String catalog)

String getCatalog ()

SQLWarning getWarnings ()

void clearWarnings ()

Transaction-Related Methods

void setAutoCommit (boolean autoCommit)

boolean getAutoCommit ()

void commit ()

void rollback ()

void setTransaction (int level)
Isolation

int getTransaction ()
Isolation

The Connection Class

45 1529-5 CH39 9/23/98, 4:55 PM883

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

884 Chapter 39 JDBC: The Java Database Connectivity

The TransactionIsolation constants are defined in the java.sql.Connection as integers with
the following values:

TransactionIsolation Constant Name Value

TRANSACTION_NONE 0

TRANSACTION_READ_UNCOMMITTED 1

TRANSACTION_READ_COMMITTED 2

TRANSACTION_REPEATABLE_READ 4

TRANSACTION_SERIALIZABLE 8

As you saw earlier, the connection is for a specific database that can be interacted with in a
specific subprotocol. The Connection object internally manages all aspects about a connection,
and the details are transparent to the program. Actually, the Connection object is a pipeline into
the underlying DBMS driver. The information to be managed includes the data source identi-
fier, the subprotocol, the state information, the DBMS SQL execution plan ID or handle, and
any other contextual information needed to interact successfully with the underlying DBMS.

The data source identifier could be a port in the Internet database server that is identified
by the //<server name>:port/ URL or just a data source name used by the ODBC

driver or a full pathname to a database file in the local computer. For all you know, it could be a
pointer to data feed of the stock market prices from Wall Street. ■

Another important function performed by the Connection object is the transaction manage-
ment. The handling of the transactions depends on the state of an internal autocommit flag that
is set using the setAutoCommit() method, and the state of this flag can be read using the
getAutoCommit() method. When the flag is true, the transactions are automatically committed
as soon as they are completed. There is no need for any intervention or commands from the
Java application program. When the flag is false, the system is in the Manual mode. The Java
program has the option to commit the set of transactions that happened after the last commit
or roll back the transactions using the commit() and rollback() methods.

JDBC also provides methods for setting the transaction isolation modularity. When you are
developing multi-tiered applications, multiple users will be performing concurrently

interleaved transactions that are on the same database tables. A database driver has to employ
sophisticated locking and data buffering algorithms and mechanisms to implement the transaction
isolation required for a large-scale JDBC application. This is more complex when there are multiple Java
objects working on many databases that could be scattered across the globe. Only time will tell what
special needs for transaction isolation there will be in the new Internet/intranet paradigm. ■

After you have a successful Connection object to a data source, you can interact with the data
source in many ways. The most common approach, from an application developer standpoint,
is using the objects that handle the SQL statements. In JDBC, there are three main types of
statements:

N O T E

N O T E

45 1529-5 CH39 9/23/98, 4:55 PM884

885

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

■ Statement

■ PreparedStatement

■ CallableStatement

The Connection object has the createStatement(), prepareStatement(), and prepareCall()
methods to create these statement objects. Chapter 40, “JDBC Explored,” deals with the
statement-type objects in detail.

Another notable method in the Connection object is the getMetadata() method that returns an
object of the DatabaseMetaData type, which is the topic for the following section.

Metadata Functions
Speaking theoretically, metadata is information about data. The MetaData methods are mainly
aimed at the database tools and wizards that need information about the capabilities and struc-
ture of the underlying DBMS. Many times these tools need dynamic information about the
resultset, which a SQL statement returns. JDBC has two classes of metadata:
ResultSetMetaData and DatabaseMetadata. As you can see from the method tables, a huge
number of methods are available in this class of objects.

DatabaseMetaData
DatabaseMetaDatas are similar to the catalog functions in ODBC, where an application queries
the underlying DBMS’s system tables and gets information. ODBC returns the information as
a resultset. JDBC returns the results as a ResultSet object with well-defined columns.

The DatabaseMetaData object and its methods give a lot of information about the underlying
database. This information is more useful for database tools, automatic data conversion, and
gateway programs. Table 39.4 gives all the methods for the DatabaseMetaData object. As you
can see, it is a very long table with more than 100 methods. Unless they are very exhaustive
GUI tools, most of the programs will not use all the methods. But, as a developer, there will be
times when one needs to know some characteristic about the database or to see whether a
feature is supported. It is those times when the following table comes in handy.

Table 39.4 DatabaseMetaData Methods

Return Type Method Name Parameter

boolean allProceduresAreCallable ()

boolean allTablesAreSelectable ()

String getURL ()

String getUserName ()

boolean isReadOnly ()

continues

Metadata Functions

45 1529-5 CH39 9/23/98, 4:55 PM885

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

886 Chapter 39 JDBC: The Java Database Connectivity

boolean nullsAreSortedHigh ()

boolean nullsAreSortedLow ()

boolean nullsAreSortedAtStart ()

boolean nullsAreSortedAtEnd ()

String getDatabaseProductName ()

String getDatabaseProductVersion ()

String getDriverName ()

String getDriverVersion ()

int getDriverMajorVersion ()

int getDriverMinorVersion ()

boolean usesLocalFiles ()

boolean usesLocalFilePerTable ()

boolean supportsMixedCaseIdentifiers ()

boolean storesUpperCaseIdentifiers ()

boolean storesLowerCaseIdentifiers ()

boolean storesMixedCaseIdentifiers ()

boolean supportsMixedCaseQuotedIdentifiers ()

boolean storesUpperCaseQuotedIdentifiers ()

boolean storesLowerCaseQuotedIdentifiers ()

boolean storesMixedCaseQuotedIdentifiers ()

String getIdentifierQuoteString ()

String getSQLKeywords ()

String getNumericFunctions ()

String getStringFunctions ()

String getSystemFunctions ()

String getTimeDateFunctions ()

String getSearchStringEscape ()

String getExtraNameCharacters ()

boolean supportsAlterTableWithAddColumn ()

Table 39.4 Continued

Return Type Method Name Parameter

45 1529-5 CH39 9/23/98, 4:55 PM886

887

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

boolean supportsAlterTableWithDropColumn ()

boolean supportsColumnAliasing ()

boolean nullPlusNonNullIsNull ()

boolean supportsConvert ()

boolean supportsConvert (int fromType, int
toType)

boolean supportsTableCorrelationNames ()

boolean supportsDifferentTableCorrelation ()
Names

boolean supportsExpressionsInOrderBy ()

boolean supportsOrderByUnrelated ()

boolean supportsGroupBy ()

boolean supportsGroupByUnrelated ()

boolean supportsGroupByBeyondSelect ()

boolean supportsLikeEscapeClause ()

boolean supportsMultipleResultSets ()

boolean supportsMultipleTransactions ()

boolean supportsNonNullableColumns ()

boolean supportsMinimumSQLGrammar ()

boolean supportsCoreSQLGrammar ()

boolean supportsExtendedSQLGrammar ()

boolean supportsANSI92EntryLevelSQL ()

boolean supportsANSI92IntermediateSQL ()

boolean supportsANSI92FullSQL ()

boolean supportsIntegrityEnhancement ()
Facility

boolean supportsOuterJoins ()

boolean supportsFullOuterJoins ()

boolean supportsLimitedOuterJoins ()

String getSchemaTerm ()

String getProcedureTerm ()

Return Type Method Name Parameter

continues

Metadata Functions

45 1529-5 CH39 9/23/98, 4:55 PM887

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

888 Chapter 39 JDBC: The Java Database Connectivity

String getCatalogTerm ()

boolean isCatalogAtStart ()

String getCatalogSeparator ()

boolean supportsSchemasInDataManipulation ()

boolean supportsSchemasInProcedureCalls ()

boolean supportsSchemasInTableDefinitions ()

boolean supportsSchemasInIndexDefinitions ()

boolean supportsSchemasInPrivilege ()
Definitions

boolean supportsCatalogsInDataManipulation ()

boolean supportsCatalogsInProcedureCalls ()

boolean supportsCatalogsInTableDefinitions ()

boolean supportsCatalogsInIndexDefinitions ()

boolean supportsCatalogsInPrivilege ()
Definitions

boolean supportsPositionedDelete ()

boolean supportsPositionedUpdate ()

boolean supportsSelectForUpdate ()

boolean supportsStoredProcedures ()

boolean supportsSubqueriesInComparisons ()

boolean supportsSubqueriesInExists ()

boolean supportsSubqueriesInIns ()

boolean supportsSubqueriesInQuantifieds ()

boolean supportsCorrelatedSubqueries ()

boolean supportsUnion ()

boolean supportsUnionAll ()

boolean supportsOpenCursorsAcrossCommit ()

boolean supportsOpenCursorsAcrossRollback ()

boolean supportsOpenStatementsAcrossCommit ()

boolean supportsOpenStatementsAcross ()
Rollback

Table 39.4 Continued

Return Type Method Name Parameter

45 1529-5 CH39 9/23/98, 4:55 PM888

889

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

int getMaxBinaryLiteralLength ()

int getMaxCharLiteralLength ()

int getMaxColumnNameLength ()

int getMaxColumnsInGroupBy ()

int getMaxColumnsInIndex ()

int getMaxColumnsInOrderBy ()

int getMaxColumnsInSelect ()

int getMaxColumnsInTable ()

int getMaxConnections ()

int getMaxCursorNameLength ()

int getMaxIndexLength ()

int getMaxSchemaNameLength ()

int getMaxProcedureNameLength ()

int getMaxCatalogNameLength ()

int getMaxRowSize ()

boolean doesMaxRowSizeIncludeBlobs ()

int getMaxStatementLength ()

int getMaxStatements ()

int getMaxTableNameLength ()

int getMaxTablesInSelect ()

int getMaxUserNameLength ()

int getDefaultTransactionIsolation ()

boolean supportsTransactions ()

boolean supportsTransactionIsolationLevel (int level)

boolean supportsDataDefinitionAndData ()
ManipulationTransactions

boolean supportsDataManipulation ()
TransactionsOnly

boolean dataDefinitionCausesTransaction ()
Commit

boolean dataDefinitionIgnoredIn ()
Transactions

Return Type Method Name Parameter

continues

Metadata Functions

45 1529-5 CH39 9/23/98, 4:55 PM889

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

890 Chapter 39 JDBC: The Java Database Connectivity

ResultSet getProcedures (String catalog, String
schemaPattern, String
procedureNamePattern)

ResultSet getProcedureColumns (String catalog, String
schemaPattern, String
procedureNamePattern,
String
columnNamePattern)

ResultSet getTables (String catalog, String
schemaPattern, String
tableNamePattern,
String types[])

ResultSet getSchemas ()

ResultSet getCatalogs ()

ResultSet getTableTypes ()

ResultSet getColumns (String catalog, String
schemaPattern, String
tableNamePattern,
String
columnNamePattern)

ResultSet getColumnPrivileges (String catalog, String
schema, String table,
String
columnNamePattern)

ResultSet getTablePrivileges (String catalog, String
schemaPattern, String
tableNamePattern)

ResultSet getBestRowIdentifier (String catalog, String
schema, String table,
int scope, boolean
nullable)

ResultSet getVersionColumns (String catalog, String
schema, String table)

ResultSet getPrimaryKeys (String catalog, String
schema, String table)

ResultSet getImportedKeys (String catalog, String
schema, String table)

Table 39.4 Continued

Return Type Method Name Parameter

45 1529-5 CH39 9/23/98, 4:55 PM890

891

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

ResultSet getExportedKeys (String catalog, String
schema, String table)

ResultSet getCrossReference (String primaryCatalog,
String primarySchema,
String primaryTable,
String foreignCatalog,
String foreignSchema,
String foreignTable)

ResultSet getTypeInfo ()

ResultSet getIndexInfo (String catalog, String
schema, String table,
boolean unique, boolean
approximate)

As you can see in the table, the DatabaseMetaData object gives information about the function-
ality and limitation of the underlying DBMS. An important set of information that is very useful
for an application programmer includes the methods describing schema details of the tables in
the database, as well as table names, stored procedure names, and so on.

An example of using the DatabaseMetaData objects from a Java application is the development
of multi-tier, scalable applications. A Java application can query if the underlying database
engine supports a particular feature. If it does not, Java can call alternative methods to perform
the task. This way, the application will not fail if a feature is not available in the DBMS.

At the same time, the application will exploit advanced functionality whenever it is available.
This is what some experts call “interoperable and yet scalable.” Interoperability is needed for
application tools also—especially for general-purpose design and query tools based on Java
that must interact with different data sources. These tools have to query the data source sys-
tem to find out the supported features and proceed accordingly. The tools might be able to
process information faster with data sources that support advanced features, or they may be
able to provide the user with more options for a feature-rich data source.

ResultSetMetaData
Compared to the DatabaseMetaData, the ResultSetMetaData object is simpler and has fewer
methods. But these will be more popular with application developers. The ResultSetMetaData,
as the name implies, describes a ResultSet object. Table 39.5 lists all the methods available for
the ResultSetMetaData object.

Return Type Method Name Parameter

Metadata Functions

45 1529-5 CH39 9/23/98, 4:55 PM891

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

892 Chapter 39 JDBC: The Java Database Connectivity

Table 39.5 ResultSetMetaData Methods

Return Type Method Name Parameter

Int getColumnCount ()

boolean isAutoIncrement (int column)

boolean isCaseSensitive (int column)

boolean isSearchable (int column)

boolean isCurrency (int column)

int isNullable (int column)

boolean isSigned (int column)

int getColumnDisplaySize (int column)

String getColumnLabel (int column)

String getColumnName (int column)

String getSchemaName (int column)

int getPrecision (int column)

int getScale (int column)

String getTableName (int column)

String getCatalogName (int column)

int getColumnType (int column)

String getColumnTypeName (int column)

boolean isReadOnly (int column)

boolean isWritable (int column)

boolean isDefinitelyWritable (int column)

Return Values

int columnNo
Nulls = 0

int column
Nullable = 1

int Column
Nullable
Unknown = 2

As you can see from the preceding table, the ResultSetMetaData object can be used to find out
about the types and properties of the columns in a resultset. You need to use methods such as

45 1529-5 CH39 9/23/98, 4:55 PM892

893

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

39

V
Part

Ch

getColumnLabel() and getColumnDisplaySize() even in normal application programs. Using
these methods will result in programs that handle result sets generically, thus assuring unifor-
mity across various applications in an organization as the names and sizes are taken from the
database itself.

Before you leave this chapter, also look at the exception handling facilities offered by JDBC.

The SQLException Class
The SQLException class in JDBC provides a variety of information regarding errors that oc-
curred during a database access. The SQLException objects are chained, so a program can
read them in order. This is a good mechanism, as an error condition can generate multiple
errors and the final error might not have anything to do with the actual error condition. By
chaining the errors, you can actually pinpoint the first error. Each SQLException has an error
message and vendor-specific error code. Also associated with a SQLException is a SQLState
string that follows the XOPEN SQLState values defined in the SQL specification. Table 39.6 lists
the methods for the SQLException class.

Table 39.6 SQLException Methods

Return Type Method Name Parameter

SQLException SQLException (String reason, String SQLState, int
vendorCode)

SQLException SQLException (String reason, String SQLState)

SQLException SQLException (String reason)

SQLException SQLException ()

String getSQLState ()

int getErrorCode ()

SQLException getNextException ()

void setNextException (SQLException ex)

The SQLWarnings Class
Unlike the SQLException class, the SQLWarnings class does not cause any commotion in a Java
program. The SQLWarnings are tagged to the object whose method caused the warning. So you
should check for warnings using the getWarnings() method that is available for all objects.
Table 39.7 lists the methods associated with the SQLWarnings class.

The SQLWarnings Class

45 1529-5 CH39 9/23/98, 4:55 PM893

P2/VB mpprp12 UsingJava1.2 1529-5 8.7.98 ayanna chapter 39 LP#3

894 Chapter 39 JDBC: The Java Database Connectivity

Table 39.7 SQLWarnings Methods

Return Type Function Name Parameter

SQLWarning SQLWarning (String reason, String SQLState, int
vendorCode)

SQLWarning SQLWarning (String reason, String SQLState)

SQLWarning SQLWarning (String reason)

SQLWarning SQLWarning ()

SQLWarning getNextWarning ()

void setNextWarning (SQLWarning w)

45 1529-5 CH39 9/23/98, 4:55 PM894

895

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

C H A P T E R

JDBC Explored

40

In this chapter

Statements 896

ResultSet Processing Retrieving Results 904

Other JDBC Classes 906

JDBC in Perspective 910

46 1529-5 CH40 9/23/98, 4:57 PM895

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

896 Chapter 40 JDBC Explored

Statements
The Statement object does all of the work to interact with the Database Management System
in terms of SQL statements. You can create many Statement objects from one Connection
object. Internally, the Statement object would be storing the various data needed to interact
with a database, including state information, buffer handles, and so on; but these are transpar-
ent to the JDBC application program.

When a program attempts an operation that is not in sync with the internal state of the
system (for example, a next() method to get a row when no SQL statements have been

executed), this discrepancy is caught and an exception is raised. This exception, normally, is probed by
the application program using the methods in the SQLException object. ■

JDBC supports three types of statements:

■ Statement

■ PreparedStatement

■ CallableStatement

Before you explore these different statements, see the steps that an SQL statement goes
through.

A Java application program first builds the SQL statement in a string buffer and passes this
buffer to the underlying DBMS through some API calls. An SQL statement needs to be verified
syntactically, optimized, and converted to an executable form before execution. In the Call
Level Interface (CLI) Application Program Interface (API) model, the application program
through the driver passes the SQL statement to the underlying DBMS, which prepares and
executes the SQL statement.

After the DBMS receives the SQL string buffer, it parses the statement and does a syntax
check run. If the statement is not syntactically correct, the system returns an error condition to
the driver, which generates an SQLException. If the statement is syntactically correct, depend-
ing on the DBMS, many query plans are usually generated that are run through an optimizer
(often a cost-based optimizer). Then the optimum plan is translated into a binary execution
plan. After the execution plan is prepared, the DBMS usually returns a handle or identifier to
this optimized binary version of the SQL statement to the application program.

The three JDBC statement types (Statement, PreparedStatement, and CallableStatement)
differ in the timing of the SQL statement preparation and the statement execution. In the case
of the simple Statement object, the SQL is prepared and executed in one step—at least from
the application program point of view. (Internally, the driver might get the identifier, command
the DBMS to execute the query, and then discard the handle). In the case of a
PreparedStatement object, the driver stores the execution plan handle for later use. In the case
of the CallableStatement object, the SQL statement is actually making a call to a stored proce-
dure that is usually already optimized.

N O T E

46 1529-5 CH40 9/23/98, 4:57 PM896

897

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

As you know, stored procedures are encapsulated business rules or procedures that reside
in the database server. They also enforce uniformity across applications, as well as provide

security to the database access. Stored procedures last beyond the execution of the program, so the
application program does not spend any time waiting for the DBMS to create the execution plan. ■

Now look at each type of statement more closely and see what each has to offer a Java pro-
gram.

Statement
A Statement object is created using the createStatement() method in the Connection object.
Table 40.1 shows all methods available for the Statement object.

Table 40.1 Statement Object Methods

Return Type Method Name Parameter

ResultSet executeQuery (String sql)

int executeUpdate (String sql)

boolean execute (String sql)

boolean getMoreResults ()

void close ()

int getMaxFieldSize ()

void setMaxFieldSize (int max)

int getMaxRows ()

void setMaxRows (int max)

void setEscapeProcessing (boolean enable)

int getQueryTimeout ()

void setQueryTimeout (int seconds)

void cancel ()

java.sql.SQLWarning getWarnings ()

void clearWarnings ()

void setCursorName (String name)

ResultSet getResultSet ()

int getUpdateCount ()

The most important methods are executeQuery(), executeUpdate(), and execute(). As you
create a Statement object with a SQL statement, the executeQuery() method takes an SQL

N O T E

Statements

46 1529-5 CH40 9/23/98, 4:57 PM897

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

898 Chapter 40 JDBC Explored

string. It passes the SQL string to the underlying data source through the driver manager and
gets the ResultSet back to the application program. The executeQuery() method returns only
one ResultSet. For those cases that return more than one ResultSet, the execute() method
should be used.

CAUTION

Only one ResultSet can be opened per Statement object at one time.

For SQL statements that do not return a ResultSet like the UPDATE, DELETE, and DDL state-
ments, the Statement object has the executeUpdate() method that takes a SQL string and
returns an integer. This integer indicates the number of rows that are affected by the SQL
statement.

The JDBC processing is synchronous; that is, the application program must wait for the SQL
statements to complete. But because Java is a multithreaded platform, the JDBC designers

suggest using threads to simulate asynchronous processing. ■

The Statement object is best suited for ad hoc SQL statements or SQL statements that are
executed once. The DBMS goes through the syntax run, query plan optimization, and the
execution plan generation stages as soon as this SQL statement is received. The DBMS ex-
ecutes the query and then discards the optimized execution plan; so, if the executeQuery()
method is called again, the DBMS goes through all of the steps again.

The following example program shows how to use the Statement class to access a database.

◊ See “Anatomy of a JDBC Application,” p. 879

In the example shown in Listing 40.1, you list all of the subjects (classes) available in the enroll-
ment database and their locations, days, and times. The SQL statement for this is:

SELECT ClassName, Location, DaysAndTimes FROM Classes

You create a Statement object and pass the SQL string during the executeQuery() method call
to get this data.

Listing 40.1 A Simple JDBC Example Listing Class Schedules

//Declare a method and some variables.
public void ListClasses() throws SQLException {
 int i, NoOfColumns;
 String ClassName,ClassLocation, ClassSchedule;
 //Initialize and load the JDBC-ODBC driver.
 Class.forName (“jdbc.odbc.JdbcOdbcDriver”);
 //Make the connection object.
 Connection Ex1Con = DriverManager.getConnection(“jdbc:odbc:
StudentDB;uid=”admin”;pw=”sa”);
 //Create a simple Statement object.
 Statement Ex1Stmt = Ex1Con.createStatement();

N O T E

46 1529-5 CH40 9/23/98, 4:57 PM898

899

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

 //Make a SQL string, pass it to the DBMS, and execute the SQL statement.
 ResultSet Ex1rs = Ex1Stmt.executeQuery(“SELECT ClassName, Location,
DaysAndTimes FROM Classes”);
 //Process each row until there are no more rows.
 // And display the results on the console.
 System.out.println(“Class Location Schedule”);
 while (Ex1rs.next()) {
 // Get the column values into Java variables
 ClassName = Ex1rs.getString(1);
 ClassLocation = Ex1rs.getString(2);
 ClassSchedule = Ex1rs.getString(3);
 System.out.println(ClassName,ClassLocation,ClassSchedule);
 }
}

As you can see, the program is very straightforward. You do the initial connection and create a
Statement object. You pass the SQL along with the method executeQuery() call. The driver
passes the SQL string to the DBMS, which performs the query and returns the results. After
the statement is finished, the optimized execution plan is lost.

PreparedStatement
In the case of a PreparedStatement object, as the name implies, the application program pre-
pares a SQL statement using the java.sql.Connection.prepareStatement() method. The
PreparedStatement() method takes an SQL string, which is passed to the underlying DBMS.
The DBMS goes through the syntax run, query plan optimization, and the execution plan
generation stages, but does not execute the SQL statement. Possibly, it returns a handle to the
optimized execution plan that the JDBC driver stores internally in the PreparedStatement
object.

The methods of the PreparedStatement object are shown in Table 40.2. Notice that the
executeQuery(), executeUpdate(), and execute() methods do not take any parameters. They
are just calls to the underlying DBMS to perform the already-optimized SQL statement.

Table 40.2 PreparedStatement Object Methods

Return Type Method Name Parameter

ResultSet executeQuery ()

int executeUpdate ()

boolean execute ()

One of the major features of a PreparedStatement is that it can handle IN types of parameters.
The parameters are indicated in an SQL statement by placing the ? as the parameter marker
instead of the actual values. In the Java program, the association is made to the parameters
with the setXXXX() methods, as shown in Table 40.3. All of the setXXXX() methods take the
parameter index, which is 1 for the first ?, 2 for the second ?, and so on.

Statements

46 1529-5 CH40 9/23/98, 4:57 PM899

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

900 Chapter 40 JDBC Explored

Table 40.3 java.sql.PreparedStatement—Parameter-Related Methods

Return Type Method Name Parameter

void clearParameters ()

void setAsciiStream (int parameterIndex,
java.io.InputStream x, int length)

void setBinaryStream (int parameterIndex,
java.io.InputStream x, int length)

void setBoolean (int parameterIndex, boolean x)

void setByte (int parameterIndex, byte x)

void 1setBytes (int parameterIndex, byte x[])

void setDate (int parameterIndex, java.sql.Date x)

void setDouble (int parameterIndex, double x)

void setFloat (int parameterIndex, float x)

void setInt (int parameterIndex, int x)

void setLong (int parameterIndex, long x)

void setNull (int parameterIndex, int sqlType)

void setBignum (int parameterIndex, Bignum x)

void setShort (int parameterIndex, short x)

void setString (int parameterIndex, String x)

void setTime (int parameterIndex, java.sql.Time x)

void setTimestamp (int parameterIndex, java.sql.Timestamp x)

void setUnicodeStream (int parameterIndex,
java.io.InputStream x, int length)

Advanced Features—Object Manipulation

void setObject (int parameterIndex,
Object x, int targetSqlType, int scale)

void setObject (int parameterIndex,
Object x, int targetSqlType)

void setObject (int parameterIndex, Object x)

In the case of the PreparedStatement, the driver actually sends only the execution plan ID and
the parameters to the DBMS. This results in less network traffic and is well-suited for Java
applications on the Internet. The PreparedStatement should be used when you need to ex-
ecute the SQL statement many times in a Java application. But remember, even though the
optimized execution plan is available during the execution of a Java program, the DBMS

46 1529-5 CH40 9/23/98, 4:57 PM900

901

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

discards the execution plan at the end of the program. So, the DBMS must go through all of
the steps of creating an execution plan every time the program runs. The PreparedStatement
object achieves faster SQL execution performance than the simple Statement object, as the
DBMS does not have to run through the steps of creating the execution plan.

The following example program shows how to use the PreparedStatement class to access a
database. The database schema is shown in Chapter 39, “JDBC: The Java Database Connectiv-
ity.” In this example, you optimize the example you developed in the Statement example.

◊ See “Anatomy of a JDBC Application,” p. 879

The simple Statement example in Listing 40.1 can be improved in a few major ways. First, the
DBMS goes through building the execution plan every time, so you make it a
PreparedStatement. Secondly, the query lists all courses that could scroll away. You improve
this situation by building a parameterized query as shown in Listing 40.2.

Listing 40.2 Improving the Example with a PreparedStatement

 //Declare class variables
Connection Con;
PreparedStatement PrepStmt;
boolean Initialized = false;
private void InitConnection() throws SQLException {
 //Initialize and load the JDBC-ODBC driver.
 Class.forName (“jdbc.odbc.JdbcOdbcDriver”);
 //Make the connection object.
 Con = DriverManager.getConnection(
➥“jdbc:odbc:StudentDB;uid=”admin”;pw=”sa”);
 //Create a prepared Statement object.
 PrepStmt = Ex1Con.prepareStatement(“SELECT ClassName,
➥Location, DaysAndTimes FROM Classes WHERE ClassName = ?”);
 Initialized = True;
}

public void ListOneClass(String ListClassName) throws SQLException {
 int i, NoOfColumns;
 String ClassName,ClassLocation, ClassSchedule;
 if (! Initialized) {
 InitConnection();
 }
 // Set the SQL parameter to the one passed into this method
 PrepStmt.setString(1,ListClassName);
 ResultSet Ex1rs = PrepStmt.executeQuery()
 //Process each row until there are no more rows and
 // display the results on the console.
 System.out.println(“Class Location Schedule”);
 while (Ex1rs.next()) {
 // Get the column values into Java variables
 ClassName = Ex1rs.getString(1);
 ClassLocation = Ex1rs.getString(2);
 ClassSchedule = Ex1rs.getString(3);
 System.out.println(ClassName,ClassLocation,ClassSchedule);
 }
}

Statements

46 1529-5 CH40 9/23/98, 4:57 PM901

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

902 Chapter 40 JDBC Explored

Now, if a student wants to check the details of one subject interactively, this sample program
can be used. You can save execution time and network traffic from the second invocation on-
wards because you are using the PreparedStatement object.

CallableStatement
For a secure, consistent, and manageable multi-tier client/server system, the data access
should allow the use of stored procedures. Stored procedures centralize the business logic in
terms of manageability and also in terms of running the query. Java applets running on clients
with limited resources cannot be expected to run huge queries. But the results are important
to those clients. JDBC allows the use of stored procedures by the CallableStatement class and
with the escape clause string.

A CallableStatement object is created by the prepareCall() method in the Connection ob-
ject. The prepareCall() method takes a string as the parameter. This string, called an escape
clause, is of the form

{[? =] call <stored procedure name> [<parameter>,<parameter> ...]}

The CallableStatement class supports parameters. These parameters are of the OUT kind from
a stored procedure or the IN kind to pass values into a stored procedure. The parameter
marker (question mark) must be used for the return value (if any) and any output arguments
because the parameter marker is bound to a program variable in the stored procedure. Input
arguments can be either literals or parameters. For a dynamic parameterized statement, the
escape clause string takes the form

{[? =] call <stored procedure name> [<?>,<?> ...]}

The OUT parameters should be registered using the registerOutparameter() method (see
Table 40.4) before the call to the executeQuery(), executeUpdate(), or execute() methods.

Table 40.4 CallableStatement—OUT Parameter Register Methods

Return Type Method Name Parameter

void registerOutParameter (int parameterIndex, int
sqlType)

void registerOutParameter (int parameterIndex, int
sqlType, int scale)

After the stored procedure is executed, the DBMS returns the result value to the JDBC driver.
This return value is accessed by the Java program using the methods in Table 40.5.

46 1529-5 CH40 9/23/98, 4:57 PM902

903

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

Table 40.5 CallableStatement Parameter Access Methods

Return Type Method Name Parameter

boolean getBoolean (int parameterIndex)

byte getByte (int parameterIndex)

byte[] getBytes (int parameterIndex)

java.sql.Date getDate (int parameterIndex)

double getDouble (int parameterIndex)

float getFloat (int parameterIndex)

int getInt (int parameterIndex)

long getLong (int parameterIndex)

java.lang.Bignum getBignum (int parameterIndex, int scale)

Object getObject (int parameterIndex)

short getShort (int parameterIndex)

String getString (int parameterIndex)

java.sql.Time getTime (int parameterIndex)

java.sql.Timestamp getTimestamp (int parameterIndex)

Miscellaneous Functions

boolean wasNull ()

If a student wants to find out the grades for a subject, in the database schema shown in Chapter
39, you need to do many operations on various tables, such as find all assignments for the
student, match them with class name, calculate grade points, and so on. This is a business logic
well-suited for a stored procedure. In this example, you give the stored procedure a student ID
and class ID, and it returns the grade. Your client program becomes simple, and all the pro-
cessing is done at the server. This is where you will use a CallableStatement.

The stored procedure call is of the form

studentGrade = getStudentGrade(StudentID,ClassID)

In the JDBC call, you create a CallableStatement object with the ? symbol as a placeholder for
parameters, and then connect Java variables to the parameters as shown in Listing 40.3.

Listing 40.3 Displaying the Grade with a CallableStatement

public void DisplayGrade(String StudentID, String ClassID) throws SQLException {
 int Grade;
 //Initialize and load the JDBC-ODBC driver.
 Class.forName (“jdbc.odbc.JdbcOdbcDriver”);

continues

Statements

46 1529-5 CH40 9/23/98, 4:57 PM903

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

904 Chapter 40 JDBC Explored

 //Make the connection object.
 Connection Con = DriverManager.getConnection(
➥“jdbc:odbc:StudentDB;uid=”admin”;pw=”sa”);

 //Create a Callable Statement object.
 CallableStatement CStmt = Con.prepareCall({?=call getStudentGrade[?,?]});

 // Now tie the placeholders with actual parameters.
 // Register the return value from the stored procedure
 // as an integer type so that the driver knows how to handle it.
 // Note the type is defined in the java.sql.Types.
 CStmt.registerOutParameter(1,java.sql.Types.INTEGER);

 // Set the In parameters (which are inherited from the
 // PreparedStatement class)
 CStmt.setString(1,StudentID);
 CStmt.setString(2,ClassID);

 // Now we are ready to call the stored procedure
 int RetVal = CStmt.executeUpdate();

 // Get the OUT parameter from the registered parameter
 // Note that we get the result from the CallableStatement object
 Grade = CStmt.getInt(1);

 // And display the results on the console.
 System.out.println(“ The Grade is : “);
 System.out.println(Grade);
}

As you can see, JDBC has minimized the complexities of getting results from a stored proce-
dure. It still is a little involved, but is simpler. Maybe in the future these steps will become even
more simple.

Now that you have seen how to communicate with the underlying DBMS with SQL, let’s see
what you need to do to process the results sent back from the database as a result of the SQL
statements.

ResultSet Processing Retrieving Results
The ResultSet object is actually a tubular data set; that is, it consists of rows of data organized
in uniform columns. In JDBC, the Java program can see only one row of data at one time. The
program uses the next() method to go to the next row. JDBC does not provide any methods to
move backwards along the ResultSet or to remember the row positions (called bookmarks in
ODBC). After the program has a row, it can use the positional index (1 for the first column, 2
for the second column, and so on) or the column name to get the field value by using the
getXXXX() methods. Table 40.6 shows the methods associated with the ResultSet object.

Listing 40.3 Continued

46 1529-5 CH40 9/23/98, 4:57 PM904

905

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

Table 40.6 java.sql.ResultSet Methods

Return Type Method Name Parameter

boolean next ()

void close ()

boolean wasNull ()

Get Data By Column Position

java.io.InputStream getAsciiStream (int columnIndex)

java.io.InputStream getBinaryStream (int columnIndex)

boolean getBoolean (int columnIndex)

byte getByte (int columnIndex)

byte[] getBytes (int columnIndex)

java.sql.Date getDate (int columnIndex)

double getDouble (int columnIndex)

float getFloat (int columnIndex)

int getInt (int columnIndex)

long getLong (int columnIndex)

java.lang.Bignum getBignum (int columnIndex, int scale)

Object getObject (int columnIndex)

short getShort (int columnIndex)

String getString (int columnIndex)

java.sql.Time getTime (int columnIndex)

java.sql.Timestamp getTimestamp (int columnIndex)

java.io.InputStream getUnicodeStream (int columnIndex)

Get Data By Column Name

java.io.InputStream getAsciiStream (String columnName)

java.io.InputStream getBinaryStream (String columnName)

boolean getBoolean (String columnName)

byte getByte (String columnName)

byte[] getBytes (String columnName)

java.sql.Date getDate (String columnName)

double getDouble (String columnName)

continues

ResultSet Processing Retrieving Results

46 1529-5 CH40 9/23/98, 4:57 PM905

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

906 Chapter 40 JDBC Explored

float getFloat (String columnName)

int getInt (String columnName)

long getLong (String columnName)

java.lang.Bignum getBignum (String columnName, int scale)

Object getObject (String columnName)

short getShort (String columnName)

String getString (String columnName)

java.sql.Time getTime (String columnName)

java.sql.Timestamp getTimestamp (String columnName)

java.io.InputStream getUnicodeStream (String columnName)

int findColumn (String columnName)

SQLWarning getWarnings ()

void clearWarnings ()

String getCursorName ()

ResultSetMetaData getMetaData ()

As you can see, the ResultSet methods—even though there are many—are very simple. The
major ones are the getXXX() methods. The getMetaData() method returns the metadata infor-
mation about a ResultSet. The DatabaseMetaData also returns the results in the ResultSet
form. The ResultSet also has methods for the silent SQLWarnings. It is a good practice to
check any warnings using the getWarning() method that returns a null if there are no warn-
ings.

Other JDBC Classes
Now that you have seen all of the main database-related classes, look at some of the supporting
classes that are available in JDBC. These classes include the Date, Time, TimeStamp, and so on.
Most of these classes extend the basic Java classes to add capability to handle and translate
data types that are specific to SQL.

java.sql.Date
This package (see Table 40.7) gives a Java program the capability to handle SQL DATE informa-
tion with only year, month, and day values.

Table 40.6 Continued

Return Type Method Name Parameter

Get Data By Column Name (continued)

46 1529-5 CH40 9/23/98, 4:57 PM906

907

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

Table 40.7 java.sql.Date Methods

Return Type Method Name Parameter

Date Date (int year, int month, int day)

Date Date (long date)

Date valueOf (String s)

String toString ()

int getHours ()

int getMinutes ()

int getSeconds ()

void setHours (int Hr)

void setMinutes (int Min)

void setSeconds (int Sec)

void setTime (long date)

java.sql.Time
As seen in Table 40.8, the java.sql.Time adds the Time object to the java.util.Date package
to handle only hours, minutes, and seconds. java.sql.Time is also used to represent SQL Time
information.

Table 40.8 java.sql.Time Methods

Return Type Method Name Parameter

Time Time (int hour, int minute, int second)

Time Time (long time)

Time Time valueOf(String s)

String toString ()

int getDate ()

int getDay ()

int getMonth ()

int getYear ()

void setDate (int date)

void setMonth (int month)

void setTime (int time)

void setYear (int year)

Other JDBC Classes

46 1529-5 CH40 9/23/98, 4:57 PM907

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

908 Chapter 40 JDBC Explored

java.sql.Timestamp
The java.sql.Timestamp package adds the TimeStamp class to the java.util.Date package
(see Table 40.9). It adds the capability of handling nanoseconds. But the granularity of the
subsecond timestamp depends on the database field as well as the operating system.

Table 40.9 java.sql.Timestamp Methods

Return Type Method Name Parameter

TimeStamp TimeStamp (int year, int month, int date, int
hour, int minute, int second, int nano)

TimeStamp TimeStamp (long time)

TimeStamp valueOf (String s)

String toString ()

int getNanos ()

void setNanos (int n)

boolean after (TimeStamp ts)

boolean before (TimeStamp ts)

boolean equals (TimeStamp ts)

java.sql.Types
This class defines a set of XOPEN equivalent integer constants that identify SQL types. The
constants are final types. Therefore, they cannot be redefined in applications or applets. Table
40.10 lists the constant names and their values.

Table 40.10 java.sql.Types Constants

Constant Name Value

BIGINT -5

BINARY -2

BIT -7

CHAR 1

DATE 91

DECIMAL 3

DOUBLE 8

FLOAT 6

46 1529-5 CH40 9/23/98, 4:57 PM908

909

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

INTEGER 4

LONGVARBINARY -4

LONGVARCHAR -1

NULL 0

NUMERIC 2

OTHER 1111

REAL 7

SMALLINT 5

TIME 92

TIMESTAMP 93

TINYINT -6

VARBINARY -3

VARCHAR 12

java.sql.DataTruncation
This class provides methods for getting details when a DataTruncation warning or exception is
thrown by an SQL statement. The data truncation could happen to a column value or param-
eter.

The main elements of a DataTruncation object are

■ Index gives the column or parameter number.

■ parameter flag true if the truncation is on a parameter and false if the truncation is on a
column.

■ read flag true if the truncation is during a read and false if the truncation is on a write.

The DataTruncation object also consists of a datasize element that has the actual size (in
bytes) of the truncated value and the transfer size, which is the number of bytes actually trans-
ferred.

The various methods, as listed in Table 40.11, let the Java program retrieve the values of these
elements. For example, the getRead() method returns true if data truncation occurred during
a read and a false if the truncation occurred during a write.

Constant Name Value

Other JDBC Classes

46 1529-5 CH40 9/23/98, 4:57 PM909

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

910 Chapter 40 JDBC Explored

Table 40.11 java.sql.DataTruncation Methods

Return Type Method Name Parameter

int getDataSize ()

int getIndex ()

boolean getParameter ()

boolean getRead ()

int getTransferSize ()

JDBC in Perspective
JDBC is an important step in the right direction to elevate the Java language to the Java plat-
form. The Java APIs—including the Enterprise APIs (JDBC, RMI, Serialization, and IDL),
Security APIs, and the Server APIs—are the essential ingredients for developing enterprise-
level, distributed, multi-tier client/server applications.

The JDBC specification life cycle happened in the speed of the Net—one Net year is widely
clocked as equaling seven normal years. The JDBC specification is fixed, so the developers and
driver vendors are not chasing a moving target.

JDBC Compliant
Sun has instituted the JDBC Compliant certification for drivers. A particular driver will be called JDBC
Compliant if it passes JDBC compliance tests developed by Sun and Intersolv. At present, a driver
should support at least ANSI SQL92 Entry Level to pass the compliance tests.

The JDBC Compliant certification is very useful for developers because they can confidently develop
applications using JDBC and can be assured database access (in client machines) with JDBC
Compliant drivers.

Another factor in favor of JDBC is its similarity to ODBC. Sun made the right decision to follow
ODBC philosophy and abstractions, thus making it easy for ISVs and users to leverage their
ODBC experience and existing ODBC drivers. In the JDBC specification, this goal is described
as “JDBC must be implementable on top of common database interfaces.”

By making JDBC a part of the Java language, you received all of the advantages of the Java
language concepts for database access. Also, because all implementers have to support the
Java APIs, JDBC has become a universal standard. This philosophy, stated in the JDBC specifi-
cation as “provide a Java interface that is consistent with the rest of the Java system,” makes
JDBC an ideal candidate for use in Java-based database development.

Another good design philosophy is the driver independence of the JDBC. The underlying
database drivers can either be native libraries—such as a DLL for the Windows system or Java

46 1529-5 CH40 9/23/98, 4:57 PM910

911

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

40

V
Part

Ch

routines connecting to listeners. The full Java implementation of JDBC is suitable for a variety
of network and other Java OS computers, thus making JDBC a versatile set of APIs.

In my humble opinion, the most important advantage of JDBC is its simplicity and
versatility. The goal of the designers was to keep the API and common cases simple and

“support the weird stuff in separate interfaces.” Also, they wanted to use multiple methods for multiple
functionality. They have achieved their goals even in this first version.

For example, the Statement object has the executeQuery() method for SQL statements returning
rows of data, and the executeUpdate() method for statements without data to return. Also,
uncommon cases, such as statements returning multiple ResultSets, have a separate method:
execute(). ■

As more applications are developed with JDBC, and as the Java platform matures, more and
more features will be added to JDBC. One of the required features, especially for client/server
processing, is a more versatile cursor. The current design leaves the cursor management de-
tails to the driver. I would prefer more application-level control for scrollable cursors, posi-
tioned update/delete capability, and so on. Another related feature is the bookmark feature,
which is especially useful in a distributed processing environment such as the Internet. ●

N O T E

JDBC in Perspective

46 1529-5 CH40 9/23/98, 4:57 PM911

P2/VB mpprp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 40 LP#4

912 Chapter 40 JDBC Explored

46 1529-5 CH40 9/23/98, 4:57 PM912

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTVI LP#2

VIP A R T

Component-Based Development

41 JavaBeans 915

42 JavaIDL: A Java Interface to CORBA 939

43 Java—Com Integration 965

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTVI LP#2

915

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

C H A P T E R

JavaBeans

Self-Contained Components 916

Important Concepts in Component Models 916

The Basics of Designing a JavaBean 918

Creating and Using Properties 922

Using Events to Communicate with Other Components 927

Introspection: Creating and Using BeanInfo Classes 930

Customization: Providing Custom PropertyEditors and GUI Interfaces 932

Enterprise JavaBeans 937

41

In this chapter

48 1529-5 CH41 9/24/98, 8:29 AM915

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

916 Chapter 41 JavaBeans

Self-Contained Components
JavaBeans adds to the Java platform the capability to create a complete application by simply
linking together a set of self-contained components. Microsoft’s Visual Basic and Borland’s
Delphi are both examples of applications that allow users to build full-blown applications by
combining independent components. The success and popularity of these two applications
alone speak volumes to the success of this style of application building.

Just as with other models, there is no restriction on the size or complexity of a JavaBeans
component. In principle, JavaBeans components (or just Beans) can range from widgets and
controls to containers and applications. The philosophy behind JavaBeans is to provide easy-to-
implement functionality for the former, while allowing enough flexibility for the latter. In the
spirit of this philosophy, you’ll see how to create and use fairly simple Beans. However, after
you finish reading this chapter, you’ll have learned enough to create larger and more complex
Beans, if you choose to do so. If you want to dive deeper into all the intricacies of JavaBeans,
you might want to purchase a copy of Que’s Special Edition Using JavaBeans, which goes into
more detail on all the topics discussed in this chapter.

Important Concepts in Component Models
JavaBeans provides a platform-neutral component architecture. Examples of non-platform–
neutral component architectures include COM/OLE for the Windows platform and OpenDoc
for the Macintosh platform. A component written to be placed into an OpenDoc container, like
ClarisWorks for example, can’t be used inside a COM/OLE container like Microsoft Word.
Because JavaBeans is architecture-neutral, Beans can be placed into any container for which a
bridge exists between JavaBeans and the container’s component architecture. Thus, a
JavaBeans component could be used in both Microsoft Word and ClarisWorks. To accomplish
this seemingly impossible feat, the JavaBeans specification adopts features common with the
other popular component models. In particular, these features include the following:

■ Component fields or properties

■ Component methods or functions

■ Events and intercommunication

■ State persistence and storage

If you are familiar with component models already, you don’t necessarily need to read this
section. You can jump right into the next section, “The Basics of Designing a Java Bean.” ■

Component Fields or Properties
For a component to be useful, it has to have a set of properties that define its state. For ex-
ample, if you were to design a component that displayed some text, one of the properties of
that component might be the foreground color of the font. Another property might be the type
and size of the font. Taken as a whole, the set of properties that make up a component also

N O T E

48 1529-5 CH41 9/24/98, 8:29 AM916

917

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

define its state. For example, if the properties of one component completely match that of
another, they are in the same state.

Properties are often used to define not only the appearance but also the behavior of compo-
nents. This is because a component need not have any appearance at all. For example, a com-
ponent in a spreadsheet might calculate the interest earned on some earnings column. If that
component is not capable of displaying the data, then it probably shouldn’t have any properties
associated with appearance. It is likely, however, that it will have a property that defines the
current interest rate.

Properties can range from Boolean values, to strings, to arrays, to other components. They can
also be interdependent. Following the same example above, a component that displays the
earnings column might want to be notified if the interest rate property of the other component
changes.

Component Methods or Functions
The API, so to speak, of a component is the collection of methods or functions that it contains
that other components and containers can call. There has to be some way for a container to
modify a component’s properties, notify it of an event (see below), or execute some
functionality.

Different component models differ in how they make the properties and methods of their
components available to other components. Because entire books have been written on how
this is implemented for different models, suffice it to say that this is a common feature of com-
ponent models. This topic will be discussed as it relates to JavaBeans in the section on Intro-
spection later in the chapter.

Events and Intercommunication
A component by itself is a lonely component. Even though some components might have ex-
tensive functionality and many properties, in the true spirit of a component, it should only be
useful when used in conjunction with other components. So if two components are sitting to-
gether in a container, how do they talk? How does one let the other know when it has done
something the other really ought to know about?

The method by which most components communicate is through event transmission. One
component (or the container) undergoes some action causing it to generate an event. For
example, an event is generated when you click a button. Depending on the model, the compo-
nent will notify the container, the interested components, or both, of the events. At the same
time, the objects in the environment also act on events delivered to them. For example, the File
dialog box displays itself when it hears that you just clicked a Browse button.

State Persistence and Storage
It is important for components to remember their state. This is so common that you may not
even recognize it. When you open an application and it remembers the size and position of its
window when it was last closed, it is maintaining (to some degree) a persistent state.

Important Concepts in Component Models

48 1529-5 CH41 9/24/98, 8:29 AM917

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

918 Chapter 41 JavaBeans

Also important is the capability to store and retrieve components. Sun Microsystems, Inc. likes
to call this packaging. This is especially important in a distributed environment where the com-
ponents are likely to be served up over a network.

The Basics of Designing a JavaBean
All good programmers recognize the importance of the design phase in programming. Thus,
you’ll start out by addressing how to design a Bean. As you will learn later, the way in which
you design your Bean directly affects the way it behaves in containers. For example, the names
you choose for the methods should follow specific design specifications. If you start from the
beginning with these rules in mind, allowing your Bean to participate in Introspection does not
require any additional programming on your part. Don’t worry so much right now about what
Introspection is; you’ll get into that later.

Designing a Bean consists of the following steps:

1. Specifying the Bean’s properties

2. Specifying the events the Bean generates or responds to

3. Defining which properties, methods, and events the Bean exposes to other Beans or to
its container

4. Deciding miscellaneous issues, such as whether the Bean has its own Customization
dialog box or whether it requires some prototypical state information

You’ll start by designing some Beans. For the sake of a simple example, assume that you are
developing two Beans; one Bean allows text to be entered into it, and the other displays some
text. You can imagine how these Beans might be useful. By placing these two Beans into a
container, you can use one to enter text that the other will then display. What types of proper-
ties do you think these Beans need to have? What events are these Beans interested in hearing
about? What events do these Beans generate? Do these Beans expose all of their properties
and events, or just some? At this point, you may not know the answers to these questions. The
process is the important concept here; the details will become clearer as you progress through
the chapter. Regardless, the first thing any Bean needs is a name. In this chapter, the sample
Beans will be called TextDisplayer and TextReader.

Specifying the Bean’s Properties
The TextDisplayer and TextReader Beans definitely need to have a property defining the text
they hold. For example, say that the TextDisplayer Bean also contains properties defining the
background color, the font, and the font color. The TextReader Bean also contains a property
that defines how many columns of characters it can display. Table 41.1 lists the TextDisplayer
Bean’s properties and the Java types that will be used to implement them. Table 41.2 lists the
TextReader Bean’s properties and the Java types that will be used for them.

48 1529-5 CH41 9/24/98, 8:29 AM918

919

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

Table 41.1 The TextDisplayer Bean’s Properties and Java Types

Property Name Java Type

OutputText java.lang.String

BGColor java.awt.Color

TextFont java.awt.Font

FontColor java.awt.Color

Table 41.2 The TextReader Bean’s Properties and Java Types

Property Name Java Type

InputText java.lang.String

Width int

Specifying the Events the Bean Generates or Responds To
Our TextDisplayer Bean must respond to an event specifying that its text should change.
Specifically, it must update its OutputText property and redraw itself. The TextReader Bean
doesn’t need to respond to any events, but it must generate (or fire) an event when the user
changes its InputText property. This type of event is called a PropertyChangeEvent, for obvi-
ous reasons.

Properties, Methods, and Event Exposure
Because these Beans are particularly simple, you don’t need to hide anything from the Beans’
container or the other Beans interested in them. JavaBeans provides a mechanism for you that
will use the names of your methods to extract the names and types of your properties and
events. Rest assured that you will learn how this works as you go along. Later in the chapter,
you’ll learn how to explicitly define what information in a Bean is exposed to its environment.

Initial Property Values and Bean Customizers
You want to keep this example simple, so assume that your Beans do not need any prototypical
information (you’ll define default values for all their properties) and that they do not have their
own Customization dialog box. This means that your Beans have a predefined state when
they’re instantiated and that they use the standard PropertyEditors for their properties. If you
were designing a Bean that displays an HTML page, for example, specifying default values
might not be possible. You would need to know what file to display when the Bean is instanti-
ated. Table 41.3 shows your TextDisplayer Bean’s properties and the default values it will
hold. Likewise, Table 41.4 is for the TextReader Bean.

The Basics of Designing a JavaBean

48 1529-5 CH41 9/24/98, 8:29 AM919

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

920 Chapter 41 JavaBeans

Table 41.3 Default Property Values for the TextDisplayer Bean

Property Name Default Value

TextOutput “TextDisplayer”

BGColor java.awt.Color.white

TextFont Courier, normal, 12

FontColor java.awt.Color.black

Table 41.4 Default Property Values for the TextReader Bean

Property Name Default Value

TextInput “” (an empty string)

Width 40

At this point, you’ve designed your Beans enough to begin coding. This will be an additive
process because you haven’t learned how to make the Beans do anything yet. All the code
required to actually display the Beans isn’t included in Listings 41.1 and 41.2 because it’s
mainly AWT-related and isn’t relevant to this chapter. If you want to see the entire listings,
please refer to the CD-ROM. In Figure 41.1 you can see your Beans hard at work inside the
BeanBox. The BeanBox is a JavaBeans container that you can download from Sun’s Web site;
it’s included in the BDK, or Beans Development Kit. Right now, the Beans are completely
isolated. Because you haven’t given the Beans any functionality yet, this is about as good as it
gets. The preliminary code needed to instantiate our TextDisplayer Bean is shown in Listing
41.1.

FIG. 41.1
Sun’s BeanBox showing
the TextDisplayer
and TextReader
Beans.

Listing 41.1 TextDisplayer.java—Preliminary Code for the TextDisplayer
Bean

public class TextDisplayer extends Canvas implements PropertyChangeListener {
 // default constructor for this Bean. This is the constructor that an
 // application builder (like Visual Basic) would use.
 public TextDisplayer() {
 this(“TextDisplayer”, Color.white, new Font(“Courier”, Font.PLAIN, 12),
 Color.black);
 }

48 1529-5 CH41 9/24/98, 8:29 AM920

921

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

 // custom constructor for this Bean. This is the constructor you would
 // likely use if you were going to do all your coding from scratch.
 public TextDisplayer(String OutputText, Color BGColor, Font TextFont,
 Color FontColor) {
 super(); // call the Canvas’s constructor.
 this.OutputText = OutputText;
 this.BGColor = BGColor;
 this.TextFont = TextFont;
 this.FontColor = FontColor;

 setFont(TextFont); // set the Canvas’s font.
 setBackground(BGColor); // set the Canvas’s background color.
 setForeground(FontColor); // set the Canvas’s foreground color.
 }

 // this Bean’s properties.
 protected String OutputText;
 protected Color BGColor, FontColor;
 protected Font TextFont;
}

You might have noticed you have specified that your Bean implement an interface called
PropertyChangeListener. This is so that the TextDisplayer Bean can update its OutputText
property by receiving an event. How that works will be discussed in more detail later in the
chapter. The preliminary code needed to instantiate your TextReader Bean is shown in Listing
41.2.

Listing 41.2 TextReader.java—Preliminary Code for the TextReader Bean

public class TextReader extends TextField {
 // default constructor for this Bean. This is the constructor that an
 // application builder (like Visual Basic) would use.
 public TextReader() {
 this(“”, 40);
 }

 // custom constructor for this Bean. This is the constructor that you would
 // likely use if you were doing your coding from scratch.
 public TextReader(String InputText, int Width) {
 super(InputText, Width);
 this.InputText = InputText;
 this.Width = Width;
 setEditable(true);
 }

 // this Bean’s properties.
 protected String InputText;
 protected int Width;
}

The Basics of Designing a JavaBean

48 1529-5 CH41 9/24/98, 8:29 AM921

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

922 Chapter 41 JavaBeans

Creating and Using Properties
In Figure 41.1, you will notice that the TextDisplayer Bean displayed itself with a white back-
ground and black text. It did so because that’s how you set its properties. If you had set the
FontColor property to red, it would have displayed the text in red. If the properties of a compo-
nent cannot be changed by other Beans, the usefulness of the Bean is reduced, as well as the
reusability. For example, if you used the TextDisplayer Bean in an accounting package, you
would need to change the Bean’s FontColor property to red to indicate a negative value. So
how do you let other Beans know that they can set (or read) this property? If you’re coding
from scratch, you can look at the documentation for the Bean. But what if you’re in an applica-
tion builder? Luckily, there’s a way to do this without incurring any extra coding on your part.
You’ll see how that works a little later.

Two types of properties are supported by JavaBeans: single-value and indexed. In addition,
properties can also be bound or constrained. A single-value property is a property for which
there is only one value. As the name suggests, an indexed property has several values, each of
which has a unique index. If a property is bound, it means that some other Bean is dependent
on that property. In the continuing example, the TextReader Bean’s InputText property is
bound to our TextDisplayer Bean; the TextReader must notify the TextReader after its
InputText field changes. A property is constrained if it must check with other components
before it can change. Note that constrained properties cannot change arbitrarily—one or more
components may not allow the updated value.

Single-Value Properties
All properties are accessed by calling methods on the owning Bean’s object. Readable proper-
ties have a getter method used to read the value of the property. Writable properties have a
setter method used to change the value of a property. These methods are not constrained to
simply returning the value of the property; they can also perform calculations and return some
other value. All the properties our Beans have are single-value.

At this point, you’re ready to start talking about Introspection. The method by which other
components learn of your Bean’s properties depends on a few things. In general, though, this
process is called Introspection. In fact, the class java.beans.Introspector is the class that
provides this information for other components. The Introspector class traverses the class
hierarchy of a particular Bean. If it finds explicit information provided by the Bean, it uses that.
However, it uses design patterns to implicitly extract information from those Beans that do not
provide information. Note that this is what happens for your Beans. Specific design rules
should be applied when defining accessor methods so that the Introspector class can do its
job. If you choose to use other names, you can still expose a Bean’s properties, but it requires
you to supply a BeanInfo class. For more about what a BeanInfo class is, see the section on
Introspection. Here are the design patterns you should use:

public void set<PropertyName>(<PropertyType> value);
public <PropertyType> get<PropertyName>();
public boolean is<PropertyName>();

48 1529-5 CH41 9/24/98, 8:29 AM922

923

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

Note that the last pattern is an alternative getter method for Boolean properties only. setter
methods are allowed to throw exceptions if they so choose. The accessor methods for the
TextDisplayer Bean are shown in Listing 41.3. Notice that all the accessor methods have been
declared as synchronized. Even though nothing serious could happen in this Bean, you should
always assume that your Beans are running in multithreaded environments. Using synchro-
nized accessor methods helps prevent race conditions from forming. You can check the
TextReader.java file on your CD-ROM to see the accessor methods for the TextReader Bean.

Listing 41.3 TEXTDISPLAYER.JAVA—The Accessor Methods for the
Properties in the TextDisplayer Bean

public synchronized String getOutputText() {
 return(OutputText);
}

public synchronized void setOutputText(String text) {
 OutputText = text;
 resizeCanvas();
}

public synchronized Color getBGColor() {
 return(BGColor);
}

public synchronized void setBGColor(Color color) {
 BGColor = color;
 setBackground(BGColor); // set the Canvas’s background color.
 repaint();
}

public synchronized Font getTextFont() {
 return(TextFont);
}

public synchronized void setTextFont(Font font) {
 TextFont = font;
 setFont(TextFont); // set the Canvas’s font.
 resizeCanvas();
}

public synchronized Color getFontColor() {
 return(FontColor);
}

public synchronized void setFontColor(Color color) {
 FontColor = color;
 setForeground(FontColor); // set the Canvas’s foreground color.
 repaint();
}

Creating and Using Properties

48 1529-5 CH41 9/24/98, 8:29 AM923

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

924 Chapter 41 JavaBeans

Figure 41.2 shows you what the property sheet of Sun’s BeanBox shows for your
TextDisplayer Bean. Notice that you can see the properties of the parent class, too. Your Bean
inherits from java.awt.Canvas, which inherits from java.awt.Component, which inherits from
java.lang.Object. The additional properties that you see are from the java.awt.Component
class. This illustrates the principal drawback of using the automatic JavaBeans Introspection
methods. In your own Beans, this might be the motivation for providing a BeanInfo class.
Again, more on that is in the section on Introspection.

FIG. 41.2
The PropertySheet of
Sun’s BeanBox showing
the Bean’s exposed
properties. Notice the
properties of the parent
class.

Indexed Properties
All indexed properties must be Java integers. Indexed properties can be read individually or as
an entire array. The design patterns for indexed properties are as follows:

public <PropertyType> get<PropertyName>(int index);
public void set<PropertyName>(int index, <PropertyType> value);
public <PropertyType>[] get<PropertyName>();
public void set<PropertyName>(<PropertyType>[] value);

To illustrate, assume there is a Meal property that consists of an array of Courses:

public Course getMeal(int course);
public void setMeal(int course, Course dish);
public Course[] getMeal();
public void setMeal(Course[] dishes);

Bound Properties
As the programmer, you can decide which of your Bean’s properties other components can
bind to. To provide bound properties in your Beans, you must define the following methods:

public void addPropertyChangeListener(PropertyChangeListener l);
public void removePropertyChangeListener(PropertyChangeListener l);

To provide this functionality on a per-property basis, the following design pattern should be
used:

public void add<PropertyName>Listener(PropertyChangeListener l);
public void remove<PropertyName>Listener(PropertyChangeListener l);

48 1529-5 CH41 9/24/98, 8:29 AM924

925

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

Beans wanting to bind to other components’ properties should implement the
PropertyChangeListener interface, which consists of the following method:

public void propertyChange(PropertyChangeEvent evt);

Whenever a bound property in a Bean is updated, it must call the propertyChange() method in
all the components that have registered with it. The class java.beans.PropertyChangeSupport
is provided to help you with this process. The code in Listing 41.4 shows you what is required
in the TextReader Bean to allow its InputText property to be bound.

Listing 41.4. TEXTREADER.JAVA—Code Required to Make the InputText
Property of the TextReader Bean a Bound Property

 // setter method for the InputText property.
 public synchronized void setInputText(String newText) {
 String oldText = InputText;
 InputText = newText;
 setText(InputText);
 changeAgent.firePropertyChange(“inputText”, new String(oldText),
 new String(newText));
 }

 // these two methods allow this Bean to have bound properties.
 public void addPropertyChangeListener(PropertyChangeListener l) {
 changeAgent.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 changeAgent.removePropertyChangeListener(l);
 }

 protected PropertyChangeSupport changeAgent = new PropertyChangeSupport(this
);

Constrained Properties
The process for providing constrained properties in your code is also fairly straightforward.
You must define the following methods in your Bean:

public void addVetoableChangeListener(VetoableChangeListener l);
public void removeVetoableChangeListener(VetoableChangeListener l);

Just as with bound properties, you can make individual properties constrained using the follow-
ing design pattern:

public void add<PropertyName>Listener(VetoableChangeListener l);
public void remove<PropertyName>Listener(VetoableChangeListener l);

Beans intended to constrain other components’ properties should implement the
VetoableChangeListener interface, which consists of the following method:

public void vetoableChange(PropertyChangeEvent evt);

Creating and Using Properties

48 1529-5 CH41 9/24/98, 8:29 AM925

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

926 Chapter 41 JavaBeans

Whenever a constrained property in a Bean is updated, it must call the vetoableChange()
method in all the components that have registered with it. There is also a support class to help
make this process easier. Use the class java.beans.VetoableChangeSupport to help manage
your vetoable properties. The code in Listing 41.5 shows you what is required in the
TextReader Bean to allow its Width property to be constrained.

Listing 41.5 TEXTREADER.JAVA—Code Required to Make the Columns
Property of the TextReader Bean a Constrained Property

// setter method for the Columns property.
 public synchronized void setWidth(int newWidth)
 throws PropertyVetoException {
 int oldWidth = Width;
 vetoAgent.fireVetoableChange(“width”, new Integer(oldWidth),
 new Integer(newWidth));
 // no one vetoed, so change the property.
 Width = newWidth;
 setColumns(Width);
 Component p = getParent();
 if (p != null) {
 p.invalidate();
 p.layout();
 }
 changeAgent.firePropertyChange(“width”, new Integer(oldWidth),
 new Integer(newWidth));
 }

 // these two methods allow this Bean to have constrained properties.
 public void addVetoableChangeListener(VetoableChangeListener l) {
 vetoAgent.addVetoableChangeListener(l);
 }

 public void removeVetoableChangeListener(VetoableChangeListener l) {
 vetoAgent.removeVetoableChangeListener(l);
 }

 protected VetoableChangeSupport vetoAgent = new VetoableChangeSupport(this
);

In this particular example, we chose to make the Width property bound and constrained. A
property does not have to be bound to be constrained. For example, to make the Width prop-
erty constrained but not bound, we would remove the following line from Listing 41.5:

changeAgent.firePropertyChange(“width”, new Integer(oldWidth),
 new Integer(newWidth));

48 1529-5 CH41 9/24/98, 8:29 AM926

927

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

Using Events to Communicate with Other
Components

The whole idea behind the JavaBeans component model is to provide a way to create reusable
components. To do this, Beans must be able to communicate with the other Beans in their
environment and with their container. This is accomplished by means of Listener interfaces.
You’ve already seen some of this with the PropertyChangedEvent from the last section. More
detail about how this works follows.

Beans use the same event-handling scheme as AWT. This means that if your Bean needs to
hear about events coming from another Bean, it must register itself with that Bean. To do this,
it must implement the Listener interface for the event of interest. At the same time, if your
Bean is no longer interested in hearing about some other Bean’s event, it must unregister
itself with that Bean. Any event that a Bean wants to fire must inherit from the
java.util.EventObject class. For simple events, the java.util.EventObject class itself
could be used; however, as with java.lang.Exception, using child classes provides clarity and
is preferred. All Listener interfaces must inherit from the java.util.EventListener inter-
face, and the same subclassing convention applies. The event handling method of a Listener
interface should follow the design pattern for Introspection as shown here:

void <EventOccuranceName>(<EventObjectType evt);

Note that <EventObjectType> must inherit from java.util.EventObject. Here is an example
of an event handler for a DinnerServedListener interface:

void dinnerServed(DinnerServedEvent evt); // DinnerServedEvent inherits from
 // java.util.EventObject.

There is no restriction preventing an event handler method from throwing an exception. In
addition, any one Listener interface can have any number of related event handlers.

There are two types of events that components can listen for: multicast events and unicast
events.

Multicast Events
Multicast events are the most common types of events. The PropertyChangeEvent, which
you have already been exposed to, is a multicast event because there can be any number
of listeners. In that example, you had addPropertyChangeListener() and
removePropertyChangeListener() methods, which allowed other components to register with
the Bean as being interested in hearing when a bound property changed. The process is the
same for any other type of multicast event, and the registration methods should follow the
design pattern for Introspection as shown here:

public synchronized void add<ListenerType>(<ListenerType> listener);
public synchronized void remove<ListenerType>(<ListenerType> listener);

Using Events to Communicate with Other Components

48 1529-5 CH41 9/24/98, 8:29 AM927

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

928 Chapter 41 JavaBeans

The keyword synchronized is not actually part of the design pattern. It is included as a re-
minder that race conditions can occur, especially with the event model, and precautions must
be taken.

Unicast Events
Unicast events don’t occur nearly as often as their counterpart, but they’re just as useful.
Unicast events can have only one listener. If additional components attempt to listen to the
unicast event, a java.util.TooManyListenersException will be thrown. The following design
pattern should be used when declaring unicast events:

public synchronized void add<ListenerType>(<ListenerType> listener) throws
 java.util.TooManyListenersException;
public synchronized void remove<ListenerType>(<ListenerType> listener);

Event Adapters
In some cases, it may be necessary to build an event adapter class that can transfer an event to
a component. This comes into play especially for an application builder because the application
doesn’t know until runtime how the components will be linked together or how they will inter-
act with each other’s events.

An event adapter intervenes in the normal event-handling scheme by intercepting the events
normally meant for another component. For example, assume that a user places a button and a
text box in an application builder. If the user wants the text box to fill with the word “Pressed”
when the button is pressed, the application builder can use an event adapter to call a method
containing the user-generated code needed to do it. Here’s how it will eventually work:

1. The event adapter registers with the event source. In other words, it calls an
addSomeEventListener() method on the event source component.

2. The event source component fires an event by calling the event adapter’s event-handler
method, someEvent(). Keep in mind that the event source component doesn’t care
whether it’s calling an event adapter. At this point, with the event fired, it can continue on
with its business.

3. The event adapter calls the specific user-designed method on the final target component.

4. The code in the user-designed method fills in the text box component with the “Pressed”
text.

Sometimes it helps to see some code. Listing 41.6 contains some pseudocode you can examine
to see how an event adapter is written. The code in the example builds off the procedure listed
previously. You won’t be able to compile this code (notice the class keywords have been
changed to pseudoclass), but it serves as an example you can build off of in your own Beans.

48 1529-5 CH41 9/24/98, 8:29 AM928

929

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

Listing 41.6. ADAPTOREXAMPLE.JAVA—Pseudocode Showing How to
Implement an Adapter Class; This Code Might Be Generated by an Application
Builder

// this pseudoclass example uses a unicast mechanism to keep things simple.

public interface SomeEventListener extends java.util.EventListener {
 public someEvent(java.util.EventObject e);
}

public pseudoclass button extends java.awt.Button {
 public void synchronized addSomeEventListener(SomeEventListener l)
 throws java.util.TooManyListenersException {
 if (listener != null) {
 listener = l;
 } else throw new java.util.TooManyListenersException;
 }

 private void fireSomeEvent() {
 listener.someEvent(new java.util.EventObject(this));
 }

 private SomeEventListener listener = null;
}

public pseudoclass eventAdaptor implements SomeEventListener {
 public eventAdaptor(TargetObject target) {
 this.target = target;
 }

 someEvent(java.util.EventObject e) {
 // transfer the event to the user generated method.
 target.userDefinedMethod();
 }

 private TargetObject target;
}

public pseudoclass TargetObject {
 public TargetObject() {
 adaptor = new eventAdaptor(this);
 }

 public userDefinedMethod() {
 // user generated code goes here.
 }

 private eventAdaptor adaptor;
}

Using Events to Communicate with Other Components

48 1529-5 CH41 9/24/98, 8:29 AM929

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

930 Chapter 41 JavaBeans

Introspection: Creating and Using BeanInfo Classes
You’ve already seen in the preceding sections and in the two Beans you designed how to use
design patterns to facilitate automatic Introspection. You also saw that the automatic Introspec-
tion mechanism isn’t perfect. If you look back at Figure 41.2, you’ll see an example of this.
Introspection is probably the most important aspect of JavaBeans because without it a con-
tainer can’t do anything with a Bean other than display it. As you become proficient at design-
ing your own Beans, you’ll find that you sometimes need to provide additional Introspection
information for the users of your Beans. In the case of your Beans, this is to hide the parent
class’s properties to clear up ambiguities.

The java.beans.Introspector class, as discussed earlier in the chapter, does all the pattern
analysis to expose the properties, methods, and events that a component has. As a first step,
though, this class looks to see whether a BeanInfo class is defined for the Bean it’s inspecting.
If it finds one, it doesn’t do any pattern analysis on the areas of the Bean for which the
BeanInfo class supplies information. This means that you can selectively choose which infor-
mation you want to provide and which information you want to be derived from analysis. To
show how this is done, you’ll design a BeanInfo class for our TextDisplayer Bean.

The first thing you need to do is define what information you’ll provide and what you’ll leave up
to the Introspector class to analyze. For the sake of example, say that you’ll choose to provide
the properties of your Bean, and you’ll let the Introspector class use analysis to expose the
events and methods. Table 41.5 shows the names of the TextDisplayer Bean’s properties and
the user-friendly names you want to display. With that information defined, you can start work-
ing on your BeanInfo class, TextDisplayerBeanInfo.class. Notice how you simply appended
“BeanInfo” to the class name. That’s an Introspection design pattern; the Introspector class
looks for BeanInfo information by appending “BeanInfo” to the class name of the Bean it’s
currently analyzing.

Table 41.5 The TextDisplayer Bean’s Properties and User-Friendly Names

Property Name User-Friendly Name

OutputText “Text String”

BGColor “Background Color”

TextFont “Text Font”

FontColor “Text Color”

All BeanInfo classes must implement the java.beans.BeanInfo interface. At first glance, that
seems difficult; there are eight methods in the java.beans.BeanInfo interface! But remember
the Introspector class has a set procedure for the way it looks for information. For the sake of
clarity, that procedure is shown in the following list:

48 1529-5 CH41 9/24/98, 8:29 AM930

931

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

1. The Introspector class looks for a BeanInfo class for the Bean it’s analyzing.

2. If a BeanInfo class is present, each method in the BeanInfo class is called to find out
whether it can provide any information. The Introspector class will use implicit analysis
to expose information for which the BeanInfo class denies any knowledge (returns a
null value). If no BeanInfo class is found, the Introspector class will use implicit
analysis for all the methods in the java.beans.BeanInfo interface.

3. The Introspector class then checks to see whether it has obtained explicit information
for each of the methods in the BeanInfo interface. If it has not, it steps into the parent
class (if one exists) and starts the process over for only those methods that it had to use
analysis on.

4. When the Introspector class has gotten information from a BeanInfo class for all the
methods in the java.beans.BeanInfo interface, or when there are no more parent
classes to explore, the Introspector class returns its results.

To make your life easier as a programmer, Sun has provided a prebuilt class,
java.beans.SimpleBeanInfo, that returns a null value for all the BeanInfo methods. That way,
you can inherit from that class and override only the methods you choose. Listing 41.7 shows
the BeanInfo class for the TextDisplayer Bean. Notice how you only override the
getPropertyDescriptors() method. The parent class returns null for all the other methods in
the java.beans.BeanInfo interface.

Listing 41.7 TEXTDISPLAYERBEANINFO.JAVA—The Entire BeanInfo Class for
the TextDisplayer Bean Showing How to Provide Property Information

import java.beans.*;

public class TextDisplayerBeanInfo extends SimpleBeanInfo {
 // override the getPropertyDescriptors method to provide that info.
 public PropertyDescriptor[] getPropertyDescriptors() {
 PropertyDescriptor[] properties = new PropertyDescriptor[4];

 try {
 properties[0] = new PropertyDescriptor(
 “Text String”, BeanClass, “getOutputText”,
➥”setOutputText”);
 properties[1] = new PropertyDescriptor(
 “Text Color”, BeanClass,
➥”getFontColor”, “setFontColor”);
 properties[2] = new PropertyDescriptor(
 “Text Font”, BeanClass,
➥”getTextFont”, “setTextFont”);
 properties[3] = new PropertyDescriptor(
 “Background Color”, BeanClass,
➥”getBGColor”, “setBGColor”);
 } catch(IntrospectionException e) {
 return(null); // exit gracefully if we get an exception.
 }

continues

Introspection: Creating and Using BeanInfo Classes

48 1529-5 CH41 9/24/98, 8:29 AM931

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

932 Chapter 41 JavaBeans

Listing 41.7 Continued

 return(properties);
 }

 private Class BeanClass = TextDisplayer.class;
}

Take a second to look at the try|catch clause in Listing 41.7. Notice how you return a null
value if you catch a java.beans.IntrospectionException. If you catch this exception, it usu-
ally means that you’ve provided an incorrect getter or setter method name. You should al-
ways return a null value if you catch this exception so that the Introspector class can still
analyze your Bean. You should be able to extend this example to override the other methods in
the java.beans.BeanInfo interface. Figure 41.3 shows the PropertySheet window of Sun’s
BeanBox for our TextDisplayer Bean. Notice how the user-friendly names for the properties
have been used, and the parent class’s properties are gone. Sweet success!

FIG. 41.3
The PropertySheet
window of Sun’s
BeanBox showing the
user-friendly names for
the properties in the
TextDisplayer Bean.

Customization: Providing Custom PropertyEditors
and GUI Interfaces

So far you have seen how to create a Bean; how to expose its properties, methods, and events;
and how to tweak the Introspection process. You might have noticed from the figures that the
properties of a Bean have a PropertyEditor. For example, look at Figure 41.3. In the
PropertySheet window, next to the “Text String” label, there’s a TextField AWT component
already filled with the value of the OutputText property. You didn’t supply any code for this
component, so how did Sun’s BeanBox know to provide it? The answer is that the BeanBox
application asked the java.beans.PropertyEditorManager what the default PropertyEditor
was for an object of type java.lang.String, and displayed it.

Just because PropertyEditors and Customizers require a GUI environment doesn’t mean a
Bean can’t function without one. For example, a Bean designed to run on a server might
not use (or need) a GUI environment at all. The java.beans.Beans class and the
java.beans.Visibility interface allow Beans to have different behavior in GUI and non-GUI
environments.

48 1529-5 CH41 9/24/98, 8:29 AM932

933

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

PropertyEditors and the PropertyEditorManager
The class java.beans.PropertyEditorManager provides default PropertyEditors for the
majority of the Java class types. So, if you use only native Java data types and objects, you’re all
set. But what if you design a Bean that has a property for which there’s no default
PropertyEditor? You’ll run into this problem any time you design a custom property type. For
those cases where there is no default PropertyEditor, you have to provide your own. Actually,
you could redesign all the default PropertyEditors, too, if you choose, but you would only do
this in rare cases, so this won’t be discussed here. This means that you have to provide an
additional class, by appending Editor to the class name, that the PropertyEditorManager can
use. In most cases, you provide a subclass of java.awt.Component. The property sheet for your
component will then pop up your custom PropertyEditor to allow your custom property to be
edited. You won’t actually design a custom PropertyEditor here because the majority of Beans
won’t require it, but an explanation of how to do it will be included. The requirements of a
PropertyEditor are as follows:

1. Custom PropertyEditors must inherit from java.awt.Component so that they can be
displayed in a property sheet. Note that this could simply mean inheriting from an AWT
component like java.awt.TextField.

2. Custom PropertyEditors must derive their class name by postfixing Editor to the
property class name unless they register themselves with the PropertyEditorManager
for their container (see step 3). For example, the PropertyEditor for a custom property
type CustomProperty.class must be named CustomPropertyEditor.class.

3. For custom PropertyEditors that do not follow the standard naming convention
in step 2, the custom property type must register itself with the container’s
PropertyEditorManager by calling the registerEditor() method.

4. Custom PropertyEditors must always fire a PropertyChange event to update the custom
property. This is a must! Otherwise, the container has no way of knowing to update the
component.

You might be asking yourself, “Can I provide my own property sheet?” The answer is yes, and
for complex Beans, this is absolutely imperative. Property sheets by nature are simple and
relatively unuser-friendly. The following section discusses how to override the property sheet
mechanism to provide your own customization dialog boxes.

Customization Editor
All application builders have to implement some method of customizing the Beans placed into
their containers. Thus, the PropertyEditor mechanism and the idea of a property sheet were
born. But what about the special cases where a Bean can be customized several different ways,
or there are dozens of properties? The solution to this problem is called customizers. Bean
developers can optionally supply customizer classes with their Beans to be used in place of
standard property sheets. Even though the property sheet mechanism works just fine for the
TextReader Bean, you’ll create a customizer class anyway, to learn how it’s done.

Customization: Providing Custom PropertyEditors and GUI Interfaces

48 1529-5 CH41 9/24/98, 8:29 AM933

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

934 Chapter 41 JavaBeans

To implement a customizer class, a Bean must also provide a BeanInfo class. The class name of
a Bean’s customizer class is determined from a call to the getBeanDescriptor() method of the
java.beans.BeanInfo interface. This is a little bit different from what you’ve encountered so
far. There is no default Introspection design pattern for customizers; you must provide a
BeanInfo class, even if the only information it provides is a BeanDescriptor. In fact, this is what
you do for the TextReaderBeanInfo.class shown in Listing 41.8. Notice how the class inherits
from java.beans.SimpleBeanInfo; the parent class implements the java.beans.BeanInfo
class, and you simply override the getBeanDescriptor() method so that it returns something
meaningful.

Listing 41.8 TEXTREADERBEANINFO.JAVA—The BeanInfo Class for the
TextReader Bean Showing How to Provide Customizer Class Information

import java.beans.*;

public class TextReaderBeanInfo extends SimpleBeanInfo {
 // override the getBeanDescriptor method to provide a customizer.
 public BeanDescriptor getBeanDescriptor() {
 return(new BeanDescriptor(BeanClass, CustomizerClass));
 }

 private Class BeanClass = TextReader.class;
 private Class CustomizerClass = TextReaderCustomizer.class;
}

Although there isn’t a design pattern for it, it’s customary to name a customizer class by
postfixing Customizer to the class name. Notice that you named the TextReader customizer
TextReaderCustomizer.class. This is a good habit to get into.

The programmer has a tremendous amount of freedom when designing customizer classes.
There are only two restrictions: The class must inherit from java.awt.Component, so that it can
be placed in a Panel or Dialog, and it must implement the java.beans.Customizer interface.
The customizer class is given a reference to the target component through a call to the
setObject() method. After this point, what the customizer class does is its business, for the
most part. Remember, though, that you’ll be required (by the compiler) to acknowledge con-
strained properties because their accessor methods might throw propertyVetoExceptions.
Finally, the java.beans.Customizer interface includes functionality for
PropertyChangeListeners. Because the Bean’s container may register itself as a listener
with the customizer class, any property updates should be followed by a call to
firePropertyChange(). The easiest way to do this is by using a
java.beans.PropertyChangeSupport class as was done when discussing bound properties
earlier.

Listing 41.9 shows most of the code for the TextReaderCustomizer class. Some of the AWT-
specific code was removed for clarity. The full listing is available on the CD-ROM. Take a look
at the handleEvent() method. This method is called by AWT when the user enters data. Notice
how you were forced to catch ProperyVetoExceptions for the setWidth() accessor? You can

48 1529-5 CH41 9/24/98, 8:29 AM934

935

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

also see how the PropertyChangeListener methods are used appropriately. Figure 41.4 shows
what the customizer looks like when called up from within Sun’s BeanBox.

Listing 41.9 TEXTREADERCUSTOMIZER.JAVA—The Code from
TextReaderCustomizer.java Showing How to Implement a Customizer Class

public class TextReaderCustomizer extends Panel implements Customizer {
 public TextReaderCustomizer() {
 setLayout(new BorderLayout());
 }

 public void setObject(Object target) {
 component = (TextReader)target;
 // generate the User Interface (code removed for clarity)
 }

 public boolean handleEvent(Event event) {
 if (event.id == Event.KEY_RELEASE && event.target == InputText) {
 String old_text = component.getInputText();
 String text = InputText.getText();
 component.setInputText(text);
 changeAgent.firePropertyChange(“inputText”, old_text, text);
 } else if (event.id == Event.KEY_RELEASE && event.target == Width) {
 int old_width, width;
 old_width = component.getWidth();
 try {
 width = Integer.parseInt(Width.getText());
 try {
 component.setWidth(width);
 changeAgent.firePropertyChange(“width”,
➥new Integer(old_width), new Integer(width));
 } catch(PropertyVetoException e) {
 // do nothing... wait for acceptable data.
 }
 } catch(NumberFormatException e) {
 // do nothing... wait for better data.
 }
 }
 return (super.handleEvent(event));
 }

 public void addPropertyChangeListener(PropertyChangeListener l) {
 changeAgent.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 changeAgent.removePropertyChangeListener(l);
 }

 private TextReader component;
 private TextField InputText, Width;
 private PropertyChangeSupport changeAgent =
➥new PropertyChangeSupport(this);
}

Customization: Providing Custom PropertyEditors and GUI Interfaces

48 1529-5 CH41 9/24/98, 8:29 AM935

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

936 Chapter 41 JavaBeans

Providing Alternative Behavior in Non-GUI Environments
Unfortunately, a GUI interface is not always available to a Bean. The most likely reason for this
is that the Bean is being run in the background or on a server. Whatever the case, Beans that
need to provide alternative or additional behavior in non-GUI environments can do so by using
the java.beans.Beans class and the java.beans.Visibility interface.

The static methods isDesignTime() and isGuiAvailable() in the java.beans.Beans class can
be used to check whether the Bean is being used in an application builder and a GUI environ-
ment is available. The method isDesignTime() returns true if the Bean is in an application
builder and false if not. The method isGuiAvailable() returns true if a GUI environment is
available to the Bean, and false if not.

Just because a GUI environment is available doesn’t necessarily mean a container wants a Bean
to use it. Similarly, a container might want to know whether a Bean isn’t using the GUI environ-
ment, or even whether it needs one. A Bean and its container can communicate these things by
implementing the java.beans.Visibility interface. The vast majority of Beans have no need
for this interface, and it isn’t necessary to implement it unless a Bean plans to use it. There are
four methods in the interface:

public abstract boolean avoidingGui()

This method is called by a container to ask whether a Bean is currently avoiding the GUI envi-
ronment. A Bean should return true for this method if it is actively avoiding the GUI environ-
ment. Notice that this is not the same as indicating that it doesn’t need the GUI environment.
For example, a container might use this information to free up resources being used by the
GUI environment if a call to this method returns true.

public abstract void dontUseGui()

This method is called by the container to tell the Bean that even though a GUI environment
may be available, the Bean shouldn’t use it. For example, a container using a Bean on a server
would call this method to tell the Bean there’s no point in using the GUI environment. If a Bean
chooses to comply with this method (and it should), then the Bean should return true for
subsequent calls to avoidingGui().

public abstract boolean needsGui()

This method is called by the container to ask whether a Bean absolutely has to have a GUI
environment. If a Bean can function in a non-GUI environment, it should return false. Note

FIG. 41.4
Sun’s BeanBox showing
the TextReader Bean
and its customizer
dialog box.

48 1529-5 CH41 9/24/98, 8:30 AM936

937

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

41

VI
Part

Ch

that it’s safe to return true and then never use the GUI environment, but it’s not safe to return
false and use it anyway.

public abstract void okToUseGui()

This method is called by a container to tell a Bean that a GUI environment is available and the
Bean can use it. This method might also be called after dontUseGui() to indicate that a previ-
ously unavailable GUI environment is available again. Note that a call to this method in no way
implies that a Bean should use the GUI environment, for example, if it wasn’t planning to.

Enterprise JavaBeans
A new development on the horizon that utilizes the JavaBeans framework is known as Enter-
prise JavaBeans. Enterprise JavaBeans is a component model for building and deploying Java in
a distributed multitier environment. Enterprise JavaBeans extends the JavaBeans component
model to support server components.

Server Components
Unlike standard JavaBeans, Enterprise JavaBeans are designed to be server components. The
advantage of running components on the server is that it enables a multitier construction. In a
multitier architecture, much of the logic is placed on the server rather than the client.

Creating your application using a multitier design makes it much easier to increase its
scalability, performance, and reliability. Using components from the Enterprise Beans allows
you to develop extremely flexible multitier apps. These beans can be easily modified as your
business rules or economic conditions evolve. In addition, like RMI components, Enterprise
JavaBeans can be located anywhere, and the processing is independent of their location.

Adding Component “Run Anywhere”
Sun has long been touting the “write once, run anywhere” advantages of Java. Using Enterprise
JavaBeans, this concept has been extended. Now not only can Java run on any platform, but
Java components can be developed to run on any component execution system. The environ-
ment automatically maps the component to the specific system your server is using. So, if you
have a server using DCOM, the enterprise system will map to DCOM. If your server is using
CORBA, it maps to CORBA, and so on.

Partitioning Your Applications
Modern object-oriented designs typically split application design into three pieces. These
pieces are the user interface, the business logic, and the data. Typically, the server is a rela-
tional database management system (DBMS), which the application communicates with but
isn’t actually part of the application itself. However, in a multitier architecture, the client appli-
cation contains only user interface programming. The business logic and data are partitioned
and moved into components deployed on one or more servers.

Enterprise JavaBeans

48 1529-5 CH41 9/24/98, 8:30 AM937

p2vbmpprp12 SE Using Java #1529-5 8.7.98 ayanna Ch41 LP#3

938 Chapter 41 JavaBeans

The result of moving the business and data logic to a server is that your application can take
advantage of the power of multithreaded and multiprocessing systems. In addition, the server
components can pool and share scarce resources, throughout all the user’s applications. As
system demands increase, Enterprise Beans that are heavily used can be replicated and distrib-
uted across multiple systems. This means that there is almost no limit to the scalablity of a
multitier system. As system resources expire, you can always replicate another system to
handle more of the load.

In addition to providing enhanced performance, the replication can be used to create many
levels of redundancy. This redundancy helps to eliminate any single points of failure.

Reusability and Integration
Enterprise JavaBeans are accessed through a well-defined interface. The interface allows En-
terprise Beans to be used to create reusable software building blocks, just like regular
JavaBeans. A function can be created once and then used repeatedly in whatever application
needs that functionality.

Nonvisual Components
Enterprise JavaBeans is a server component model for JavaBeans. Enterprise JavaBeans are
specialized, nonvisual JavaBeans that run on a server. Just as with regular JavaBeans, an Enter-
prise Bean can be assembled with other Beans to create a new application.

Naming
Enterprise JavaBeans uses another of the new features of Java—JNDI (Java Naming and Direc-
tory Interface). JNDI defines a mechanism for mapping arbitrary system names to their actual
computer location, much like the Internet’s domain name system that allows you to map names
like www.yahoo.com to the actual computer system the name represents. ●

48 1529-5 CH41 9/24/98, 8:30 AM938

939

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

C H A P T E R

JavaIDL: A Java Interface to CORBA

What Is CORBA? 940

Sun’s IDL to Java Mapping 942

Methods 949

Creating a Basic CORBA Server 949

Creating CORBA Clients with JavaIDL 957

Creating Callbacks in CORBA 959

Wrapping CORBA Around an Existing Object 960

Using CORBA in Applets 963

42

In this chapter

49 1529-5 CH42 9/24/98, 8:30 AM939

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

940 Chapter 42 JavaIDL: A Java Interface to CORBA

What Is CORBA?
The Common Object Request Broker Architecture (CORBA) is a tremendous vision of distrib-
uted objects interacting without regard to their location or operating environment. CORBA is
still in its infancy, with some standards still in the definition stage, but the bulk of the CORBA
infrastructure is defined. Many software vendors are still working on some of the features that
have been defined.

CORBA consists of several layers. The lowest layer is the Object Request Broker, or ORB. The
ORB is essentially a remote method invocation facility. The ORB is language-neutral, meaning
you can create objects in any language and use the ORB to invoke methods in those objects.
You can also use any language to create clients that invoke remote methods through the ORB.
There is a catch to the “any language” idea. You need a language mapping defined between the
implementation language and CORBA’s Interface Definition Language (IDL).

IDL is a descriptive language—you cannot use it to write working programs. You can only
describe remote methods and remote attributes in IDL. This restriction is similar to the restric-
tion in Java that a Java interface contains only method declarations and constants.

When you go from IDL to your implementation language, you generate a stub and a skeleton in
the implementation language. The stub is the interface between the client and the ORB, while
the skeleton is the interface between the ORB and the object (or server). Figure 42.1 shows
the relationship between the ORB, an object, and a client wishing to invoke a method on the
object.

Server Client

Skeleton Stub

Request

ORB

FIG. 42.1
CORBA clients use the
ORB to invoke methods
on a CORBA server.

While the ORB is drawn conceptually as a separate part of the architecture, it is often just part
of the application. A basic ORB implementation might include the Naming service (discussed
shortly) and a set of libraries to facilitate communication between clients and servers. Once a
client locates a server, it communicates directly with that server, not going through any inter-
mediate program. This permits efficient CORBA implementations.

The ORB is both the most visible portion of CORBA and the least exciting. CORBA’s big ben-
efit comes in all the services that it defines. Among the services defined in CORBA are

■ Lifecycle

■ Naming

49 1529-5 CH42 9/24/98, 8:30 AM940

941

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

■ Persistence

■ Events

■ Transactions

■ Querying

■ Properties

These services are a subset of the full range of services defined by CORBA. The Lifecycle and
the Naming services crystallize Sun’s visionary phrase “the network is the computer.” These
services allow you to instantiate new objects without knowing where the objects reside. You
might be creating an object in your own program space, or you might be creating an object
halfway around the world, and your program will never know it.

The Lifecycle service allows you to create, delete, copy, and move objects on a specific system.
As an application programmer you would prefer not to know where an object resides. As a
systems programmer you need the Lifecycle service to implement this location transparency
for the application programmer. One of the hassles you frequently run into in remote proce-
dure call systems is that the server you are calling must already be up and running before you
can make the call. The Lifecycle service removes that hassle by allowing you to create an ob-
ject, if you need to, before invoking a method on it.

The Naming service allows you to locate an object on the network by name. You want the total
flexibility of being able to move objects around the network without having to change any code.
The Naming service gives you that ability by associating an object with a name instead of a
network address.

The Persistence service allows you to save objects somewhere and retrieve them later. This
might be in a file, or it might be on an object database. The CORBA standard doesn’t specify
which. That is left up to the individual software vendors.

The Event service is a messaging system that allows more complex interaction than a simple
message call. You could use the Event service to implement a network-based observer-
observable model, for example. There are event suppliers that send events, and event consum-
ers that receive events. A server or a client is either push or pull. A push server sends events
out when it wants to (it pushes them out), while a push client has a push method and automati-
cally receives events through this method. A pull server doesn’t send out events until it is
asked—you have to pull them out of the server. A pull client does not receive events until it
asks for them. It might help to use the term “poll” in place of “pull.” A pull server doesn’t de-
liver events on its own, it gives them out when it is polled. A pull client goes out and polls for
events.

The Transaction service is one of the most complex services in the CORBA architecture. It
allows you to define operations across multiple objects as a single transaction. This kind of
transaction is similar to a database transaction. It handles concurrency, locking, and even roll-
backs in case of a failure. A transaction must comply with a core set of requirements that are
abbreviated ACID:

■ Atomicity. A transaction is a single event. Everything in the transaction is either done as
a whole or undone. You don’t perform a transaction partially.

What Is CORBA?

49 1529-5 CH42 9/24/98, 8:30 AM941

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

942 Chapter 42 JavaIDL: A Java Interface to CORBA

■ Consistency. When you perform a transaction, you do not leave the system in an
inconsistent state. For example, if you have an airline flight with one seat left, you don’t
end up assigning that seat to two different people if their transactions occur at the same
time.

■ Isolation. No other objects see the results of a transaction until that transaction is
committed. Even if transactions are executing simultaneously, they have a sequential
order with respect to the data.

■ Durability. If you commit a transaction, you can be sure that the change has been made
and stored somewhere. It doesn’t get lost.

The Transaction service usually relies on an external transaction processing (TP) system.

The Object Querying service allows you to locate objects based on something other than
name. For instance, you could locate all ships registered in Liberia or all Krispy Kreme donut
locations in Georgia. This service would usually be used when your objects are stored in an
object database.

The Properties service allows objects to store information on other objects. A property is like a
sticky-note. An object would write some information down on a sticky-note and slap it on an-
other object. This has tremendous potential because it allows information to be associated with
an object without the object having to know about it.

The beauty of the whole CORBA system is that all of these services are available through the
ORB interface, so once your program can talk to the ORB, you have these services available.
Of course, your ORB vendor may not implement all of these services yet.

Sun’s IDL to Java Mapping
In order to use Java in a CORBA system, you need a standard way to convert attributes and
methods defined in IDL into Java attributes and methods. Sun has proposed a mapping and
released a program to generate Java stubs and skeletons from an IDL definition.

Defining interfaces in IDL is similar to defining interfaces in Java since you are defining only
the signatures (parameters and return values) of the methods and not the implementation of
the methods.

IDL Modules
A module is the IDL equivalent of the Java package. It groups sets of interfaces together in
their own namespace. Like Java packages, IDL modules can be nested. The following is an
example IDL module definition (shown without any definitions, which will be discussed soon):

module MyModule {
 // insert your IDL definitions here, you must have at least
 // one definition for a valid IDL module
};

49 1529-5 CH42 9/24/98, 8:30 AM942

943

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

This module would be generated in Java as a package called MyModule:

package MyModule;

When you nest modules, the Java packages you generate are also nested. For example, con-
sider the following nested module definition:

module foo {
 module bar {
 module baz {
// insert definitions here
 };
 };
};

Don’t forget to put a semicolon after the closing brace of a module definition. Unlike Java, C, and C++,
you are required to put a semicolon after the brace in IDL.

The Java package definition for interfaces within the baz module would be

package foo.bar.baz;

IDL Constants
As in Java, you can define constant values in IDL. The format of an IDL constant definition is

const type variable = value;

The type of a constant is limited to boolean, char, short, unsigned short, long, unsigned
long, float, double, and string.

Constants are mapped into Java in an unusual way. Each constant is defined as a class with a
single static final public variable, called value, that holds the value of the constant. This is
done because IDL allows you to define constants within a module, but Java requires that con-
stants belong to a class.

Here is an example of an IDL constant definition:

module ConstExample {
 const long myConstant = 123;
};

This IDL definition would produce the following Java definition:

package ConstExample;
public final class myConstant {
 public static final int value = (int) (123L);
}

IDL Data Types
IDL has roughly the same set of primitive data types as Java except for a few exceptions:

■ The IDL equivalent of the Java byte data type is the octet.

■ IDL supports the String type, but it is called string.

T I P

Sun’s IDL to Java Mapping

49 1529-5 CH42 9/24/98, 8:30 AM943

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

944 Chapter 42 JavaIDL: A Java Interface to CORBA

■ Characters in IDL can have values only between 0 and 255. The JavaIDL system will
check your characters to make sure they fall within this range, including characters
stored in strings.

■ IDL supports 16-, 32-, and 64-bit integers, but the names for the 32- and 64-bit types are
slightly different. In IDL, the 32-bit value is called a long, while in Java it is called an int.
The IDL equivalent of the Java long is the long long.

■ IDL supports unsigned short, int, and long values. In Java, these values are stored in
signed variables. You must be very careful when dealing with large unsigned values,
since they may end up negative when represented in Java.

Enumerated Types
Unlike Java, IDL allows you to create enumerated types that represent integer values. The
JavaIDL system turns the enumerated type into a class with public static final values.

Here is an example of an IDL enumerated type:

module EnumModule {
 enum Medals { gold, silver, bronze };
};

This definition would produce the following Java class:

package EnumModule;
public class Medals {
 public static final int gold = 0,
 silver = 1,
 bronze = 2;
 public static final int narrow(int i)throws
➥sunw.corba.EnumerationRangeException {
 if (gold <= i && i <= bronze) {
 return i;
 }
 throw new sunw.corba.EnumerationRangeException();
 }
}

Since you are also allowed to declare variables of an enumerated type, JavaIDL creates a holder
class that is used in place of the data type. The holder class contains a single instance variable
called value that holds the enumerated value. The holder for the Medals enumeration would
look like:

package EnumModule;
public class MedalsHolder
{
 // instance variable
 public int value;
 // constructors
 public MedalsHolder() {
 this(0);
 }
 public MedalsHolder(int __arg) {
 value = EnumModule.Medals.narrow(__arg);

49 1529-5 CH42 9/24/98, 8:30 AM944

945

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

 }
}

You can create a MedalsHolder by passing an enumerated value to the constructor:

MedalsHolder medal = new MedalsHolder(Medals.silver);

The narrow method performs range checking on values and throws an exception if the argu-
ment is outside the bounds of the enumeration. It returns the value passed to it, so you can use
it to perform passive bounds checking. For example,

int x = Medals.narrow(y);

will assign y to x only if y is in the range of enumerated values for Medals; otherwise, it will
throw an exception.

Structures
An IDL struct is like a Java class without methods. In fact, JavaIDL converts an IDL struct
into a Java class whose only methods are a null constructor and a constructor that takes all the
structure’s attributes.

Here is an example IDL struct definition:

module StructModule {
 struct Person {
 string name;
 long age;
 };
};

This definition would produce the following Java class declaration (with some JavaIDL-specific
methods omitted):

package StructModule;
public final class Person {
 // instance variables
 public String name;
 public int age;
 // constructors
 public Person() { }
 public Person(String __name, int __age) {
 name = __name;
 age = __age;
 }
}

Like the enumerated type, a struct also produces a holder class that represents the structure.
The holder class contains a single instance variable called value. Here is the holder for the
Person structure:

package StructModule;
public final class PersonHolder
{
 // instance variable
 public StructModule.Person value;

Sun’s IDL to Java Mapping

49 1529-5 CH42 9/24/98, 8:30 AM945

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

946 Chapter 42 JavaIDL: A Java Interface to CORBA

 // constructors
 public PersonHolder() {
 this(null);
 }
 public PersonHolder(StructModule.Person __arg) {
 value = __arg;
 }
}

Unions
The union is another C construct that didn’t survive the transition to Java. The IDL union
actually works more like the variant record in Pascal, since it requires a “discriminator” value.
An IDL union is essentially a group of attributes, only one of which can be active at a time. The
discriminator indicates which attribute is in use at the current time. A short example should
make this a little clearer. Here is an IDL union declaration:

module UnionModule {
 union MyUnion switch (char) {
 case ‘a’: string aValue;
 case ‘b’: long bValue;
 case ‘c’: boolean cValue;
 default: string defValue;
 };
};

The character value in the switch, known as the discriminator, indicates which of the three
variables in the union is active. If the discriminator is ‘a’, the aValue variable is active. Since
Java doesn’t have unions, a union is turned into a class with accessor methods for the different
variables and a variable for the discriminator. The class is fairly complex. Here is a subset of
the definition for the MyUnion union:

package UnionModule;
public class MyUnion {
// constructor
 public MyUnion() {
// only has a null constructor
 }
 // discriminator accessor
 public char discriminator() throws sunw.corba.UnionDiscriminantException {
// returns the value of the discriminator
 }
 // branch constructors and get and set accessors
 public static MyUnion createaValue(String value) {
// creates a MyUnion with a discriminator of ‘a’
 }
 public String getaValue() throws sunw.corba.UnionDiscriminantException {
// returns the value of aValue (only if the discriminator is ‘a’ right now)
 }
 public void setaValue(String value) {
// sets the value of aValue and set the discriminator to ‘a’
 }
 public void setdefValue(char discriminator, String value)
throws sunw.corba.UnionDiscriminantException {

49 1529-5 CH42 9/24/98, 8:30 AM946

947

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

// Sets the value of defValue and sets the discriminator. Although every
// variable has a method in this form, it is only useful when you have
// a default value in the union.
 }
}

The holder structure should be a familiar theme to you by now. JavaIDL generates a holder
structure for a union. The holder structure for MyUnion would be called MyUnionHolder and
would contain a single instance variable called value.

Sequences and Arrays
IDL sequences and arrays both map very neatly to Java arrays. Sequences in IDL may be ei-
ther unbounded (no maximum size) or bounded (a specific maximum size). IDL arrays are
always of a fixed size. Since Java arrays have a fixed size but the size isn’t known at compile-
time, the JavaIDL system performs runtime checks on arrays to make sure they fit within the
restrictions defined in the IDL module.

Here is a sample IDL definition containing an array, a bounded sequence, and an unbounded
sequence:

module ArrayModule {
 struct SomeStructure {
 long longArray[15];
 sequence <boolean> unboundedBools;
 sequence <char, 15> boundedChars;
 };
};

The arrays would be defined in Java as

public int[] longArray;
public boolean[] unboundedBools;
public char[] boundedChars;

Exceptions
CORBA has the notion of exceptions. Unlike Java, however, exceptions are not just a type of
object, they are separate entities. IDL exceptions cannot inherit from other exceptions. Other
than that, they work like Java exceptions and may contain instance variables.

Here is an example of an IDL exception definition:

module ExceptionModule {
 exception YikesError {
 string info;
 };

};

This definition would create the following Java file (with some JavaIDL-specific methods re-
moved):

package ExceptionModule;
public class YikesError

Sun’s IDL to Java Mapping

49 1529-5 CH42 9/24/98, 8:30 AM947

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

948 Chapter 42 JavaIDL: A Java Interface to CORBA

 extends sunw.corba.UserException {
 // instance variables
 public String info;
 // constructors
 public YikesError() {
 super(“IDL:ExceptionModule/YikesError:1.0”);
 }
 public YikesError(String __info) {
 super(“IDL:ExceptionModule/YikesError:1.0”);
 info = __info;
 }
}

Interfaces
Interfaces are the most important part of IDL. An IDL interface contains a set of method defini-
tions, just like a Java interface. Like Java interfaces, an IDL interface may inherit from other
interfaces. Here is a sample IDL interface definition:

module InterfaceModule {
 interface MyInterface {
 void myMethod(in long param1);
 };
};

IDL classifies method parameters as being either in, out, or inout. An in parameter is identi-
cal to a Java parameter—it is a parameter passed by value. Even though the method may
change the value of the variable, the changes are discarded when the method returns.

An out variable is an output-only variable. The method is expected to set the value of this vari-
able, which is preserved when the method returns, but no value is passed in for the variable (it
is uninitialized).

An inout variable is a combination of the two—you pass in a value to the method; if the method
changes the value, the change is preserved when the method returns.

The fact that Java parameters are in-only poses a small challenge when mapping IDL to Java.
Sun has come up with a reasonable approach, however. For any out or inout parameters, you
pass in a holder class for that variable. The CORBA method can then set the value instance
variable with the value that is supposed to be returned.

Attributes
IDL allows you to define variables within an interface. These translate into get and set meth-
ods for the attribute. An attribute may be specified as readonly, which prevents the generation
of a set method for the attribute. For example, if you defined an IDL attribute as

attribute long myAttribute;

your Java interface would then contain the following methods:

int getmyAttribute() throws omg.corba.SystemException;
void setmyAttribute() throws omg.corba.SystemException;

49 1529-5 CH42 9/24/98, 8:30 AM948

949

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

Methods
You define methods in IDL like you declare methods in Java, with only a few variations. One of
the most noticeable differences is that CORBA supports the notion of changeable parameters.
In other words, you can pass an integer variable x to a CORBA method, and that method can
change the value of x. When the method returns, x has the changed value. In a normal Java
method, x would retain its original value.

In IDL, method parameters must be flagged as being in, out, or inout. An in parameter cannot
be changed by the method, which is the way all Java methods work. An out parameter indi-
cates a value that the method will set, but it ignores the value passed in. In other words, if
parameter x is an out parameter, the CORBA method cannot read the value of x, it can only
change it. An inout parameter can be read by the CORBA method and can also be changed
by it.

Here is a sample method declaration using an in, an out, and an inout parameter:

long performCalculation(in float originalValue,
 inout float errorAmount, out float newValue);

Since Java doesn’t support the notion of parameters being changed, the Java-IDL mapping uses
special holder classes for out and inout parameters. The IDL compiler already generates
holder classes for structures and unions. For base types like long or float, JavaIDL has built-
in holders of the form TypenameHolder. For example, the holder class for the long type is called
LongHolder. Each of these holder classes contains a public instance variable called value that
contains the value of the parameter.

The other major difference between IDL and Java method declarations is in the way exceptions
are declared. IDL uses the raises keyword instead of throws. In addition, the list of exceptions
are enclosed by parentheses. Here is a sample method declaration that throws several excep-
tions:

void execute() raises (ExecutionError, ProgramFailure);

Creating a Basic CORBA Server
The interface between the ORB and the implementation of a server is called a skeleton. A
skeleton for an IDL interface receives information from the ORB, invokes the appropriate
server method, and sends the results back to the ORB. You normally don’t have to write the
skeleton itself; you just supply the implementation of the remote methods.

Listing 42.1 shows an IDL definition of a simple banking interface. You will see how to create
both a client and a server for this interface in JavaIDL.

Creating a Basic CORBA Server

49 1529-5 CH42 9/24/98, 8:30 AM949

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

950 Chapter 42 JavaIDL: A Java Interface to CORBA

Listing 42.1 Source Code for Banking.idl

module banking {

 enum AccountType {
 CHECKING,
 SAVINGS
 };

 struct AccountInfo {
 string id;
 string password;
 AccountType which;
 };

 exception InvalidAccountException {
 AccountInfo account;
 };

 exception InsufficientFundsException {
 };

 interface Banking {

 long getBalance(in AccountInfo account)
 raises (InvalidAccountException);

 void withdraw(in AccountInfo account, in long amount)
 raises (InvalidAccountException,
 InsufficientFundsException);

 void deposit(in AccountInfo account, in long amount)
 raises (InvalidAccountException);

 void transfer(in AccountInfo fromAccount,
 in AccountInfo toAccount, in long amount)
 raises (InvalidAccountException,
 InsufficientFundsException);
 };
};

Compiling the IDL Definitions
Before you create any Java code for your CORBA program, you must first compile the IDL
definitions into a set of Java classes. The idlgen program reads an IDL file and creates classes
for creating a client and server for the various interfaces defined in the IDL file, as well as any
exceptions, structures, unions, and other support classes.

To compile Banking.idl, the idlgen command would be

idlgen -fserver -fclient Banking.idl

49 1529-5 CH42 9/24/98, 8:30 AM950

951

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

idlgen allows you to use the C preprocessor to include other files, perform conditional compi-
lation, and define symbols. If you do not have a C preprocessor, use the -fno-cpp option like
this:

idlgen -fserver -fclient -fno-cpp Banking.idl

The -fserver and -fclient flags tell idlgen to create classes for creating a server and a client,
respectively. You may not always need to create both, however. If you are creating a Java client
that will use CORBA to invoke methods on an existing C++ CORBA server, you only need to
generate the client portion. If you are creating a CORBA server in Java but the clients will be in
another language, you only need to generate the server portion.

Using Classes Defined by IDL structs
When an IDL struct is turned into a Java class, it does not have custom hashCode and equals
methods. This means that two instances of this class containing identical data will not be equal.
If you want to add custom methods to these structs, you will have to create a separate class
and define methods to convert from one class to the other.

One way to remedy this is to create a class that contains the same information as the IDL struc-
ture but also contains correct hashCode and equals methods, as well as a way to convert to and
from the IDL-defined structure.

Listing 42.2 shows an Account class that contains the same information as the AccountInfo
structure defined in Banking.idl.

Listing 42.2 Source Code for Account.java

package banking;

// This class contains the information that defines
// a banking account.

public class Account extends Object
{
// Flags to indicate whether the account is savings or checking
 public String id; // Account id, or account number
 public String password; // password for ATM transactions
 public int which; // is this checking or savings

 public Account()
 {
 }

 public Account(String id, String password, int which)
 {
 this.id = id;
 this.password = password;
 this.which = which;
 }

continues

Creating a Basic CORBA Server

49 1529-5 CH42 9/24/98, 8:30 AM951

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

952 Chapter 42 JavaIDL: A Java Interface to CORBA

Listing 42.2 Continued

// Allow this object to be created from an AccountInfo instance

 public Account(AccountInfo acct)
 {
 this.id = acct.id;
 this.password = acct.password;
 this.which = acct.which;
 }

// Convert this object to an AccountInfo instance

 public AccountInfo toAccountInfo()
 {
 return new AccountInfo(id, password, which);
 }

 public String toString()
 {
 return “Account { “+id+”,”+password+”,”+which+” }”;
 }

// Tests equality between accounts.
 public boolean equals(Object ob)
 {
 if (!(ob instanceof Account)) return false;
 Account other = (Account) ob;

 return id.equals(other.id) &&
 password.equals(other.password) &&
 (which == other.which);
 }

// Returns a hash code for this object

 public int hashCode()
 {
 return id.hashCode()+password.hashCode()+which;
 }
}

JavaIDL Skeletons
When you create a CORBA server, the IDL compiler generates a server skeleton. This skel-
eton receives the incoming requests and figures out which method to invoke. You only need to
write the actual methods that the skeleton will call.

JavaIDL creates an Operations interface that contains Java versions of the methods defined in
an IDL interface. It also creates a Servant interface, which extends the Operations interface.
The skeleton class then invokes methods on the Servant interface. In other words, when you
create the object that implements the remote methods, it must implement the Servant inter-
face for your IDL definition.

49 1529-5 CH42 9/24/98, 8:30 AM952

953

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

This technique of defining the remote methods in an interface that can be implemented by
a separate object is known as a TIE interface. In the C++ world, and even on some early

Java ORBS, the IDL compiler would generate a skeleton class that implemented the remote methods.
To change the implementation of the methods, you would create a subclass of the skeleton class. The
subclass technique is often called a Basic Object Adapter, or BOA. The advantage of the TIE interface
under Java is that a single object can implement multiple remote interfaces. You can’t do this with a
BOA object, because Java doesn’t support multiple inheritance. ■

For example, your implementation for the Banking interface might be declared as

public class BankingImpl implements BankingServant

Listing 42.3 shows the full BankingImpl object that implements the BankingServant interface.
Notice that each remote method must be declared as throwing sunw.corba.Exception.

Listing 42.3 Source Code for BankingImpl.java

package banking;

import java.util.*;

// This class implements a remote banking object. It sets up
// a set of dummy accounts and allows you to manipulate them
// through the Banking interface.
//
// Accounts are identified by the combination of the account id,
// the password and the account type. This is a quick and dirty
// way to work, and not the way a bank would normally do it, since
// the password is not part of the unique identifier of the account.

public class BankingImpl implements BankingServant
{
 public Hashtable accountTable;

// The constructor creates a table of dummy accounts.

 public BankingImpl()
 {
 accountTable = new Hashtable();

 accountTable.put(
 new Account(“AA1234”, “1017”, AccountType.CHECKING),
 new Integer(50000)); // $500.00 balance

 accountTable.put(
 new Account(“AA1234”, “1017”, AccountType.SAVINGS),
 new Integer(148756)); // $1487.56 balance

 accountTable.put(
 new Account(“AB5678”, “4456”, AccountType.CHECKING),
 new Integer(7742)); // $77.32 balance

N O T E

continues

Creating a Basic CORBA Server

49 1529-5 CH42 9/24/98, 8:30 AM953

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

954 Chapter 42 JavaIDL: A Java Interface to CORBA

Listing 42.3 Continued

 accountTable.put(
 new Account(“AB5678”, “4456”, AccountType.SAVINGS),
 new Integer(32201)); // $322.01 balance
 }

// getBalance returns the amount of money in the account (in cents).
// If the account is invalid, it throws an InvalidAccountException

 public int getBalance(AccountInfo accountInfo)
 throws sunw.corba.SystemException, InvalidAccountException
 {

// Fetch the account from the table
 Integer balance = (Integer) accountTable.get(
 new Account(accountInfo));

// If the account wasn’t there, throw an exception
 if (balance == null) {
 throw new InvalidAccountException(accountInfo);
 }

// Return the account’s balance
 return balance.intValue();
 }

// withdraw subtracts an amount from the account’s balance. If
// the account is invalid, it throws InvalidAccountException.
// If the withdrawal amount exceeds the account balance, it
// throws InsufficientFundsException.

 public synchronized void withdraw(AccountInfo accountInfo, int amount)
 throws sunw.corba.SystemException, InvalidAccountException,
 InsufficientFundsException
 {

 Account account = new Account(accountInfo);

// Fetch the account
 Integer balance = (Integer) accountTable.get(account);

// If the account wasn’t there, throw an exception
 if (balance == null) {
 throw new InvalidAccountException(accountInfo);
 }

// If we are trying to withdraw more than is in the account,
// throw an exception

 if (balance.intValue() < amount) {
 throw new InsufficientFundsException();
 }

49 1529-5 CH42 9/24/98, 8:30 AM954

955

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

// Put the new balance in the account

 accountTable.put(account, new Integer(balance.intValue() -
 amount));
 }

// Deposit adds an amount to an account. If the account is invalid
// it throws an InvalidAccountException

 public synchronized void deposit(AccountInfo accountInfo, int amount)
 throws sunw.corba.SystemException, InvalidAccountException
 {

 Account account = new Account(accountInfo);

// Fetch the account
 Integer balance = (Integer) accountTable.get(account);

// If the account wasn’t there, throw an exception
 if (balance == null) {
 throw new InvalidAccountException(accountInfo);
 }

// Update the account with the new balance
 accountTable.put(account, new Integer(balance.intValue() +
 amount));
 }

// Transfer subtracts an amount from fromAccount and adds it to toAccount.
// If either account is invalid it throws InvalidAccountException.
// If there isn’t enough money in fromAccount it throws
// InsufficientFundsException.

 public synchronized void transfer(AccountInfo fromAccountInfo,
 AccountInfo toAccountInfo, int amount)
 throws sunw.corba.SystemException, InvalidAccountException,
 InsufficientFundsException
 {
 Account fromAccount = new Account(fromAccountInfo);
 Account toAccount = new Account(toAccountInfo);

// Fetch the from account
 Integer fromBalance = (Integer) accountTable.get(fromAccount);

// If the from account doesn’t exist, throw an exception
 if (fromBalance == null) {
 throw new InvalidAccountException(fromAccountInfo);
 }

// Fetch the to account
 Integer toBalance = (Integer) accountTable.get(toAccount);

continues

Creating a Basic CORBA Server

49 1529-5 CH42 9/24/98, 8:30 AM955

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

956 Chapter 42 JavaIDL: A Java Interface to CORBA

Listing 42.3 Continued

// If the to account doesn’t exist, throw an exception
 if (toBalance == null) {
 throw new InvalidAccountException(toAccountInfo);
 }

// Make sure the from account contains enough money, otherwise throw
// an InsufficientFundsException.

 if (fromBalance.intValue() < amount) {
 throw new InsufficientFundsException();
 }

// Subtract the amount from the fromAccount
 accountTable.put(fromAccount,
 new Integer(fromBalance.intValue() - amount));

// Add the amount to the toAccount
 accountTable.put(toAccount,
 new Integer(toBalance.intValue() + amount));
 }
}

Server Initialization
While JavaIDL is intended to be Sun’s recommendation for mapping IDL into Java, it was re-
leased with a lightweight ORB called the Door ORB. This ORB provides just enough functional-
ity to get clients and servers talking to each other but not much more.

Depending on the ORB, the initialization will vary, as will the activation of the objects. For the
Door ORB distributed with JavaIDL, you initialize the ORB with the following line:

sunw.door.Orb.initialize(servicePort);

The servicePort parameter you pass to the ORB is the port number it should use when listen-
ing for incoming clients. It must be an integer value. Your clients must use this port number
when connecting to your server.

After you initialize the ORB, you can instantiate your implementation object. For example,

BankingImpl impl = new BankingImpl();

Next, you create the skeleton, passing it the implementation object:

BankingRef server = BankingSkeleton.createRef(impl);

Finally, you activate the server by publishing the name of the object:

sunw.door.Orb.publish(“Bank”, server);

Listing 42.4 shows the complete JavaIDL startup program for the banking server.

49 1529-5 CH42 9/24/98, 8:30 AM956

957

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

Listing 42.4 Source Code for BankingServer.java

package banking;

public class BankingServer
{

// Define the port that clients will use to connect to this server
 public static final int servicePort = 5150;

 public static void main(String[] args)
 {

// Initialize the orb
 sunw.door.Orb.initialize(servicePort);

 try {

 BankingImpl impl = new BankingImpl();
// Create the server
 BankingRef server =
 BankingSkeleton.createRef(impl);

// Register the object with the naming service as “Bank”
 sunw.door.Orb.publish(“Bank”, server);

 } catch (Exception e) {
 System.out.println(“Got exception: “+e);
 e.printStackTrace();
 }
 }
}

Creating CORBA Clients with JavaIDL
Since the IDL compiler creates a skeleton class on the server side that receives remote method
invocation requests, you might expect that it creates some sort of skeleton on the client side
that sends these requests. It does, but the client side class is referred to as a stub.

The stub class implements the Operations interface (the same Operations interface imple-
mented by the Servant class). Whenever you invoke one of the stub’s methods, the stub cre-
ates a request and sends it to the server.

There is an extra layer on top of the stub called a reference. This reference object, which is the
name of the IDL interface followed by Ref, is the object you use to make calls to the server.

There are two simple steps in creating a CORBA client in JavaIDL:

1. Create a reference to a stub using the createRef method in the particular stub.

2. Use the sunw.corba.Orb.resolve method to create a connection between the stub and a
CORBA server.

Creating CORBA Clients with JavaIDL

49 1529-5 CH42 9/24/98, 8:30 AM957

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

958 Chapter 42 JavaIDL: A Java Interface to CORBA

You would create a reference to a stub for the banking interface with the following line:

BankingRef bank = BankingStub.createRef();

Next, you must create a connection between the stub and a CORBA server by “resolving” it.
Since JavaIDL is meant to be the standard Java interface for all ORBs, it requires an ORB-
independent naming scheme. Sun decided on an URL-type naming scheme of the format:

idl:orb_name://orb_parameters

The early versions of JavaIDL shipped with an ORB called the Door ORB, which is a very
lightweight ORB containing little more than a naming scheme. To access a CORBA object
using the Door ORB, you must specify the host name and port number used by the CORBA
server you are connecting to and the name of the object you are accessing. The format of this
information is

hostname:port/object_name

If you wanted to access an object named Bank with the Door ORB, running on a server at port
5150 on the local host, you would resolve your stub this way:

sunw.corba.Orb.resolve(
“idl:sunw.door://localhost:5150/Bank”,
bank);

Remember that the bank parameter is the BankingRef returned by the BankingStub.createRef
method. Once the stub is resolved, you can invoke remote methods in the server using the
stub. Listing 42.5 shows the full JavaIDL client for the banking interface. As you can see, once
you have connected the stub to the server, you can invoke methods on the stub just like it was
a local object.

Listing 42.5 Source Code for BankingClient.java

import banking.*;

// This program tries out some of the methods in the BankingImpl
// remote object.

public class BankingClient
{

 public static void main(String args[])
 {

// Create an Account object for the account we are going to access.

 Account myAccount = new Account(
 “AA1234”, “1017”, AccountType.CHECKING);

 AccountInfo myAccountInfo = myAccount.toAccountInfo();
 try {

49 1529-5 CH42 9/24/98, 8:30 AM958

959

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

// Get a stub for the BankingImpl object

 BankingRef bank = BankingStub.createRef();
 sunw.corba.Orb.resolve(
 “idl:sunw.door://localhost:5150/Bank”,
 bank);

// Check the initial balance
 System.out.println(“My balance is: “+
 bank.getBalance(myAccountInfo));

// Deposit some money
 bank.deposit(myAccountInfo, 50000);

// Check the balance again
 System.out.println(“Deposited $500.00, balance is: “+
 bank.getBalance(myAccountInfo));

// Withdraw some money
 bank.withdraw(myAccountInfo, 25000);

// Check the balance again
 System.out.println(“Withdrew $250.00, balance is: “+
 bank.getBalance(myAccountInfo));

 System.out.flush();
 System.exit(0);

 } catch (Exception e) {
 System.out.println(“Got exception: “+e);
 e.printStackTrace();
 }
 }
}

Creating Callbacks in CORBA
Callbacks are a handy mechanism in distributed computing. You use them whenever your
client wants to be notified of some event, but doesn’t want to sit and poll the server to see if the
event has occurred yet. In a regular Java program, you’d just create a callback interface and
pass the server an object that implements the callback interface. When the event occurred, the
server would invoke a method in the callback object.

As it turns out, callbacks are just that easy in CORBA. You define a callback interface in your
IDL file and then create a method in the server’s interface that takes the callback interface as a
parameter. The following IDL file defines a server interface and a callback interface:

module callbackDemo
{
 interface callbackInterface {
 void doNotify(in string whatHappened);
 };

Creating Callbacks in CORBA

49 1529-5 CH42 9/24/98, 8:30 AM959

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

960 Chapter 42 JavaIDL: A Java Interface to CORBA

 interface serverInterface {
 void setCallback(in callbackInterface callMe);
 };
};

Under JavaIDL, the setCallback method would be defined as

void setCallback(callbackDemo.callbackInterfaceRef callMe)
 throws sunw.corba.SystemException;

Once you have the callbackDemo.callbackInterfaceRef object, you can invoke its
whatHappened method at any time. At this point, the client and server are on a peer-to-peer
level. They are each other’s client and server.

Wrapping CORBA Around an Existing Object
When you create CORBA implementation objects you are tying that object to a CORBA imple-
mentation. While the Servant interface generated by the JavaIDL system goes a long way in
separating your implementation from the specifics of the ORB, your implementation methods
can throw the CORBA SystemException exception, tying your implementation to CORBA. This
is not the ideal situation.

You can solve this problem, but it takes a little extra work up front. First, concentrate on imple-
menting the object you want, without using CORBA, RMI, or any other remote interface
mechanism. This will be the one copy you use across all your implementations. This object, or
set of objects, can define its own types, exceptions, and interfaces.

Next, to make this object available remotely, define an IDL interface that is as close to the
object’s interface as you can get. There may be cases where they won’t match exactly, but you
can take care of that.

Once you generate the Java classes from the IDL definition, create an implementation that
simply invokes methods on the real implementation object. This is essentially the same thing
as a TIE interface, with one major exception—the implementation class has no knowledge of
CORBA. You can even use this technique to provide multiple ways to access a remote object.
Figure 42.2 shows a diagram of the various ways you might provide access to your implementa-
tion object.

RMI
Interface

RMI
Client

Remote
Object

TIE
Interface

CORBA
Client

FIG. 42.2
A single object can be
accessed by many
types of remote object
systems.

49 1529-5 CH42 9/24/98, 8:31 AM960

961

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

While this may sound simple, it has some additional complexities you must address. If your
implementation object defines its own exceptions, you must map those exceptions to CORBA
exceptions. You must also map between Java objects and CORBA-defined objects. Once again,
the banking interface provides a good starting point for illustrating the problems and solutions
in separating the application from CORBA.

The original banking interface was defined with a hierarchy of exceptions, a generic
BankingException, with InsufficientFundsException and InvalidAccountException as
subclasses. This poses a problem in CORBA, since exceptions aren’t inherited. You must define
a BankingException exception in your IDL file, such as the following:

exception BankingException {};

In addition, since you probably want the banking application itself to be in the banking pack-
age, change the IDL module name to remotebanking.

The implementation for the Banking interface in the remotebanking module must perform two
kinds of mapping. First, it must convert instances of the Account object to instances of the
AccountInfo object. This may seem like a pain and, frankly, it is. But it’s a necessary pain. If
you start to intermingle the classes defined by CORBA with the real implementation of the
application, you will end up having to carry the CORBA portions along with the application,
even if you don’t use CORBA.

Mapping to and from CORBA-Defined Types
You can define static methods to handle the conversion from the application data types to the
CORBA-defined data types. For example, the banking application defines an Account object.
The remotebanking module defines this object as AccountInfo. You can convert between the
two with the following methods:

// Create a banking.Account from an AccountInfo object

public static banking.Account makeAccount(AccountInfo info)
{
 return new banking.Account(info.id, info.password,
 info.which);
}

// Create an AccountInfo object from a banking.Account object

public static AccountInfo makeAccountInfo(banking.Account account)
{
 return new AccountInfo(account.id, account.password,
 account.which);
}

Your remote implementation of the banking interface needs access to the real implementation,
so the constructor for the RemoteBankingImpl object needs a reference to the
banking.BankingImpl object:

protected banking.BankingImpl impl;

Wrapping CORBA Around an Existing Object

49 1529-5 CH42 9/24/98, 8:31 AM961

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

962 Chapter 42 JavaIDL: A Java Interface to CORBA

public RemoteBankingImpl(banking.BankingImpl impl)
{
 this.impl = impl;
}

Creating Remote Method Wrappers
Now, all your remote methods have to do is convert any incoming AccountInfo objects to
banking.Account objects, catch any exceptions, and throw the proper remote exceptions. Here
is the implementation of the remote withdraw method:

// call the withdraw function in the real implementation, catching
// any exceptions and throwing the equivalent CORBA exception

public synchronized void withdraw(AccountInfo accountInfo, int amount)
throws sunw.corba.SystemException, InvalidAccountException,
 InsufficientFundsException, BankingException
{

 try {

// Call the real withdraw method, converting the accountInfo object
// to a banking.Account object first

 impl.withdraw(makeAccount(accountInfo), amount);

 } catch (banking.InvalidAccountException excep) {

// The banking.InvalidAccountException contains an Account object.
// Convert it to an AccountInfo object when throwing the CORBA exception

 throw new InvalidAccountException(
 makeAccountInfo(excep.account));

 } catch (banking.InsufficientFundsException nsf) {
 throw new InsufficientFundsException();
 } catch (banking.BankingException e) {
 throw new BankingException();
 }
}

While it would be nice if you could get the IDL-to-Java converter to generate this automatically,
it has no way of knowing exactly how the real implementation looks.

Using CORBA in Applets
Although the full CORBA suite represents a huge amount of code, the requirements for a
CORBA client are fairly small. All you really need for a client is the ORB itself. You can access
the CORBA services from another location on the network. This allows you to have very light-
weight CORBA clients. In other words, you can create applets that are CORBA clients.

49 1529-5 CH42 9/24/98, 8:31 AM962

963

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

42

VI
Part

Ch

The only real restriction on applets using CORBA is that an applet can make network connec-
tions back only to the server it was loaded from. This means that all the CORBA services must
be available on the Web server (or there must be some kind of proxy set up).

Since an applet cannot listen for incoming network connections, an applet cannot be a CORBA
server in most cases. You might find an ORB that eludes this restriction by using connections
made by the applet. Most Java ORBs available today have the ability to run CORBA servers on
an applet for a callback object. For a callback, an applet might create a server object locally and
then pass a reference for its server object to a CORBA server running on another machine.
That CORBA server could then use the reference to invoke methods in the applet as a client.

Figure 42.3 illustrates how an applet might act as a CORBA server.

Stub Stub

Applet Applet

Server
Implementation

Server
Implementation

Reference
to

Server

Client of
Applet

Client of
Applet

Request

FIG. 42.3
An applet may act as a
server by passing a
reference to a local
CORBA server.

Choosing Between CORBA and RMI
CORBA and RMI each have their advantages and disadvantages. RMI will be a standard part of
Java on both the client and server sides, making it a good, cheap tool. Since it is a Java-only
system, it integrates cleanly with the rest of Java. RMI is only a nice remote procedure call
system, however.

CORBA defines a robust, distributed environment, providing almost all the necessary features
for distributed applications. Not all of these features have been implemented by most vendors.
Most CORBA clients are offered free, but you must pay for the server software. This is the
typical pricing model for most Internet software nowadays. If you don’t need all the neat fea-
tures of CORBA and don’t want to spend a lot of money, RMI might be the right thing for you.

Your company might feel that Java is not yet ready for “prime time.” If this is the case but you
believe that Java is the environment of the future, you should start working CORBA into your
current development plans, if possible.

Using CORBA in Applets

49 1529-5 CH42 9/24/98, 8:31 AM963

p2vb/mpprp12 SE Using Java 1.2 #1529-5 8.7.98 ayanna CH42 LP#3

964 Chapter 42 JavaIDL: A Java Interface to CORBA

CORBA is a language-independent system. You can implement your applications in C++ today
using many of the Java design concepts. Specifically, keep the application and the user inter-
face separated and make the software as modular as possible. If you use CORBA between the
components of your system, you can migrate to Java by slowly replacing the various compo-
nents with CORBA-based Java software.

If you are a programmer trying to convince your skeptical management about the benefits of
Java, use CORBA to make a distributed interface into one of your applications (hopefully you
have a CORBA product for the language your application is written in). Next, write a Java
applet that implements the user interface for your application using CORBA to talk to the real
application. You have instantly ported part of your application to every platform that can run a
Java-enabled browser. Hopefully, your applet will perform as well as the old native interface to
the application.

This same technique will open your existing CORBA applications to non-traditional devices like
cellular phones and PDAs. If you aren’t ready to support those devices yet, at least you now
have a pathway. ●

49 1529-5 CH42 9/24/98, 8:31 AM964

965

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

C H A P T E R

Java—COM Integration

A Significant Extension 966

A Brief Overview of COM 966

Defining COM Interfaces 967

Compiling an ODL File 970

Generating a GUID 970

Creating COM Objects in Java 971

Calling Java COM Objects from Visual Basic 974

Calling Java Objects from Excel 974

Calling COM Objects from Java 976

43

In this chapter

50 1529-5 CH43 9/24/98, 8:33 AM965

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

966 Chapter 43 Java—COM Integration

A Significant Extension
Microsoft’s Java Virtual Machine, found in Java-enabled versions of Internet Explorer, contains
several Windows-specific extensions that are not a part of standard Java. One of the most sig-
nificant extensions is the integration with the Component Object Model, or COM.

CAUTION

The Java-COM integration in the Microsoft Java Virtual Machine is very platform-specific. You cannot use it to
build platform-independent code. Any code that uses the Java-COM integration will certainly not pass the
100% pure Java test. Still, if you work with Microsoft products and you can use Java, you might as well use
all the resources at your disposal.

A Brief Overview of COM
Many people have trouble distinguishing between OLE and ActiveX. In fact, many people say
that ActiveX is just a fancy name for OLE. The reason for the confusion is that ActiveX and
OLE are both based on COM.

COM provides a way for objects to communicate, whether they are in the same program, dif-
ferent programs on the same machine, or different programs on different machines. The net-
work version of COM, called DCOM (Distributed COM), has only come into production with
the introduction of NT 4.0. A version of DCOM for Windows 95 is also available from
Microsoft’s Web site at http://www.microsoft.com/oledev. DCOM should be embedded in
future versions of Windows.

The goal of COM is not just to allow objects to communicate, but to encourage developers to
create reusable software components. Yes, that is one of the stated goals of object-oriented
development, but COM goes beyond a typical object-oriented programming language like Java.
In Java or C++, you reuse a component by including it in your program. COM allows you to use
components that are present on your machine, but are not specifically a part of your program.
In fact, a successful COM object is used by many programs. The key here is that there is one
copy of the COM object’s code, no matter how many different programs use the object. Al-
though you can arrange your Java classes so that there is no more than one copy of a particular
class, you have to do it manually. With COM, this reuse is automatic.

Microsoft has embraced the notion of component-based software and has taken great strides to
implement applications as a collection of reusable components. Internet Explorer, for instance,
is implemented as a collection of components, with just a small startup program. The Java
Virtual Machine in Internet Explorer, for instance, is a separate component that can be used by
other applications.

Interfaces are the fundamental foundation of COM. If you understand Java interfaces, you
understand COM interfaces. In Java, you can define a set of methods for a class and then also
add other definitions by saying that an object implements a certain interface. In other words, in
Java, the set of methods implemented by a class is determined by both the class definition and

50 1529-5 CH43 9/24/98, 8:33 AM966

967

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

Defining COM Interfaces

the interfaces it implements. COM doesn’t support the notion of classes, only interfaces. The
set of methods implemented by a COM object is determined only by the interfaces it imple-
ments.

Each interface has a unique identifier, called its GUID (Globally Unique Identifier), which is a
40-digit number (160 bits) that is generated such that there should never be two identical
GUIDs. One of the important aspects of COM is that after you distribute software that presents
a particular interface (with its unique GUID), you should never change that interface. You can’t
add to it, you can’t remove things from it, you can’t change the method signatures. If someone
else is using one of your components and you change the interface in the next release, you’ll
break his software. If you need to change an interface, just create a new one instead.

GUIDs come from the DCE RPC standard where they are known as Universally Unique
IDentifiers (UUID). ■

COM interfaces are defined by the COM Interface Definition Language (IDL), which is a
superset of the DCE RPC IDL (an existing standard for remote procedure calls). Don’t confuse
COM IDL with CORBA IDL. Although they perform the same function, their syntax is very
different. You can also use OLE’s Object Definition Language (ODL) to define COM interfaces.
Microsoft offers two different compilers for compiling interfaces. To compile IDL files, use
MIDL, which comes with the Win32 SDK, or the Platform SDK. To compile ODL files, use
MKTYPLIB, which comes with Visual J++, or the ActiveX SDK.

A COM object is accessed one of three basic ways: as an in-proc server, a local server, or a
remote server. When you use an in-proc server object, it runs in the same address space as
your program. A local server object runs as a separate program on the same machine, while a
remote server object runs on a different machine.

Not only do COM interfaces have a unique identifier, so do COM objects. The unique identifier
for an object is called its Class ID (CLSID). A CLSID is really a GUID, but it serves a specific
purpose so it is given a separate name. These CLSID values are stored in the Windows Regis-
try file and are used to find the particular DLL or EXE file that implements an object. Figure
43.1 shows a Registry entry for a CLSID that happens to be for a PowerPoint application. The
various subkeys, such as LocalServer and InprocHandler, indicate which DLL or EXE file to
use when the PowerPoint object is used as a local server or an in-proc server.

Other than the actual functions they perform, the only difference between OLE and ActiveX is
that they use different interfaces. All OLE and ActiveX interfaces are defined and implemented
using COM.

Defining COM Interfaces
To create a COM object, you must first create an interface using either IDL or ODL. Because
the MKTYPLIB utility (the ODL compiler) comes with Visual J++, the examples in this chapter
use ODL instead of IDL.

N O T E

50 1529-5 CH43 9/24/98, 8:33 AM967

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

968 Chapter 43 Java—COM Integration

Listing 43.1 shows a sample ODL file. There are a number things in this file that may seem
foreign. By taking them one at a time, you see that things are not as complicated as they seem.

Listing 43.1 Source Code for JavaObject.odl

// JavaObject.odl

// First define the uuid for this type library
[
 uuid(D65E5380-6D58-11d0-8F0B-444553540000)
]

// Declare the type library

library LJavaObject
{

// Include the standard set of OLE types
 importlib(“stdole32.tlb”);

// Define the uuid for an odl interface that is a dual interface
// A dual interface is the most flexible because it supports the
// normal interface calling mechanism and also dynamic calling.
//
 [odl, dual, uuid(D65E5381-6D58-11d0-8F0B-444553540000)]

// Declare the IJavaObject interface (dual interfaces must inherit
// from the IDispatch interface)

 interface IJavaObject : IDispatch
 {

FIG. 43.1
The Registry entry for
the LocalServer of a
CLSID indicates the .EXE
file that provides a
specific COM interface.

50 1529-5 CH43 9/24/98, 8:33 AM968

969

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

Defining COM Interfaces

// Declare the reverseString method that takes a string as input
// and returns a string
 HRESULT reverseString([in] BSTR reverseMe,
 [out, retval] BSTR *reversed);

// Declare the square method that takes an integer and returns
// an integer
 HRESULT square([in] int squareMe,
 [out, retval] int *squared);
 }

// Declare a class that implements the IJavaObject interface
 [uuid(10C24E60-6D5D-11d0-8F0B-444553540000)]
 coclass JavaObject
 {
 interface IJavaObject;
 }
};

First of all, when you create a set of interfaces with ODL, you compile them into a type library.
A type library is to an ODL file what a .CLASS file is to the Java source. A type library must
have its own GUID, so the following statement declares the library and its GUID (remember
that a GUID is another name for UUID):

 [
uuid(D65E5380-6D58-11d0-8F0B-444553540000)
]

library LJavaObject

It may seem a little awkward, but you define an object’s GUID just ahead of the object
itself. In other languages, you usually start off with the object itself. ■

The importlib statement is similar to the import keyword in Java. In the previous example, it
is importing a set of standard OLE definitions. After the importlib comes the definition of the
IJavaObject interface:

[odl, dual, uuid(D65E5381-6D58-11d0-8F0B-444553540000)]

interface IJavaObject : Idispatch
{

Notice that the uuid keyword is accompanied by the odl and dual keywords. The bracketed
area where you normally define the uuid is used for any kind of attribute. You almost always
find uuid there, because every interface and class must have its own unique identifier.

Whenever you define an interface in ODL, you use the odl keyword. The dual keyword speci-
fies that the interface is a dual interface.

COM has two different ways of invoking methods—through a lookup table or through a dis-
patch interface. The lookup table is better known as a vtable—a virtual method lookup table,
similar to the vtable in C++. The dispatch interface allows you to perform dynamic method

N O T E

50 1529-5 CH43 9/24/98, 8:33 AM969

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

970 Chapter 43 Java—COM Integration

invocation. When you use a dispatch interface, there is an extra level of lookup that takes place
before the method is invoked. This tends to be slower than a vtable method invocation, but is
useful to interpreted languages like Visual Basic. To allow the maximum flexibility, you can
implement your classes with both vtable and dispatch interfaces by declaring them as dual
interfaces.

The method definitions also look rather strange:

HRESULT reverseString([in] BSTR reverseMe,
[out, retval] BSTR *reversed);

Believe it or not, the reverseString method really returns a string, and not the HRESULT value
you see declared. The HRESULT return value is necessary when creating this dual interface. The
actual return value is specified by the [out, retval] attribute for one of the parameters. A
parameter with an attribute of [in] is an input parameter, while those with an [out] attribute
are output parameters.

The BSTR data type is a basic string and is the common way to represent strings in COM.
There are other ways, but BSTR is compatible with OLE and also Visual Basic. You may be
pleasantly surprised to know that the Java-COM compiler translates the definition of
reverseString into this rather simple method declaration:

public String reverseString(String reverseMe)
throws com.ms.com.ComException

The definition of the JavaObject class at the bottom of the ODL file tells what interfaces a
JavaObject class implements. In this case, there is a single interface: IJavaObject. If you look
at different classes available on your system, especially OLE servers, you will find that most
classes implement several different interfaces.

Compiling an ODL File
The MKTYPLIB program that comes with Visual J++, and also the ActiveX SDK, compiles an
ODL file into a type library file, which has an extension of .TLB. The MKTYPLIB command to
compile JavaObject.odl is:

mktyplib JavaObject.odl

By default, MKTYPLIB uses the C preprocessor, which allows you to use #include and other
preprocessor directives. Unfortunately, this only works if you have a C preprocessor. If you
don’t, you must use the /nocpp option, like this:

mktyplib /nocpp JavaObject.odl

Generating a GUID
The JavaObject ODL file contains three different GUIDs. You don’t have to make these values
up (in fact, you shouldn’t). Instead, Visual C++ and the ActiveX SDK (and probably other pack-
ages, too) come with a tool called GUIDGEN which randomly generates these values. It can

50 1529-5 CH43 9/24/98, 8:33 AM970

971

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

Creating COM Objects in Java

format them in a number of ways and can even copy them to the Clipboard automatically so
you can paste them into your source code. Figure 43.2 shows a sample GUIDGEN session.

Creating COM Objects in Java
To create a Java object that implements one or more COM interfaces, you need to create spe-
cial wrapper classes using the JAVATLB command. For example, to create the Wrapper classes
for the information in JavaObject.tlb (which was compiled from JavaObject.odl), the
JAVATLB command would be:

javatlb JavaObject.tlb

For the JavaObject.tlb file, JAVATLB creates an interface called IJavaObject and a Java class
called JavaObject. These classes belong to the package javaobject (all lowercase) and are
placed in the \WINDOWS\JAVA\TRUSTLIB directory. Remember that packages require their own
subdirectory, so if you look in \WINDOWS\JAVA\TRUSTLIB, you will find a directory called
javaobject that contains IJavaObject.class and JavaObject.class.

After the wrappers have been created, you only need to fill in the appropriate methods. Listing
43.2 shows the JavaObjectImpl class that implements the methods in the IJavaObject inter-
face.

Listing 43.2 Source Code for JavaObjectImpl.java

import com.ms.com.*;
import javaobject.*;

public class JavaObjectImpl implements IJavaObject
{

FIG. 43.2
The GUIDGEN tool
automatically generates
GUID values for you.

continues

50 1529-5 CH43 9/24/98, 8:33 AM971

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

972 Chapter 43 Java—COM Integration

 public String reverseString(String in)
 throws ComException
 {
 StringBuffer buff = new StringBuffer();

// Start at the end of the input string and add characters
// to the string buffer. This puts the reverse of the string
// into the buffer.

 for (int i=in.length()-1; i >= 0; i—) {
 buff.append(in.charAt(i));
 }

// Return the contents of the buffer as a new string
 return buff.toString();
 }

 public int square(int val)
 throws ComException
 {
// Return the square of val
 return val * val;
 }
}

After you have compiled JavaObjectImpl (which you must compile with the Microsoft Java
compiler, JVC), use the JAVAREG tool to put information about JavaObjectImpl into the system
Registry. COM uses the Registry to locate COM objects and to find out how to run the server
for a particular object. The following command registers JavaObjectImpl and gives it a ProgID
of JavaObject:

JAVAREG /register /class:JavaObjectImpl /progid:JavaObject

CAUTION

Make sure that you do not put .class after JavaObjectImpl in the JAVAREG command. You want to
give JAVAREG the name of the class, not the name of the file containing the class.

The ProgID value is a simple name that other programs like Visual Basic can use to locate the
JavaObject class. JAVAREG creates an entry in the HKEY_CLASSES_ROOT section of the Registry
called JavaObject, which contains a subkey called CLSID containing the class ID (GUID) for
JavaObjectImpl. Figure 43.3 shows this Registry entry, as shown by the REGEDIT command.

JAVAREG also creates an entry under CLSID in HKEY_CLASSES_ROOT. The entry’s key is the
CLSID for JavaObjectImpl (the same CLSID contained in the ProgID entry for JavaObject).
Figure 43.4 shows the entries made under the CLSID as shown by REGEDIT.

Listing 43.2 Continued

50 1529-5 CH43 9/24/98, 8:33 AM972

973

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

Creating COM Objects in Java

The final step in making your class available to the rest of the world is to copy the
JavaObjectImpl.class file into \WINDOWS\JAVA\TRUSTLIB.

If you have installed Windows 95 or Windows NT in a directory other than \WINDOWS, use
that directory name followed by \JAVA\TRUSTLIB. For example, if you are running under

Windows NT and it is installed in \WINNT, copy your file to \WINNT\JAVA\TRUSTLIB. ■

N O T E

FIG. 43.3
A ProgID maps a
simple text name to a
160-bit CLSID value.

FIG. 43.4
JAVAREG makes a
number of entries
under the CLSID key.

50 1529-5 CH43 9/24/98, 8:33 AM973

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

974 Chapter 43 Java—COM Integration

Calling Java COM Objects from Visual Basic
If you have run JAVAREG to register your class, and you have copied the class to the TRUSTLIB
directory, you should now be able to access your class from other programs. You can create a
simple Visual Basic application to access this class. In the declaration section for the VB appli-
cation, insert the following statement:

Dim javaob as Object

Next, the Form_Load subroutine, which is called when the VB application starts up, should look
like this:

Private Sub Form_Load()
Set javaob = CreateObject(“JavaObject”)
End Sub

The JavaObject string is the ProgID for the object. If you used something else as the ProgID
when you ran JAVAREG, you would use that name here.

Now you can make use of the methods in the JavaObject class. In this example VB application,
there are two text fields: Text1 and Text2. The following subroutine takes the text from Text1,
runs it through the reverseString method in JavaObject, and puts the resulting text in Text2:

Private Sub Text1_Change()
Text2.Text = javaob.reverseString(Text1.Text)
End Sub

Figure 43.5 shows this Visual Basic application in action.

FIG. 43.5
A Visual Basic
application can use Java
objects.

Calling Java Objects from Excel
Microsoft Excel and other Microsoft Office products have their own version of Visual Basic
built-in. This means, of course, that you can also access Java objects from Excel!

CAUTION

You must use a 32-bit version of Excel for this to work. The 16-bit versions do not use 32-bit COM access,
and cannot access Java objects. This example is shown with Excel 7.0a from the Office for Windows 95
suite.

To create an Excel function, start Excel and choose Insert, Macro, Module from the main
menu, as shown in Figure 43.6.

50 1529-5 CH43 9/24/98, 8:33 AM974

975

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

Calling Java Objects from Excel

The function must access the JavaObject class and then call reverseString. Listing 43.3
shows the Reverser$ function.

Listing 43.3 Reverser$ Function from ExcelDemo.xls

Function Reverser$(reverseMe$)
 Dim javaob As Object
 Set javaob = CreateObject(“JavaObject”)
 Reverser$ = javaob.reverseString(reverseMe$)
End Function

Make sure that you have a recent version of the Microsoft Java SDK. The earliest versions
had problems with the COM integration. ■

After you have defined this function, you can use it in your spreadsheet. For example, assume
that you want to take the information in cell A1 in the spreadsheet, reverse it, and place the
results in cell A2. Just go to cell A2 and type the following formula:

=Reverser(A1)

Notice that there is no $ at the end of Reverser in this case. Now, any text you type in A1 will
automatically appear reversed in A2. Figure 43.7 shows a sample spreadsheet.

N O T E

FIG. 43.6
To create an Excel
function, you need to
insert a code module.

50 1529-5 CH43 9/24/98, 8:34 AM975

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

976 Chapter 43 Java—COM Integration

Calling COM Objects from Java
Just as you can access Java objects via COM, Java objects can access other COM-aware objects.
This really opens up possibilities for you on the Windows platform. If you want to create a
graph, you can use Excel’s graphing capabilities. If you want to create a neatly formatted print-
out, you can create a document in Word and print it. The best part is you don’t have to go
through the pain of creating an ODL file, as long as you can get the type library for the applica-
tion you want to use.

In the case of Microsoft Word, version 7, you can get the type library for free from Microsoft at
http://www.microsoft.com/WordDev/Articles/wb70endl.htm.

After you have a type library, run JAVATLB on the library to create the Java wrappers. For ex-
ample, the JAVATLB command for the Word 7 type library would be:

javatlb wb70en32.tlb

This command creates a WordBasic interface class that you can use. Because Word runs as a
local server object, you have to do a little more work to access it.

The LicenseMgr object can access a local server object given the CLSID of the object. You don’t
want to look up the Word.Basic CLSID yourself and put it in the source code. Instead, you can
access the system Registry from your program and discover the CLSID at runtime.

The RegKey class gives you access to the registry. Given a RegKey object, you retrieve subkeys
by calling the RegKey constructor with the parent key. For instance, you want the key
CLASSES_ROOT\Word.Basic\CLSID. You first need the RegKey for “CLASSES_ROOT.” From
that, you create a RegKey for Word.Basic, which is then used to create the RegKey for CLSID.

FIG. 43.7
Excel can use Java
objects to perform
interesting functions.

50 1529-5 CH43 9/24/98, 8:34 AM976

977

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

Calling COM Objects from Java

After you have the RegKey you want, you access the default value by calling the enumValue
method. Listing 43.4 shows a demo program that runs Word 7.0, creates a simple “Hello
World” document, and prints it.

Listing 43.4 Source Code for WordDemo.java

import wb70en32.*;
import com.ms.com.*;
import com.ms.lang.*;

public class WordDemo extends Object
{
 public static void main(String[] args)
 {
 try {

// Get the Registry Key for CLASSES_ROOT
 RegKey root = RegKey.getRootKey(RegKey.CLASSES_ROOT);

// From CLASSES_ROOT, get the key for Word.Basic
 RegKey wbkey = new RegKey(root,
 “Word.Basic”, RegKey.KEYOPEN_READ);

// From Word.Basic, get the CLSID
 RegKey clsid = new RegKey(wbkey, “CLSID”,
 RegKey.KEYOPEN_READ);

// Retrieve the CLSID from the CLSID key (it’s the default value)
 String classID = ((RegKeyEnumValueString)clsid.
 enumValue(0)).value;

// Create a License Manager for accessing local server objects
 ILicenseMgr lm = (ILicenseMgr) new LicenseMgr();

// Get a reference to WordBasic
 WordBasic wb = (WordBasic)
 lm.createInstance(classID,
 null, ComContext.LOCAL_SERVER);

// Create a new file
 wb.FileNewDefault();

// Insert some text
 wb.Insert(“Hello World!”);

 wb.InsertPara();

 wb.Insert(“Hi there!”);

// Print the text
 wb.FilePrintDefault();

continues

50 1529-5 CH43 9/24/98, 8:34 AM977

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

978 Chapter 43 Java—COM Integration

 } catch (Error e) {
 e.printStackTrace();
 }
 }
}

Remember to use the jview command to run programs in the MS Java environment, rather than
java.

If you want to see the methods available from the WordBasic object, use the OLE object viewer
that comes with Visual J++ (OLE2VIEW) or the ActiveX SDK (OLEVIEW). Figure 43.8 shows
the OLE2VIEW display of one of the methods in the WordBasic object.

One of the things you are bound to encounter with the WordBasic object, and others, is that
some methods have parameters of the variant type. The Java-COM package comes with a
Variant object that allows you to pass variant parameters. For example, if you want to call a
method that takes two variant parameters, you create two instances of a Variant object. Variant
parameters are used when parameters are optional. For this example, assume that the second
parameter is optional and the first one is an integer. The sequence of events would go like this:

Variant p1 = new Variant(); // Create parameter 1
p1.putInt(5); // Make the parameter value = 5

Variant p2 = new Variant(); // Create parameter 2
p2.noParam(); // Don’t pass a value for this parameter

someObject.funMethod(v1, v2); // Call the method

T I P

Listing 43.4 Continued

FIG. 43.8
OLEview and OLE2view
allow you to examine
the methods of COM
objects.

50 1529-5 CH43 9/24/98, 8:34 AM978

979

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

43

VI
Part

Ch

Calling COM Objects from Java

Generally, there are put methods for the basic Java types like int, short, double, and so on.
Also, for parameters that are passed by reference (ones that can also return a value), you use
putXXXRef, like putIntRef or putDoubleRef. You can also use the getXXX and getXXXRef meth-
ods to retrieve the values stored in a Variant object. ●

50 1529-5 CH43 9/24/98, 8:34 AM979

P2/Vb/mp9 SE Using Java 1.2, 4E #1529-5 7.29.98 ayanna CH43 LP#2

980 Chapter 43 Java—COM Integration

50 1529-5 CH43 9/24/98, 8:34 AM980

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTVII LP#2

VIIP A R T

Advanced Java

44 Java Media Framework 983

45 Commerce and Java Wallet 1015

46 Data Structures and Java Utilities 1049

47 java.lang 1079

48 Reflection 1129

49 Extending Java with Other Languages 1145

50 Java Versus C(++) 1161

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTVII LP#2

983

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

C H A P T E R

Java Media Framework

What Is the Java Media Framework? 984

Creating a Media Player 984

The States of the Player 992

Adding Controls to the Player 993

Controlling the Player Programmatically 996

Linking Multiple Players 1002

Creating Your Own Media Stream 1006

A Larger Application 1006

44

In this chapter

52 1529-5 CH44 9/24/98, 8:38 AM983

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

984 Chapter 44 Java Media Framework

What Is the Java Media Framework?
In the first two incantations of Java, programmers were hard-pressed to use Java when they
wanted to display complex media types like sound and video. Sure, Java had support for one
audio type (au), but playing complex types like MIDI and WAV was not possible. In addition,
video and animation could be done by creating slidelike presentations; but displaying AVI or
MOV files again wasn’t possible without a lot of work, and even then it wasn’t practical. With
the Java Media Framework, Java has come of multimedia age. The Java Media Framework
provides the means to present all kinds of interesting media types. The Java Media Framework
is an API for integrating advanced media formats into Java, such as video and sound. The me-
dia framework has several components, including media players, media capture, and
conferencing. A key to any of these topics is in providing a timing mechanism, which deter-
mines when the next part of the media should be played. In other words, it’s important to have
a mechanism to keep a video stream playing at the same speed as an accompanying sound
stream. Otherwise, you will end up with lips moving and somebody else’s words coming out.

Creating a Media Player
To understand the Java Media Framework, it is best to jump straight in, by creating an applet
that uses a media player. Putting a media player into an applet involves a few basic steps:

1. Create the URL for the media file.

2. Create the player for the media.

3. Tell the player to prefetch.

4. Add the player to the applet.

5. Start the player.

The first step is something you’ve done a dozen times already in this book. The next steps are
what you need to do to create the player itself. To do this, you utilize the Manager class. The
Manager class is actually the hub for getting both the timebase and the players. You need to
give the manager the URL where the media file is located.

The first task is to create an URL for the media file and then to create the player. In the
BasicPlayer class, this happens in the init() method, as shown in Listing 44.1.

Listing 44.1 Creating a Player and Its Associated URL

try {
 mediaURL = new URL(getDocumentBase(), mediaFile);
 player = Manager.createPlayer(mediaURL);
 }
 catch (IOException e) {
 System.err.println(“URL for “+mediaFile+” is invalid”);
 }

52 1529-5 CH44 9/24/98, 8:38 AM984

985

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 catch(NoPlayerException e) {
 System.err.println(“Could not find a player for “ + mediaURL);
 }
 }

By now you should be familiar with how the URL code is created in the second line of Listing
44.1. But just for review, the getDocumentBase() method returns the URL where the applet was
originally loaded from, and with mediaFile representing the relative URL where the media file
is located, the mediaURL ends up pointing to the fully qualified URL of the media file.

The next line is really the one you’re interested in. The manager is asked to return the player
that knows how to deal with the URL you’ve provided.

Note that there are two kinds of exceptions you need to catch in this situation. First, the URL
constructor will throw an IOException if the URL isn’t valid. Because we are using the
documentBase of the applet, it’s highly unlikely that this exception will ever occur for this par-
ticular example, but you need to catch this exception.

The second kind of exception is the NoPlayerException. This is a new one from the media
package. This particular exception is thrown when the manager knows of no player that is
designed for the media type the URL points to. For instance, if you had pointed to a .wav file
and there was no player for the .wav file, the NoPlayerException would get thrown.

Prefetching the Media
The next step in the process is to prefetch the media. Prefetching causes two things to happen.
First, the player goes through a process called realization. It then starts to download the media
file so that some of it can be cached. This reduces the latency time before the player can start
actually playing the media. Later in this chapter, we will go more into the states the player can
go through, such as prefetch and realize. For now, it’s sufficient to recognize that you need to
ask the player to prefetch. As Listing 44.2 shows, in your most basic player you will do this in
the start() method.

Listing 44.2 In the start Method, We Prefetch the Media We Are Going
to Play

public void start() {
 if (player != null)
 //prefetch starts the player.
 //Prefetch returns immediately, just like getImage
 player.prefetch();
}

As you can see, all you need to do to prefetch the media is call the prefetch method on the
player.

Creating a Media Player

52 1529-5 CH44 9/24/98, 8:38 AM985

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

986 Chapter 44 Java Media Framework

Adding the Player to Your Application
Adding the player to the application is actually kind of tricky. The player itself is not an AWT
component. So you don’t add the player itself, but its visual representation. To get the visual
component, player has a method called getVisualComponent(). However, there is a catch—
before you can get the visual component, the player must first be realized. Again, we will talk
more about this later, but for now, it’s important to understand that just as an image isn’t valid
right after you call getImage(), the player is not valid until it has been realized.

How then do you know whether the component has been realized? Well, player has a method
called getState() that returns the state of the current player. If you wanted to, you could con-
stantly check the state, and when the state of the player was finally realized, you could ask for
the visual component.

Fortunately, there is a more efficient way. As you might recall, Image has an interface called
ImageObserver. The media API has a similar method, called ControllerListener.
ControllerListener has one method—controllerUpdate(ControllerEvent). We can use the
controllerUpdate method to know when the media has been fetched, as shown in Listing 44.3.

Listing 44.3 The controllerUpdate Method Is Called Each Time the
Controller Changes State

public synchronized void controllerUpdate(ControllerEvent event)
{
 if (event instanceof RealizeCompleteEvent)
 {
 // Once the player has been realized add the
 //visual component to the screen
 if ((visualComponent = player.getVisualComponent()) != null)
 add(“Center”, visualComponent);

 // draw the component
 validate();
 }
}

The controllerUpdate() method is called each time the state of the controller changes. As we
will see later in this chapter, the player is itself a controller, and it can go through many differ-
ent state changes.

To differentiate between these changes, there are many events that can be generated. In this
case, what we are looking for is the RealizeCompleteEvent. To determine which event has
been received, we use the instanceof operator to evaluate whether the current event is of the
class RealizeCompleteEvent. If it is, we know that the player has been realized, and we can
now request the visual component from the player and add it to the application.

It is possible that the getVisualComponent() method will return a null. This happens when
there is no visual representation of the media. For instance, a player for an audio file might not
need to have a visual component. Obviously, that means you need to test for the null condition
before adding it to the applet.

52 1529-5 CH44 9/24/98, 8:38 AM986

987

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

In addition, to make sure that the component is actually represented in the applet, you do need
to make sure that the applet is validated. The validate() method forces any container, includ-
ing an applet, to make sure that all the components that have been added are actually present
on the screen.

Registering the Applet as a Listener
Before we can actually utilize the new controllerUpdate() method, we need to back up a step.
You’re probably already wondering how the player knows to inform the application about the
changes. The answer is that it doesn’t know right away. To have the player call
controllerUpdate(), you must first register your application with the player. In traditional
event listener fashion, this is done using player’s addControllerListener() method.

Just like all java.awt.event listeners, after a component has been registered as a listener, its
listener method will be called (in this case, controllerUpdate()) any time an event occurs. For
the current purposes, you will add the addControllerListener code to the init() method of
the applet, so the whole init() method now looks as shown in Listing 44.4.

Listing 44.4 In the init() Method, We Add this as a Listener to the Player

public void init() {
 String mediaFile = null;
 URL mediaURL = null;

 setLayout(new BorderLayout());

 if ((mediaFile = getParameter(“file”)) == null) {
 System.err.print (“Media File not present.”);
 System.err.println(“ Required parameter is ‘file’”);
 }
 else {
 try {
 mediaURL = new URL(getDocumentBase(), mediaFile);

 player = Manager.createPlayer(mediaURL);

 if(player != null) {
 //tell the player to add this applet as a listener
 player.addControllerListener(this);
 }
 else
 System.err.println(“failed to creat player for “ + mediaURL);
 }
 catch (IOException e) {
 System.err.println(“URL for “+mediaFile+” is invalid”);
 }
 catch(NoPlayerException e) {
 System.err.println(“Could not find a player for “ + mediaURL);
 }
 }
 }

Creating a Media Player

52 1529-5 CH44 9/24/98, 8:38 AM987

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

988 Chapter 44 Java Media Framework

Starting the Player
The next step in the process is to tell the player to start. However, just as with requesting the
visual component, the player cannot be started until it has reached a certain state—namely, the
player must have managed to complete the prefetching that we talked about earlier.

Technically speaking, as soon as the player has been realized, you can start it; however, it’s
unwise to do so because it’s likely that the media will play choppily. The prefetching of the
media allows the player to streamline some of the media so that it can smoothly play the whole
thing.

To determine when the prefetch has been completed, we can look for a
PrefetchCompletedEvent. After this event has been generated, the prefetching is complete. To
utilize this knowledge, we will add the code shown in Listing 44.5 to the controllerUpdate
method.

Listing 44.5 Start the Player After the Prefetch Is Complete

if (event instanceof PrefetchCompleteEvent) {
 // start the player once it’s been prefetched
 player.start();
}

Cleaning Up and Stopping the Player
Being good public programmers, we must use the stop() method of the applet to clean up
after ourselves. As you will recall, the stop() method is called when the browser leaves the
current Web page. After the browser leaves the page, we should stop playing the media.

Stopping the player is easy to do; we just use the stop() method on the player. However, there
is one additional step we should take—removing the media from memory. As you can well
imagine, keeping a 2 or 3MB video that is no longer needed in memory is very wasteful and
will eventually bring the whole system to its knees. Fortunately, player has a method for just
this purpose: deallocate(). As soon as you know that you no longer need a media, you should
tell the player to deallocate it so that it can be garbage-collected.

Using both the player’s stop() and the deallocate() methods, you can create the applet’s
stop() method. Listing 44.6 shows what the complete stop() method should look like.

Listing 44.6 Stop the Player and Deallocate the Media in the stop() Method

 public void stop()
 {
 if (player != null)
 {
 // Stop media playback
 player.stop();
 //release resources for the media
 player.deallocate();

52 1529-5 CH44 9/24/98, 8:38 AM988

989

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 }
 }

Putting It All Together
Now, you can put everything you have just learned together into a complete player. Listing 44.7
shows what the complete player looks like.

Listing 44.7 BasicPlayer.java—A Complete Media Player Using the Java
Media Framework Classes

import java.applet.*;
import java.awt.*;
import java.net.*;
import java.io.*;
import javax.media.*;

/**
 * A basic media player Applet
 */
public class BasicPlayer extends Applet implements ControllerListener {
 // the media player
 Player player = null;

 // Component where video will appear
 Component visualComponent = null;
 /**
 * Read the applet file parameter and create the media player.
 */
 public void init() {
 String mediaFile = null;
 URL mediaURL = null;

 setLayout(new BorderLayout());

 if ((mediaFile = getParameter(“file”)) == null) {
 System.err.print(“Media File not present.”);
 System.err.println(“ Required parameter is ‘file’”);
 }
 else {
 try {
 mediaURL = new URL(getDocumentBase(), mediaFile);

 player = Manager.createPlayer(mediaURL);

 if(player != null) {
 //tell the player to add this applet as a listener
 player.addControllerListener(this);
 }
 else
 System.err.println(“failed to creat player for “ + mediaURL);
 }

continues

Creating a Media Player

52 1529-5 CH44 9/24/98, 8:38 AM989

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

990 Chapter 44 Java Media Framework

Listing 44.7 Continued

 catch (IOException e) {
 System.err.println(“URL for “+mediaFile+” is invalid”);
 }
 catch(NoPlayerException e) {
 System.err.println(“Could not find a player for “ + mediaURL);
 }
 }
 }

 public void start() {
 if (player != null)
 //prefetch starts the player.
 //Prefetch returns immediately, just like getImage
 player.prefetch();
 }

 public void stop() {
 if (player != null) {
 // Stop media playback
 player.stop();
 //release resources for the media
 player.deallocate();
 }
 }

 //------ Controller interface method ----------

 /**
 * Whenever there is a media event,
 * the controllerUpdate method is called
 * for all the Player’s listeners
 */
 public synchronized void controllerUpdate(ControllerEvent event) {
 if (event instanceof RealizeCompleteEvent) {
 // Once the player has been realized add
 // the visual component to the screen
 if ((visualComponent = player.getVisualComponent()) != null)
 add(“Center”, visualComponent);

 // draw the component
 validate();
 }

 else if (event instanceof PrefetchCompleteEvent) {
 // start the player once it’s been prefetched
 player.start();
 }
 }
}

52 1529-5 CH44 9/24/98, 8:38 AM990

991

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

Compiling the BasicPlayer
To compile the BasicPlayer under JDK 1.2, simply use the javac compiler. However, under
JDK1.1 it is also possible to compile the BasicPlayer. To do so, you need to first obtain a copy of
the JMF classes from the vendor for your particular machine. For Windows 95/98, Windows
NT, and Solaris users, you can obtain a set of classes from Sun Microsystems, Inc. at

http://java.sun.com/products/java-media/jmf/1.0/

After you have downloaded the files from these sites and installed them, you need to track
down the media classes. In the case of the Sun installation, the file you want is called jmf.jar
and is installed in the plug-ins directory (if you’re using Netscape Navigator).

To compile the program, you need to include the jmf.jar file in your classpath and then run
the javac program.

Running BasicPlayer
Before you can run the BasicPlayer, you must first create an HTML file with the appropriate
file. In this case, we will use the sample MPEG file included with the JMF classes. Your HTML
file should look similar to Listing 44.8.

Listing 44.8 BasicPlayer.html—A Basic HTML File That Includes Your Applet

<html>
<body>
<applet code=”BasicPlayer” width=”320" height=”300">
<param name=”FILE” value=”sample2.mpg”>
Sorry, your browser does not support Java(TM) Applets.
</applet>
</body>
</html>

You now have two options for running BasicPlayer. First, you can use Netscape 4.03 with the
final JDK 1.1 patch, or Internet Explorer 4, and if you have properly installed the media files
from your vendor, you can now open the BasicPlayer.html file.

The second option is to use the Appletviewer program included with the JDK. To use
Appletviewer, first make sure that you still have the media.zip file included in your classpath,
and then simply run it the way you are used to:

Appletviewer BasicPlayer.html

If everything has gone as planned, you should see and hear the promotional Intel video start to
play eventually.

Creating a Media Player

52 1529-5 CH44 9/24/98, 8:38 AM991

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

992 Chapter 44 Java Media Framework

The States of the Player
Now that you have made it through the most basic player, it’s time to go back and take a look at
the stages or states that the player goes through as it progresses. Figure 44.1 shows the states
that a player goes through during normal operation.

Unrealized

Realizing

Realized

Prefetching

Prefetched

Started

 Start ()

 Prefetch ()

 Realize ()

All non-exclusive
resources acquired

All exclusive
resources acquired

de
al

lo
ca

te
 (

)

de
al

lo
ca

te
 (

)

de
al

lo
ca

te
 (

)

de
al

lo
ca

te
 (

)

Stop ()

FIG. 44.1
A player travels through
many states before it is
started.

From Figure 44.1, you can see why we needed to track the state of the player before each
method is called. The states of the player are as listed here:

Unrealized: When you first create a player, it is in the unrealized state. At this point, the player
does not know anything about the media except what the URL to the media is. To move the
player to the next stage, you can use the realize() method.

52 1529-5 CH44 9/24/98, 8:38 AM992

993

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

The prefetch() method will cause the realize() method to be run if the player is not
yet realized. Therefore, you can skip over the realize() method as we did in the

BasicPlayer and jump straight to the prefetch() method if you want. ■

Realizing: In the realizing state, the player determines the resource requirements for the par-
ticular media. For instance, it might require a rendering engine to play a FLIC file. In the realiz-
ing state, the player acquires all of these resources that are non-exclusive. A non-exclusive
resource is a resource that can be shared with multiple players. The exclusive resources are
acquired later in the prefetching state.

Realized: When a player enters the realized state, the RealizeCompleteEvent is issued. In the
realized state, the player knows all the resources it will need in order to render the media. In
addition, it knows enough about the media itself to be able to present the visual component of
the media. The realized player has a “connection” to all the resources it will need, but it does
not actually own any of the resources that would prevent another player from starting. These
resources are known as scarce resources because they can not be shared among different
programs within the computer.

Prefetching: To get the player to move into the prefetching state, you can use the prefetch()
method. In the prefetching state, the player is preloading some of the media it is preparing to
present. It also obtains those scarce resources it couldn’t obtain back in the realizing state.

The start() method will cause the prefetch() method to be called on a player if the
media has not been fetched yet. However, unlike prefetch(), start cannot be called on

an unrealized player.

Also note that the prefetching state might have to be reentered if the media is repositioned, or if the
timebase for the media is changed and requires additional amounts of the media to be downloaded
and buffered. ■

Prefetched: Upon entering the prefetched state, a player issues the PrefetchCompleteEvent.
When it is in the prefetched state, a player is ready to go. It has obtained all its resources and
has enough of the media to begin playing. In short, it is ready to be started.

Started: As you saw in the BasicPlayer, to get a player to start you need to call the start()
method. When a player is started, it enters the started state. After a player has been started, its
clock is running and its media time has been set. If the player is not waiting for a particular
time to start playing, it will begin immediately; otherwise, it will await the appropriate time and
begin.

Adding Controls to the Player
Now that you have the player in your applet, what will you do if you want to let the user control
the motion of the player? The Media API has thought ahead for you. Because obviously you
don’t want to be responsible for trying to figure out what controls are necessary for each type
of player, the player has the capability to give you a set of controls using the
getControlPanelComponent() method.

N O T E

N O T E

Adding Controls to the Player

52 1529-5 CH44 9/24/98, 8:38 AM993

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

994 Chapter 44 Java Media Framework

Like the getVisualComponent() method, the getControlPanelComponent() cannot be used
until after the player has been realized. If you look back in the preceding section, you will see
why. Until a player has been realized, it really doesn’t know what type of media it will be
playing.

Listing 44.9 shows a BasicPlayer with the control panel added. Figure 44.2 shows what it will
look like when you run BasicPlayer.

Listing 44.9 Adding the Control Panel Is Simple and Easy in the
controllerUpdate Method

import java.applet.*;
import java.awt.*;
import java.net.*;
import java.io.*;
import javax.media.*;

/**
 * A basic media player Applet
 */
public class BasicPlayer extends Applet implements ControllerListener {
 Player player = null; // the media player
 Component visualComponent = null; // Component where video will appear
 Component controlComponent = null;
 /**
 * Read the applet file parameter and create the media player.
 */
 public void init() {
 String mediaFile = null;
 URL mediaURL = null;

 setLayout(new BorderLayout());

 if ((mediaFile = getParameter(“file”)) == null) {
 System.err.println(“Media File not present. Required parameter is
➥‘file’”);
 }
 else {
 try {
 mediaURL = new URL(getDocumentBase(), mediaFile);

 player = Manager.createPlayer(mediaURL);

 if(player != null) {
 //tell the player to add this applet as a listener
 player.addControllerListener(this);
 }
 else
 System.err.println(“failed to creat player for “ + mediaURL);
 }
 catch (IOException e) {
 System.err.println(“URL for “+mediaFile+” is invalid”);
 }

52 1529-5 CH44 9/24/98, 8:38 AM994

995

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 catch(NoPlayerException e) {
 System.err.println(“Could not find a player for “ + mediaURL);
 }
 }
 }

 public void start() {
 if (player != null)
 //prefetch starts the player.
 //Prefetch returns immediately, just like getImage
 player.prefetch();
 }

 public void stop() {
 if (player != null) {
 // Stop media playback
 player.stop();
 //release resources for the media
 player.deallocate();
 }
 }

 //------ Controller interface method ----------

 /**
 * Whenever there is a media event, the
 * controllerUpdate method is called
 * for all the Player’s listeners
 */
 public synchronized void controllerUpdate(ControllerEvent event) {
 if (event instanceof RealizeCompleteEvent) {
 // Once the player has been realized add
 // the visual component to the screen
 if ((visualComponent = player.getVisualComponent()) != null)
 add(“Center”, visualComponent);
 if ((controlComponent = player.getControlPanelComponent()) != null)
 if(visualComponent != null)
 add(“South”,controlComponent);
 else
 add(“Center”,controlComponent);

 // draw the components
 validate();
 }

 else if (event instanceof PrefetchCompleteEvent) {
 // start the player once it’s been prefetched
 player.start();
 }
 }
}

Adding Controls to the Player

52 1529-5 CH44 9/24/98, 8:38 AM995

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

996 Chapter 44 Java Media Framework

Controlling the Player Programmatically
In addition to using the control panel, you can control the motion of the programmer using
methods in player. You might want to do this for several reasons. One reason might be that you
want to put up buttons to allow the player to control the player, but you don’t want to use the
default control panel. Another reason is that you might want to change the way the player is
playing because of some other condition in your program.

Starting the Player
As you have already seen in the BasicPlayer example, player has a basic method—start(),
which tells the player to start. However, there is a more fundamental method that allows you to
start a player and specify when it will actually start displaying its media. The syncStart()
method is the method that actually causes the player to start.

First, here’s a brief review of what the start() method does. Based on the state of the player,
the start() method will sequentially call first prefetch() for all the players under its control
(later in this chapter, controlling multiple players is discussed) and bring them into the
prefetched state, and then will call syncStart().

Setting the Media Time
Often you would like to take one video and jump around it. It’s not unlike playing tracks two
and five on your CD player without playing through the whole CD. Fortunately, the media
framework accommodates just such a need with the setMediaTime() method.

The setMediaTime() method takes a long number as a parameter, and that number represents
the time in nanoseconds. Unlike with most time increments you might be familiar with (such
as when sleeping a thread), you are not dealing in milliseconds here, but the finer nanosecond
increment.

Changing the Rate of Play
Have you ever wanted to speed up or slow down video? How about play it backward? The
player has a method for just such an activity. The method is setRate(), and it allows you to
change the rate at which the media is played. However, you can use setRate() only before the
player is actually started. Calling setRate on a started player causes an exception to be thrown.

FIG. 44.2
The player has a default
control panel.

52 1529-5 CH44 9/24/98, 8:38 AM996

997

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

The setRate() method might not be able to actually set the rate of the media play. You see, the
only thing that’s guaranteed is that a player will be able to play the media at a rate of 1.0. The
setRate() method returns to you the actual rate that has been applied.

Fortunately, the AVI player supports playing the file at many different rates, so you can add a
rate change to the BasicPlayer. Change the controllerUpdate method in BasicPlayer as shown
in Listing 44.10.

Listing 44.10 Change the controllerUpdate Method to Adjust the Rate
of Play

public synchronized void controllerUpdate(ControllerEvent event)
{
if (event instanceof RealizeCompleteEvent)
{
 // Once the player has been realized add the visual component to the screen
 if ((visualComponent = player.getVisualComponent()) != null)
 add(“Center”, visualComponent);
 if ((controlComponent = player.getControlPanelComponent()) != null)
 if(visualComponent != null)
 add(“South”,controlComponent);
 else
 add(“Center”,controlComponent);

 // draw the components
 validate();
}

else if (event instanceof PrefetchCompleteEvent)
{
 System.out.println(“prefetching:”+(new Date()));
 player.setRate((float)2.0);
 // start the player once it’s been prefetched
 player.start();
}
}

Changing the Sound Volume
The capability to change the volume of the sound for the player is very important. To change
the volume, the JMF has dedicated a whole class: GainControl. The first step in changing the
volume is to get the GainControl from the player. To do so, you can invoke the
getGainControl() method.

Some players do not have an audio component to them. Those players return null from the
getGainControl method, but for all others, after you have the GainControl, you can change
the volume in many ways.

Controlling the Player Programmatically

52 1529-5 CH44 9/24/98, 8:38 AM997

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

998 Chapter 44 Java Media Framework

Perhaps the most obvious thing to do with the audio is to turn it off all together, or mute it. Lo
and behold, the GainControl class just happens to have a mute() method for this purpose.

Aside from muting the volume altogether, there are two distinctly different ways to control the
volume of the player. The first way is to adjust the volume based on a level. A level is an arbi-
trary number between 0 and 1.0. When set to 1.0, the volume is basically on full. Set to 0, it’s
almost indistinguishable from the muted setting.

To change the GainControl’s volume level, you can use the setLevel() method. There is also
an accompanying getLevel() method to retrieve the level of the GainControl. Remember that
the only valid numbers are between 0 and 1.0.

The problem with the level mechanism, however, is that it doesn’t allow you as a programmer
to know how loud the media will actually play. Typically, sound engineers deal with sound in
terms of decibels. The level only tells you that if you set the level to 0.5, it’s half as loud as at
1.0. Fortunately, the media API provides a means to set the decibel level of the volume. How-
ever, this technique is really only a guess on the media player’s standpoint. It cannot account
for things like the volume of your external speakers, but it instead makes a reasonable guess
based on your system.

Resizing a Media Player
The media framework has the capability to allow you to resize a media component. Obviously,
you want to be able to add a media player’s visual component to a panel just like any other
component. To let the LayoutManager do its work, it’s necessary for the media player to allow
you to resize the component.

To see this at work, we need do no more than change the WIDTH and HEIGHT parameters in the
HTML file for the BasicPlayer. Because the border layout will automatically resize the visual
component to fit, if you shrink the size of the applet, you will witness the automatic rescaling of
the media component. Try using the HTML file as shown in Listing 44.11. Figure 44.3 demon-
strates just what BasicPlayer will look like now.

Listing 44.11 BasicPlayer2.html—Reducing the width and height Param-
eters Helps Show Rescaling

<html>
<body>
 <applet code=”BasicPlayer” WIDTH=”160" HEIGHT=”150">
 <param name=”FILE” value=”ExampleVideo.avi”>
 Sorry, your browser does not support Java(TM) Applets.
 </applet>
</body>
</html>

52 1529-5 CH44 9/24/98, 8:38 AM998

999

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

ChAdding a Progress Bar
As you know, downloading a multimegabyte file over the Internet can take a long time. In fact,
it might seem an eternity during the time it takes to download a file. If the download takes too
long, users are even likely to think that the whole system has hung.

However, if there is some activity from your applet, a user will realize that the system itself has
not hung. The file won’t take any less time to download, but the users might be a bit more
tolerant. One perfect way to establish some activity is with a progress bar.

As you will recall, ImageObservers are notified each time more of the image is downloaded off
of the Internet. Likewise, a media player generates an event, CachingControlEvent; underlying
this is the CachingControl. Most players have a controller whose sole responsibility is to know
the status of the download of the media. In addition, fortunately for you, the CachingControl
has a progress-bar component. Much like the visual component and the control-component
elements that the player has, the progress-bar component can be added to any container.

We can use the progress bar to add a great deal to the user’s experience. Listing 44.12 shows
the BasicPlayer with the progress bar added to it.

Listing 44.12 ProgressPlayer.java—The BasicPlayer with a Progress Bar
Added

import java.applet.*;
import java.awt.*;
import java.net.*;
import javax.media.*;
import java.util.Date;

/**
 * A basic media player Applet
 */
public class ProgressPlayer extends Applet implements ControllerListener
{
 Player player = null; // the media player
 Component visualComponent = null; // Component where video will appear
 Component controlComponent = null;
 Component progressBar = null;
 /**

FIG. 44.3
The media framework
automatically rescales
to the applet’s size.

continues

Controlling the Player Programmatically

52 1529-5 CH44 9/24/98, 8:38 AM999

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1000 Chapter 44 Java Media Framework

Listing 44.12 Continued

 * Read the applet file parameter and create the media player.
 */
 public void init()
 {
 System.out.println(“init:”+(new Date()));
 String mediaFile = null;
 URL mediaURL = null;

 setLayout(new BorderLayout());

 if ((mediaFile = getParameter(“file”)) == null)
 {
 System.err.println(“Media File not present.
➥ Required parameter is ‘file’”);
 }
 else
 {
 try
 {
 mediaURL = new URL(getDocumentBase(), mediaFile);
 player = Manager.createPlayer(mediaURL);

 if(player != null)
 {
 //tell the player to add this applet as a listener
 player.addControllerListener(this);
 }
 else
 System.err.println(“failed to creat player for “ + mediaURL);
 }
 catch (MalformedURLException e)
 {
 System.err.println(“URL for “+mediaFile+” is invalid”);
 }
 catch(NoPlayerException e)
 {
 System.err.println(“Could not find a player for “ + mediaURL);
 }
 }
 }

 public void start()
 {
 if (player != null)
 //prefetch starts the player.
 //Prefetch returns immediately, just like getImage
 player.prefetch();
 }

 public void stop()
 {
 if (player != null)

52 1529-5 CH44 9/24/98, 8:38 AM1000

1001

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 {
 // Stop media playback
 player.stop();
 //release resources for the media
 player.deallocate();
 }
 }

 //------ Controller interface method ----------

 /**
 * Whenever there is a media event, the controllerUpdate method is called
 * for all the Player’s listeners
 */
 public synchronized void controllerUpdate(ControllerEvent event)
 {
 if (event instanceof RealizeCompleteEvent)
 {
 // Once the player has been realized add the
➥visual component to the screen
 if ((visualComponent = player.getVisualComponent()) != null)
 add(“Center”, visualComponent);
 if ((controlComponent = player.getControlPanelComponent()) != null)
 if(visualComponent != null)
 add(“South”,controlComponent);
 else
 add(“Center”,controlComponent);

 // draw the components
 validate();
 }

 else if (event instanceof PrefetchCompleteEvent)
 {
 System.out.println(“prefetching:”+(new Date()));
 // start the player once it’s been prefetched
 player.start();
 }
 else if (event instanceof CachingControlEvent) {

 // Put a progress bar up when downloading starts,
 // take it down when downloading ends.
 CachingControlEvent cce = (CachingControlEvent) event;
 CachingControl cc = cce.getCachingControl();
 long cc_progress = cce.getContentProgress();
 long cc_length = cc.getContentLength();

 if (progressBar == null) // Add the bar if not already there ...
 if ((progressBar = cc.getProgressBarComponent()) != null) {
 add(“North”, progressBar);
 validate();
 }

continues

Controlling the Player Programmatically

52 1529-5 CH44 9/24/98, 8:38 AM1001

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1002 Chapter 44 Java Media Framework

Listing 44.12 Continued

 if (progressBar != null) // Remove bar when finished downloading
 if (cc_progress == cc_length) {
 remove (progressBar);
 progressBar = null;
 validate();
 }
 }
 }
}

FIG. 44.4
While the player
downloads the media,
the progress bar shows
the status.

Linking Multiple Players
When you have more than one player working on a panel, it’s very likely that you would like to
start and stop them with a single controller. To do this, you need to be able to link the control-
lers.

The player has a method for just this purpose: addController(). The purpose of the
addController method is to tell the player to also control the other player. To review this
means that with the line

masterPlayer.addController(slavePlayer);

slavePlayer is controlled by masterPlayer. However, before you can control another player,
the slave player needs to be realized. The reason for this goes back to how much the player
knows about itself when it’s first created. As you will recall, before a player is actually realized,
it doesn’t even know what kind of media it will be playing. At that point, it doesn’t know what
kind of controller it will have, so it can’t give control to another player.

To gain control of another player, the timebases for both players must be compatible. To
make sure that this is the case, the master player will try to give the slave player its timebase.
If this attempt fails, however, the addController method will throw an
IncompatibleTimeBaseException.

Listing 44.13 is an example of the BasicPlayer with two side-to-side players, which are con-
trolled with a single control. After the player starts, you will see a single control panel. Press
the play button and they will both start.

52 1529-5 CH44 9/24/98, 8:38 AM1002

1003

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

Listing 44.13 The Primary Player

import java.applet.*;
import java.awt.*;
import java.net.*;
import javax.media.*;
import java.util.Date;

/**
 * A basic media player Applet
 */
public class PrimaryPlayer extends Applet implements ControllerListener
{
 Player player = null; // the media player
 Player slavePlayer = null;
 Component visualComponent = null; // Component where video will appear
 Component slaveVisualComponent = null;
 Component controlComponent = null;
 Component progressBar = null;
 /**
 * Read the applet file parameter and create the media player.
 */
 public void init()
 {
 String mediaFile = null;
 URL mediaURL = null;

 setLayout(new BorderLayout());

 if ((mediaFile = getParameter(“file”)) == null)
 {
 System.err.println(“Media File not present.
➥ Required parameter is ‘file’”);
 }
 else
 {
 try
 {
 mediaURL = new URL(getDocumentBase(), mediaFile);
 player = Manager.createPlayer(mediaURL);
 slavePlayer = Manager.createPlayer(mediaURL);

 if(player != null)
 {
 //tell the player to add this applet as a listener
 player.addControllerListener(this);
 }
 else{
 System.err.println(“failed to creat player for “ + mediaURL);
 }

 if(slavePlayer != null)
 {

continues

Linking Multiple Players

52 1529-5 CH44 9/24/98, 8:38 AM1003

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1004 Chapter 44 Java Media Framework

Listing 44.13 Continued

 //tell the player to add this applet as a listener
 slavePlayer.addControllerListener(this);
 }
 else{
 System.err.println(“failed to creat player for “ + mediaURL);
 }

 }
 catch (MalformedURLException e)
 {
 System.err.println(“URL for “+mediaFile+” is invalid”);
 }
 catch(NoPlayerException e)
 {
 System.err.println(“Could not find a player for “ + mediaURL);
 }

 }
 }

 public void start()
 {
 if (player != null)
 //prefetch starts the player.
 //Prefetch returns immediately, just like getImage
 player.prefetch();
 if (slavePlayer !=null)
 slavePlayer.prefetch();
 }

 public void stop()
 {
 if (player != null)
 {
 // Stop media playback
 player.stop();
 //release resources for the media
 player.deallocate();
 }
 }

 //------ Controller interface method ----------

 /**
 * Whenever there is a media event, the controllerUpdate method is called
 * for all the Player’s listeners
 */
 public synchronized void controllerUpdate(ControllerEvent event)
 {
 if (event instanceof RealizeCompleteEvent)
 {

52 1529-5 CH44 9/24/98, 8:38 AM1004

1005

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 System.out.println(“realized”);
 // Once the player has been realized add the visual
➥ component to the screen
 if (event.getSource() == slavePlayer){
 System.out.println(“slave”);
 if ((slaveVisualComponent = slavePlayer.
➥getVisualComponent()) != null)
 add(“West”, slaveVisualComponent);
 try{
 player.addController (slavePlayer);
 }
 catch (IncompatibleTimeBaseException e)
 {
 System.err.println(“Could not attach player “+e);
 }
 validate();

 }
 else{
 if ((visualComponent = player.getVisualComponent()) != null)
 add(“East”, visualComponent);
 if ((controlComponent = player.getControlPanelComponent()) != null)
 if(visualComponent != null)
 add(“South”,controlComponent);
 else
 add(“Center”,controlComponent);

 // draw the components
 validate();
 }

 }

 if (event instanceof PrefetchCompleteEvent){
 //player.setRate((float)2.0);
 // start the player once it’s been prefetched
 //player.setMediaTime(20000);
 player.start();
 }
 else if (event instanceof CachingControlEvent) {

 // Put a progress bar up when downloading starts,
 // take it down when downloading ends.

 CachingControlEvent e = (CachingControlEvent) event;
 CachingControl cc = e.getCachingControl();
 long cc_progress = e.getContentProgress();
 long cc_length = cc.getContentLength();

 if (progressBar == null) // Add the bar if not already there ...
 if ((progressBar = cc.getProgressBarComponent()) != null) {
 add(“North”, progressBar);
 validate();
 }

continues

Linking Multiple Players

52 1529-5 CH44 9/24/98, 8:38 AM1005

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1006 Chapter 44 Java Media Framework

Listing 44.13 Continued

 if (progressBar != null) // Remove bar when finished downloading
 if (cc_progress == cc_length) {
 remove (progressBar);
 progressBar = null;
 validate();
 }
 }
 }
}

Creating Your Own Media Stream
Pull Media Streams

As you are aware, there are several ways to get data into a client. And more important, there
are two basic subsets for retrieving data. One basic type is pull media streams, in which the
client requests that the server send it something. This is how your Web browser works. You go
out to a Web site and click on a URL. Your browser asks the server to send it that Web page,
and off things go. The other type of datastream, which we will talk about later, is called push
media. Push media results when the server automatically sends something to the client, or as
some have put it, broadcasts information to your client.

Pull media is typical of many of the Internet protocols. For instance, the two most popular
protocols on the Internet, HTTP and FTP, are both examples of pull streams. You have already
seen how the HTTP protocol can be utilized in the BasicPlayer.

Next, you’ll explore how to build your own pull stream.

Push Media Streams
Push streams have recently been popularized by Pointcast and Marimba. One basic advantage
of pull streams is that you can guarantee that the client will receive 100 percent of all the data
sent from the server. Because of this, your player does not need to know how to accommodate
the gaps in data that push streams are likely to have. The push player needs to know how to
handle gaps in data when they accrue, and it needs to be able to account for them.

A Larger Application
Now that you have read about all the controls for the player, you can put everything together
and create your own custom control panel. You’ll use all the methods you’ve learned to use up
until now. See Listing 44.14.

52 1529-5 CH44 9/24/98, 8:38 AM1006

1007

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

Listing 44.14 CustomPlayer.java

import java.applet.*;
import java.awt.*;
import java.net.*;
import java.media.*;

/**
 * This is a Java Applet that demonstrates how to add your own
 * custom controls to the basic media player.
 */
public class ExtendedPlayer3 extends Applet implements ControllerListener
{
 Player player = null; // media player
 Component visualComponent = null;
➥// component in which the video is playing
 boolean running = false; // indicates if the applet
➥ is currently running, because the user is on the page

 /**
 * The component of the media player that holds the gainControl reference.
 */
 GainControl gainControl = null;

 /**
 * Panel used to hold the custom controls in the Applets Layout Manager.
 */
 Panel controlPanel = null;

 /**
 * Runnable class used to monitor media progress and update the UI.
 */
 MediaProgressMonitor progressMonitor = null;

 /**
 * Buttons within the custom controls used to adjust Starting, Stopping,
 * Gain increase and Gain decrease.
 */
 Button startButton = null;
 Button stopButton = null;
 Button gainUpButton = null;
 Button gainDownButton = null;

 /**
 * Labels within the custom controls used to indicate adjustable media player
 * features.
 */
 Label controlLabel = null;
 Label gainLabel = null;
 Label muteLabel = null;
 Label mediaTimesLabel = null;

 /**
 * Checkbox within the custom controls used control the Mute feature of the
 * media player.

continues

A Larger Application

52 1529-5 CH44 9/24/98, 8:38 AM1007

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1008 Chapter 44 Java Media Framework

Listing 44.14 Continued

 */
 Checkbox muteCheckbox = null;

 /**
Textfield within the custom controls used to indicate
➥ the current media player
 * position and total media file duration.
 */
 TextField timeText = null;

 /**
 * Read the applet file parameter and create the media player.
 */
 public void init()
 {
 String mediaFile = null; // input filename from Applet parameter
 URL mediaURL = null; // base URL for the
➥document containing the applet

 setLayout(new BorderLayout());

 /**
 * Get the media filename info.
 * The applet tag should contain the path to the
 * source media file, relative to the applet.
 */
 if ((mediaFile = getParameter(“MediaFile”)) == null)
 {
 System.err.println(“Invalid media file parameter”);
 }
 else
 {
 try
 {
 // Create an url from the file name and the url to the
 // document containing this applet.
 mediaURL = new URL(getDocumentBase(), mediaFile);

 // Create an instance of an appropriate
➥media player for this media type.
 player = Manager.createPlayer(mediaURL);

 if(player != null)
 {
 // Add this applet as a listener for the media player events
 player.addControllerListener(this);

 // Create the duration monitor object:
 progressMonitor = new MediaProgressMonitor(this);
 }
 else
 System.err.println(“Could not create player for “ + mediaURL);
 }

52 1529-5 CH44 9/24/98, 8:38 AM1008

1009

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 catch (MalformedURLException e)
 {
 System.err.println(“Invalid media file URL!”);
 }
 catch(NoPlayerException e)
 {
 System.err.println(“Could not find a player to
➥ create for” + mediaURL);
 }
 }
 }

 /**
 * Start media file playback. This method is called the first time
 * that the Applet runs and every time the user re-enters the page.
 *
 * Call prefetch() to prepare to start the player. Prefetch returns
 * immediately, so this method does not call player.start(). The
 * controllerUpdate() method will call player.start() once the
 * player is Prefetched.
 */
 public synchronized void start()
 {
 if (player != null)
 {
 player.prefetch();
 running = true;
 }
 }

 /**
 * Stop media file playback and release resources before leaving
 * the page.
 */
 public synchronized void stop()
 {
 if (player != null)
 {
 progressMonitor.stop();
 player.stop();
 player.deallocate();
 running = false;
 }
 }

 /**
 * This controllerUpdate method must be defined in order to implement
 * a ControllerListener interface. This method will be called whenever
 * there is a media event.
 */
 public synchronized void controllerUpdate(ControllerEvent event)
 {
 // do nothing if player is set to null
 if (player == null)
 return;

continues

A Larger Application

52 1529-5 CH44 9/24/98, 8:38 AM1009

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1010 Chapter 44 Java Media Framework

Listing 44.14 Continued

 // When the player is Realized, get the visual component
 // and control component and add them to the Applet
 if (event instanceof RealizeCompleteEvent)
 {
 if ((visualComponent = player.getVisualComponent()) != null)
 add(“Center”, visualComponent);

 // Get pointer to the Gain Control of the media player.
 gainControl = player.getGainControl();

 // Create the custom control components.
 createCustomControls();
 if (visualComponent != null)
 add(“South”,controlPanel);
 else
 add(“Center”,controlPanel);

 // force the applet to draw the components
 validate();
 }

 // Once the player has Prefetched, start it
 else if (event instanceof PrefetchCompleteEvent)
 {
 if(running)
 {
 player.start();
 progressMonitor.start();
 }
 }

 // If we’ve reached the end of the media “rewind” it to the beginning.
 else if (event instanceof EndOfMediaEvent)
 {
 player.setMediaTime(0);
 if (running)
 player.start();
 }

 // A fatal player error has occurred
 else if (event instanceof ControllerErrorEvent)
 {
 progressMonitor.stop();
 player = null;
 System.err.println(“FATAL ERROR: “ +
➥((ControllerErrorEvent)event).getMessage());
 }
 }

 /**
 * This method handles the AWT details required to display
 * player controls.
 */

52 1529-5 CH44 9/24/98, 8:38 AM1010

1011

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 public void createCustomControls()
 {
 controlPanel = new Panel();

 GridBagLayout gridBag = new GridBagLayout();
 GridBagConstraints gridBagCon = new GridBagConstraints();

 controlPanel.setFont(new Font(“Arial”, Font.PLAIN, 14));
 controlPanel.setLayout(gridBag);

 // Create the first row of AWT control components:
➥Label, Start Button, Stop Button.
 gridBagCon.fill = GridBagConstraints.BOTH;
 gridBagCon.weightx = 1.0;
 controlLabel = new Label(“Controls:”, Label.LEFT);
 makeControl(controlPanel, controlLabel, gridBag, gridBagCon);

 startButton = new Button(“Start”);
 makeControl(controlPanel, startButton, gridBag, gridBagCon);

 gridBagCon.gridwidth = GridBagConstraints.REMAINDER;
 stopButton = new Button(“Stop”);
 makeControl(controlPanel, stopButton, gridBag, gridBagCon);

 // Create the second row of AWT control components:
➥Label, GainUp Button, GainDown Button.
 gridBagCon.weightx = 1.0;
 gridBagCon.gridwidth = 1;
 gainLabel = new Label(“Gain:”, Label.LEFT);
 makeControl(controlPanel, gainLabel, gridBag, gridBagCon);

 gainUpButton = new Button(“Loud”);
 makeControl(controlPanel, gainUpButton, gridBag, gridBagCon);

 gridBagCon.gridwidth = GridBagConstraints.REMAINDER;
 gainDownButton = new Button(“Soft”);
 makeControl(controlPanel, gainDownButton, gridBag, gridBagCon);

 // Create the third row of AWT control components: Label, Mute checkbox.
 gridBagCon.gridwidth = GridBagConstraints.RELATIVE;
 gridBagCon.weightx = 1.0;
 muteLabel = new Label(“Mute:”, Label.LEFT);
 makeControl(controlPanel, muteLabel, gridBag, gridBagCon);

 gridBagCon.gridwidth = GridBagConstraints.REMAINDER;
 muteCheckbox = new Checkbox(“”);
 makeControl(controlPanel, muteCheckbox, gridBag, gridBagCon);

 // Create the third row of AWT control components:
➥Label, media time textbox.
 gridBagCon.gridwidth = 1;
 gridBagCon.weightx = 1.0;
 mediaTimesLabel = new Label(“Current Time/Total Time:”, Label.LEFT);
 makeControl(controlPanel, mediaTimesLabel, gridBag, gridBagCon);

continues

A Larger Application

52 1529-5 CH44 9/24/98, 8:38 AM1011

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1012 Chapter 44 Java Media Framework

Listing 44.14 Continued

 gridBagCon.gridwidth = GridBagConstraints.REMAINDER;
 timeText = new TextField(“0.0//0.0”, 12);
 timeText.setEditable(false);
 makeControl(controlPanel, timeText, gridBag, gridBagCon);
 }

 /**
 * This method adds a control to the custom control layout manager.
 */
 protected void makeControl(Container parentComp, Component
➥ newComponent, GridBagLayout gridbag, GridBagConstraints constraint)
 {
 gridbag.setConstraints(newComponent, constraint);
 parentComp.add(newComponent);
 }

 /**
 * This method captures all the events from the custom controls. This
 * is where each control calls the media player control methods.
 */
 public boolean action(Event evt, Object arg)
 {
 if (evt.target instanceof Button)
 {
 // Process the button event:
 if (“Start”.equals(arg))
 {
 player.start();
 }
 else if (“Stop”.equals(arg))
 {
 player.stop();
 }
 else if (“Loud”.equals(arg))
 {
 gainControl.setDB(2.0f);
 }
 else if (“Soft”.equals(arg))
 {
 gainControl.setDB(-2.0f);
 }
 return(true);
 }
 else if (evt.target instanceof Checkbox)
 {
 // Set the player’s Mute control based upon the checkbox state.
 if (muteCheckbox.getState() == true)
 gainControl.setMute(true);
 else
 gainControl.setMute(false);
 return(true);
 }
 else
 return(false);

52 1529-5 CH44 9/24/98, 8:38 AM1012

1013

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

44

VII
Part

Ch

 }
}

/**
 * This class is used to continually monitor the progress
 * of the playing media file. The thread wakes up every 50 millisec
 * and passes the progress info to the player controls in the applet.
 */
class MediaProgressMonitor implements Runnable
{
 ExtendedPlayer3 m_Applet = null;
 Thread thread = null;
 boolean running;

 public MediaProgressMonitor(ExtendedPlayer3 applet)
 {
 m_Applet = applet;
 }

 /**
 * This method is called when the user starts the Applet or returns
 * from another page.
 */
 public synchronized void start()
 {
 thread = new Thread(this);
 thread.start();
 running = true;
 }

 /**
 * This method is called when the user stops the Applet or
 * leaves the page.
 */
 public synchronized void stop()
 {
 running = false;
 }

 /**
 * This method is called after the start method has executed.
 * Every 50 milliseconds, check the media player’s progress
 * and forward the results to the player’s control component.
 */
 public void run()
 {
 String mediaDuration = null;
 String mediaTime = null;
 char tmpChar;

 // Get the total time of the media file and store for use later.
 long duration = m_Applet.player.getDuration();
 mediaDuration = new String(String.valueOf(duration / (long) 1e08));
 tmpChar = mediaDuration.charAt(mediaDuration.length() - 1);
 mediaDuration = String.valueOf(duration / (long) 1e09) + “.” + tmpChar;

continues

A Larger Application

52 1529-5 CH44 9/24/98, 8:38 AM1013

p2vb/swg#4 SE Using Java 1.2 #1529-5 8.8.98 ayanna CH44 LP#3

1014 Chapter 44 Java Media Framework

Listing 44.14 Continued

 while (running)
 {
 // Update the media time text field.
 long currtime = m_Applet.player.getMediaTime();
 mediaTime = new String(String.valueOf(currtime / (long) 1e08));
 tmpChar = mediaTime.charAt(mediaTime.length() - 1);
 mediaTime = String.valueOf(currtime / (long) 1e09) + “.” + tmpChar;
 m_Applet.timeText.setText(mediaTime + “/” + mediaDuration);

 try
 {
 thread.sleep(50);
 }
 catch (InterruptedException e)
 {
 System.err.println(e);
 }
 }
 }
}

52 1529-5 CH44 9/24/98, 8:38 AM1014

1015

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

C H A P T E R

Commerce and Java Wallet

Security Support with the JCC 1016

Commerce Messages 1016

Creating Cassettes 1017

45

In this chapter

53 1529-5 CH45 9/24/98, 8:48 AM1015

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1016 Chapter 45 Commerce and Java Wallet

Security Support with the JCC
As the number of users on the Internet grow, more and more companies want to sell products
and services online. One of the biggest hurdles for online sales is security. Although the Java
Security API provides the strong encryption needed to safely pass credit card and banking
information back and forth over the Internet, there is still a need for a common set of APIs for
performing electronic transactions. The Java Commerce Client (JCC) was designed to support
all the features needed for online transactions.

The JCC includes a standard set of user interfaces, a framework for passing messages between
clients and servers, and set of APIs for handling various aspects of online transactions.

One of the core features of the JCC is the cassette, which is a collection of classes performing a
particular operation. You can think of a cassette as a larger version of an object—it consists of
multiple objects and some extra information, but it “plugs in” to the commerce framework to
perform some desired function.

The Java Commerce Client was originally called the Java Electronic Commerce Framework
(JECF). You will probably still see it called JECF in many places, including Sun’s

documentation. ■

Commerce Messages
In a client/server environment, it is important to nail down a protocol early so that develop-
ment can proceed on both the client and server sides. JCC defines a message format called
Java Commerce Messages (JCM) to make it easy to define interactions between clients and
servers.

JCM messages are human-readable text messages containing multiple name=value pairs like
this:

buyer.billto.name = Mark Wutka

The contents of the message will vary from server to server. Typically, the message will con-
tain information about the buyer, the order, the protocol, and any additional requirements.

JECF also defines a MIME type for JCMs so that e-mail programs, web servers, browsers, and
other MIME-aware applications can deal with them. The MIME type is application/x-java-
commerce, and a JCM has a file extension of .jcm.

Typically, the server will determine what kind of data needs to be sent to perform a transac-
tion. Chances are, there will be a core set of name=value pairs that every server expects, and
additional server-specific extensions that vary according to the type of server.

N O T E

53 1529-5 CH45 9/24/98, 8:48 AM1016

1017

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

Creating Cassettes
Cassettes are the core of JCC. They perform all the operations needed to get information from
the user, validate the transaction, and send it to a server. Cassettes are grouped into distinct
areas indicating what type of operation they perform. The types of cassettes are instruments,
protocols, operations, services, and user interfaces (UI).

An instrument cassette represents data used in a transaction. A typical instrument might repre-
sent a credit card, containing the credit card type, number, and expiration date. Another instru-
ment might represent a bank account, containing the bank location, the account number, and
the type of account.

A protocol is a communications mechanism between JCC and a commerce server. You have
probably encountered the term “protocol” in reference to networking, where you find the File
Transfer Protocol (FTP) and the Hypertext Transfer Protocol (HTTP). In the world of elec-
tronic commerce, you find protocols such as SET, which is a standard for secure electronic
transactions. Although SET defines the interactions between a client and a server, the protocol
cassette actually maps various protocols required by operation cassettes onto communication
protocols. JCC has a protocol defined for making a purchase, for example. A protocol cassette
for the SET protocol would implement the interface for the purchase protocol and perform
purchases using the SET protocol.

An operation cassette represents a task that a user may want to perform. A very common op-
eration cassette is one that implements a purchase operation, enabling the user to make a
purchase. You might also need a sell operation enabling the user to sell something electroni-
cally. Most of the time, selling is performed on a server; cases may arise, however, where the
user is doing the selling—as in a stock trade.

A UI cassette presents the user interface for performing various operations. An ATM UI might
present all the operations found at an automatic teller machine, for example, although dispens-
ing cash might be a little tricky because paper doesn’t travel well over a modem and stores are
hesitant to accept money that has been faxed. Still, you should be able to transfer money be-
tween accounts and possibly recharge a debit card.

A service cassette is a “helper” cassette that doesn’t necessarily perform a transaction itself. A
common service cassette might be a Rolodex of credit cards or a visual stock portfolio. A ser-
vice cassette can also provide services to other cassettes. An operation cassette, for example,
may use a service cassette to present a user interface when the operation is being performed.

The CassetteControl Class
Each cassette contains a class named CassetteControl, which contains information about the
contents of a cassette, the kind of function it performs, the current version, and any cassettes it
may depend on. The CassetteControl class is used when the cassette is first installed into the
JCC environment, and also at runtime when the version is checked.

Creating Cassettes

53 1529-5 CH45 9/24/98, 8:48 AM1017

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1018 Chapter 45 Commerce and Java Wallet

When you create your CassetteControl class, you must declare it as a subclass of Cassette.
There is no CassetteControl base class. The Cassette class loader specifically looks for a
class named CassetteControl and expects it to be a subclass of Cassette.

One of the helper classes that you will need when you create a CassetteControl object is the
CassetteIdentifier, which contains the name and version information of a cassette. You can
create a CassetteIdentifier one of three ways:

CassetteIdentifier()

CassetteIdentifier(String name)

CassetteIdentifier(String name, int majorVersion,
 int minorVersion)

If you create an empty cassette identifier using the null (empty) Constructor, you must set
the name and version numbers with the setName, setMajorVersion, and setMinorVersion
methods:

public void setName(String name)

public void setMajorVersion(int majorVersion)

public void setMinorVersion(int minorVersion)

If you set the cassette identifier using only the name, you must embed the version information
in the name by using this form:

name_majorVersion.minorVersion

The Constructors of the following two cassette identifiers create identical identifiers, for ex-
ample:

CassetteIdentifier(“StockTrader”, 3, 1)

CassetteIdentifier(“StockTrader_3.1”)

You use a cassette identifier in a ControlCassette object to provide the current version num-
ber of the cassette, as well as the identifiers for any other cassettes you may depend on.

Each ControlCassette object must return its current version in the
getCurrentVersionIdentifier method. The following code fragment creates a version identi-
fier on-the-fly:

public CassetteIdentifier getCurrentVersionIdentifier()
{
 return new CassetteIdentifier(“StockTrader”, 3, 1);
}

It is more efficient, of course, to create a CassetteIdentifier ahead of time and just return it
every time getCurrentVersionIdentifier is called.

You also use a cassette identifier when returning the cassettes that your cassette depends on.
The getDependencyIdentifiers method should return an array of cassette identifiers or null
if there are no dependencies. Suppose, for example, that your cassette depends on cassettes
named TradeOMatic and LeatherPortfolio. Your getDependencyIdentifiers method might
look like this:

53 1529-5 CH45 9/24/98, 8:48 AM1018

1019

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

public CassetteIdentifier[] getDependencyIdentifiers()
{
 CassetteIdentifier dependencies[] =
 new CassetteIdentifier[2];

 dependencies[0] = new CassetteIdentifier(
 “TradeOMatic”, 2, 1);
 dependencies[1] = new CassetteIdentifier(
 “LeatherPortfolio_2.4”);

 return dependencies;
}

The getJCMForLatestVersion method should return an array of URLs telling JCC where to
find newer versions of the cassette:

public URL[] getJCMForLatestVersion()

If another cassette needs a newer version of your cassette, the JCC will automatically check
these URLs and download the needed version.

The install method in CassetteControl should register itself with JCC using one of the fol-
lowing methods:

public final void registerInstrumentType(
 String instrumentType, String className)

public final void registerProtocol(
 String protocolName, String className)

public final void registerOperation(
 String operationName, String className)

public final void registerService(
 String serviceName, String className)

public final void registerWalletUI(
 String walletUIName, String description,
 String className)

An install method for a StockTrader operation might look like this:

public void install()
 throws CassetteInstallationException
{
 registerOperation(“StockTrader”,
 “stocks.trader.cassettes.StockTrader”);
}

When a cassette is removed from the system, JCC calls the uninstall method. If your cassette
doesn’t need to do anything to uninstall, just create an empty method like this:

public void uninstall()
{
}

Creating Cassettes

53 1529-5 CH45 9/24/98, 8:48 AM1019

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1020 Chapter 45 Commerce and Java Wallet

When a cassette is started, its init method is called. When the cassette is stopped, its
shutdown method is called:

public void init()

public void shutdown()

For the CassetteControl class, however, you don’t need the init and shutdown methods, so
just make them empty.

The getExpirationDate method returns the date when the cassette expires:

public Date getExpirationDate()

When the system needs to update a cassette, it first asks the cassette whether it is okay to
update it. The doUpdate method is passed the date of the last update and should return true if
it is okay to update, or false if it should not be updated:

public boolean doUpdate(Date lastUpdate)

The Instrument Cassette Class
An instrument, in the JCC world, represents a source of data. Usually, an instrument repre-
sents something such as a credit card, a bank account, or even a stock. In a typical scenario, a
user visiting an online store would decide to make a purchase. The JCC applet would present a
collection of instruments, perhaps even looking like a wallet, and the user would select an
“instrument” for payment, such as a credit card. The applet would use the instrument along
with an operation cassette and a protocol cassette to transmit the order to the online store. The
operation cassette and protocol cassette would communicate with the credit instrument to get
all the information needed to complete the sale—the account number, the expiration date, and
so forth.

An instrument implements the Instrument interface, which is a high-level description of the
interfaces that every instrument should support. The description is high level because the
functions of different interfaces can vary so greatly that there would be no way to predict all
the necessary methods to put into the interface. Besides, you don’t want a stock instrument
containing methods to get the credit card number and expiration date. Instead, the various
types of instruments have their separate interfaces that implement the Instrument interface.

The JCC comes with a GenericCreditCard interface, for example, which implements the
Instrument interface. As you might expect, the GenericCreditCard interface has methods to
query the account number, expiration date, billing address, and cardholder’s name.

The Instrument interface contains methods that indicate the type and general function of the
instrument. The getDescription method returns a simple text description of the instrument,
for example:

public String getDescription()

The getType method returns the type of instrument, which might be “Visa”, “MasterCard”,
“Amex”, or “Discover”:

public String getType()

53 1529-5 CH45 9/24/98, 8:48 AM1020

1021

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

The getName method, on the other hand, returns the name of the instrument, such as Sir
ChargeAlot:

public String getName()

The getContext method returns a string indicating how the instrument is used:

public String getContext()

The current JCC documentation gives “pay” and “accumulate” as examples of contexts.
These will hopefully be standardized some time in the future to avoid possible conflicts of
terminology.

The getVisualRepresentation method returns an AWT component that represents the instru-
ment:

public Component getVisualRepresentation(
 CommerceContext context, Dimension dim)

The visual representation of an instrument allows for the kind of flashy representation that
marketing folks love. The visual representation can display animations and even play audio
clips. (For a credit card, I recommend the Eagles’ “Take It to the Limit.”)

The getSimpleGraphic method returns an image to use in various selection screens:

public Image getSimpleGraphics(
 CommerceContext context, Dimension dim)

The simple graphic is intended for container displays where the user selects from a group of
instruments. A commerce applet might display a graphic of a wallet containing your credit
cards. After you select a credit card, the applet would use the visual representation object for
the rest of the transaction.

The InstrumentAdministration interface contains methods involved with creating and main-
taining specific instruments. Several of these methods are used just to get the graphics compo-
nents used for editing the instrument. The getNewInstrumentUI method, for example, returns
an AWT container used for creating a new instrument:

public Container getNewInstrumentUI(DataStore instStore,
 CommerceContext context, Dimension dim)

The getInstrumentEditUI, on the other hand, returns a container used to edit existing instru-
ments:

public Container getInstrumentEditUI(DataStore instStore,
 CommerceContext context, Dimension dim)

The getInstrument method returns an instrument from the database:

public Instrument getInstrument(DataStore instStore)

The DataStore object used in the getInstrument, and new/edit user interfaces provide a
mechanism for storing and retrieving instruments from a database. A DataStore actually repre-
sents a database blob (Binary Large Object) in which instruments are stored using the Java
serialization API. The DataStore object has only three methods:

public boolean commit() throws IOException

Creating Cassettes

53 1529-5 CH45 9/24/98, 8:48 AM1021

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1022 Chapter 45 Commerce and Java Wallet

public void setObject(Serializable obj) throws IOException

public Serializable getObject() throws IOException

The setObject method stores an object in a data store; the getObject method retrieves an
object from a data store. The commit method saves any data store changes and returns true if
successful.

Because credit cards are one of the most prevalent forms of payment currently in use, the JCC
includes a generic credit card interface that provides the kind of information commonly found
on credit cards. This gives implementers of protocol and operation cassettes a base to work
with so that they don’t have to wait to see how other developers implement credit card instru-
ments. If you create a credit card instrument, it should implement the GenericCreditCard
interface.

The GenericCreditCard interface contains get and set methods for the items found in almost
all credit cards. The get/set methods are as follows:

public String getPAN(); // PAN = Primary Account Number
public void setPAN(String primaryAccountNumber);

public String getExpireDate();
public void setExpireDate(String expireDate);

public String getCardholderName();
public void setCardholderName(String name);

public AddressRecord getBillingAddress();
public void setBillingAddress(AddressRecord address);

In addition, the accept method should return true if the current transaction is permitted:

public boolean accept();

Listing 45.1 shows an example instrument from the JCC package from Sun.

Listing 45.1 Source Code to CCInstrument.java

/* @(#)CCInstrument.java 1.21 11/07/97
 *
 * Copyright (c) 1996 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software
 * and its documentation for NON-COMMERCIAL or COMMERCIAL purposes and
 * without fee is hereby granted.
 * Please refer to the file http://java.sun.com/copy_trademarks.html
 * for further important copyright and trademark information and to
 * http://java.sun.com/licensing.html for further important licensing
 * information for the Java (tm) Technology.
 *
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR

53 1529-5 CH45 9/24/98, 8:48 AM1022

1023

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
 *
 * THIS SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE OR RESALE AS ON-LINE
 * CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE
 * PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
 * NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE
 * SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE
 * SOFTWARE COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE
 * PHYSICAL OR ENVIRONMENTAL DAMAGE (“HIGH RISK ACTIVITIES”). SUN
 * SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR
 * HIGH RISK ACTIVITIES.
 */

package com.sun.commerce.gencc;
import javax.commerce.util.AddressRecord;
import java.awt.*;
import java.net.URL;
import javax.commerce.util.Money;
import java.io.*;
import javax.commerce.base.*;
import javax.commerce.gui.*;
import javax.commerce.gui.image.*;
/**
 * A generic credit card object in the user’s wallet.
 *
 * @author Daniel J. Guinan
 * @author Java Commerce Team
 * @version @(#)CCInstrument.java 1.21 11/07/97
 */
public class CCInstrument implements GenericCreditCard
{
 // The data that is to be stored for this instrument
 /** The Primary Account Number of this credit-card */
 protected String PAN = null;

 /** The expiration date of this credit-card */
 protected String expireDate = null;
 /** The description of this credit-card */
 protected String description = null;
 /** The name of the cardholder of this credit-card */
 protected String cardholderName = null;
 /** The billing address for this credit-card */
 protected AddressRecord billingAddress = null;
 /** The local alias (the name in the wallet) of this credit-card */
 protected String localAlias = null;
 /** The name of the image (taken from the /graphics directory in
 * the cassette */
 protected String imageName = null;
 // Declare any variables that are NOT to be stored with the
 // instrument as transient
 /** We keep the image around so that we don’t have to re-create it */
 private transient Image theImage=null;
 /** This dummy frame is present to do image processing. AWT 1.1 requirement
*/

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1023

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1024 Chapter 45 Commerce and Java Wallet

Listing 45.1 Continued

 private static transient Frame dummy=null;
 /** Constructor
 * @param desc The description of the card to find in the wallet
 * @param cardno The primary account number (the credit-card number)
 * @param expire The expiration date of the credit-card
 * @param holder The cardholder name
 * @param addr The card’s billing address
 * @param gra The card’s local alias
 */
 public CCInstrument (String desc,
 String cardno,
 String expire,
 String holder,
 AddressRecord addr,
 String gra,
 String imagenm)
 {
 description = desc;
 PAN = cardno;
 expireDate = expire;
 cardholderName = holder;
 billingAddress = addr;
 localAlias = gra;
 imageName = imagenm;
 }

 /**
 * Instrument interface specific methods
 ***/
 /** Returns the description of the instrument
 * @return description
 */
 public String getDescription ()
 { return description; }
 /** Sets the description of the instrument.
 * @param x The description of the credit-card.
 */
 public void setDescription (String x)
 { description = x; }
 /** Returns the context that this credit-card is generally used within.
 * @return always returns “pay” for generic credit cards
 */
 public String getContext() { return “pay”; }
 /** Sets the instrument type
 * @return In the case of Generic Credit Card, it always returns the
 * constant <tt>CCAdmin.Type_Name</tt>
 */
 public String getType ()
 { return CCAdmin.TYPE_NAME; }
 /**
 * Returns the name the user associated with the specific instance
 * of the credit card
 * @return The local (wallet name) name of the credit-card.
 */

53 1529-5 CH45 9/24/98, 8:48 AM1024

1025

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 public String getName()
 { return localAlias;}
 /**
 * Set the user-defined name of this instance of the credit card.
 * @param x The local alias (wallet name) name of the credit-card.
 */
 public void setName(String x)
 { localAlias = x; }
 /**
 * This method retrieves the visual representation of this instrument.
 * Since this method returns a Component, it can be active imagery
 * (e.g. an animation), or other such thing.
 *
 * @param media The CommerceContext used to fetch imagery from
 * the jecf, a file, a URL, or the cassette.
 *
 * @param dim A hint as to the size of the image required. Since
 * proportions are important, we will not be returning
 * an image exactly this size. Rather, we will ensure
 * that our returned image is proportionally correct,
 * yet fits within these dimensions.
 *
 * @return Component A component with branding imagery associated with
 * this instrument.
 */
 public Component getVisualRepresentation(CommerceContext media, Dimension dim)

 {
 try // We will do the simplest thing — wrap the simple imagery
 { // into a canvas and return it.
 Image img = getSimpleGraphic(media, dim);
 CWImage cimg = new CWImage(img,dim);
 //cimg.waitForDimensions();
 return cimg;

 } catch(Exception e) { return new Label(“No Imagery”); }
 }
 /**
 * This method retrieves the image that is associated with this
 * instrument.
 *
 * @param media The CommerceContext used to fetch imagery from
 * the jecf, a file, a URL, or the cassette.
 *
 * @param dim A hint as to the size of the image required. Since
 * proportions are important, we will not be returning
 * an image exactly this size. Rather, we will ensure
 * that our returned image is proportionally correct,
 * yet fits within these dimensions.
 *
 * @return Image The image representing this instrument.
 */
 public Image getSimpleGraphic(CommerceContext media, Dimension dim)
 {
 try

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1025

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1026 Chapter 45 Commerce and Java Wallet

Listing 45.1 Continued

 {
 Image img,timg;
 if(dummy==null) // We need a dummy frame to do image processing
 { // create it if we haven’t already
 dummy = new Frame();
 dummy.addNotify(); // We need the Frame’s peer to exist for
 } // this to work.. This forces that to happen.
 // We need a MediaTracker to ensure our processing results in
 // images that are ready for display
 //MediaTracker mt = new MediaTracker(dummy);
 if(theImage==null) // If we haven’t created the image, create it
 {
 timg = media.getImage(this,”graphics/”+imageName);
 //mt.addImage(timg,1);
 //mt.waitForID(1);

 // We will use the dummy frame to create a duplicate of the
 // image that we can do image processing on.
 img =dummy.createImage(160,100);
 Graphics g = img.getGraphics();
 Color chromaKey = new Color(255,0,255);
 g.setColor(chromaKey);
 g.fillRect(0,0,160,100);
 stampGraphic(g,160,100);
 g.dispose();
 theImage = ImageTools.mergeImages(timg,img,chromaKey);
 }

 return theImage;
 }
 catch(Exception e)
 { System.out.println(e); e.printStackTrace(System.out); return null; }
 }
 /**
 * This method writes out specific card related data on top of the
 * branding image, so the user can see the difference between two
 * instances of the same type of Credit Card.
 *
 * @param img The image to stamp with specific information
 */
 void stampGraphic(Graphics g, int w, int h)
 {
 try
 {
 Font f = new Font(“Helvetica”,Font.BOLD,11);
 g.setColor(Color.black);
 g.setFont(f);
 FontMetrics fm = g.getFontMetrics();
 Rectangle bounds = new Rectangle(0,0,w-1,h-1);
 //String drawStr = localAlias+”\n\n\n”+PAN+”\n”+expireDate+
 // “\n”+cardholderName;
 String drawStr = “\n\n”+PAN+”\n”+expireDate+”\n”+cardholderName;
 TextDraw.drawCentered(g,fm,drawStr,bounds,2,0,TextDraw.CENTERED);
 bounds = new Rectangle(1,1,w-1,h-1);

53 1529-5 CH45 9/24/98, 8:48 AM1026

1027

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 g.setColor(new Color(254,254,254));
 TextDraw.drawCentered(g,fm,drawStr,bounds,2,0,TextDraw.CENTERED);
 }
 catch(Exception e)
 { System.out.println(e); e.printStackTrace(System.out); }
 }
 /**
 * GenericCreditCard interface specific methods
 ***/
 /* Check if this instrument allows this purchase
 * Has the option of returning false and keeping all data un-available
 * In this type of sceneraio, the data would be unavailable by default,
 * and would only become available if a valid accept() occurs...
 * (e.g. — having a boolean OKAYTOGIVEOUTINFO; variable that is checked
 * by each getter().. set OKAYTOGIVEOUTINFO=true; only if accept
 * succeeds).
 *
 * @return true=is acceptable, false=is not acceptable
 */
 public boolean accept()
 {
 // Has the option of returning false and keeping all data unavailable
 // In this type of scenario, the data would be unavailable by default,
 // and would only become available if a valid accept() occurs...
 // (e.g. -- having a boolean OKAYTOGIVEOUTINFO; variable that is checked
 // by each getter().. set OKAYTOGIVEOUTINFO=true; only if accept
 // succeeds).
 return true;
 }
 /**
 * Returns the credit-card number
 * @return the Instrument’s card number
 */
 public String getPAN()
 { return PAN; }
 /**
 * Returns the card’s expiration date
 * @return the Instrument’s expire date
 */
 public String getExpireDate()
 { return expireDate; }
 /**
 * Returns the cardholder’s name as known by the issuing institution
 * @return the Instrument’s cardholder name
 */
 public String getCardholderName()
 { return cardholderName; }
 /**
 * Return’s the cardholder’s billing address
 * @return the Instrument’s cardholder address
 */
 public AddressRecord getBillingAddress()
 { return billingAddress; }

 /**

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1027

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1028 Chapter 45 Commerce and Java Wallet

Listing 45.1 Continued

 * Sets the credit-card number for this instance
 * @param the card number in string format
 */
 public void setPAN(String x)
 { PAN = x; }
 /**
 * sets the card’s expiration date
 *@param the expiration date as a string
 */
 public void setExpireDate(String x)
 { expireDate = x; }
 /** Sets the cardholder’s name as known by the issuing institution
 * the cardholder’s name
 */
 public void setCardholderName (String x)
 { cardholderName = x; }
 /**
 * Sets the billing address as an AddressRecord
 * @param The billing address as an AddressRecord
 */
 public void setBillingAddress (AddressRecord x)
 { billingAddress = x; }
} // end of CCInstrument

The Protocol Cassette
A protocol cassette handles the communications between a client and a server. An example of a
protocol cassette is one that handles the SET (Secure Electronic Transaction) protocol. Be-
cause protocols vary so much, there is very little in common between different protocol cas-
settes. The Protocol interface defines the few methods that all protocol cassettes must share.

The canUseInstrument method returns true if the protocol supports a particular instrument:

public boolean canUseInstrument(Instrument instrument)

Sun recommends the following code structure when determining whether an instrument is
supported:

if (!(instrument instanceof NeededInterface_1))
 return false;

if (!(instrument instanceof NeededInterface_2))
 return false;

if (!(instrument instanceof NeededInterface_3))
 return false;

return true;

The getName method returns the name of the protocol as it was registered by the control cas-
sette:

public String getName()

53 1529-5 CH45 9/24/98, 8:48 AM1028

1029

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

The setProtocolJCM tells the protocol cassette to read a JCM and extract information:

public void setProtocolJCM(JCM protocolJCM)

The setWalletGate method gives the protocol a WalletGate object, which is used to get per-
mission to perform particular operations:

public void setWalletGate(WalletGate gate)

According to Sun, the wallet gate and the protocol portion of the JCM may soon be merged
into the CommerceContext object, so the setProtocolJCM and setWalletGate methods may
disappear in future releases of the JCC API.

The setCommerceContext method assigns a commerce context to the current protocol:

public void setCommerceContext(CommerceContext context)

A commerce context contains information specific to the current operation. Sun predicts that
future versions of JCC will assign the commerce context when the protocol is created, eliminat-
ing the need for the setCommerceContext method.

The PurchaseProtocol interface defines a typical protocol for making purchases. As complex
as the purchase process is in an electronic environment, the PurchaseProtocol interface con-
tains only one method:

public boolean actUpon(Instrument instrument,
 PurchaseParams purchase) throws TransactionException

Listing 45.2 shows an example protocol from Sun that is provided in the JCC package.

Listing 45.2 Source Code for DemoProtocol.java

/*
 * @(#) @(#)DemoProtocol.java 1.7 11/07/97
 *
 * Copyright (c) 1996 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software
 * and its documentation for NON-COMMERCIAL or COMMERCIAL purposes and
 * without fee is hereby granted.
 * Please refer to the file http://java.sun.com/copy_trademarks.html
 * for further important copyright and trademark information and to
 * http://java.sun.com/licensing.html for further important licensing
 * information for the Java (tm) Technology.
 *
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
 *
 * THIS SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE OR RESALE AS ON-LINE

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1029

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1030 Chapter 45 Commerce and Java Wallet

Listing 45.2 Continued

 * CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE
 * PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
 * NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE
 * SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE
 * SOFTWARE COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE
 * PHYSICAL OR ENVIRONMENTAL DAMAGE (“HIGH RISK ACTIVITIES”). SUN
 * SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR
 * HIGH RISK ACTIVITIES.
 */
// Things to be done to this code are marked with ?? or UNDONE:
package com.sun.commerce.example.demoprot;

import java.awt.*;
import java.awt.Event;
import java.io.*;
import java.net.*;
import java.security.*;
import java.util.*;

import javax.commerce.base.*;
import javax.commerce.base.WalletUserPermit;
import javax.commerce.cassette.*;
import javax.commerce.database.*;
import com.sun.commerce.gencc.GenericCreditCard;
import javax.commerce.gui.ProgressBar;
import javax.commerce.util.Money;

/**
 * The DemoProtocol is a protocol that is intended to be used for
 * Demo purposes. It does not actually perform a transaction or
 * open any network connections. It mostly puts up a progress
 * bar and pretends that it performed a transaction. This protocol
 * will accept any instrument.
 *
 * @see PurchaseProtocol
 * @see ActionBase
 * @see ActionParameter
 */
public class DemoProtocol implements PurchaseProtocol, Runnable
{
 /** The registration name of the protocol */
 public static final String PROTOCOL_NAME=”Demo”;

 /** The instrument being used in the demo protocol */
 Instrument instrument;

 private PurchaseParams pp;

 private ProgressBar pbar;

 private JCM jcm=null;

 private String failure=null;

53 1529-5 CH45 9/24/98, 8:48 AM1030

1031

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 private boolean protocolDone = false;

 private CommerceContext media;

 /** Constructor
 */
 public DemoProtocol() {}

 /**
 * Returns the registration name of the Demo Protocol.
 *
 * @return String The registration name of the Demo Protocol.
 */
public String getName() { return PROTOCOL_NAME; }

 /**
 * Called by the Operation to set the protocol’s JCM.
 *
 * @param prjcm The part of the JCM that applies to the protocol.
 */
public void setProtocolJCM(JCM prjcm) { jcm=prjcm; }

public void setWalletGate(WalletGate wg)
 {}

 public void setCommerceContext(CommerceContext ccntxt)
 {
 media=ccntxt;
 }
 /**
 * Pretends to perform the transaction. Uses the passed instrument and
 * parameters present a convincing progress bar.
 *
 * @param inst The CreditCard instrument used for the transaction
 *
 * @param ap The parameters used for the payment
 *
 * @return boolean true= success
 */
 synchronized public boolean actUpon(Instrument inst, PurchaseParams pp)
 throws TransactionException
 {
 // record parameters and double-check the instrument is of
 // the correct type.

 this.pp=pp;

 pbar = new ProgressBar (media,”Paying “+
 ((javax.commerce.util.Invoice)pp.getInvoice()).getTotal().toString ()+
 “ using “+pp.getInstrument().instrument.getDescription ());
 pbar.setTitle (pp.getMerchant().getGeneralURL().toString ());

 instrument=inst;

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1031

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1032 Chapter 45 Commerce and Java Wallet

Listing 45.2 Continued

 if (true) {
 System.out.println(“Running Protocol in the same thread.”);
 commit();
 } else {
 System.out.println(“Running Protocol as a sepparate thread.”);
 // Start the thread that will monitor the transaction
 Thread t = JECF.makeThread(this);
 t.start();
 while (!protocolDone) {
 try { wait();
 } catch (InterruptedException ignored) {}
 }
 }

 if (failure != null){
 System.out.println(“Failure: “ + failure);
 throw new TransactionException(failure);
 }

 // Return DONE -> An exception will be raised for an error condition
 return true;
 }

 /**
 * Check to see if this Protocol can use a specific instrument
 *
 * @param instrument The instrument to check
 *
 * @return boolean true=can use, false=cannot use
 */
 public boolean canUseInstrument(Instrument instrument)
 {
 return true;
 }

 private void pause(int milliseconds) {
 Thread thisThread = Thread.currentThread();
 try { thisThread.sleep(500);
 } catch (InterruptedException ignored) {}
 }

 private void setFailure(String newFailure) {
 failure=newFailure;
 if (newFailure != null) {
 System.out.println(“setFailure(“ + failure + “)”);
 throw new RuntimeException(failure);
 }
 }

 private void checkCancelled (boolean cancelled) {
 if (cancelled) {
 setFailure(“User Cancelled Transaction”);
 }
 }

53 1529-5 CH45 9/24/98, 8:48 AM1032

1033

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 private void getJcmInfo() {
 if (jcm!=null)
 try { setFailure(jcm.getString(“failure”));
 } catch (JCMException ignored) { }
 if (jcm!=null) {
 System.out.println(“Displaying JCM:”);
 Enumeration leaves = jcm.elements() ;
 while (leaves.hasMoreElements()) {
 String[] leaf = (String[]) leaves.nextElement();
 if (leaf != null) {
 System.out.print(“ “ + leaf[0] + “=”);
 for (int i=1; i<leaf.length; i++) {
 System.out.print(leaf[i] + “ “);
 }
 System.out.println(“”);
 }
 }
 } else {
 System.out.println(“No JCM was set!”);
 }
 }

 private Random rand = new Random();
 int rand(int minValue, int maxValue) {
 return minValue + Math.abs(rand.nextInt()%(maxValue-minValue));
 }

 synchronized protected boolean commit()
 {
 try {
 getJcmInfo();
 // Start the progress bar
 pause(500);
 checkCancelled(pbar.showProgress (0, “Initiating Communications”));
 for (int i=rand(5,15); i<100; i+=rand(5,15)) {
 pause(rand(10,500));
 checkCancelled(pbar.showProgress (i, “Transaction is “ + i + “% done.”));
 }
 pause(500);
 pbar.showProgress (100, “Transaction is complete.”);

 return true;
 } catch (RuntimeException ignored) {
 return false;
 } finally {
 protocolDone=true;
 notify();
 pbar.done ();
 }
 }

 public void run(){
 commit();
 }
}

Creating Cassettes

53 1529-5 CH45 9/24/98, 8:48 AM1033

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1034 Chapter 45 Commerce and Java Wallet

The Operation Cassette
The operation cassette is really the hub of JCC. When an operation is selected, the operation’s
user interface collects the information needed to complete the transaction, gets the necessary
instruments, and activates a protocol to complete the deal.

As with the rest of the Java Commerce Client, the information in this section is subject to
change. Sun suggests that some of the information in the Operation interface will be

merged into the CommerceContext object in a future release. ■

The Operation interface and its partners represent a pretty complex system that takes some
time to adjust to. Most of the methods in the Operation interface itself are used to set up the
initial context for the operation. The setJCM gives the Operation object a JCM to parse and
retrieve information related to the operation:

public void setJCM(JCM message) throws Exception

The getJCMDescription method returns a description of the required and optional parameters
for this operation:

public String[] getJCMDescription()

The description strings are returned in the form “name=description”.

The setWalletGate method gives the operation a WalletGate, which it uses to get various
security permissions:

public void setWalletGate(WalletGate gate)

The setID method gives the operation its row ID from the database:

public void setID(RowID id)

The setCommerceContext method sets the current context for the operation:

public void setCommerceContext(CommerceContext context)

In the future, some of the other parameters may be merged into the commerce context, and
the context itself may be part of the Constructor for the operation.

The execute method starts the operation, which then brings up a UI object to collect the infor-
mation for the operation:

public String execute() throws Exception

The Service Cassette
A service cassette is a utility cassette used by other cassettes within JCC. There is no service
interface, but there is a ServiceUI because most service cassettes perform user interface
functions. In addition, the ServiceUI interface is used by the Operation interface for a user
interface.

The getClientContainer method in the ServiceUI interface returns the container that repre-
sents the user interface:

N O T E

53 1529-5 CH45 9/24/98, 8:48 AM1034

1035

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

public Container getClientContainer(
 CommerceContext context, Dimension dim)

The getSelectedImage and getUnselectedImage methods return the images used to represent
the service if it is shown inside another container as something to be selected:

public Image getSelectedImage(
 CommerceContext context, Dimension dim)

public Image getUnselectedImage(
 CommerceContext context, Dimension dim)

The getSelectorText returns the text that serves as a label for the image when shown as an
image:

public String getSelectorText()

Finally, the setWalletGate method gives the ServiceUI a WalletGate object for security opera-
tions:

public void setWalletGate(WalletGate gate)

Listing 45.3 shows an example Rolodex service from Sun’s examples in the JCC package.

Listing 45.3 Source Code for Rolodex.java

/*
 * @(#)Rolodex.java 1.1 97/10/29
 *
 * Copyright (c) 1996 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software
 * and its documentation for NON-COMMERCIAL or COMMERCIAL purposes and
 * without fee is hereby granted.
 * Please refer to the file http://java.sun.com/copy_trademarks.html
 * for further important copyright and trademark information and to
 * http://java.sun.com/licensing.html for further important licensing
 * information for the Java (tm) Technology.
 *
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
 *
 * THIS SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE OR RESALE AS ON-LINE
 * CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE
 * PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
 * NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE
 * SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE
 * SOFTWARE COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE
 * PHYSICAL OR ENVIRONMENTAL DAMAGE (“HIGH RISK ACTIVITIES”). SUN
 * SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR
 * HIGH RISK ACTIVITIES.

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1035

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1036 Chapter 45 Commerce and Java Wallet

Listing 45.3 Continued

 */
package com.sun.commerce.example.rolodex ;
import java.awt.*;
import javax.commerce.database.* ;
import javax.commerce.cassette.* ;
import javax.commerce.util.*;
import javax.commerce.base.*;
import java.util.* ;
import java.io.* ;
import java.security.* ;
import javax.commerce.base.Constants;
import javax.commerce.gui.InfoDialog;

/**
 * @author Surya Koneru
 * @(#)Rolodex.java 1.1 97/10/29
 */
public class Rolodex implements ServiceUI
{
 public static final String SERVICE_NAME = new String(“Rolodex”);

 public WalletGate wgate;
 private WalletAdminPermit wap;
 private DatabaseOwnerPermit dop;

 /**
 * This method will always be called before any other ServiceUI methods
 *
 * @param gate A WalletGate to allow the service to utilize wallet-level
 * functionality.
 */
 public void setWalletGate(WalletGate gate)
 {
 wgate=gate;
 wap = gate.getWalletAdminPermit(new Ticket(“W_OWNER”));
 dop = wap.getDatabaseOwnerPermit();
 }

 /**
 * This method fetches a service’s client container for display within
 * the encompassing WalletUI. The ServiceUI author is urged to use
 * commerce widgets, but it is not neccessary.

 *
 * This method, in general, returns an a light-weight container that
 * has transparent characteristics. It may,
 * however, return any Container.
 *
 * @param ccontext A CommerceContext that may be used to fetch imagery
 * and for use in constructing the ServiceUI. The
 * UIFactory of this CommerceContext models the
 * current WalletUI.

53 1529-5 CH45 9/24/98, 8:48 AM1036

1037

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 *
 * @param hint The initial dimensions of the Service UI. The returned
 * container is likely to be resized many times, however.
 *
 * @return Container The AWT Container that represents the Service’s UI.
 * This Container should have dimensions that match
 * the passed in hint.
 */
 public Container getClientContainer(CommerceContext ccontext,
 Dimension hint)
 {
 return new RolodexPanel(ccontext,dop);
 }

 /**
 * Used to fetch the image displayed on the WalletUI selector when the
 * selector for this service is not selected.
 *
 * @param factory A CommerceContext that may be used to fetch imagery.
 * @param size The size of the requested image (Generally 16x16 pixels)
 *
 * @return Image The image to display when this serivce is not selected.
 */
 public Image getUnselectedImage(CommerceContext factory, Dimension size)
 { return null; }

 /**
 * Used to fetch the image displayed on the WalletUI selector when the
 * selector for this service is selected.
 *
 * @param factory A CommerceContext that may be used to fetch imagery.
 * @param size The size of the requested image (Generally 16x16 pixels)
 *
 * @return Image — The image to display when this service is selected.
 */
 public Image getSelectedImage(CommerceContext factory, Dimension size)
 { return null; }

 /**
 * Used to fetch the text that will be displayed on the WalletUI selector.
 *
 * @return String -- The text to display on the WalletUI selector for this
 * service.
 */
 public String getSelectorText() { return SERVICE_NAME; }
}

The User Interface Cassette
A user interface cassette contains a WalletUI object, a TransactionListener, an
ActionListener, and a UIFactory.

Creating Cassettes

53 1529-5 CH45 9/24/98, 8:48 AM1037

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1038 Chapter 45 Commerce and Java Wallet

The WalletUI interface defines a set of methods that indicate which operations and services
are available in the UI, and also information about the current security context. The
addOperation method adds an operation to the operations available from this user interface
and returns a unique index number:

public int addOperation(Operation op)

The canUseOperation method returns true if the user interface cassette is compatible with a
particular operation:

public boolean canUseOperation(Operation op)

The addSelector method adds a service to the available services and returns a unique index
number:

public int addSelector(ServiceUI service)

The removeSelector method removes a service from the user interface:

public void removeSelector(int index)

The addSelector and removeSelector methods deal with objects visible from the user inter-
face. If an operation is added that has a user interface component, the addOperation method
will likely call the addSelector method to add it to the visible items. Thus if an operation has a
visible component, you can use removeSelector to remove it because there is no
removeOperation method.

The setCommerceContext method sets the current context for the user interface and should be
called immediately after the user interface is instantiated:

public void setCommerceContect(CommerceContext context)

The init method must be called after the commerce context has been set, but before any
other operations are performed:

public void init()

The getName method returns the name of the user interface cassette as it was registered by the
CassetteControl class:

public String getName()

The select method selects a different object within the user interface:

public void select(int selectorIndex)

The selection value should be the unique index of one of the available selectors.

The populate method tells the user interface to draw itself in an AWT container:

public void populate(Container cont)

Bear in mind that the populate method might be operating on a visible container. Therefore, if
you do ugly things such as adding a bunch of objects and then removing them, your user inter-
face is liable to appear a little wacky.

Listing 45.4 shows a demo user interface cassette from Sun’s JCC examples.

53 1529-5 CH45 9/24/98, 8:48 AM1038

1039

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

Listing 45.4 Source Code for DemoUI.java

/*
 * @(#)DemoUI.java 1.23 11/07/97
 *
 * Copyright (c) 1997 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software
 * and its documentation for NON-COMMERCIAL or COMMERCIAL purposes and
 * without fee is hereby granted.
 * Please refer to the file http://java.sun.com/copy_trademarks.html
 * for further important copyright and trademark information and to
 * http://java.sun.com/licensing.html for further important licensing
 * information for the Java (tm) Technology.
 *
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
 *
 * THIS SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE OR RESALE AS ON-LINE
 * CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE
 * PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
 * NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE
 * SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE
 * SOFTWARE COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE
 * PHYSICAL OR ENVIRONMENTAL DAMAGE (“HIGH RISK ACTIVITIES”). SUN
 * SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR
 * HIGH RISK ACTIVITIES.
 */
package com.sun.commerce.example.demoui ;
import javax.commerce.database.* ;
import javax.commerce.cassette.* ;
import javax.commerce.util.*;
import java.util.* ;
import java.io.* ;
import java.security.* ;
import javax.commerce.base.*;
import javax.commerce.gui.*;
import java.awt.*;
import java.awt.event.*;

/**
 * @author Daniel J. Guinan
 * @version @(#)DemoUI.java 1.23 11/07/97
 *
 */
public class DemoUI implements WalletUI, ActionListener, TransactionListener
{
 class ServiceNode
 {

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1039

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1040 Chapter 45 Commerce and Java Wallet

Listing 45.4 Continued

 public ServiceUI service;
 public Container container;
 public CWSelector button;
 public int selectorIndex;

 public ServiceNode(ServiceUI sui, CommerceContext media,
 String buttontext, int index)
 {
 service=sui;
 container=null;
 selectorIndex=index;
 Dimension d = new Dimension(20,20);
 button=new CWSelector(media,buttontext,
 sui.getUnselectedImage(media,d),
 sui.getSelectedImage(media,d));
 }
 }

 public static final String WALLETUI_NAME = “DemoUI”;
 public static final String WALLETUI_DESCRIPT = “Demonstration
➥Wallet User Interface”;

 public static final Color INACTIVE_COLOR = Color.lightGray;
 public static final Color ACTIVE_COLOR = new Color(150,175,255);

 private CommerceContext context;
 private UIFactory widgets;

 private CWPanel loadingPanel;
 private CWPanel selectionPanel;
 private Container currentClient = null;
 private CWPanel masterContainer = null;
 // private CWSelector selectedButton = null;
 private ServiceNode currentlySelected = null;

 private Hashtable serviceTable = new Hashtable(); // (name, ServiceNode)
 private Hashtable idxMapping = new Hashtable(); // (Integer, name)
 private Hashtable pendingTable = new Hashtable(); // (Operation, name)

 private int currentIdx = 0;

 ///
 ///////////////// WalletUI Interface Methods //////////////////
 ///

 /**
 * Init() is called after the current CommerceContext and
 * CommerceUIFactory objects are set, but before any other
 * calls are made into the WalletUI. It is here that initialization
 * code should be executed.

 *
 * PLEASE NOTE: This is not where the UI is shown. That occurs
 * in the populate() method.
 */

53 1529-5 CH45 9/24/98, 8:48 AM1040

1041

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 public void init()
 {

 }

 /**
 * Retrieves the current CommerceContext.
 *
 * @return CommerceContext -- The current CommerceContext
 */
 public CommerceContext getCommerceContext()
 { return context; }

 /**
 * Sets the current CommerceContext (THIS METHOD IS ALWAYS
 * CALLED DIRECTLY AFTER OBJECT INSTANTIATION)
 *
 * @param ccontext The CommerceContext to use as current.
 */
 public void setCommerceContext(CommerceContext ccontext)
 {
 context=ccontext;
 new CommonGraphics(ccontext); // Load static common graphics...
 widgets=new DemoUIFactory();
 context.setUIFactory(widgets);

 loadingPanel = new CWPanel(ccontext);
 loadingPanel.setLayout(new BorderLayout());
 currentClient=loadingPanel;
 CWLabel loading = new CWLabel(ccontext,”Loading...”,CWLabel.CENTER);
 loading.setFont(new Font(“GilSans”,Font.BOLD,20));
 loading.setForeground(Color.white);
 loadingPanel.add(loading,BorderLayout.CENTER);
 }

 /**
 * This method is called to add a Service selector.
 *
 * @param service The ServiceUI being added.
 * @return int -- The unique index of the selector created.
 */
 public int addSelector(ServiceUI service)
 {
System.out.println(“DEMOUI: Adding service = “+service.getSelectorText());

 int ret=currentIdx++;
 String selectorText = service.getSelectorText();

 //UNDONE: Freak out if the selectorText is already there..
 if(serviceTable.get(selectorText)!=null)
 {
 boolean unique=false;
 int index=1;
 String name=null;
 while(!unique)

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1041

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1042 Chapter 45 Commerce and Java Wallet

Listing 45.4 Continued

 {
 name = selectorText+” “+(++index);
 if(serviceTable.get(name)==null) unique=true;
 }
 selectorText=name;
 }
 //return -1;

 idxMapping.put(new Integer(ret), selectorText);

 ServiceNode sn = new ServiceNode(service,context,selectorText,ret);
 serviceTable.put(selectorText, sn);
 selectionPanel.add(sn.button);
 sn.button.addActionListener(this);
 // Do we really want to do this??
 selectionPanel.validateAll();

 return ret;
 }

 /**
 *
 * @param op The Operation that should have a selector added for it.
 * @return int — The unique index of the selector created.
 */
 public int addOperation(Operation op)
 {
 int idx = -1;
 if(op instanceof ServiceUI)
 {
 idx= addSelector((ServiceUI)op);
 select(idx);
 String name = (String)idxMapping.get(new Integer(idx));
 ServiceNode sn = (ServiceNode)serviceTable.get(name);
 sn.button.setPending(true);
 pendingTable.put(op,name);
 op.addTransactionListener(this);
 }

 //UNDONE: Exception??
 return idx;
 }

 public void transactionPerformed(TransactionEvent evt)
 {
 Operation source = (Operation)evt.getSource();
 String name = (String)pendingTable.get(source);
 if(name==null) return;
 pendingTable.remove(source);
 ServiceNode sn = (ServiceNode)serviceTable.get(name);
 sn.button.setPending(false);
 }

53 1529-5 CH45 9/24/98, 8:48 AM1042

1043

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 /**
 * This method is called to remove a Service selector.
 *
 * @param int The unique index of the Service selector to remove. This
 * is the same index returned by addSelector().
 */
 public void removeSelector(int idx)
 {
 Integer i = new Integer(idx);
 String stext = (String)idxMapping.get(i);
 if(stext==null)
 {
 System.out.println(“Cannot remove selector: Index “+idx+
 “ is not valid!”);
 return; //Not there??
 }

 ServiceNode sn = (ServiceNode)serviceTable.get(stext);
System.out.println(“>> Removing Service “+stext);
// selectionPanel.setCanInvalidate(false);
 selectionPanel.remove(sn.button);
 sn.button.removeActionListener(this);

 idxMapping.remove(i);
 serviceTable.remove(stext);
 selectionPanel.validateAll(); // we removed a button...
 if(sn.selectorIndex==idx)
 {
 //If this guy is currently selected, change...
 Enumeration e = serviceTable.elements();
 sn = (ServiceNode)e.nextElement();
 if(sn!=null) select(sn.selectorIndex);
 else showClient(null);
 }
 }

 /**
 * This method is called to force the WalletUI to change it’s focus to
 * a particular service.
 *
 * @param idx The uniqe index of the Service selector to select. This
 * is the same index returned by addSelector().
 */
 public void select(int idx)
 {
 Integer i = new Integer(idx);
 String stext = (String)idxMapping.get(i);
 if(stext==null) return; // Not there??

 showClient(stext);
 }

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1043

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1044 Chapter 45 Commerce and Java Wallet

Listing 45.4 Continued

 /**
 * This method is used to determine compatibility with Operations. When
 * Operations or WalletUIs are installed, this method is called on all
 * WalletUIs against all Operations to generate a compatibility list.
 *

 *
 * It is this compatibility list that appears in the user’s preferences,
 * allowing a user to change their “preferred” UI for various operations.
 *

 *
 * In general, this method will check interfaces of the Operation and return
 * true if it feels that it can accomidate the Operation’s UI requirements.
 *

 *
 * @param op The operation to check for UI compatibility.
 * @return boolean — true=compatible with operation, false=not compatible
 *
 * @see WalletUI.addOperation
 */
 public boolean canUseOperation(Operation op)
 {
 //The demonstration UI works with any operation that implements ServiceUI...
 if(op instanceof ServiceUI) return true;
 else return false;
 }

 /**
 * Retrieves the registration name of this WalletUI. This name must match
 * the registration name used in the CassetteControl.install() method when
 * registering this UI.
 *
 * @return String -- The registration name of this WalletUI.
 */
 public String getName()
 {
 return WALLETUI_NAME;
 }

 /**
 * This method is called to present the WalletUI. In general, this happens
 * right before the JECF performs a show() on the frame that contains the
 * various widgets that represent the WalletUI. The whole of the WalletUI
 * will be shown within the container passed in this method. The following
 * considerations should be carefully taken into account by WalletUI cassette
 * writers:

 *
 * The container passed to this method is probably, but not
 * necessarily a Frame or an Object that inherets Frame.
 * (NOTE: Never cast this Container to Frame)
 *

53 1529-5 CH45 9/24/98, 8:48 AM1044

1045

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 * The container may change dimensions. It is expected that the
 * User will resize the Window, causing this container to resize
 * as a result. The UI must be written to accommodate this (i.e.
 * stretch).
 *
 * Do not rely on any characteristics of any AWT components that
 * may exist above this Container. Those characteristics are
 * subject to change at any time, forcing any cassettes that rely
 * upon them to become obsolete.
 *
 * The populate method may be populating a live AWT component
 * (i.e. already shown).
 *
 *
 * @param c The container that the WalletUI should be drawn within.
 */
 public void populate(Container c)
 {
 masterContainer = new CWPanel(context);
 c.setLayout(new BorderLayout(0,0));
 c.add(masterContainer,BorderLayout.CENTER);
 masterContainer.setLayout(new BorderLayout(0,0));

 currentClient=loadingPanel;
 masterContainer.add(currentClient,BorderLayout.CENTER);
 loadingPanel.validateAll();

 selectionPanel = new SelectionPanel(context);
 selectionPanel.setLayout(new VFlowLayout(VFlowLayout.
➥TOP|VFlowLayout.HORZ_LEFT));

 masterContainer.add(selectionPanel,BorderLayout.EAST);
 }

 //
 /////////////////////// Private Methods ////////////////////////
 //

 public void actionPerformed(ActionEvent evt)
 {
 Object source = evt.getSource();
 if(source instanceof CWSelector)
 {
 CWSelector bt = (CWSelector)source;

 String item = bt.getLabel();
 showClient(item);
 //cardLayout.show(switchPanel,item);
 }
 }

 private void showClient(String stext)
 {
 Container newClient;

Creating Cassettes

continues

53 1529-5 CH45 9/24/98, 8:48 AM1045

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

1046 Chapter 45 Commerce and Java Wallet

Listing 45.4 Continued

 // Tell the selector it is not current anymore.
 if(currentlySelected!=null) currentlySelected.button.setCurrent(false);

 if(stext==null) // What is this??
 {
 newClient = loadingPanel;
 currentlySelected=null;
 }
 else // Get the new client
 {
 ServiceNode sn = (ServiceNode)serviceTable.get(stext);
 newClient = sn.container;
 currentlySelected = sn;
 // Tell the new selector it is not current anymore.
 sn.button.setCurrent(true);
 }

 // If this is the first time, do something special.
 if(newClient == null) firstTimeShowClient(stext);
 else // Just change the page
 {
 //if(currentClient!=null)
 masterContainer.swapComponentValid(currentClient,newClient,
 BorderLayout.CENTER);
 currentClient=newClient;
 }

 //reLayoutPaintMaster();
 }

 /* void reLayoutPaintMaster()
 {
 // Relayout and repaint everything...
 if(masterContainer instanceof CWBasePanel)
 ((CWBasePanel)masterContainer).validateAll();
 else if(masterContainer instanceof CWidget)
 ((CWidget)masterContainer).validateAll();
 else { masterContainer.validate(); masterContainer.repaint(); }
 }*/

 private void firstTimeShowClient(String stext)
 {
 // Show the loading loadingPanel
 if(currentClient!=loadingPanel)
 {
 masterContainer.swapComponentValid(currentClient,loadingPanel,
 BorderLayout.CENTER);
 currentClient=loadingPanel;
 context.showStatus(“Loading...”);
 }

 // Do the normal stuff...
 ServiceNode sn = (ServiceNode)serviceTable.get(stext);

53 1529-5 CH45 9/24/98, 8:48 AM1046

1047

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH45 LP#3

45

VII
Part

Ch

 Container clientArea =
 sn.service.getClientContainer(context,
 loadingPanel.getSize());
 clientArea.setSize(loadingPanel.getSize());
 clientArea.setLocation(loadingPanel.getLocation());
 sn.container=clientArea;

 // swap
 masterContainer.swapComponentValid(currentClient,clientArea,
 BorderLayout.CENTER);
 currentClient=clientArea;
 context.showStatus(“”);
 }

}

The Java Commerce Client is a very new API and will likely go through several changes before
it really makes an impact on the Internet. Although this chapter has covered the construction
of commerce client objects, you will probably not have to write your own commerce objects.
Instead, you should be able to get cassettes from various vendors and online stores. If you are
creating your own Shopping Cart applet, however, you will probably want to write your own UI
cassette and still leave the lower-level cassettes to other developers. ●

Creating Cassettes

53 1529-5 CH45 9/24/98, 8:48 AM1047

53 1529-5 CH45 9/24/98, 8:48 AM1048

1049

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

C H A P T E R

Data Structures and Java Utilities

What Are Data Structures? 1050

Collections 1050

The Vector Class 1054

The Hashtable Class 1059

The Properties Class 1061

The Stack Class 1063

The Date Class 1064

The BitSet Class 1067

The StringTokenizer Class 1068

The Random Class 1069

The Observable Class 1070

46

In this chapter

54 1529-5 CH46 9/24/98, 8:49 AM1049

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1050 Chapter 46 Data Structures and Java Utilities

What Are Data Structures?
The java.util package provides several useful classes that give important functionality to the
Java runtime environment. These classes provide much of the code that you frequently end up
writing yourself when you write in C++. The creators of Java realized that one of the things
people really like about Smalltalk is the abundance of useful utility classes.

The java.util package focuses mostly on container objects—that is, objects that contain or
hold other objects. In addition to the containers, the package also adds a handy utility class for
breaking up a string into words (tokens), expanded support for random numbers and dates,
and a carryover from Smalltalk called observables.

Data structure is a general computer science term for an object that holds a collection of other
objects. For instance, an array is the simplest data structure. Data structures can vary in com-
plexity, but ultimately their goal is to hold and manipulate objects.

Some data structures, like arrays, keep data in one long list. Others, like trees, keep the data
sorted in non-linear storage compartments. Each type of data structure has its advantages and
disadvantages. For instance, trees are extremely efficient at finding and inserting sorted data,
while hashtables are even more efficient at finding data, but at the cost of more memory usage.

Collections
One significant design change in the Java 1.2 API is the creation of a group of classes called the
Collection API. The Collection API provides a common set of interfaces for all data structures
in the java.util package.

Before collections, converting between one data structure and another required some non-
trivial amount of work. However, the Collection API provides a uniform mechanism for doing
this. In addition, the Collection API is designed to allow characteristics, such as the ordering of
an object, to be used in many types of structures.

Now you can choose the proper data structure based on its performance characteristics, with-
out having to worry about the implementation mechanics.

Collection Interface
At the root of the Collection API is the Collection interface. The goal of the Collection inter-
face is to provide all the common methods all collection classes will have. Now, not 100 percent
of all collections will actually provide an implementation for all of the methods. If a method isn’t
implemented in a Collection and you try to call that method anyway, the method will probably
throw an UnsupportedOperationException.

As you might expect, the Collection interface provides mechanisms for inserting new objects
into the collection. The first method allows you to insert a single element. The second allows
you to add all of the elements in another collection.

54 1529-5 CH46 9/24/98, 8:49 AM1050

1051

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

boolean add(Object o)
boolean addAll(Collection c)

To get objects out of the collection, you can choose from three methods. The first two return
the contents of the container in an array. The interesting thing about the second of these meth-
ods is that you pass into it an array of the object type you wish to return. The last of these
methods returns a new class called Iterator. You’ll see how Iterator works later in this
chapter.

Object[] toArray()
Object[] toArray(Object[] a)
Iterator iterator()

You can also remove objects from the collection, either by emptying the array (clear()) or by
removing a specific object (remove()). In addition, you can remove a set of objects by removing
all the objects in the collection that also exist in the collection passed as a parameter; or you
can retain the objects in the collection that’s passed in and remove all the rest of the elements.

void clear()
boolean remove(Object o)
boolean removeAll(Collection c)
boolean retainAll(Collection c)

The final set of methods allows you to check the status of the collection. The first two allow you
to determine if an object or a set of objects is included in a collection. The third method deter-
mines if the collection is empty, and the fourth returns the number of elements in the collec-
tion.

boolean contains(Object o)
boolean containsAll(Collection c)
boolean isEmpty()
int size()

The Collection interface is implemented by several classes throughout this chapter, so you’ll
find examples of how to use each of these methods later.

List Interface
The Collection interface is extended and specialized with two sub-interfaces, List and Map.
The List interface builds on Collection and adds some methods for a collection that store the
objects in order.

The creation of the java.util.List interface in the 1.2 API has created a name conflict
with java.awt.List. If you import both java.awt.* and java.util.*, you will have

to do some extra work to use the List. You can do this two ways: by importing java.util.List
specifically, or by using the fully qualified name of the List (java.util.List) instead of just
List. ■

The primary enhancement that an ordered list adds is the concept of an index. The index is the
location where the object is actually stored. So, the List adds several methods that deal with
this concept.

N O T E

Collections

54 1529-5 CH46 9/24/98, 8:49 AM1051

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1052 Chapter 46 Data Structures and Java Utilities

The two new add() methods allow you to insert elements at a particular index and shift the
elements after that index down so that the remaining objects are shifted in the collection to
come after the new object(s). In addition, you can now substitute an object at a particular index
with the new one, using the set() method.

void add(int index, Object element)
boolean addAll(int index, Collection c)
Object set(int index, Object element)

You can also get the objects out of the container in three new ways. The first two return a new
iterator called a ListIterator, which provides bidirectional access. The first of these two meth-
ods returns a ListIterator of the entire collection, the second returns just an iterator of the
collection starting at the specified index. The third method allows you to retrieve just the ob-
ject at the specified index.

ListIterator listIterator()
ListIterator listIterator(int index)
Object get(int index)

Obviously you will also want to be able to remove objects from the collection in some new ways
too. The first of the new methods removes the element at the specified index, while the second
removes all of the objects from the fromIndex up to (but not including) the toIndex.

Object remove(int index)
void removeRange(int fromIndex, int toIndex)

Finally, it is often useful to know the index where an element is positioned in the collection.
The three methods for getting the element will return either the index where the element is
stored, or, if the element is not found, they will return –1. The first of these methods returns
the first index where a matching object is found and starts to look at the startingIndex. The
second simply returns the last index where the object can be found, and the last method re-
turns the last index, so long as it is not less than the minIndex.

int indexOf(Object o, int startingIndex)
int lastIndexOf(Object o)
int lastIndexOf(Object o, int minIndex)

Map Interface
The second interface which extends from Collection is the Map interface. Unlike a List, a Map
ensures that there will be at most one instance of an object and at most one null in the collec-
tion. Map contains an element and a key value; the key determines where in the Map the element
should be placed, and the keys can not be duplicated in the Map.

To insert elements into Map you must provide both the key and the value. So, obviously a new
method is required to do just that (put()). In addition, because Map needs to know the key, it’s
not possible to just copy any collection and insert it into the collection. Instead, the putAll()
method copies the elements and uses their associated keys.

Object put(Object key, Object value)
void putAll(Map t)

54 1529-5 CH46 9/24/98, 8:49 AM1052

1053

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

To get objects out of a Map, you generally don’t need to know the object itself, but rather its key.
The get() method returns the element with the matching key. In addition, Map can return a
new interface called a Set. The two methods return either the Set for the entries or the keys.
The last new method for getting the elements in the collection returns a regular collection of
the elements in Map.

Object get(Object key)
Set entrySet()
Set keySet()
Collection values()

Like inserting new elements into Map, removing elements is done via the key value, not the
element itself via the remove() method.

Object remove(Object key)

The last of the new Map methods determines if a specified key or element is found. The
containsKey() method returns true if the key exists in Map, while containsValue() returns
true if the indicated object is mapped in Map via one or more keys.

boolean containsKey(Object key)
boolean containsValue(Object value)

Iterator Interface
As you’ve seen, a Collection allows you to view its contents via a new interface called the
Iterator interface. If you are familiar with the Enumeration interface, which has existed in the
Java API since the 1.0 version, the Iterator will be very familiar. However, the Iterator also
allows you to remove an element from the underlying collection.

The three methods first allow you to know if there are any additional elements in Iterator.

boolean hasNext()

Second, Iterator will return the next element in Iterator.

Object next()

Finally, you can remove the last element read from Iterator from the underlying collection.

void remove()

ListIterator Interface
A List has the ability to provide a more specific form of the Iterator. The ListIterator takes
advantage of the indexing in the List and allows you to perform several additional operations.

The first new capability is the ability to insert a new object, or to change the value of the one
you just read. So add() will insert a new object, while set() replaces the object that was just
read out of the Iterator with the one specified.

void add(Object o)
void set(Object o)

Collections

54 1529-5 CH46 9/24/98, 8:49 AM1053

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1054 Chapter 46 Data Structures and Java Utilities

In addition to being able to read the next element in Iterator, a ListIterator also allows you
to read the previous element. So ListIterator adds hasPrevious() in addition to the
hasNext() method.

boolean hasPrevious()

Obviously you will also want to retrieve the previous object as well, so, in addition to the next()
method, a ListIterator also has a previous() method.

Object previous()

Finally, since you’re looking at a list, you can also get the index values of the next or previous
elements.

int nextIndex()
int previousIndex()

The Vector Class
Java arrays are powerful, but they don’t always fit your needs. Sometimes you want to put items
in an array, but you don’t know how many items you will be getting. One way to solve this is to
create an array larger than you think you’ll need. This was the typical approach in the days of C
programming. The Vector class gives you an alternative to this. A vector is similar to an array
in that it holds multiple objects, and you retrieve the objects using an index value. The big
difference between arrays and vectors is that vectors automatically grow when they run out of
room. They also provide extra methods for adding and removing elements that you would
normally have to do manually in an array, such as inserting an element between two others.
Effectively, a vector is an extensible array.

Before the 1.2 API, Vector extended just Object. Now with the 1.2 API, it extends from
AbstractList, which implements List.

Creating a Vector
When you create a vector, you can specify how big it should be initially and how fast it should
grow. You can also just set the vector’s initial size and let it figure out how fast to grow, or you
can let the vector decide everything for itself. To accomplish these various forms of initializa-
tion, the Vector class has three constructors.

public Vector()

creates an empty vector.

public Vector(int initialCapacity)

creates a vector with space for initialCapacity elements.

public Vector(int initialCapacity, int capacityIncrement)

creates a vector with space for initialCapacity elements. Whenever the vector needs to grow,
it grows by capacityIncrement elements.

54 1529-5 CH46 9/24/98, 8:49 AM1054

1055

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

JDK 1.2 adds one more constructor to support the Collection API, discussed at the end of
this chapter. The new constructor creates a vector that initially has all the elements in the
Collection, in the order they appear from the Collection’s Iterator.

public Vector(Collection c)

If you have some idea of the typical number of elements you will be adding, go ahead and set
up the vector with space for that many elements. If you don’t use all the space, that’s okay; you
just don’t want the vector to have to allocate more space over and over.

CAUTION

If you do not specify a capacity increment, the vector doubles its capacity when it grows. If you have a large
vector, this may not be the desired behavior. When you are adding many elements to a vector, you should set
a specific capacity increment. Even if you’re not adding a large number of elements because growing the
array can be a costly operation, if you’re lucky enough to have a good idea how many objects will likely be in
the vector you should create the vector with that initial capacity.

Adding Objects to a Vector
In addition to the standard List methods, there are two ways to add new objects to a vector.
You can add an object as the last element in the vector, or you can insert an object between two
existing objects. The addElement method adds an object as the last element:

public final synchronized void addElement(Object newElement)

The insertElementAt() method adds a new object at a specific position. The index parameter
indicates where in the vector the new object should be placed:

public final synchronized void insertElementAt(Object newElement, int index)
 throws ArrayIndexOutOfBoundsException

If you try to insert the new element at a position that does not exist yet—for example, if you try
to insert at position 9 and there are only five elements in the vector—you get an
ArrayIndexOutOfBoundsException.

You can change the object at a specific position in the vector with the setElementAt method:

public final synchronized void setElementAt(Object ob, int index)
 throws ArrayOutOfBoundsException

This method works almost exactly like the insertElementAt method, except that the other
elements in the vector are not shifted over to make room for a new object. In other words, the
new object replaces the old one in the vector.

Accessing Objects in a Vector
Unfortunately, accessing objects in a vector is not as simple as accessing array elements. In-
stead of giving an index surrounded by brackets ([]), you use the elementAt method to access

The Vector Class

54 1529-5 CH46 9/24/98, 8:49 AM1055

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1056 Chapter 46 Data Structures and Java Utilities

vector elements. The vector equivalent of someArray[4] is someVector.elementAt(4). The
format of the elementAt method is:

public final synchronized Object elementAt(int index)
 throws ArrayIndexOutOfBoundsException

You can also access the first and last elements in a vector with the firstElement and
lastElement methods:

public final synchronized Object firstElement()
 throws NoSuchElementException
public final synchronized Object lastElement()
 throws NoSuchElementException

If no objects are stored in the vector, these methods both throw a NoSuchElementException.

You can test to see whether a vector has no elements using the isEmpty method:

public final boolean isEmpty()

Many times you want to use a vector to build up a container of objects but then convert the
vector over to a Java array for speed purposes. You usually only do this after you have all the
objects you need. For instance, if you are reading objects from a file that can contain any num-
ber of objects, you store the objects in a vector. When you have finished reading the file, you
create an array of objects and copy them out of the vector. The size method tells you how
many objects are stored in the vector:

public final int size()

After you know the size of the vector, you can create an array of objects using this size. The
Vector class provides a handy method for copying all the objects in a vector into an array of
objects:

public final synchronized void copyInto(Object[] obArray)

If you try to copy more objects into the array than it can hold, you get an
ArrayIndexOutOfBounds exception. The following code fragment creates an object array and
copies the contents of a vector called myVector into it:

Object obArray[] = new Object[myVector.size()]; // Create object array
myVector.copyInto(obArray); // Copy the vector into the array

The Enumeration Interface
If you want to cycle through all the elements in a vector, you can use the elements method to
get an Enumeration object for the vector. An Enumeration is responsible for accessing elements
in a data structure sequentially. It contains two methods.

public abstract boolean hasMoreElements()

returns true while there are still more elements to access. When there are no more elements
left, this method returns false.

public abstract Object nextElement()
 throws NoSuchElementException

54 1529-5 CH46 9/24/98, 8:49 AM1056

1057

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

returns a reference to the next element in the data structure. If there are no more elements to
access and you call this method again, you get a NoSuchElementException.

In the case of the Vector class, the elements() method returns an Enumeration interface for
the vector:

public final synchronized Enumeration elements()

The following code fragment uses an Enumeration interface to examine every object in a
vector:

Enumeration vectEnum = myVector.elements(); // get the vector’s
enumeration

while (vectEnum.hasMoreElements()) // while there’s something to get...
{
 Object nextOb = vectEnum.nextElement(); // get the next object
 // do whatever you want with the next object
}

This loop works the same for every data structure that can return an Enumeration object. A
data structure typically has an elements() method, or something similar, that returns the
enumeration. After that, the kind of data structure doesn’t matter—they all look the same
through the Enumeration interface.

Searching for Objects in a Vector
You can always search for objects in a vector manually, by using an enumeration and doing an
element-by-element comparison, but you will save a lot of time by using the built-in search
functions.

If you just need to know whether an object is present in a vector, use the contains() method.
For example:

public final boolean contains(Object ob)

returns true if ob occurs at least once in the vector, or false if not.

You can also find out an object’s position in a vector with the indexOf() and lastIndexOf()
methods. For example:

public final int indexOf(Object ob)

returns the position in the vector where the first occurrence of ob is found, or -1 if ob is not
present in the vector.

public final synchronized int indexOf(Object ob, int startIndex)
 throws ArrayIndexOutOfBoundsException

returns the position in the vector where the first occurrence of ob is found, starting at position
startIndex. If ob is not in the vector, it returns -1. If startIndex is less than 0, or greater than
or equal to the vector’s length, you get an ArrayOutOfBoundsException.

public final int lastIndexOf(Object ob)

The Vector Class

54 1529-5 CH46 9/24/98, 8:49 AM1057

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1058 Chapter 46 Data Structures and Java Utilities

returns the position in the vector where the last occurrence of ob is found, or -1 if ob is not
present in the vector.

public final synchronized int lastIndexOf(Object ob, int startIndex)
 throws ArrayOutOfBoundsException

returns the position in the vector where the last occurrence of ob is found, starting at position
startIndex. If ob is not in the vector, it returns -1. If startIndex is less than 0 or greater than
or equal to the vector’s length, you get an ArrayOutOfBoundsException.

Removing Objects from a Vector
You have three options when it comes to removing objects from a vector. You can remove all
the objects, remove a specific object, or remove the object at a specific position. The
removeAllElements method removes all the objects from a vector:

public final synchronized void removeAllElements()

The removeElement method removes a specific object from a vector:

public final synchronized boolean removeElement(Object ob)

If the object occurs more than once, only the first occurrence is removed. The method returns
true if an object was actually removed, or false if the object was not found in the vector.

The removeElementAt method removes the object at a specific position and moves the other
objects over to fill in the gap created by the removed object:

public final synchronized void removeElementAt(int index)
 throws ArrayIndexOutOfBoundsException

If you try to remove an object from a position that does not exist, you get an
ArrayIndexOutOfBoundsException.

Changing the Size of a Vector
A vector has two notions of size—the number of elements currently stored in the vector and
the maximum capacity of the vector. The capacity method tells you how many objects the
vector can hold before having to grow:

public final int capacity()

You can increase the capacity of a vector using the ensureCapacity method. For example:

public final synchronized void ensureCapacity(int minimumCapacity)

tells the vector that it should be able to store at least minimumCapacity elements. If the vector’s
current capacity is less than minimumCapacity, it allocates more space. The vector does not
shrink the current capacity if the capacity is already higher than minimumCapacity.

If you want to reduce a vector’s capacity, use the trimToSize method:

public final synchronized void trimToSize()

54 1529-5 CH46 9/24/98, 8:49 AM1058

1059

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

This method reduces the capacity of a vector down to the number of elements it is currently
storing.

The size method tells you how many elements are stored in a vector:

public final int size()

You can use the setSize method to change the current number of elements:

public synchronized final void setSize(int newSize)

If the new size is less than the old size, the elements at the end of the vector are lost. If the new
size is higher than the old size, the new elements are set to null. Calling setSize(0) is the
same as calling removeAllElements().

The Hashtable Class
The Hashtable class is the most common implementation of the Map collection and provides
methods for associating one object with another. Hashtables are often used to associate a name
with an object and retrieve the object based on that name. In a dictionary, the name object is
called a key, and it can be any kind of object. The object associated with the key is called the
value. A key can be associated with only one value, but a value can have more than one key.

Effectively you can think of the Hashtable class as a class that uses the hash codes of the key
objects to perform the lookup. It groups keys into buckets based on their hash code. When it
goes to find a key, it queries the key’s hash code, uses the hash code to get the correct bucket,
and then searches the bucket for the correct key. Usually, the number of keys in the bucket is
small compared to the total number of keys in the hashtable, so the hashtable performs only a
fraction of the comparisons performed in most collections like a vector.

The hashtable has a capacity, which tells how many buckets it uses, and a load factor, which is
the ratio of the number of elements in the table to the number of buckets. When you create a
hashtable, you can specify a load factor threshold value. When the current load factor exceeds
this threshold, the table grows—that is, it doubles the number of buckets and then reorganizes
the table. The default load factor threshold is 0.75, which means that when the number of
elements stored in the table is 75 percent of the number of buckets, the number of buckets is
doubled. You can specify any load factor threshold greater than 0 and less than or equal to 1. A
smaller threshold means a faster lookup because there will be few keys per bucket (maybe no
more than one), but the table will have far more buckets than elements, so there is some
wasted space. A larger threshold means the possibility of slower lookups, but the number of
buckets is closer to the number of elements.

The Hashtable class has three constructors.

public Hashtable()

creates a new hashtable with a default capacity of 101 and a default load factor threshold of
0.75.

public Hashtable(int initialCapacity)

The Hashtable Class

54 1529-5 CH46 9/24/98, 8:49 AM1059

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1060 Chapter 46 Data Structures and Java Utilities

creates a new hashtable with the specified initial capacity and a default load factor threshold of
0.75.

public Hashtable(int initialCapacity, float loadFactorThreshold)
 throws IllegalArgumentException

creates a new hashtable with the specified initial capacity and threshold. If the initial capacity is
0 or less, or if the threshold is 0 or less, or greater than 1, you get an
IllegalArgumentException.

Storing Objects in a Hashtable
To store an object in a dictionary with a specific key, use the put() method:

public abstract Object put(Object key, Object value)
 throws NullPointerException

The object returned by the put method is the object previously associated with the key. If there
was no previous association, the method returns null. You cannot have a null key or a null
value. If you pass null for either of these parameters, you get a NullPointerException.

Retrieving Objects from a Hashtable
The get() method finds the object in the hashtable associated with a particular key:

public abstract Object get(Object key)

The get() method returns null if there is no value associated with that key.

Removing Objects from a Hashtable
To remove a key-value pair from a dictionary, call the remove() method with the key. For ex-
ample:

public abstract Object remove(Object key)

returns the object associated with the key, or null if no value is associated with that key.

The Dictionary class also provides some utility methods that give you information about the
dictionary. The isEmpty() method returns true if no objects are stored in the dictionary:

public abstract boolean isEmpty()

The size method tells you how many key-value pairs are currently stored in the dictionary:

public abstract int size()

The keys method returns an Enumeration object that allows you to examine all the keys in the
dictionary, whereas the elements() method returns an Enumeration for all the values in the
dictionary:

public abstract Enumeration keys()

public abstract Enumeration elements()

54 1529-5 CH46 9/24/98, 8:49 AM1060

1061

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

In addition to these methods, the Hashtable has a few more methods for the Map interface.

public synchronized void clear()

removes all the elements from the hashtable. This is similar to the removeAllElements method
in the Vector class.

public synchronized boolean contains(Object value)
 throws NullPointerException

returns true if value is stored as a value in the hashtable. If value is null, it throws a
NullPointerException.

public synchronized boolean containsKey(Object key)

returns true if key is stored as a key in the hashtable.

When a hashtable grows in size, it has to rearrange all the objects in the table over the new set
of buckets. In other words, if there were 512 buckets and the table grew to 1,024 buckets, you
need to redistribute the objects over the full 1,024 buckets. An object’s bucket is determined by
a combination of both the hash code and the number of buckets. If you were to change the
number of buckets but not rearrange the objects, the hashtable might not be able to locate an
existing object because its bucket was determined based on a smaller size. The rehash()
method, (which is automatically called when the table grows) recomputes the location of each
object in the table.

The Properties Class
The Properties class is a special kind of dictionary that uses strings for both keys and values.
It is used by the System class to store system properties, but you can use it to create your own
set of properties. The Properties class is actually just a hashtable that specializes in storing
strings.

You can create a new Properties object with the empty constructor:

public Properties()

You can also create a Properties object with a set of default properties. When the Properties
object cannot find a property in its own table, it searches the default properties table. If you
change a property in your own Properties object, it does not change the property in the de-
fault Properties object. This means that multiple Properties objects can safely share the
same default Properties object. To create a Properties object with a default set of properties,
just pass the default Properties object to the constructor:

public Properties(Properties defaultProps)

Setting Properties
You set properties using the same put() method that all dictionaries use:

public Object put(Object key, Object value)
 throws NullPointerException

The Properties Class

54 1529-5 CH46 9/24/98, 8:49 AM1061

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1062 Chapter 46 Data Structures and Java Utilities

Querying Properties
The getProperty() method returns the string corresponding to a property name, or null if
the property is not set:

public String getProperty(String key)

If you specify a default Properties object, that object is also checked before null is returned.
You can also call getProperty and specify a default value to be returned if the property is
not set:

public String getProperty(String key, String defaultValue)

In this version of the getProperty method, the default Properties object is completely ig-
nored. The value returned is either the property corresponding to the key, or, if the property is
not set, defaultValue.

CAUTION

Because the Properties class uses the put() method from the Dictionary class, you can store
objects other than strings in a Properties object. However, if you store a property that is not a String or
a subclass of String, you get a ClassCastException when you try to retrieve it with the
getProperty() method. It is a good practice to use the toString() method in an object to ensure that
you are storing a string representation and not a non-string object.

You can get an Enumeration object for all the property names in a Properties object, including
the default properties, with the propertyNames() method:

public Enumeration propertyNames()

Saving and Retrieving Properties
Because the Properties class is so useful for storing things like a user’s preferences, you need
a way to save the properties to a file and read them back the next time your program starts.
You can use the load() and save() methods for this.

public synchronized void save(OutputStream out, String header)

saves the properties on the output stream out. The header string is written to the stream be-
fore the contents of the Properties object.

public synchronized void load(InputStream in)
 throws IOException

reads properties from the input stream. It treats the # and ! characters as comment characters
and ignores anything after them up to the end of the line, similar to the // comment characters
in Java.

Listing 46.1 shows a sample file written by the save() method.

54 1529-5 CH46 9/24/98, 8:49 AM1062

1063

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

Listing 46.1 File Written by the save() Method

#Example Properties
#Mon Jun 17 19:57:39 1996
foo=bar
favoriteStooge=curly
helloMessage=hello world!

The list() method is similar to the save() method, but it presents the properties in a more
readable form. It displays the contents of a properties table on a print stream in a nice, friendly
format, which is handy for debugging. The format of the list() method is as follows:

public void list(PrintStream out)

The Stack Class
A stack is a handy data structure that adds items in a last-in, first-out manner. In other words,
when you ask a stack to give you the next item, it hands back the most recently added item.
Think of the stack as a stack of cafeteria trays. The tray on the top of the stack is the last tray
you put on the stack. Every time you add another tray it becomes the new top of the stack.

The Stack class is implemented as a subclass of Vector, which means that all the vector meth-
ods are available to you in addition to the stack-specific ones. You create a stack with the empty
constructor:

public Stack()

To add an item to the top of the stack, you push it onto the stack:

public Object push(Object newItem)

The object returned by the push() method is the same as the newItem object. The
pop()method removes the top item from the stack:

public Object pop() throws EmptyStackException

If you try to pop an item off an empty stack you get an EmptyStackException. You can find out
which item is on top of the stack without removing it by using the peek() method:

public Object peek() throws EmptyStackException

The empty() method returns true if there are no items on the stack:

public boolean empty()

Sometimes you may want to find out where an object is in relation to the top of the stack. Be-
cause you don’t know exactly how the stack stores items, the indexOf() and lastIndexOf()
methods from the Vector class might not do you any good. The search() method, however,
tells you how far an object is from the top of the stack:

public int search(Object ob)

If the object is not on the stack at all, search() returns -1.

The Stack Class

54 1529-5 CH46 9/24/98, 8:49 AM1063

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1064 Chapter 46 Data Structures and Java Utilities

The fragment of code in Listing 46.2 creates an array of strings and then uses a stack to reverse
the order of the words by pushing them all on the stack and popping them back off.

Listing 46.2 Example Usage of a Stack

String myArray[] = { “Please”, “Reverse”, “These”, “Words” };

Stack myStack = new Stack();

// Push all the elements in the array onto the stack

for (int i=0; i < myArray.length; i++) {
 myStack.push(myArray[i]);
}
// Pop the elements off the stack and put them in the
// array starting at the beginning

for (int i=0; i < myArray.length; i++) {
 myArray[i] = (String) myStack.pop();
}

// At this point, the words in myArray will be in
// the order: Words, These, Reverse, Please

The Date Class
The Date class represents a specific date and time. It is centered around the Epoch, which is
midnight GMT on January 1, 1970. Although there is some support in the Date class for refer-
encing dates as early as 1900, none of the date methods function properly on dates occurring
before the Epoch.

The empty constructor for the Date class creates a Date object from the current time:

public Date()

You can also create a Date object using the number of milliseconds from the Epoch, the same
kind of value returned by System.currentTimeMillis():

public Date(long millis)

You can also get the milliseconds since the Epoch by using the static UTC method in the Date
class (UTC stands for Universal Time Coordinates):

public static long UTC(int year, int month, int date,
int hours, int minutes, int seconds)

The following Date constructors allow you to create a Date object by giving a specific year,
month, day, and so on:

public Date(int year, int month, int date)
public Date(int year, int month, int date, int hours, int minutes)
public Date(int year, int month, int date, int hours, int minutes, int seconds)

54 1529-5 CH46 9/24/98, 8:49 AM1064

1065

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

There are several important things to note when creating dates this way:

■ The year value is the number of years since 1900. For instance, the year value for 1984
would be 84.

■ Months are numbered starting at 0, not 1. January is month 0.

■ Dates (the day of the month) are numbered starting at 1, just to add some confusion, so
the 11th day of the month would have a date value of 11.

■ Hours, minutes, and seconds are all numbered starting at 0, which, unlike the months, is
correct. An hour value of 1 means 1 a.m.

The Date class also has the capability to create a new Date object from a string representation
of a date:

public Date(String s)

The following statements all create Date objects for January 12, 1992 (the birthday of the HAL
9000 computer):

Date d = new Date(“January 12, 1992”);
Date d = new Date(92, 0, 12);
Date d = new Date(695174400000l); // milliseconds since the epoch
Date d = new Date(Date.UTC(92, 0, 12, 0, 0, 0));

Whenever you create a date using specific year, month, day, hour, minute, and second
values, or when you print out the value of a Date object, it uses the local time zone. The

UTC method and the number of milliseconds since the Epoch are always in GMT (Greenwich Mean
Time). ■

Comparing Dates
As is true with all subclasses of Object, you can compare two dates with the equals() method.
The Date class also provides methods for determining whether one date comes before or after
another. The after() method in a Date object returns true if the date comes after the date
passed to the method:

public boolean after(Date when)

The before() method tells whether a Date object occurs before a specific date:

public boolean before(Date when)

Suppose you defined date1 and date2 as:

Date date1 = new Date(76, 6, 4); // July 4, 1976
Date date2 = new Date(92, 0, 12); // January 12, 1992

For these two dates, date1.before(date2) is true, and date1.after(date2) is false.

N O T E

The Date Class

54 1529-5 CH46 9/24/98, 8:49 AM1065

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1066 Chapter 46 Data Structures and Java Utilities

Converting Dates to Strings
You can always use the toString() method to convert a date to a string. It converts the date to
a string representation using your local time zone. The toLocaleString() method also
converts a date to a string representation using the local time zone, but the format of the string
is slightly different:

public String toLocaleString()

The toGMTString() method converts a date to a string using GMT as the time zone:

public String toGMTString()

The following example shows the formats of the different string conversions. The original time
was defined as midnight GMT, January 12, 1992. The local time zone is Eastern Standard, or
five hours behind GMT.

Sat Jan 11 19:00:00 1992 // toString
01/11/92 19:00:00 // toLocaleString
12 Jan 1992 00:00:00 GMT // toGMTString

Changing Date Attributes
You can query and change almost all the parts of a date. The only two things that you can
query but not change are the time zone offset and the day of the week a date occurs on. The
time zone offset is the number of minutes between the local time zone and GMT. The number
is positive if your time zone is behind GMT—that is, if midnight GMT occurs before midnight
in your time zone. The format of getTimezoneOffset() is:

public int getTimezoneOffset()

The getDay() method returns a number between 0 and 6, where 0 is Sunday:

public int getDay()

Remember that the day is computed using local time.

If you prefer to deal with dates in terms of the raw number of milliseconds since the Epoch,
you can use the getTime() and setTime() methods to modify the date:

public long getTime()
public void setTime(long time)

You can also manipulate the individual components of the dates using these methods:

public int getYear()
public int getMonth()
public int getDate()
public int getHours()
public int getMinutes()
public int getSeconds()

public void setYear(int year)
public void setMonth(int month)
public void setDate(int date)

54 1529-5 CH46 9/24/98, 8:49 AM1066

1067

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

public void setHours(int hours)
public void setMinutes(int minutes)
public void setSeconds(int seconds)

The BitSet Class
The BitSet class provides a convenient way to perform bitwise operations on a large number
of bits, and to manipulate individual bits. The BitSet automatically grows to handle more bits.
You can create an empty bit set with the empty constructor:

public BitSet()

If you have some idea how many bits you will need, you should create the BitSet with a spe-
cific size:

public BitSet(int numberOfBits)

Bits are like light switches, they can be either on or off. If a bit is set, it is considered on,
whereas it is considered off if it is cleared. Bits are frequently associated with Boolean values
because each has only two possible values. A bit that is set is considered to be true, whereas a
bit that is cleared is considered to be false.

You use the set() and clear() methods to set and clear individual bits in a bit set:

public void set(int whichBit)
public void clear(int whichBit)

If you create a bit set of 200 bits and you try to set bit number 438, the bit set automatically
grows to contain at least 438 bits. The new bits will all be cleared initially. The size() method
tells you how many bits are in the current bit set:

public int size()

You can test to see whether a bit is set or cleared using the get() method:

public boolean get(int whichBit)

The get() method returns true if the specified bit is set, or false if it is cleared.

There are three operations you can perform between two bit sets. These operations manipulate
the current bit set using bits from a second bit set. Corresponding bits are matched to perform
the operation. In other words, bit 0 in the current bit set is compared to bit 0 in the second bit
set. The bitwise operations are:

■ The or operation sets the bit in the current bit set if either the current bit or the second
bit is set. If neither bit is set, the current bit remains cleared.

■ The and operation sets the bit in the current bit set only if the current bit and the second
bit are set. Otherwise, the current bit is cleared.

■ The xor operation sets the bit in the current bit set if only one of the two bits is set. If
both are set, the current bit is cleared.

The BitSet Class

54 1529-5 CH46 9/24/98, 8:49 AM1067

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1068 Chapter 46 Data Structures and Java Utilities

The format of these bitwise operations is:

public void or(Bitset bits)
public void and(Bitset bits)
public void xor(Bitset bits)

The StringTokenizer Class
The StringTokenizer class helps you parse a string by breaking it up into tokens. It recognizes
tokens based on a set of delimiters. A token is considered to be a string of characters that are
not delimiters. For example, the phrase “I am a sentence” contains a number of tokens with
spaces as delimiters. The tokens are I, am, a, and sentence. If you were using the colon charac-
ter as a delimiter, the sentence would be one long token called “I am a sentence” because there
are no colons to separate the words. The StringTokenizer is not bound by the convention that
words are separated by spaces. If you tell it that words are only separated by colons, it consid-
ers spaces to be part of a word.

You can even use a set of delimiters, meaning that many different characters can delimit to-
kens. For example, if you had the string “Hello. How are you? I am fine, I think,” you would
want to use a space, period, comma, and question mark as delimiters to break the sentence into
tokens that are only words.

The string tokenizer doesn’t have a concept of words itself; it only understands delimiters.
When you are parsing text, you usually use whitespace as a delimiter. Whitespace consists of
spaces, tabs, newlines, and returns. If you do not specify a string of delimiters when you create
a string tokenizer, it uses whitespace.

You create a string tokenizer by passing the string to be tokenized to the constructor:

public StringTokenizer(String str)

If you want something other than whitespace as a delimiter, you can also pass a string contain-
ing the delimiters you want to use:

public StringTokenizer(String str, String delimiters)

Sometimes you want to know what delimiter is used to separate two tokens. You can ask the
string tokenizer to pass delimiters back as tokens by passing true for the returnTokens param-
eter in this constructor:

public StringTokenizer(String str, String delimiters, boolean returnTokens)

The nextToken() method returns the next token in the string:

public String nextToken()
 throws NoSuchElementException

If there are no more tokens, it throws a NoSuchElementException. You can use the
hasMoreTokens() method to determine whether there are more tokens before you use
nextToken():

public boolean hasMoreTokens()

54 1529-5 CH46 9/24/98, 8:49 AM1068

1069

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

You can also change the set of delimiters on-the-fly by passing a new set of delimiters to the
nextToken() method:

public String nextToken(String newDelimiters)

The new delimiters take effect before the next token is parsed and stay in effect until they are
changed again.

The countTokens() method tells you how many tokens are in the string, assuming that the
delimiter set doesn’t change:

public int countTokens()

You may have noticed that the nextToken() and hasMoreTokens() methods look similar to the
nextElement() and hasMoreElements() methods in the Enumeration interface. They are so
similar, in fact, that the StringTokenizer also implements an Enumeration interface that is
implemented as:

public boolean hasMoreElements() {
 return hasMoreTokens();
}

public Object nextElement() {
 return nextToken();
}

The following code fragment prints out the words in a sentence using a string tokenizer:

String sentence = “This is a sentence”;
StringTokenizer tokenizer = new StringTokenizer(sentence);

while (tokenizer.hasMoreTokens())
{
 System.out.println(tokenizer.nextToken());
}

The Random Class
The Random class provides a random number generator that is more flexible than the random
number generator in the Math class. Actually, the random number generator in the Math class
just uses one of the methods in the Random class. Because the methods in the Random class are
not static, you must create an instance of Random before you generate numbers. The easiest
way to do this is with the empty constructor:

public Random()

One handy feature of the Random class is that it lets you set the random number seed that deter-
mines the pattern of random numbers. Although you cannot easily predict what numbers will
be generated with a particular seed, you can duplicate a series of random numbers by using
the same seed. In other words, if you create an instance of Random with the same seed value
every time, you will get the same sequence of random numbers every time. This might not be
good for writing games and would be financially devastating for lotteries, but it is useful when

The Random Class

54 1529-5 CH46 9/24/98, 8:49 AM1069

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1070 Chapter 46 Data Structures and Java Utilities

writing simulations where you want to replay the same sequences over and over. The empty
constructor uses System.currentTimeMillis to seed the random number generator. To create
an instance of Random with a particular seed, just pass the seed value to the constructor:

public Random(long seed)

You can change the seed of the random number generator at any time using the setSeed()
method:

public synchronized void setSeed(long newSeed)

The Random class can generate random numbers in four different data types.

public int nextInt()

generates a 32-bit random number that can be any legal int value.

public long nextLong()

generates a 64-bit random number that can be any legal long value.

public float nextFloat()

generates a random float value between 0.0 and 1.0, though always less than 1.0.

public double nextDouble()

generates a random double value between 0.0 and 1.0, always less than 1.0. This is the method
used by the Math.random() method.

There is also a special variation of random number that has some interesting mathematical
properties. This variation is called nextGaussian.

public synchronized double nextGaussian()

returns a special random double value that can be any legal double value. The mean (average)
of the values generated by this method is 0.0, and the standard deviation is 1.0. This means that
the numbers generated by this method are usually close to zero and that very large numbers
are fairly rare.

The Observable Class
The Observable class allows an object to notify other objects when it changes. The concept of
observables is borrowed from Smalltalk. In Smalltalk, an object may express interest in an-
other object, meaning that it would like to know when the other object changes.

When building user interfaces, you might have multiple ways to change a piece of data, and
changing that data might cause several different parts of the display to update. For instance,
suppose that you want to create a scrollbar that changes an integer value and, in turn, that
integer value is displayed on some sort of graphical meter. You want the meter to update as the
value is changed, but you don’t want the meter to know anything about the scrollbar. If you are
wondering why the meter shouldn’t know about the scrollbar, what happens if you decide you
don’t want a scrollbar but want the number entered from a text field instead? You shouldn’t
have to change the meter every time you change the input source.

54 1529-5 CH46 9/24/98, 8:49 AM1070

1071

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

You would be better off creating an integer variable that is observable. It allows other objects to
express interest in it. When this integer variable changes, it notifies those interested parties
(called observers) that it has changed. In the case of the graphical meter, it would be informed
that the value changed and would query the integer variable for the new value and then redraw
itself. This allows the meter to display the value correctly no matter what you are using to
change the value.

This concept is known as Model-View-Controller. A model is the nonvisual part of an applica-
tion. In the preceding example, the model is a single integer variable. The view is anything that
visually displays some part of the model. The graphical meter is an example of a view. The
scrollbar could also be an example of a view because it updates its position whenever the inte-
ger value changes. A controller is any input source that modifies the view. The scrollbar, in this
case, is also a controller (it can be both a view and a controller).

In Smalltalk, the mechanism for expressing interest in an object is built right in to the Object
class. Unfortunately, for whatever reason, Sun separated out the observing mechanism into a
separate class. This means extra work for you because you cannot just register interest in an
Integer class; you must create your own subclass of Observable.

The most important methods to you in creating a subclass of Observable are setChanged()
and notifyObservers(). The setChanged() method marks the observable as having been
changed, so that when you call notifyObservers() the observers are notified:

protected synchronized void setChanged()

The setChanged() method sets an internal changed flag that is used by the notifyObservers()
method. It is automatically cleared when notifyObservers() is called, but you can clear it
manually with the clearChanged() method:

protected synchronized void clearChanged()

The notifyObservers() method checks to see whether the changed flag has been set, and if
not, it does not send any notification:

public void notifyObservers()

The following code fragment sets the changed flag and notifies the observers of the change:

setChanged(); // Flag this observable as changed
notifyObservers(); // Tell observers about the change

The notifyObservers() method can also be called with an argument:

public void notifyObservers(Object arg)

This argument can be used to pass additional information about the change—for instance, the
new value. Calling notifyObservers() with no argument is equivalent to calling it with an
argument of null.

You can determine whether an observable has changed by calling the hasChanged() method:

public synchronized boolean hasChanged()

The Observable Class

54 1529-5 CH46 9/24/98, 8:49 AM1071

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1072 Chapter 46 Data Structures and Java Utilities

Observers can register interest in an observable by calling the addObserver() method:

public synchronized void addObserver(Observer obs)

Observers can deregister interest in an observable by calling deleteObserver():

public synchronized void deleteObserver(Observer obs)

An observable can clear out its list of observers by calling the deleteObservers() method:

public synchronized void deleteObservers()

The countObservers() method returns the number of observers registered for an observable:

public synchronized int countObservers()

Listing 46.3 shows an example implementation of an ObservableInt class.

Listing 46.3 Source Code for ObservableInt.java

import java.util.*;

// ObservableInt - an integer Observable
//
// This class implements the Observable mechanism for
// a simple int variable.
// You can set the value with setValue(int)
// and int getValue() returns the current value.

public class ObservableInt extends Observable
{
 int value; // The value everyone wants to observe

 public ObservableInt()
 {
 value = 0; // By default, let value be 0
 }

 public ObservableInt(int newValue)
 {
 value = newValue; // Allow value to be set when created
 }

 public synchronized void setValue(int newValue)
 {
//
// Check to see that this call is REALLY changing the value
//
 if (newValue != value)
 {
 value = newValue;
 setChanged(); // Mark this class as “changed”
 notifyObservers(); // Tell the observers about it
 }
 }

54 1529-5 CH46 9/24/98, 8:50 AM1072

1073

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

 public synchronized int getValue()
 {
 return value;
 }
}

The Observable class has a companion interface called Observer. Any class that wants to re-
ceive updates about a change in an observable needs to implement the Observer interface. The
Observer interface consists of a single method called update() that is called when an object
changes. The format of update() is:

public abstract void update(Observable obs, Object arg);

where obs is the observable that has just changed, and arg is a value passed by the observable
when it called notifyObservers(). If notifyObservers() is called with no arguments, arg is
null.

Listing 46.4 shows an example of a Label class that implements the Observer interface so that
it can be informed of changes in an integer variable and update itself with the new value.

Listing 46.4 Source Code for IntLabel.java

import java.awt.*;
import java.util.*;

//
// IntLabel - a Label that displays the value of
// an ObservableInt.

public class IntLabel extends Label implements Observer
{
 private ObservableInt intValue; // The value we’re observing

 public IntLabel(ObservableInt theInt)
 {
 intValue = theInt;

// Tell intValue we’re interested in it

 intValue.addObserver(this);

// Initialize the label to the current value of intValue

 setText(“”+intValue.getValue());
 }

// Update will be called whenever intValue is changed, so just update
// the label text.

 public void update(Observable obs, Object arg)
 {

continued

The Observable Class

54 1529-5 CH46 9/24/98, 8:50 AM1073

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1074 Chapter 46 Data Structures and Java Utilities

Listing 46.4 Continued

 setText(“”+intValue.getValue());
 }
}

Now that you have a model object defined in the form of the ObservableInt and a view in the
form of the IntLabel, you can create a controller—the IntScrollbar. Listing 46.5 shows the
implementation of IntScrollbar.

Listing 46.5 Source Code for IntScrollbar.java

import java.awt.*;
import java.util.*;

//
// IntScrollbar - a Scrollbar that modifies an
// ObservableInt. This class functions as both a
// “view” of the observable, since the position of
// the scrollbar is changed as the observable’s value
// is changed, and it is a “controller,” since it also
// sets the value of the observable.
//
// IntScrollbar has the same constructors as Scrollbar,
// except that in each case, there is an additional
// parameter that is the ObservableInt.
// Note: On the constructor where you pass in the initial
// scrollbar position, the position is ignored.

public class IntScrollbar extends Scrollbar implements Observer
{
 private ObservableInt intValue;

// The bulk of this class is implementing the various
// constructors that are available in the Scrollbar class.

 public IntScrollbar(ObservableInt newValue)
 {
 super(); // Call the Scrollbar constructor
 intValue = newValue;
 intValue.addObserver(this); // Register interest
 setValue(intValue.getValue()); // Change scrollbar position
 }

 public IntScrollbar(ObservableInt newValue, int orientation)
 {
 super(orientation); // Call the Scrollbar constructor
 intValue = newValue;
 intValue.addObserver(this); // Register interest
 setValue(intValue.getValue()); // Change scrollbar position
 }

54 1529-5 CH46 9/24/98, 8:50 AM1074

1075

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

 public IntScrollbar(ObservableInt newValue, int orientation,
 int value, int pageSize, int lowValue, int highValue)
 {
 super(orientation, value, pageSize, lowValue, highValue);
 intValue = newValue;
 intValue.addObserver(this); // Register interest
 setValue(intValue.getValue()); // Change scrollbar position
 }

// The handleEvent method checks with the parent class (Scrollbar) to see
// if it wants the event, if not, just assumes the scrollbar value has
// changed and updates the observable int with the new position.

 public boolean handleEvent(Event evt)
 {
 if (super.handleEvent(evt))
 {
 return true; // The Scrollbar class handled it
 }
 intValue.setValue(getValue()); // Update the observable int
 return true;
 }

// update is called whenever the observable int changes its value

 public void update(Observable obs, Object arg)
 {
 setValue(intValue.getValue());
 }
}

This may look like a lot of work, but watch how easy it is to create an applet with an
IntScrollbar that modifies an ObservableInt and an IntLabel that displays one. Listing 46.6
shows an implementation of an applet that uses the IntScrollbar, the ObservableInt, and the
IntLabel.

Listing 46.6 Source Code for ObservableApplet1.java

import java.applet.*;
import java.awt.*;

public class ObservableApplet1 extends Applet
{
 ObservableInt myIntValue;

 public void init()
 {

// Create the Observable int to play with

 myIntValue = new ObservableInt(5);

continued

The Observable Class

54 1529-5 CH46 9/24/98, 8:50 AM1075

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1076 Chapter 46 Data Structures and Java Utilities

Listing 46.6 Continued

 setLayout(new GridLayout(2, 0));

// Create an IntScrollbar that modifies the observable int

 add(new IntScrollbar(myIntValue,
 Scrollbar.HORIZONTAL,
 0, 10, 0, 100));

// Create an IntLabel that displays the observable int

 add(new IntLabel(myIntValue));
 }
}

You might notice when you run this applet that the label value changes whenever you update
the scrollbar; yet the label has no knowledge of the scrollbar, and the scrollbar has no knowl-
edge of the label.

Now, suppose that you also want to allow the value to be updated from a TextField. All you
need to do is create a subclass of TextField that modifies the ObservableInt. Listing 46.7
shows an implementation of an IntTextField.

Listing 46.7 Source Code for IntTextField.java

import java.awt.*;
import java.util.*;

//
// IntTextField - a TextField that reads in integer values and
// updates an Observable int with the new value. This class
// is both a “view” of the Observable int, since it displays
// its current value, and a “controller” since it updates the
// value.

public class IntTextField extends TextField implements Observer
{
 private ObservableInt intValue;

 public IntTextField(ObservableInt theInt)
 {
// Initialize the field to the current value, allow 3 input columns

 super(“”+theInt.getValue(), 3);
 intValue = theInt;
 intValue.addObserver(this); // Express interest in value
 }

// The action for the text field is called whenever someone presses “return”
// We’ll try to convert the string in the field to an integer, and if
// successful, update the observable int.

54 1529-5 CH46 9/24/98, 8:50 AM1076

1077

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

46

VII
Part

Ch

 public boolean action(Event evt, Object whatAction)
 {
 Integer intStr; // to be converted from a string

 try { // The conversion can throw an exception
 intStr = new Integer(getText());

// If we get here, there was no exception, update the observable

 intValue.setValue(intStr.intValue());
 } catch (Exception oops) {
// We just ignore the exception
 }
 return true;
 }

// The update action is called whenever the observable int’s value changes.
// We just update the text in the field with the new int value

 public void update(Observable obs, Object arg)
 {
 setText(“”+intValue.getValue());
 }
}

After you have created this class, how much code do you think you have to add to the applet?
You add one line (and change GridLayout to have three rows). Listing 46.8 shows an imple-
mentation of an applet that uses an ObservableInt, an IntScrollbar, an IntLabel, and an
IntTextField.

Listing 46.8 Source Code for ObservableApplet2.java

import java.applet.*;
import java.awt.*;

public class ObservableApplet2 extends Applet
{
 ObservableInt myIntValue;

 public void init()
 {

// Create the Observable int to play with

 myIntValue = new ObservableInt(5);

 setLayout(new GridLayout(3, 0));

// Create an IntScrollbar that modifies the observable int

 add(new IntScrollbar(myIntValue,
 Scrollbar.HORIZONTAL,

continued

The Observable Class

54 1529-5 CH46 9/24/98, 8:50 AM1077

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH46 LP#5

1078 Chapter 46 Data Structures and Java Utilities

Listing 46.8 Continued

 0, 10, 0, 100));

// Create an IntLabel that displays the observable int

 add(new IntLabel(myIntValue));

// Create an IntTextField that displays and updates the observable int

 add(new IntTextField(myIntValue));
 }
}

Again, the components that modify and display the integer value have no knowledge of each
other; yet whenever the value is changed, they are all updated with the new value. ●

54 1529-5 CH46 9/24/98, 8:50 AM1078

1079

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

C H A P T E R

java.lang

47

55 1529-5 CH47 9/24/98, 8:52 AM1079

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1080 Chapter 47 java.lang

The java.lang Packages
Of all the Java API packages, java.lang is the most important. It contains classes that provide
a solid foundation for the other Java packages. It is safe to say that the java.lang package is
the one Java package that does not require any other packages to exist.

The java.lang package includes the following classes:

■ Object is the root class from which all other classes derive. If you don’t explicitly state
which class your new subclass extends, it extends Object.

■ Class represents a Java class. For every class defined in Java, there is an instance of
Class that describes it.

■ ClassLoader provides a way to add new classes to the Java runtime environment.

■ Compiler provides access to the Just-In-Time compiler, if available.

■ Math provides a number of well-known math functions.

■ Number is the base class for the Java numeric classes, which are Double, Float, Integer,
and Long. These classes are called object wrappers because they present an object
interface for the built-in primitive types.

■ Package defines information about a package such as the version number, specification
title, and vendor. Using the Package class, JDK 1.2 apps can be sure they are using the
correct version of a package.

■ Process represents an external program started by a Runtime object.

■ Runtime provides many of the same functions as System, but also handles the running of
external programs.

■ RuntimePermission defines the level of runtime access. For more information see
Chapter 34, “Java Security in Depth.”

■ String provides methods for manipulating Java strings.

■ StringBuffer is used for creating Java strings, especially ones that change length
frequently.

■ System provides special system-level utilities.

■ Thread represents a thread of execution in a Java program. Each executing program can
have multiple threads running.

■ ThreadGroup allows threads to be associated with each other. Some thread operations
can only be performed by threads in the same ThreadGroup.

■ Throwable is the base class for Java exceptions. Any object that is caught with the catch
statement, or thrown with the throw statement, must be a subclass of Throwable.

■ SecurityManager defines the security restrictions in the current runtime environment.
Many of the Java classes use the SecurityManager to verify that an operation is allowed.

■ Boolean, Byte, Character, Double, Float, Integer, Long, and Short are object wrappers
for their native data types. For instance, Character wraps a char data type.

55 1529-5 CH47 9/24/98, 8:52 AM1080

1081

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

In addition to these classes, the java.lang package defines four interfaces:

■ Cloneable must be implemented by any object that can be cloned or copied.

■ Comparable is used to define the ordering of objects. This is very useful for classes like
java.util.List.

■ Runnable is used in conjunction with the Thread class.

■ Runtime.MemoryAdvice is used in conjunction with the Runtime class to define the level
of urgency for Runtime’s garbage collection.

The Object Class
The Object class is the base class of every class in Java. It defines the methods that every class
in Java supports.

Testing Object Equality
You should already be aware that the == operator only tells whether two objects are really the
same object. This is not the same as testing whether the objects contain the same information.
The equals() method in the Object class enables you to define a way to tell whether two ob-
jects contain the same information. For instance, you and I might both own the same model of
car, but myCar == yourCar is not true—they are two different objects. However, if you test this
with myCar.equals(yourCar), they would contain the same information. The format of the
equals() method is

public boolean equals(Object ob)

Listing 47.1 shows a sample class with an equals() method that does an attribute-by-attribute
comparison of two objects.

Listing 47.1 Source Code for EqualityTest.java

public class EqualityTest
{
 protected String someName;
 protected int someNumber;
 protected Object someObject;

 public boolean equals(Object otherOb)
 {
 EqualityTest other;

// First, test to see if these are the same object
 if (otherOb == this) return true;

// Next, make sure the other object is the same class
 if (!(otherOb instanceof EqualityTest)) return false;

continues

The Object Class

55 1529-5 CH47 9/24/98, 8:52 AM1081

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1082 Chapter 47 java.lang

Listing 47.1 Continued

// Cast otherOb to this kind of object (EqualityTest) for accessing
// the attributes.
 other = (EqualityTest) otherOb;

// Now, compare each attribute of the objects to see if they are equal.
// Notice that on primitive data types like int you should use ==
 if (someName.equals(other.someName) &&
 (someNumber == other.someNumber) &&
 (someObject.equals(other.someObject))) return true;

// Looks like they are not the same object, so the compare result is false
 return false;
 }
}

String Representations of Objects
Many times, especially during debugging, you need to print out an object to an output stream.
The toString() method in Object was created just for this purpose. The format of
toString() is

public String toString()

The default implementation of toString() prints out the object’s class name and its hash code.
You might want to provide additional information in your own objects. For instance, if you
defined an Employee object, you might want the toString() method to print out the employee’s
ID number:

public String toString()
{
 return “Employee #”+this.employeeID;
}

The toString() method is a convenience for creating a string representation of objects. It is
not intended to be a mechanism for saving all the information for an object, thus there is no
corresponding fromString() method.

Cloning Objects
The clone() method creates a duplicate copy of an object. For an object to be cloned, it must
support the Cloneable interface. The Cloneable interface does not have any methods itself—it
serves only as an indicator to show that an object can be cloned. An object can choose to imple-
ment Cloneable but still not support the cloning operation, by throwing a
CloneNotSupportedException in the clone() method. The format for the clone() method is

protected Object clone()
 throws CloneNotSupportedException, OutOfMemoryError

55 1529-5 CH47 9/24/98, 8:52 AM1082

1083

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

Because the clone() method copies only primitive data types and references to objects, there
are times when you will need to create your own clone() method. For example, take the fol-
lowing class:

public class StoogesFilm extends Object implements Cloneable
{
 public String[] stooges;

 public StoogesFilm()
 {
 stooges = new String[3];
 stooges[0] = “Moe”;
 stooges[1] = “Larry”;
 stooges[2] = “Curly”;
 }
}

The default clone() method for StoogesFilm copies only the reference to the stooges array.
Unfortunately, if the newly cloned object decides that Shemp will be the third stooge rather
than Curly, and thus changes the stooges array, it will change for both copies:

StoogesFilm film1 = new StoogesFilm(); // Create a StoogesFilm
System.out.println(“The third stooge in film 1 is “+film1.stooges[2]);

StoogesFilm film2 = (StoogesFilm) film1.clone();
// Create a copy of the first film
film2.stooges[2] = “Shemp”; // Substitute Shemp for Curly

System.out.println(“The third stooge in film 1 is now “+film1.stooges[2]);
System.out.println(“The third stooge in film 2 is “+film2.stooges[2]);

The output from this code segment would be

The third stooge in film 1 is Curly
The third stooge in film 1 is now Shemp
The third stooge in film 2 is now Shemp

You can solve this problem by creating a clone() method that clones the stooges array:

public Object clone() throws CloneNotSupportedException
{
// Create an initial clone of the object using the default clone method
 StoogesFilm returnValue = (StoogesFilm)super.clone();

// Now create a separate copy of the stooges array
 returnValue.stooges = (String[])stooges.clone();
 return returnValue;
}

After you add this method, the output from the previous code segment becomes

The third stooge in film 1 is Curly
The third stooge in film 1 is now Curly
The third stooge in film 2 is now Shemp

The Object Class

55 1529-5 CH47 9/24/98, 8:52 AM1083

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1084 Chapter 47 java.lang

Finalization
The finalize() method is called on an object when it is about to be removed from memory by
the garbage collector. Normally, your objects will not need to override the finalize() method,
but if you have allocated resources outside the Java Virtual Machine (usually via native meth-
ods), you may need to implement a finalize() method to free up those resources. The format
of the finalize() method is

protected void finalize() throws Throwable

CAUTION

Make sure that your finalize() method calls super.finalize at some point; otherwise, the resources
allocated by the superclass will not be freed correctly.

A typical finalize() method would look like

protected void finalize() throws Throwable
{
 super.finalize(); // ALWAYS do this in a finalize method
// (other code to free up external resources)
}

Serializing Objects
The notion of serializing objects appeared in version 1.1 of the Java API. Object serialization
refers to the storage and retrieval of the data stored in the object. You would use object serial-
ization to save the contents of an object in a file or to send an object over a network. You can
protect attributes from being serialized. For instance, you might have a handle to an open file,
which might not make sense when the object is retrieved on some other system. You can mark
attributes as being transient, which will prevent the system from serializing them. For ex-
ample, suppose that you have an InputStream that you do not want to be serialized. You can
declare it as transient:

public transient InputStream myStream;
 // Don’t serialize this attribute

For an object to be serialized, it must implement the java.io.Serializable interface. Like the
Cloneable interface, the java.io.Serializable interface does not contain any methods. It
serves only as a flag to indicate that an object can be serialized. Oddly enough, although the
java.io.Serializable interface does not contain any methods, there are two methods you
must implement if your object requires custom serialization:

private void writeObject(java.io.ObjectOutputStream out)
 throws IOException
private void readObject(java.io.ObjectInputStream in)
 throws IOException, ClassNotFoundException

Your readObject() and writeObject() methods must be declared exactly as they are in the
preceding code. The serialization code contains special checks for these methods. You prob-
ably won’t have to implement your own readObject() and writeObject() methods, but it is

55 1529-5 CH47 9/24/98, 8:52 AM1084

1085

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

nice to know that you can if you need to. There are cases where you can take shortcuts in
serializing an object, or you might want to prevent certain attributes contained in the object
from being serialized, but you don’t want to mark those attributes as transient (for instance,
you might want the serialization of those attributes to be dependent on the current state of the
object).

Hash Codes
The hashCode() method in an object returns an integer that should be unique for each object.
The hashCode() value is used by the Hashtable class when storing and retrieving objects. You
can usually just rely on the default implementation, but just in case you decide you have a
much better way to compute a hash code for your object, the format for the hashCode()
method is

public int hashCode()

A hash table is an associative array that uses non-numeric “keys” as indices. In other words, it’s
similar to an array whose index values can be something other than numbers. It uses hash
codes to group objects into buckets. When it searches for an object, it only searches through
the bucket for that object’s hash code.

CAUTION

If you create your own hashCode() method, make sure that it returns the same hash value for two objects
that are equivalent. The Hashtable class uses the hashCode() to help locate equivalent objects, and if
the hash values for two objects are different, the Hashtable class assumes that they are different and
never even checks the equals() method.

wait() and notify()
The wait() and notify() methods provide a way for objects running in separate threads to
signal each other when something interesting occurs. For example, one object might be writ-
ing information into an array that another object is reading. The reader calls wait() to wait
until the writer is finished. When the writer is finished, it calls notify() to signal to the reader
that it is done. Effectively, the reader thread will sleep until it receives the notify signal from
the writer thread. The idea might sound simple, but there are several important items to
consider:

■ If notify()is called before an object starts waiting, the notification is ignored. This could
cause an object to wait for a signal that never comes. Consider the following scenario. An
object called Bob is going to wait until the sky turns blue. Object Sun notifies Bob that the
sky is blue (like it always is). This works fine, except when the following happens.

Your program starts up. Sun automatically notifies Bob that the sky is blue. However, Bob
hasn’t started waiting yet, so the notification is ignored. Moments later Bob gets to the
point that he is going to wait. Unfortunately, Sun has already done its notification, so Bob
is going to wait forever for the notification. To fix this situation, you should set up a flag
to indicate whether the object should wait. If when Sun has notified Bob the first time a

The Object Class

55 1529-5 CH47 9/24/98, 8:52 AM1085

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1086 Chapter 47 java.lang

skyIsBlue variable had been set to true, and Bob checked this variable before he issued
the wait(), he never would have started to wait, and the problem would have been
solved.

■ notify() and wait() must both be called from within synchronized methods or blocks.
In addition, the method cannot be called from a thread other than the one that is
running. Consider the Sun and Bob example above. Sun can not issue a Bob.wait()
command. If it does, an IllegalMonitorStateException will be thrown.

■ Because it is possible for wait() to be interrupted with an exception, you should put it
inside a while loop that checks the wait flag and then calls wait().

The wait() method comes in three forms:

public final void wait()
throws InterruptedException, IllegalMonitorStateException

waits forever until a notify() is sent.

public final void wait(long timeout)
throws InterruptedException, IllegalMonitorStateException

waits timeout seconds for a notify() and then returns.

public final void wait(long timeout, int nano)
throws InterruptedException, IllegalMonitorStateException

waits timeout seconds and nano nanoseconds for a notify() and then returns.

The notify() method comes in two forms:

public final void notify() throws IllegalMonitorStateException

sends a notification to a thread that is waiting on this object. If multiple threads are waiting, it
sends the notification to the thread that has waited the longest.

public final void notifyAll() throws IllegalMonitorStateException

sends a notification to every thread waiting on this object.

CAUTION

The notify(), notifyAll(), and wait() methods must be called from synchronized methods or
synchronized blocks. In addition, notify() must be called from a method or block that is synchronized on
the same object as the corresponding wait(). In other words, if some object, myObject, calls wait()
and another object calls myObject.notify(), the calling block or method must be synchronized on
myObject. This is shown in the following pseudo code.

public class MyObject{
 public synchronized wait(){
 wait()
 }
}

public class AnotherObject{
 public void notifyIt(MyObject myObject){

55 1529-5 CH47 9/24/98, 8:52 AM1086

1087

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

 synchronized(myObject){
 myObject.notify();
 }
 }
}

Listing 47.2 shows an example use of wait() and notify() for implementing a signaling
system.

Listing 47.2 Source Code for Signaler.java

/**
 * This class provides a signaling mechanism for objects.
 * An object wishing to send a signal calls the signal method.
 * An object receiving the signal would wait for a signal with
 * waitForSignal. If there is no signal pending, waitForSignal
 * will wait for one. If there are multiple signals sent, the
 * class will keep track of how many were sent and will not call
 * wait until there are no more pending signals.
 * There should only be one object waiting for a signal at any given
 * time.

 */

public class Signaler extends Object
{
 protected int signalCount; // the number of pending signals
 protected boolean isWaiting; // is an object waiting right now?
 protected boolean sentNotify; // Did someone send a notify?

/**
 * Creates an instance of a signaler
 */
 public Signaler()
 {
 signalCount = 0; // no pending signals
 isWaiting = false; // no one waiting
 }

/**
 * Sends a signal to the object waiting for a signal.
 * @exception Exception if there is an error sending a notification
 */
 public synchronized void signal()
 throws Exception
 {
 signalCount++; // Increment the number of pending signals
 if (isWaiting) // If an object is waiting, notify it
 {
 try {
 sentNotify = true;
 notify();

continues

The Object Class

55 1529-5 CH47 9/24/98, 8:52 AM1087

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1088 Chapter 47 java.lang

Listing 47.2 Continued

 } catch (Exception IllegalMonitorStateException) {
 throw new Exception(“Error sending notification”);
 }
 }
 }

/**
 * Waits for a signal. If there are signals pending, this method will
 * return immediately.
 */
 public synchronized void waitForSignal()
 {
 while (signalCount == 0) // If there are no signals
 // pending, wait for a signal
 {
 sentNotify = false;
 isWaiting = true; // Yes, someone is waiting

// Want to keep looping until a notify is actually sent, it is possible
// for wait to return without a notify, so use sentNotify to see if we
// should go back to waiting again.

 while (!sentNotify)
 {
 try {
 wait();
 } catch (Exception waitError) {
 // Shouldn’t really ignore this, but...
 }
 }
 isWaiting = false; // I’m not waiting any more
 }
 signalCoun--; // one fewer signal pending
 }
}

If you are familiar with Java’s synchronized method specifier, you might be wondering how
notify() can ever be called in the Signaler class. If you aren’t wondering that, either you
know the answer or you don’t see the problem. The problem is that waitForSignal() and
signal are both synchronized. If some thread is blocked on the wait() call in the middle of the
waitForSignal() method, the signal() method can’t be called because of the synchronization
lock. The reason that the Signaler class works is because the wait() method releases the
synchronization lock when it is called and acquires it again when it returns.

Getting an Object’s Class
You can retrieve the instance of the Class object that corresponds to an object’s class using the
getClass() method:

public final Class getClass()

55 1529-5 CH47 9/24/98, 8:52 AM1088

1089

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

The Class Class
The Class class contains information that describes a Java class. Every class in Java has a
corresponding instance of Class. There is even an instance of Class that describes Class itself.
In case you are wondering what would happen if you tried the line:

Class newClass = new Class();

you can’t. There is no public constructor for the Class object. You can, however, get hold of an
instance of Class in one of three ways:

■ Use the getClass() method in an object to get that object’s Class instance.

■ Use the static method forName() in Class to get an instance of Class using the name of
the class.

■ Load a new class using a custom ClassLoader object.

Dynamic Loading
The Class class is a powerful construct that allows you to do things that you can’t do in C++.
You typically instantiate a class with a statement like this:

Object vehicle = new Car();

Suppose, however, that you would like to create a vehicle using the name of the class you want
to instantiate. You could do something like this:

String vehicleClass = (some string representing a class name)
 Object vehicle;
 if (vehicleClass.equals(“Car”)
 {
 vehicle = new Car();
 }
 else if (vehicleClass.equals(“Airplane”)
 {
 vehicle = new Airplane(); }

This is better, but it is still not flexible enough. Suppose that you add a new class called Train.
You do not want to have to add an else if to check for Train. This is where Class comes in.
You can perform the equivalent of the code using Class.forName() and Class.newInstance():

 Object vehicle;
// First get the class named by vehicleClass
 Class whichClass = Class.forname(vehicleClass);
// Now ask the class to create a new instance
vehicle = whichClass.newInstance();

The forName() method in Class is defined as:

public static Class forName(String className)
 throws ClassNotFoundException

The Class Class

55 1529-5 CH47 9/24/98, 8:52 AM1089

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1090 Chapter 47 java.lang

and returns the instance of Class that corresponds to className, or it throws a
ClassNotFoundException. The newInstance() method is defined as:

public Object newInstance()
 throws InstantiationException, IllegalAccessException

and returns a new instance of the class, or throws an exception if there was an error instantiat-
ing the class.

CAUTION

You can only use newInstance() to instantiate objects that provide an empty constructor (a constructor
that takes no parameters). If you try to use newInstance() to instantiate an object that does not have an
empty constructor, you get a NoSuchMethodError error. You should be ready to catch the
NoSuchMethodError. Remember that it is an error and not an exception, so just catching Exception will
not grab it.

Getting Information About a Class
You can also use Class to get interesting information about a class:

public String getName()

returns the name of the class.

public boolean isInterface()

returns true if the class is actually an interface.

public Class getSuperclass()

returns the superclass of the class.

public Class[] getInterfaces()

returns an array containing Class instances for every interface the class supports.

public ClassLoader getClassLoader()

returns the instance of ClassLoader responsible for loading this class into the runtime environ-
ment.

The Reflection API introduced in Java 1.1 added a number of methods to the Class class for
examining the attributes and methods of a class. These methods were:

public Class[] getInterfaces()
public Class getComponentType()
public int getModifiers()
public Class getDeclaringClass()
public Class[] getClasses()
public Field[] getFields() throws SecurityException
public Method[] getMethods() throws SecurityException
public Constructor[] getConstructors() throws SecurityException
public Field getField(String name)
 throws NoSuchFieldException, SecurityException

55 1529-5 CH47 9/24/98, 8:52 AM1090

1091

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

public Method getMethod(String name, Class parameterTypes[])
 throws NoSuchMethodException, SecurityException
public Constructor getConstructor(Class parameterTypes[])
 throws NoSuchMethodException, SecurityException
public Class[] getDeclaredClasses() throws SecurityException
public Field[] getDeclaredFields() throws SecurityException
public Method[] getDeclaredMethods() throws SecurityException
public Constructor[] getDeclaredConstructors() throws SecurityException
public Field getDeclaredField(String name)
 throws IllegalArgumentException, SecurityException
public Method getDeclaredMethod(String name, Class parameterTypes[])
 throws NoSuchMethodException, SecurityException
public Constructor getDeclaredConstructor(Class parameterTypes[])
 throws NoSuchMethodException, SecurityException

These Reflection API methods are discussed in depth in Chapter 48, “Reflection.”

The Package Class
New in the 1.2 API is a class called Package. The Package class is used primarily to help you
determine the version of each of the packages loaded in the system. Normally the version
information will actually be stored in the Manifest file for that particular package.

To obtain a Package there are two static methods. The getPackage() method will get just one
specific package, while getAllPackages() will return an array of all the packages currently
know by the classloader:

static Package getPackage(String packageName)

static Package[] getAllPackages()

Once you have the Package object you can obtain information about it, such as its title, the
name of the vendor that produced the package, the name of the package (which you would
know if you used the getPackage() method, but not if you used getAllPackages()), the URL
where a sealed package came from, the name of the specification the package implements, the
hash code of the Package (from its name), and the version of the package.

String getImplementationTitle()
String getImplementationVendor()
String getImplementationVersion()
String getName()
URL getSealBase()
String getSpecificationTitle()
int
boolean isCompatibleWith(String Desired)
boolean isSealed()
String toString()

The String Class
The String class is one of the most useful classes in the Java API. It enables you to create and
manipulate strings of characters. Keep in mind that Java strings are immutable; in other words,
you cannot change the contents of a string. On the surface, this makes the String class look

The String Class

55 1529-5 CH47 9/24/98, 8:52 AM1091

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1092 Chapter 47 java.lang

useless. After all, what good is it to create strings that you can’t change? The way you manipu-
late strings in Java is to create new strings based on other strings. In other words, instead of
changing the string “father” to “grandfather,” you create a new string that is “grand” + “father”.
The StringBuffer class provides ways to directly manipulate string data.

Creating Strings
Java provides many string constructors:

public String()

creates an empty string.

public String(String value)

creates a new string that is a copy of value.

public String(char[] value)

creates a new string from the characters in value.

public String(char[] value, int from, int count)
throws StringIndexOutOfBoundsException

creates a new string from the characters in value, starting at offset from that is count charac-
ters long.

public String(byte[] value, int hibyte)

creates a new string from the characters in value, using hibyte as the upper 8 bits in each
character. (Remember that Java characters are 16 bits, not 8 as in C.)

public String(byte[] value, int hibyte, int from, int count)
 throws StringIndexOutOfBoundsException

creates a new string from the characters in value, starting at offset from, count characters
long, and using hibyte as the upper 8 bits in each character.

public String(StringBuffer buffer)

creates a new string from the contents of a StringBuffer.

Here is an example of different ways to create the string “Foo”:

String foo1 = new String(“Foo”);

char foochars[] = { ‘F’, ‘o’, ‘o’ };
String foo2 = new String(foochars);

char foo2chars[] = { ‘B’, ‘a’, ‘r’, ‘e’, ‘F’, ‘o’, ‘o’, ‘t’ };
String foo3 = new String(foo2chars, 4, 3); // from offset 4, length of 3

byte foobytes[] = { 70, 111, 111 }; // ascii bytes for Foo
String foo4 = new String(fooBytes, 0); // use 0 as upper 8 bits

byte foo2bytes[] = { 66, 97, 114, 101, 70, 111, 111, 116 }; // ascii BareFoot
String foo5 = new String(foo2Bytes, 0, 4, 3); // 0 as upper 8 bytes, offset 4,
➥length 3

55 1529-5 CH47 9/24/98, 8:52 AM1092

1093

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

StringBuffer fooBuffer = new StringBuffer();
fooBuffer.append(‘F’);
fooBuffer.append(“oo”);
String foo6 = new String(fooBuffer);

The String class also provides a number of static methods for creating strings from other
objects. The following valueOf() methods create a string representation from a primitive data
type:

public static String valueOf(boolean b);
public static String valueOf(char c);
public static String valueOf(int i);
public static String valueOf(long l);
public static String valueOf(float f);
public static String valueOf(double d);

Some valueOf() methods are equivalent to other methods in String and Object. For instance

public static String valueOf(Object ob)

is the same as the toString() method in Object. The methods

public static String valueOf(char[] data);
public static String copyValueOf(char[] data);

are the same as the String constructor:

public String(char[] data)

Likewise, the methods

public static String valueOf(char[] data, int from, int count)
public static String copyValueOf(char[] data, int from, int count)

are equivalent to the String constructor

public String(char[] data, int from, int count)

String Length
The length() method returns the length of a string:

public int length()

Notice that unlike the length attribute for arrays, length() in the String class is a method.
The only time you access length as an attribute is on an array. Any time you are using a stan-
dard Java class, length() will be a method call.

Comparing Strings
Because strings are Java objects, you can use == and the equals() method to compare strings.
You should be extremely careful about using == to compare two strings. For instance, in the
following code segment:

String a = new String(“Foo”);
String b = new String(“Foo”);

The String Class

55 1529-5 CH47 9/24/98, 8:52 AM1093

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1094 Chapter 47 java.lang

the comparison a == b would be false because a and b are two different objects, even though
they have the same value. The comparison a.equals(b) would be true, however, because they
both have a value of “Foo”.

The String class also provides a handy, case-free comparison:

public boolean equalsIgnoreCase(String anotherString)

This method compares two strings but ignores the case of the letters, so where
“Foo”.equals(“FOO”) is false, “Foo”.equalsIgnoreCase(“FOO”) is true.

If you want to find out whether one string comes before another alphabetically, you can use the
compareTo() method:

public int compareTo(String anotherString)

This method returns 0 if the two strings are equal, a number less than 0 if the string comes
before anotherString, or a number greater than 0 if the string comes after anotherString. For
example, “foo”.compareTo(“bar”) would return a positive number because “foo” comes after
“bar”.

You can also compare portions of strings. The startsWith() method returns true if the begin-
ning of the string starts with another string:

public boolean startsWith(String anotherString)

A variation on startsWith() returns true if the string matches another string starting at a
certain position:

public boolean startsWith(String anotherString, int offset)

For instance, “barefoot”.startsWith(“foo”, 4) would be true, because “foo” appears in
“barefoot” starting at location 4 (remember that string offsets start at 0).

You can also use endsWith() to see whether a string ends with another string:

public boolean endsWith(String anotherString)

Sometimes you want to compare part of a string with part of another string. You can use
regionMatches() to do this:

public boolean regionMatches(int from, String anotherString, int otherFrom, int
➥len)

This method compares the characters in the string starting at offset from with the characters in
anotherString starting at offset otherFrom. It compares len characters.

You can also do case-free comparisons with an alternate version of regionMatches():

public boolean regionMatches(boolean ignoreCase, int from, String anotherString,
 int otherFrom, int len)

The only difference between this version of regionMatches() and the previous one is the
ignoreCase parameter, which, when set to true, causes the comparison to ignore the case of
letters and considers a and A to be equivalent.

55 1529-5 CH47 9/24/98, 8:52 AM1094

1095

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

Searching Strings
Many times you need to find out whether a certain string or character is present within a string
and, if so, where. The indexOf() method searches through a string for a character or string
and returns the offset of the first occurrence:

public int indexOf(int ch)
public int indexOf(String anotherString)

These methods return the location in the string where the first match occurred or -1 if the
character or string was not found. Because you probably want to search for more than just the
first occurrence, you can call indexOf() with the starting location for the search:

public int indexOf(int ch, int startingOffset)
public int indexOf(String anotherString, int startingOffset)

The lastIndexOf() methods perform a similar search, only starting from the end of the string
and working backwards:

public int lastIndexOf(int ch)
public int lastIndexOf(String anotherString)

You can also give the starting offset of the search. lastIndexOf() searches backwards from
the offset:

public int lastIndexOf(int ch, int startingOffset)
public int lastIndexOf(String anotherString, int startingOffset)

Extracting Portions of a String
The String class provides several methods for extracting sections from a string. The charAt
function allows you to get the character at offset index from the string:

public char charAt(int index) throws StringIndexOutOfBoundsException

For example, “bar”.charAt(1) would return the character ‘a’. You can get the entire string as
an array of characters using toCharArray():

public char[] toCharArray()

Remember that the array returned by toCharArray() is a copy of the characters in the string.
You cannot change the contents of the string by changing the array. The substring() method
returns the portion of a string starting from offset index:

public String substring(int index)

You can also call substring() with an ending index. This version of substring() returns the
portion of the string starting at startIndex and going up to, but not including, endIndex:

public String substring(int startIndex, int endIndex)
 throws StringIndexOutOfBoundsException

The String Class

55 1529-5 CH47 9/24/98, 8:52 AM1095

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1096 Chapter 47 java.lang

Changing Strings
Although it’s true that you don’t actually change strings in Java, there are several methods that
create new strings based on the old string. The concat() method, for instance, appends a
string to the current string and returns the new combined string:

public String concat(String otherString)

The method call “foo”.concat(“bar”) would return the string “foobar”.

toLowerCase() and toUpperCase() return copies of a string with all the letters converted to
lower- and uppercase, respectively:

public String toLowerCase()
public String toUpperCase()

“FooBar”.toLowerCase() would return “foobar”, whereas “FooBar”.toUpperCase() would
return “FOOBAR”.

The trim() method removes the leading and trailing whitespace from a string. Whitespace is
made up of spaces, tabs, form feeds, new lines, and carriage returns. In other words, ‘ ‘, ‘\t’,
‘\f’, ‘\n’, and ‘\r’:

public String trim()

For example, “ Hi Ceal! “.trim() would return “Hi Ceal!”.

Finally, you can replace all occurrences of one character with another using replace:

public String replace(char oldChar, char newChar)
“fooble”.replace(‘o’, ‘e’) would return “feeble”.

The StringBuffer Class
The StringBuffer class is a workbench for building strings. It contains methods to add new
characters to the buffer and then convert the final result to a string. Unlike the String class,
when you add characters to a StringBuffer, you do not create a new copy of the StringBuffer.
This makes it more efficient for building strings.

Creating a StringBuffer
The easiest way to create a StringBuffer is using the empty constructor:

public StringBuffer()

You can also create a StringBuffer with an initial length:

public StringBuffer(int length)

Finally, you can create a StringBuffer from a string, where the contents of the string are cop-
ied to the StringBuffer:

public StringBuffer(String str)

55 1529-5 CH47 9/24/98, 8:52 AM1096

1097

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

Adding Characters to a StringBuffer
The insert() methods allow you to insert characters, strings, and numbers into a
StringBuffer. You can insert a character representation of one of the primitive data types with
one of these insert() methods:

public StringBuffer insert(int offset, boolean b) throws
➥StringOutOfBoundsException
public StringBuffer insert(int offset, char c) throws StringOutOfBoundsException
public StringBuffer insert(int offset, int i) throws StringOutOfBoundsException
public StringBuffer insert(int offset, long l) throws StringOutOfBoundsException
public StringBuffer insert(int offset, float f) throws
➥StringOutOfBoundsException
public StringBuffer insert(int offset, double d) throws
➥StringOutOfBoundsException

In each of these methods, the offset parameter indicates the position in the StringBuffer
where the characters should be inserted. The instance of StringBuffer returned by each of
these is not a copy of the old StringBuffer but another reference to it. You can safely ignore
the return value.

You can insert a string into a StringBuffer with:

public StringBuffer insert(int offset, String str)
 throws StringOutOfBoundsException

You may also insert a string representation of an object with:

public StringBuffer insert(int offset, Object ob)
 throws StringOutOfBoundsException

This method uses the toString() method in the Object to create a string representation of the
object. Finally, you can insert an array of characters into a StringBuffer with

public StringBuffer insert(int offset, char[] data)
 throws StringOutOfBoundsException

For each insert() method, there is a corresponding append() method that adds characters to
the end of a StringBuffer:

public StringBuffer append(boolean b)
public StringBuffer append(char c)
public StringBuffer append(int i)
public StringBuffer append(long l)
public StringBuffer append(float f)
public StringBuffer append(double d)
public StringBuffer append(String str)
public StringBuffer append(Object ob)
public StringBuffer append(char[] data)

StringBuffer Length
A StringBuffer has two notions of length:

■ The number of characters currently in the buffer

■ The maximum capacity of the buffer

The StringBuffer Class

55 1529-5 CH47 9/24/98, 8:52 AM1097

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1098 Chapter 47 java.lang

The length() method returns the total number of characters currently in the buffer:

public int length()

The capacity() method returns the maximum capacity of the buffer:

public int capacity()

The StringBuffer automatically grows when you add characters, so why should you be con-
cerned with the capacity? Whenever the buffer grows, it must allocate more memory. If you
specify the capacity up front to be at least as large as you expect the string to be, you will avoid
the overhead of allocating additional space. The ensureCapacity() method tells the
StringBuffer the minimum number of characters it needs to be able to store:

public void ensureCapacity(int minimumAmount)

You can use the setLength() method to change the length of a StringBuffer:

public void setLength(int newLength)
 throws StringOutOfBoundsException

If the new length is shorter than the previous length, any characters beyond the new length are
lost.

Getting and Setting Characters in a StringBuffer
You can manipulate individual characters in a StringBuffer using the charAt() and
setCharAt() methods. The charAt() method returns the character at a particular offset in the
StringBuffer:

public char charAt(int offset)
 throws StringIndexOutOfBoundsException

The setCharAt() method changes the character at a particular offset in the buffer:

public void setCharAt(int offset, char newChar)
 throws StringIndexOutOfBoundsException

The getChars() method allows you to copy a range of characters from a StringBuffer into an
array of characters. You must specify the beginning and ending offsets in the StringBuffer,
the destination array of characters, and the offset in the array to copy to

public void getChars(int beginOffset, int endOffset, char[] dest, int destOffset)
 throws StringIndexOutOfBoundsException

Creating a String from a StringBuffer
After you have built up a string in a StringBuffer, you can turn it into a String with the
toString() method, which overrides the toString() method in the Object class:

public String toString()

When you use the toString() method in StringBuffer to create a String, the
String and the StringBuffer share the same buffer to avoid excess copying. If the

StringBuffer is subsequently changed, it first makes a copy of the buffer before making the
change. ■

N O T E

55 1529-5 CH47 9/24/98, 8:52 AM1098

1099

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

The Thread Class
A thread represents a single thread of execution in a Java program. A thread has an associated
Runnable interface, which can be the thread itself. The Runnable interface implements a run()
method, which contains the code executed by the thread. Think of the thread as a motor that
drives a Runnable interface. Threads also have a notion of thread groups, which implement a
security policy for threads. You do not want a “rogue” thread to go around putting other
threads to sleep or changing their priorities. A thread may only manipulate threads in its own
thread group or in a subgroup of its own thread group.

Creating a Thread
You can create a thread using the empty constructor:

public Thread()

When you create a thread without specifying a Runnable interface, the thread uses itself as the
Runnable interface. The default implementation of the run() method in the Thread class just
returns without doing anything. To specify an alternate Runnable interface, use this variation of
the Thread constructor:

public Thread(Runnable target)

When the thread is started, it invokes the run() method in target. When you create a thread,
it gets added to the thread group of the current thread. If you want the thread to belong to a
different group, you must do it when you create the thread:

public Thread(ThreadGroup group, String name)

The name parameter is an optional thread name you might want to use to be able to tell threads
apart. You can pass null as the thread name if you don’t feel like naming it. The other thread
constructors are combinations of the previous constructors:

public Thread(String name)
public Thread(Runnable target, String name)
public Thread(ThreadGroup group, Runnable target)
public Thread(ThreadGroup group, Runnable target, String name)

Starting and Stopping Threads
The start() and stop() methods control the initial startup and final ending of a thread:

public synchronized void start()
 throws IllegalThreadStateException
public final void stop()
public final void stop(Throwable stopThrowable)

The start() method throws an IllegalThreadStateException if the thread is already run-
ning. Prior to JDK 1.2, typically you would stop a thread by calling the stop() method with no
arguments, which throws a ThreadDeath error to the thread. You can throw something other
than ThreadDeath by using the second variation of the stop() method. A thread may also
throw a ThreadDeath error instead of calling its own stop() method. As of Java 1.2, however,

The Thread Class

55 1529-5 CH47 9/24/98, 8:52 AM1099

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1100 Chapter 47 java.lang

you should no longer call the stop() method. The problem is that stop() is inherently unsafe
because it can cause a lockup if the thread has some object synchronized or has a lock on some
scarce resource. Instead, make sure that your run() method will end.

CAUTION

Java allows you to catch the ThreadDeath error, which you should only do in the rare circumstance that a
finalize() method will not suffice. If you catch ThreadDeath, you must make sure that you throw it
again; otherwise, your thread will not die.

Waiting for Thread Completion
Suppose that you have an application that does some heavy computation and then does some
other work before using the computation. You could split the heavy computation off into its
own thread, but then how do you know when it is finished? You use the join() method:

public final void join() throws InterruptedException

The following code segment illustrates a possible use of the join() method:

Double finalResult; // place for computation thread to store result
Thread computeThread = new HeavyComputationThread(finalResult);
computeThread.start();
// do some other stuff
computeThread.join(); // Wait for the heavy computations to finish

Because you may not want to wait forever, join() also supports a timeout value:

public final synchronized void join(long millis)
 throws InterruptedException
public final synchronized void join(long millis, int nanos)
 throws InterruptedException

These join() methods only wait for millis milliseconds, or millis milliseconds + nanos nano-
seconds.

Sleeping and Yielding
Perhaps the most common thing you will want to do with threads is to stop and just wait a few
moments. If you want your thread to wait for a period of time before proceeding, use the
sleep() method:

public static void sleep(long millis)
 throws InterruptedException
public static void sleep(long millis, int nanos)
 throws InterruptedException

These methods suspend execution of the thread for the millis milliseconds, or millis milli-
seconds + nanos nanoseconds. The sleep() method is often used for animation loops:

public void run()
{

55 1529-5 CH47 9/24/98, 8:52 AM1100

1101

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

 while (true) { // do animation forever
 changeCurrentFrame(); // do the next animation frame
 repaint(); // redraw the screen
 try {
 sleep(100); // Wait 100 ms (1/10th of a second)
 } catch (InterruptedException insomnia) {
 // got interrupted while sleeping
 }
 }
}

If you have a thread that “hogs” the CPU by performing many computations, you might want to
have it yield the CPU for other threads to get in some execution time. You can do this with the
yield() method:

public static void yield()

For example, suppose that you have a loop like this:

int sum = 0;
for (int i=0; i < 10000; i++) {
 for (int j=0; j < 10000; j++) {
 sum = sum + (i * j);
 }
}

This loop is going to run for a long time, and if it is running as one thread in a larger program,
it could hog the CPU for extended periods. If you place a call to Thread.yield() after the inner
loop, the thread politely relinquishes the CPU occasionally for other threads:

int sum = 0;
for (int i=0; i < 10000; i++) {
 for (int j=0; j < 10000; j++) {
 sum = sum + (i * j);
 }
 Thread.yield(); // give other threads a chance to run
}

You are not required to call yield()to give other threads a chance to run. Most Java
implementations support preemptive scheduling, which allows other threads to run

occasionally, even when one executes a loop like the previous one. Not all implementations support
preemptive scheduling, so a strategically placed yield() statement will help those implementations
run smoothly. ■

Daemon Threads
A Java program usually runs until all its threads die. Sometimes, however, you have threads
that run in the background and perform cleanup or maintenance tasks that never terminate.
You can flag a thread as a daemon thread, which tells the Java Virtual Machine to ignore the
thread when checking to see whether all the threads have terminated. In other words, a Java
program runs until all its non-daemon threads die. Non-daemon threads are referred to as user
threads.

N O T E

The Thread Class

55 1529-5 CH47 9/24/98, 8:52 AM1101

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1102 Chapter 47 java.lang

The word daemon is pronounced either “day-mon” or “dee-mon.” It originated back in the
pre-UNIX days and supposedly stood for “Disk And Execution Monitor.” Under UNIX, a

daemon is a program that runs in the background and performs a useful service, which is similar to
the concept of a Java daemon thread. ■

To flag a thread as a daemon thread, use the setDaemon() method:

public final void setDaemon(boolean on)
 throws IllegalThreadStateException

The on parameter should be true to make the flag a daemon thread or false to make it a user
thread. You may change this setting at any time during the thread’s execution. The isDaemon()
method returns true if a thread is a daemon thread or false if it is a user thread:

public final boolean isDaemon()

Thread Priority
Java’s thread scheduling is simple. Whenever a thread blocks—that is, when a thread either
suspends, goes to sleep, or has to wait for something to happen—Java picks a new thread from
the set of threads that are ready to run. It picks the thread with the highest priority. If more
than one thread has the highest priority, it picks one of them. You can set the priority of a
thread with the setPriority() method:

public final void setPriority(int newPriority)
 throws IllegalArgumentException

A thread’s priority must be a number between Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY. Anything outside that range triggers an IllegalArgumentException.
Threads are assigned a priority value of Thread.NORM_PRIORITY by default. You can query a
thread’s priority with getPriority():

public final int getPriority()

Getting Thread Information
The Thread class provides a number of static methods to help you examine the current thread
and the other threads running in a thread’s group. The currentThread() method returns a
Thread object for the currently executing thread:

public static Thread currentThread()

The dumpStack() method prints a stack trace for the current thread:

public static void dumpStack()

You can use the countStackFrames() method to find out how many stack frames a thread has.
This is the number of frames that would be dumped by the dumpStack() method:

public int countStackFrames()

Because the countStackFrames() method is an instance() method, whereas the dumpStack()
method is a static method that dumps the current thread’s stack frame, the following call

N O T E

55 1529-5 CH47 9/24/98, 8:52 AM1102

1103

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

always returns the number of stack frames that would be dumped by an immediate call to
dumpStack():

int numFrames = Thread.currentThread().countStackFrames();

The enumerate() method fills an array with all the Thread objects in the current thread group:

public static int enumerate(Thread[] threadArray)

You need to know how many threads will be returned because you have to allocate the
threadArray yourself. The activeCount() method tells you how many threads are active in the
current thread group:

public static int activeCount()

The program in Listing 47.3 displays the threads in the current thread group.

Listing 47.3 Source Code for DumpThreads.java

public class DumpThreads
{
 public static void main(String[] args)
 {
// Find out how many threads there are right now
 int numThreads = Thread.activeCount();

// Allocate an array to hold the active threads
 Thread threadArray[] = new Thread[numThreads];

// Get references to all the active threads in this thread group
 numThreads = Thread.enumerate(threadArray);

// Print out the threads
 for (int i=0; i < numThreads; i++) {
 System.out.println(“Found thread: “+threadArray[i]);
 }
 }
}

The ThreadGroup Class
The ThreadGroup class implements a security policy that only allows threads in the same group
to modify one another. For instance, a thread can change the priority of a thread in its group or
put that thread to sleep. Without thread groups, a thread could wreak havoc with other threads
in the Java runtime environment by putting them all to sleep or, worse, terminating them.
Thread groups are arranged in a hierarchy where every thread group has a parent group.
Threads may modify any thread in their own group or in any of the groups that are children of
their group. You can create a thread group simply by giving it a name:

public ThreadGroup(string groupName)

The ThreadGroup Class

55 1529-5 CH47 9/24/98, 8:52 AM1103

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1104 Chapter 47 java.lang

You can also create a ThreadGroup as a child of an existing ThreadGroup:

public ThreadGroup(ThreadGroup existingGroup, String groupName)
 throws NullPointerException

Several of the ThreadGroup operations are identical to Thread operations, except that they
operate on all the threads in the group:

public final synchronized void suspend()
public final synchronized void resume()
public final synchronized void stop()
public final void setDaemon(boolean daemonFlag)
public final boolean isDaemon()

You can limit the maximum priority any thread in a group can have by calling
setMaxPriority():

public final synchronized void setMaxPriority(int priority)

You can query the maximum priority for a thread group with getMaxPriority():

public final int getMaxPriority()

You can find out the parent of a thread group with getParent():

public final ThreadGroup getParent()

The different enumerate() methods let you find out what threads and thread groups belong to
a particular thread group:

public int enumerate(Thread[] threadList)
public int enumerate(Thread[] threadList, boolean recurse)
public int enumerate(ThreadGroup[] groupList)
public int enumerate(ThreadGroup[] groupList, boolean recurse)

The recurse parameter in the enumerate() methods causes enumerate() to trace down
through all the child groups to get a complete list of its descendants. You can get an estimate of
how many threads and thread groups are active in this group by using activeCount() and
activeGroupCount():

public synchronized int activeCount()
public synchronized int activeGroupCount()

The Throwable Class
The Throwable class is not very big, but the part it plays in Java is huge. Every error and ex-
ception in Java is a subclass of Throwable. Although you will usually create a subclass of
Throwable, you can instantiate one using one of these two constructors:

public Throwable()
public Throwable(String message)

The message parameter is an optional error message that is associated with the throwable. You
can fetch a throwable’s message with the getMessage() method:

public String getMessage()

55 1529-5 CH47 9/24/98, 8:52 AM1104

1105

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

One of the handy features of the Throwable class, especially during debugging, is the
printStackTrace() method:

public void printStackTrace()
public void printStackTrace(PrintStream stream)

These methods print a traceback of the method calls that led to the exception. The default
output stream for the stack trace is System.out. You can use the second version of the method
to print to any stream you want, such as System.err. You might have a case where you catch an
exception, perform some cleanup work, and then throw the exception for another object to
catch. If you throw the exception that you caught, the stack trace shows where the exception
originally occurred. If you would prefer the stack trace to show only where the exception was
first caught—if you want to hide the lower-level details, for instance—use the
fillInStackTrace() method:

public Throwable fillInStackTrace()

The following code segment shows how you can use fillInStackTrace() to hide where an
exception was originally thrown:

try {
 // do something interesting
} catch (Throwable somethingBadHappened) {
 // do some cleanup work
 throw somethingBadHappened.fillInStackTrace();
}

In this example, a stack trace would show the exception originally being thrown at the point of
the fillInStackTrace() and not within the try statement or one of the methods it calls.

The System Class
The System class is a grab bag of useful utility methods that generally deal with the runtime
environment. Some of the methods in the System class are also found in the Runtime class.

System Input and Output Streams
The System class contains three public data streams that are used quite frequently:

public static InputStream in
public static PrintStream out
public static PrintStream err

C programmers should recognize these as the Java equivalents of stdin, stdout, and stderr.
When you are running a Java application, these streams usually read from and write to the
window where you started the application. You are probably safest not trying to use the
System.in stream within an applet because different browsers treat the stream differently. As
for the System.out and System.err streams, Netscape sends them to the Java console window,
whereas Appletviewer sends them to the window where Appletviewer was started. System.err
is typically used for printing error messages, whereas System.out is used for other informa-
tion. This is only a convention used by developers. You may, if you want, print error messages
to System.out and print other information to System.err.

The System Class

55 1529-5 CH47 9/24/98, 8:52 AM1105

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1106 Chapter 47 java.lang

The arraycopy() method is another frequently used member of the System class:

public static void arraycopy(Object source, int sourcePosition,
 Object dest, int destPosition, int length)
 throws ArrayIndexOutOfBoundsException, ArrayStoreException

This method provides a quick way to copy information from one array to another. It copies
length elements from the array source, starting at offset sourcePosition, into the array dest,
starting at offset destPosition. This method saves time over copying elements individually
within a loop. For example, consider the following loop:

int fromArray[] = { 1, 2, 3, 4, 5 };
int toArray[] = new int[5];
for (int i=0; i < fromArray.length; i++) {
 toArray[i] = fromArray[i];
}

This can be implemented more efficiently using arraycopy:

int fromArray[] = { 1, 2, 3, 4, 5 };
int toArray[] = new int[5];
System.arraycopy(fromArray, 0, toArray, 0, fromArray.length);

Getting the Current Time
If you have ever wondered exactly how many milliseconds have elapsed since midnight GMT
on January 1, 1970, the currentTimeMillis() method would be more than happy to tell you:

public static long currentTimeMillis()

Other than being the dawning of the Age of Aquarius, there is nothing significant about that
particular time; it was just chosen as a reference point by the original UNIX wizards. The most
common use of the currentTimeMillis() function is in determining elapsed time. For ex-
ample, if you want to figure out how many milliseconds a loop took to execute, get the time
before executing the loop, then get the time after executing the loop, and subtract the time
values:

long startTime = System.currentTimeMillis(); // record starting time
int sum = 0;
for (int i=0; i < 100000; i++) {
 sum += i;
}
long endTime = System.currentTimeMillis(); // record end time
System.out.println(“The loop took “+
 ➥(endTime - startTime) + “ milliseconds.”);

Although it is possible to compute the current date and time using
currentTimeMillis(), you are much better off using the Date class in java.util to

get the current date and time. ■

N O T E

55 1529-5 CH47 9/24/98, 8:52 AM1106

1107

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

Exiting the Virtual Machine
A Java program normally exits when all its user threads finish running. If you have spawned a
large number of threads and decide that you want the program to quit, you don’t have to kill off
all the threads—you can just make the VM terminate by calling System.exit:

public static void exit(int exitCode)

The exitCode parameter is the exit code used by the VM when it terminates. You should only
use this method from Java applications: applets are typically forbidden from calling this method
and get a SecurityException thrown back in their face if they try it.

Getting System Properties
System properties are roughly the Java equivalents of environment variables. When you start a
Java program, you can define properties that a Java application can read. The getProperty()
method returns a string that corresponds to a property or null if the property doesn’t exist:

public static String getProperty(String propertyName)

To save you the trouble of having to check for null each time, you can call getProperty() with
a default value that is returned instead of null if the property isn’t set:

public static String getProperty(String propertyName,
 String defaultValue)

The program in Listing 47.4 illustrates how to use getProperty().

Listing 47.4 Source Code for PrintProperty.java

public class PrintProperty extends Object
{
 public static void main(String[] args)
 {
 String prop = System.getProperty(“MyProperty”,
 ➥“My Default Value”);
 System.out.println(“MyProperty is set to: “+prop);
 }
}

When you run the program with the java command, use the -D option to set properties. For
example:

java -DMyProperty=”Hi There” PrintProperty

This command causes the application to print out

MyProperty is set to: Hi There

If you run the program without setting MyProperty, it prints:

MyProperty is set to: My Default Value

The System Class

55 1529-5 CH47 9/24/98, 8:52 AM1107

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1108 Chapter 47 java.lang

getProperties() and setProperties() let you query and set the system properties using a
Properties class:

public static Properties getProperties()
public static void setProperties(Properties prop)

◊ See “The Properties Class,” p. 1061

Forcing Garbage Collection
The garbage collector normally just runs in the background, occasionally collecting unused
memory. You can force the garbage collector to run using the gc method:

public static void gc

Similarly, you can force the finalize() methods to be executed in objects that are ready to be
collected using the runFinalization() method:

public static void runFinalization()

Loading Dynamic Libraries
When you have a class that calls native methods, you need to load the libraries containing the
methods. The loadLibrary() method searches through your path for a library matching
libname:

public static void loadLibrary(String libname) throws UnsatisfiedLinkError

If you already know the full pathname of the library, you can save a little time by calling the
load() method rather than loadLibrary:

public static void load(String filename) throws UnsatisfiedLinkError

The Runtime and Process Classes
The Runtime class provides many of the same functions as the System class but adds the capa-
bility to query the amount of memory available and to run external programs. The Runtime
methods that are the same as the methods in System are

public void exit(int exitCode)
public void gc()
public void runFinalization()
public synchronized void load(String filename)
 throws UnsatisfiedLinkError
public synchronized void loadLibrary(String libname)
 throws UnsatisfiedLinkError

Unlike the System class methods, the Runtime class methods are not static, which
means that you must have an instance of Runtime to call them. Instead of using new to

create an instance, use the Runtime.getRuntime() method. ■

N O T E

55 1529-5 CH47 9/24/98, 8:52 AM1108

1109

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

Querying Available Memory
The freeMemory() and totalMemory() methods tell you how much memory is free for you to
use and how much memory is available to the Java VM:

public long freeMemory()
public long totalMemory()

The following code segment prints the percentage of memory that is free:

Runtime r = Runtime.getRuntime();
int freePercent = 100 * r.freeMemory() / r.totalMemory();
System.out.println(freePercent + “% of the VM’s memory is free.”);

Running External Programs
Even though Java is a wonderful and powerful programming environment, you might occasion-
ally have to run external programs from your application. The exec() methods allow you to do
just that:

public Process exec(String command) throws IOException
public Process exec(String command, String[] envp) throws IOException
public Process exec(String[] cmdArray) throws IOException
public Process exec(String[] cmdArray, String[] envp) throws IOException

The envp parameter in the exec() methods contains environment-variable settings for the
program to be run. The strings in envp should be in the form name=value. The instance of the
Process class returned by exec allows you to communicate with the external program, wait for
it to complete, and get its exit code. The following methods in the Process class return input
and output streams for you to send data to, and receive data from, the external program:

public abstract InputStream getInputStream()
public abstract InputStream getErrorStream()
public abstract OutputStream getOutputStream()

The getInputStream() method returns a stream that is hooked to the output of the external
program. If the external program was a Java program, the input stream would receive every-
thing written to the external program’s System.out stream. Similarly, the getErrorStream
returns a stream that is hooked to the error output of the external program, or what would be
the System.err for a Java program. The getOutputStream() returns a stream that supplies
input to the external program. Everything written to this stream goes to the external program’s
input stream, similar to the System.in stream.

If you want to kill off the external program before it completes, you can call the destroy()
method:

public abstract void destroy()

If you would rather be polite and let the program complete on its own, use the waitFor()
method to wait for it to complete:

public abstract int waitFor() throws InterruptedException

The Runtime and Process Class

55 1529-5 CH47 9/24/98, 8:52 AM1109

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1110 Chapter 47 java.lang

The value returned by waitFor() is the exit code from the external program. You can also
check the exit code with the exitValue() method:

public abstract int exitValue() throws IllegalThreadStateException

If the external program is still running, the exitValue() method will throw an
IllegalThreadStateException.

The Math Class
If the term math class makes you squeamish, you better sit down for this section. The Math
class is a collection of useful numeric constants and functions, from simple minimum and maxi-
mum functions to logarithms and trig functions.

min and max
The min and max functions, which return the lesser and greater of two numbers, come in four
flavors—int, long, float, and double:

public static int min(int a, int b)
public static long min(long a, long b)
public static float min(float a, float b)
public static double min(double a, double b)

public static int max(int a, int b)
public static long max(long a, long b)
public static long max(float a, float b)
public static double max(double a, double b)

Absolute Value
abs, the absolute value function, which converts negative numbers into positive numbers while
leaving positive numbers alone, also comes in four flavors:

public static int abs(int a)
public static long abs(long a)
public static float abs(float a)
public static double abs(double a)

Random Numbers
It is difficult to write a good game without a random number generator, so the Math class kindly
supplies the random() method:

public static synchronized double random()

The random() method returns a number between 0.0 and 1.0. Some of the other variations you
might want are as follows:

int num = (int)(10.0 * Math.random()); // random number from 0 to 9
int num = (int)(10.0 * Math.random()) + 1; // random number between 1 and 10

◊ See “The Random Class,” p. 1069

55 1529-5 CH47 9/24/98, 8:52 AM1110

1111

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

Rounding
Rounding sounds like a simple process, but there are quite a few options available for rounding
numbers. First of all, you can round off a float and turn it into an int with:

public static int round(float a)

This code rounds to the closest whole number, which means that 5.4 gets rounded to 5, but 5.5
gets rounded to 6. You can also round off a double and turn it into a long with:

public static long round(double a)

The other rounding functions work exclusively with the double type. The floor() method
always rounds down, such that Math.floor(4.99) is 4.0:

public static double floor(double a)

Conversely, ceil always rounds numbers up, such that Math.ceil(4.01) is 5.0:

public static double ceil(double a)

Finally, the rint() method rounds to the closest whole number:

public static double rint(double a)

Powers and Logarithms
One of the most familiar power-related functions is the square root, which is returned by the
sqrt method:

public static double sqrt(double a) throws ArithmeticException

You, of course, get an ArithmeticException if you try to take the square root of a negative
number. This is a mathematical no-no.

The pow()method raises x to the y power:

public static double pow(double x, double y) throws ArithmeticException

The pow() function requires a bit of care. If x == 0.0, y must be greater than 0. If x < 0.0, y
must be a whole number. If either of these two conditions is violated, you receive a friendly
ArithmeticException as a reminder not to do it again.

You can use the pow() method to take the Nth root of a number. Just use pow(x, 1.0/N), where N
is the root you want to take. For example, to take the square root, use N=2, so pow(x, 1.0/2.0)
returns the square root of x. For a cube root, use N=3, or pow(x, 1.0/3.0). But remember that if
you use this technique, x must be a positive number.

The log() method returns the natural log of a number:

public static double log(double a) throws ArithmeticException

To refresh your memory, if the natural log of x is equal to y, then the constant e (about 2.718)
raised to the y power equals x. For example, the natural log of e is 1.0 because e to the first
power equals e. The natural log of 1.0 is 0.0 because e to the zero power is 1 (as it is for any

T I P

The Math Class

55 1529-5 CH47 9/24/98, 8:52 AM1111

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1112 Chapter 47 java.lang

number raised to the zero power). You cannot take the log of 0 or any number less than 0. After
all, there is no power you can raise e to and come up with 0. The same is true for negative
numbers. Even though you can use the pow() method to raise any number to any power, the
Math class provides the exp() method as a shortcut for raising e to a power:

public static double exp(double a)

The log() and exp()functions are inverses of each other; they cancel each other out. In other
words, log(exp(x)) == x, for any x. Also, exp(log(x)) == x, for any x > 0 (remember, you
cannot take a log() of a number <= 0).

A base-10 logarithm is another common type of logarithm. Where the log() of a number is the power
you would raise e to, a base-10 logarithm is the power you raise 10 to. The Math class does not
provide a log base-10 function, but you can use a simple mathematical property to compute the log
base-10. The property is this: “The log base-N of a number is the natural log of the number divided by
the natural log of N.” So, the log base-10 of x is log(x) / log(10). If you need to compute the log
base-2 of x, another common log, it is log(x) / log(2).

Trig Functions
The old favorite trig functions of sine, cosine, and tangent are available in the Math class:

public static double sin(double angle)
public static double cos(double angle)
public static double tan(double angle)

These functions take their angle value in radians, which is a number between 0 and 6.2831 (2 *
pi). You can convert a degree value to radians by multiplying it by pi/180.0, or 0.017453. Trig
angles have a “period” of 6.2831, which means that some angle x is the same as x + 6.2831, and
also the same as x - 6.2831, and generally, x + 6.2831 * any whole number.

The inverse functions of sine, cosine, and tangent are arcsin, arccosine, and arctangent. They
are available in the following methods:

public static double asin(double x)
public static double acos(double x)
public static double atan(double x)
public static double atan2(double y, doubly x)

The asin() and acos() functions return a radian value between -3.1415 and 3.1415. If you
prefer to have your radians go from 0 to 6.2831, you can always add 6.2831 to any negative
radian value. It doesn’t matter to the trig functions. The atan() is a little less accurate. It only
returns values between -1.5708 and 1.5708 (-pi/2 to pi/2). The atan2() function, however,
returns values from -3.1415 to 3.1415. Where the atan() function usually takes a ratio of y/x
and turns it into an angle, atan2() takes y and x separately. This allows it to make the extra
calculations to return an angle in the full -pi to pi range.

T I P

55 1529-5 CH47 9/24/98, 8:52 AM1112

1113

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

Mathematical Constants
The Math class defines the constants PI and E for you because they are used so frequently:

public static final double E;
public static final double PI;

The Object Wrapper Classes
Many Java classes prefer to work with objects and not the primitive data types. The wrapper
classes provide object versions of the primitive data types. In addition to making the primitive
types look like objects, these wrapper classes also provide methods for converting strings to
the various data types and also type-specific methods. Each of the wrapper classes contains a
static attribute named TYPE that contains the wrapper’s Class object. The definition for the TYPE
attribute in each wrapper class is identical:

public final static Class TYPE;

The Character Class
The Character class provides a wrapper for the char data type. In addition, it contains methods
for converting characters to numeric digits and vice versa. This class also contains methods for
testing whether a character is a letter, digit, and so on. The only constructor available for the
Character class takes the value of the character it represents as its only parameter:

public Character(char value)

You can use the charValue method to get the char value stored in a Character object:

public char charValue()

The Character class contains many static methods to classify characters:

Method Description

isDigit() A numeric digit between 0–9

isLetter() An alphabetic character

isLetterOrDigit() An alphabetic character or numeric digit

isLowerCase() A lowercase alphabetic character

isUpperCase() An uppercase alphabetic character

isJavaLetter() A letter, ‘$’, or ‘_’

isJavaLetterOrDigit() A letter, digit, ‘$’, or ‘_’

isSpace() A space, new line, return, tab, or form feed

isTitleCase() Special two-letter upper- and lowercase letters

The Character Class

55 1529-5 CH47 9/24/98, 8:53 AM1113

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1114 Chapter 47 java.lang

Each of these classification methods returns a boolean value that is true if the letter belongs to
that classification. For example, isLetter(‘a’) returns true, but isDigit(‘a’) returns false.
The toUpperCase() and toLowerCase() methods return an uppercase or lowercase version of a
character:

public static char toUpperCase(char ch)
public static char toLowerCase(char ch)

The Character class also supplies some digit conversion methods to help convert numbers
into strings and strings into numbers:

public static int digit(char ch, int radix)
public static char forDigit(int digit, int radix)

The digit() method returns the numeric value that a character represents in the specified
radix (the radix is the number base, like 10 for decimal or 8 for octal). For example,
Character.digit(‘f’, 16) would return 15. You can use any radix between
Character.MIN_RADIX and Character.MAX_RADIX, which are 2 and 36, respectively. If the char-
acter does not represent a value in that radix, digit returns -1.

The forDigit() method converts a numeric value to the character that would represent it in a
particular radix. For example, Character.forDigit(6, 8) would return ‘6’, whereas
Character.forDigit(12, 16) would return ‘c’.

The Boolean Class
The Boolean class is the object wrapper for the boolean data type. It has two constructors—
one that takes a boolean value, and one that takes a string representation of a boolean:

public Boolean(boolean value)
public Boolean(String str)

In the second version of the constructor, the value of the Boolean class created is false unless
the string is equal to true. The string is converted to lowercase before the comparison, so a
value of true would set the Boolean object to true. You can retrieve the boolean value stored
in a Boolean object with the booleanValue() method:

public boolean booleanValue()

The Boolean class even has object wrapper versions of true and false:

public final static Boolean TRUE
public final static Boolean FALSE

The valueOf() method is an alternate way of creating a Boolean object from a string:

public static Boolean valueOf(String str)

This method is equivalent to the Boolean constructor that takes a string as an argument. You
can also fetch boolean system parameters using the getBoolean() method:

public static boolean getBoolean(String propName)

55 1529-5 CH47 9/24/98, 8:53 AM1114

1115

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

This method looks for the property named by propName in the system properties, and if it finds
a property with that name, it tries to convert it to a boolean using the valueOf method. If the
value of the property is true, the method returns true. If the value of the property is not true,
or if there was no such property, this method returns false.

The Number Class
The object wrappers for the int, long, float, and double types are all subclasses of the ab-
stract Number class. This means that any class that expects an instance of a Number may be
passed an Integer, Long, Float, or Double class. The four public methods in the Number class
are responsible for converting a number to a particular primitive type:

public byte byteValue()
public short shortValue()
public abstract int intValue()
public abstract long longValue()
public abstract float floatValue()
public abstract double doubleValue()

The Integer Class
The Integer class implements an object wrapper for the int data type, provides methods for
converting integers to strings, and vice versa. You can create an Integer object from either an
int or a string:

public Integer(int value)
public Integer(String s) throws NumberFormatException

When creating an integer from a string, the Integer class assumes that the radix (number
base) is 10, and if the string contains non-numeric characters, you receive a
NumberFormatException. Like the getBoolean() method in the Boolean class, the
getInteger() method converts a string from the system properties. If the property is not set, it
returns 0 or a default value that you can pass as the second parameter. The default value can be
passed either as an int or as an Integer:

public static Integer getInteger(String paramName)
public static Integer getInteger(String paramName, int defaultValue)
public static Integer getInteger(String paramName, Integer defaultValue)

The Integer class also provides methods for converting strings into integers, either as an int
or an Integer. You may also specify an alternate radix (number base):

public static int parseInt(String s) throws NumberFormatException
public static int parseInt(String s, int radix) throws NumberFormatException
public static Integer valueOf(String s) throws NumberFormatException
public static Integer valueOf(String s, int radix) throws NumberFormatException

The only difference between parseInt() and valueOf() is that parseInt() returns an int,
whereas valueOf() returns an Integer.

The Integer Class

55 1529-5 CH47 9/24/98, 8:53 AM1115

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1116 Chapter 47 java.lang

Many times you will need to convert a string into a number without knowing the number base
ahead of time. The decode() method understands decimal, hexadecimal, and octal numbers:

public static Integer decode(String str) throws NumberFormatException

The decode() method figures out the base by looking at the beginning of the number. If it
starts with 0x or 0X, it is assumed to be a hex number. If it starts with 0, the number is as-
sumed to be octal; otherwise, the number is assumed to be decimal.

You can use the toString() method to convert an integer to a string. There are two static
versions of the toString() method that should not be confused with the instance method
toString() that is defined for all subclasses of Object. The static methods take an int as a
parameter and convert it to a string, allowing you to specify an alternate radix. The instance
method toString() converts the value of the Integer instance into a base-10 string representa-
tion:

public static String toString(int i)
public static String toString(int i, int radix)

Finally, the Integer.MIN_VALUE and Integer.MAX_VALUE constants contain the minimum and
maximum values for integers in Java:

public final static int MIN_VALUE
public final static int MAX_VALUE

The Long Class
The Long class is identical to the Integer class, except that it works a wrapper for long values
rather than int values. The constructors for Long are

public Long(long value)
public Long(String s) throws NumberFormatException

You can fetch Long values from the system properties using getLong():

public static Long getLong(String paramName)
public static Long getLong(String paramName, long defaultValue)
public static Long getLong(String paramName, Long defaultValue)

The parseLong() and valueOf() methods convert strings into long data types and Long ob-
jects, respectively:

public static long parseLong(String s) throws NumberFormatException
public static long parseLong(String s, int radix) throws NumberFormatException
public static Long valueOf(String s) throws NumberFormatException
public static Long valueOf(String s, int radix) throws NumberFormatException

The toString() static methods convert long data types into strings:

public static String toString(long l)
public static String toString(long l, int radix)

Finally, the Long.MIN_VALUE and Long.MAX_VALUE constants define the minimum and maximum
values for long numbers:

55 1529-5 CH47 9/24/98, 8:53 AM1116

1117

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

public final static long MIN_VALUE
public final static long MAX_VALUE

The Byte Class
The Byte class also bears a striking similarity to the Integer class. The Byte class has two
constructors:

public Byte(byte value)
public Byte(String s) throws NumberFormatException

Unlike the Integer and Long classes, the Byte class does not contain any methods to fetch
information from the system properties. You can, however, parse strings into bytes. The
parseByte() and valueOf() methods convert strings into byte data types and Byte objects,
respectively:

public static byte parseByte(String s) throws NumberFormatException
public static byte parseByte(String s, int radix) throws NumberFormatException
public static Byte valueOf(String s) throws NumberFormatException
public static Byte valueOf(String s, int radix) throws NumberFormatException

Once again, you can use decode to convert a decimal/hex/octal string into a Byte:

public static Byte decode(String s) throws NumberFormatException

The toString() static methods convert byte data types into strings:

public String toString()
public static String toString(byte l)

Finally, the Byte.MIN_VALUE and Byte.MAX_VALUE constants define the minimum and maximum
values for long numbers:

public final static byte MIN_VALUE
public final static byte MAX_VALUE

The Short Class
By this time, you have probably noticed a pattern for the Integer, Long, and Byte classes. The
Short class follows this same pattern. In other words, the Short class supports the following
methods:

public Short(short value)
public Short(String s) throws NumberFormatException
public static short parseShort(String s) throws NumberFormatException
public static short parseShort(String s, int radix) throws NumberFormatException
public static Short valueOf(String s) throws NumberFormatException
public static Short valueOf(String s, int radix) throws NumberFormatException
public static Short decode(String s) throws NumberFormatException
public String toString()
public static String toString(short l)
public final static short MIN_VALUE
public final static short MAX_VALUE

The Short Class

55 1529-5 CH47 9/24/98, 8:53 AM1117

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1118 Chapter 47 java.lang

The Float Class
The Float class provides an object wrapper for the float data type. In addition to string con-
versions, it provides a way to directly manipulate the bits in a float. You can create a Float by
giving either a float, double, or string representation of the number:

public Float(float value)
public Float(double value)
public Float(String s) throws NumberFormatException

The Float class lacks the methods for fetching system properties that are present in the
Integer and Long classes, but it does provide methods for converting to and from strings. JDK
1.2 has added a float equivalent of the parseInt() and parseLong() methods, and float has
several other related methods:

public static Float valueOf(String s) throws NumberFormatException
public static String toString(float f)
public static float parseFloat(String floatString)

Floating-point numbers have a special notation for infinity, as well as for “Not a Number.” You
can test for these values with isInfinite() and isNaN(), which come in both static and in-
stance varieties:

public static boolean isInfinite(float f)
public static boolean isNaN(float f)
public boolean isInfinite()
public boolean isNan()

If you want to manipulate the individual bits of a floating-point number, you can convert it to an
int using the floatToIntBits() method:

public static int floatToIntBits(float f)

Both float and double values are stored in IEEE 754 format. This method is probably not
useful to you unless you are familiar with the format, but there are applications that depend on
getting a hold of this information. After you have manipulated the bits in the int version of the
number, you can convert it back to a float with:

public static float intBitsToFloat(int bits)

You should keep in mind that this bitwise representation is not the same as converting a float
to an int. For example, Float.floatToIntBits((float)42) returns an integer value of
1109917696, which is a few orders of magnitude different from the original value.

In addition to the typical MIN_VALUE and MAX_VALUE constants, the Float class also provides
constants for NEGATIVE_INFINITY, POSITIVE_INFINITY, and “Not a Number,” or NaN:

public final static float MIN_VALUE
public final static float MAX_VALUE
public final static float NEGATIVE_INFINITY
public final static float POSITIVE_INFINITY
public final static float NaN

55 1529-5 CH47 9/24/98, 8:53 AM1118

1119

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

The Double Class
The Double class provides the same functionality as the Float class, except that it deals with
the double data type rather than float. You can create a Double using either a double or a
string:

public Double(double value)
public Double(String s) throws NumberFormatException

You can convert a double to a string and vice versa with toString() and valueOf():

public static String toString(double d)
public static double parseDouble(String doubleString)
public static Double valueOf(String s) throws NumberFormatException

Double also provides methods to check for infinity and “Not a Number” with static and instance
versions of isInfinite() and isNaN():

public static boolean isInfinite(double d)
public static boolean isNaN(double d)
public boolean isInfinite()
public boolean isNaN()

You can manipulate the bits of a double, which are also stored in IEEE 754 format, using the
doubleToLongBits() and longBitsToDouble() methods:

public static long doubleToLongBits(double d)
public static double longBitsToDouble(long bits)

Finally, the Double class also defines its own MIN_VALUE, MAX_VALUE, POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN constants:

public final static double MIN_VALUE
public final static double MAX_VALUE
public final static double NEGATIVE_INFINITY
public final static double POSITIVE_INFINITY
public final static double NaN

The Void Class
To round out the set of wrappers for primitive types, Sun created a Void class. Because a void
type contains no information, you might expect that the Void class would have no constructors
or methods. Things are exactly as you would expect. The only thing contained in the Void class
is the TYPE attribute that is common to all wrapper classes.

The java.math.BigInteger Class
Although it is a subclass of Number, the BigInteger class is not a wrapper class for an existing
data type. Instead, it implements a large set of arithmetic operations for very large integer
numbers. These operations are often used for cryptography applications where you work with
numbers containing hundreds or even thousands of bits. BigInteger is not actually a part of
the java.lang package, but is instead in java.math, along with the BigDecimal class, which
implements very large fixed-point numbers.

The java.math.BigInteger Class

55 1529-5 CH47 9/24/98, 8:53 AM1119

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1120 Chapter 47 java.lang

Creating a BigInteger
A BigInteger value is essentially as large as it needs to be. If you need 927 digits, you got it!
You can create a BigInteger object in a variety of ways. In the simple case, you can create a
BigInteger from an existing long value:

public BigInteger valueOf(long l)

The valueOf() method performs the same function as a constructor in that it creates a
new instance of a BigInteger. It isn’t implemented as a constructor because it is able to

use existing constant BigInteger objects for numbers like 0 and 1. ■

You can also use a string to represent a number. This is useful when the number you are creat-
ing is too large to store in a long data type.

public BigInteger(String str)

You can create a BigInteger from an array of bytes:

In this case, the array of bytes is really like an array of bits. The leftmost bit in the first byte is
the most significant bit in the number. Remember that these bytes are not ASCII representa-
tions of digits; they contain the actual number. You can fetch a byte array containing the repre-
sentation of a BigInteger with

public byte[] toByteArray()

When performing cryptography, you often need to create a large random number. The
BigInteger class has the capability to create such a number:

When you create the random number, the bits parameter indicates the size in bits of the num-
ber you are creating. The randomSource object is used to generate the random bits. The result-
ing number is always positive.

An important aspect of random number generation, especially in the area of cryptography, is
the probability that a number is prime. You can generate a random number that has a certain
probability of being prime:

public BigInteger(int bits, int certainty, Random randomSource)

This additional certainty parameter indicates how certain the constructor should be that a
number is prime. The probability is given as 1 - (1 / (2 ^ certainty)). A certainty value of
0 would generate a 0 probability (2 ^ 0 = 1, so the formula is 1 - 1/1), meaning that the
number is probably not prime. A certainty of 1 generates a probability of 0.5, and a certainty of
10 gives a probability of 0.999 (1 - 1/1024). For this constructor, the bits parameter must be at
least 2.

Because there is no built-in support for big numbers in Java, the BigInteger class must pro-
vide methods for common numerical operations. Here are the available methods:

public BigInteger add(BigInteger otherValue)
public BigInteger subtract(BigInteger otherValue)
public BigInteger multiply(BigInteger otherValue)
public BigInteger divide(BigInteger otherValue)

N O T E

55 1529-5 CH47 9/24/98, 8:53 AM1120

1121

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

public BigInteger remainder(BigInteger otherValue)
public BigInteger[] divideAndRemainder(BigInteger otherValue)
public BigInteger pow(int exponent)
public BigInteger gcd(BigInteger otherValue)
public BigInteger abs()
public BigInteger negative()
public BigInteger signum()
public BigInteger mod(BigInteger modValue)
public BigInteger modPow(BigInteger exponent, BigInteger modValue)
public BigInteger modInverse(BigInteger modValue)
public BigInteger shiftLeft(numBits)
public BigInteger shiftRight(numBits)
public BigInteger and(BigInteger otherValue)
public BigInteger or(BigInteger otherValue)
public BigInteger xor(BigInteger otherValue)
public BigInteger not()
public BigInteger andNot(BigInteger otherValue)
public boolean testBit(int bitNumber)
public BigInteger setBit(int bitNumber)
public BigInteger clearBit(int bitNumber)
public BigInteger flipBit(int bitNumber)
public int getLowestSetBit()
public int bitLength()
public int bitCount()
public boolean isProbablePrime(int certainty)
public int compareTo(BigInteger otherValue)
public boolean equals(Object x)
public BigInteger min(BigInteger otherValue)
public BigInteger max(BigInteger otherValue)

Finally, you can convert a BigInteger value into a numeric data type, but you may lose preci-
sion if the number is too large to fit in the data type:

public int intValue()
public long longValue()
public float floatValue()
public double doubleValue()

The java.math.BigDecimal Class
The BigDecimal class represents a large, fixed-point number. Like BigInteger, it is also a sub-
class of Number but is not a wrapper for a native Java type. A BigDecimal number is similar to a
BigInteger number, except that it has an extra scale parameter that indicates how many digits
are to the right of the decimal point.

Creating a BigDecimal
You can create a BigDecimal number from a double, or from a string of digits:

public BigDecimal(double doubleValue)
public BigDecimal(String digits)

Creating a BigDecimal

55 1529-5 CH47 9/24/98, 8:53 AM1121

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1122 Chapter 47 java.lang

You can also create a BigDecimal from a BigInteger. You can supply an optional scale param-
eter that indicates the number of digits to the right of the decimal point. For example, a num-
ber 123456789 with a scale of 4 would be the number 12345.6789:

public BigDecimal(BigInteger bigVal)
public BigDecimal(BigInteger bigVal, int scale)

You can also create a BigDecimal from a long value with the valueOf() method:

public BigDecimal valueOf(long longValue)
public BigDecimal valueOf(long longValue, int scale)

One of the issues you must deal with when performing fixed-point calculations is rounding.
The BigDecimal class has several different rounding options:

ROUND_DOWN Always round down

ROUND_HALF_UP Round up when last digit >= 5

ROUND_HALF_DOWN Round up when last digit > 5

ROUND UP Always round up

ROUND_CEILING Round positive numbers up, negative numbers down

ROUND_FLOOR Round positive numbers down, negative numbers up

ROUND_HALF_EVEN If the number immediately left of the decimal point is odd,
works like ROUND_HALF_UP. If the number to the left of the
decimal is even, works like ROUND_HALF_DOWN.

ROUND_UNNECESSARY Don’t round at all

These rounding values are used only in division operations and when changing the scale of a
number.

Like the BigInteger class, the BigDecimal class must provide methods for common numerical
operations. Here are the available methods:

public BigDecimal add(BigDecimal otherValue)
public BigDecimal subtract(BigDecimal otherValue)
public BigDecimal multiply(BigDecimal otherValue)
public BigDecimal divide(BigDecimal otherValue, int roundingMode)
public BigDecimal divide(BigDecimal otherValue,
 int scale, int roundingMode)
public BigDecimal abs()
public BigDecimal negate()
public int signum()
public BigDecimal setScale(int scale)
public BigDecimal setScale(int scale, int roundingMode)
public BigDecimal movePointLeft(int numPositions)
public BigDecimal movePointRight(int numPositions)
public int compareTo(BigDecimal otherValue)
public boolean equals(Object x)
public BigDecimal min(BigDecimal otherValue)
public BigDecimal max(BigDecimal otherValue)

55 1529-5 CH47 9/24/98, 8:53 AM1122

1123

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

You can convert a BigDecimal value into a numeric data type, but you may lose precision if the
number is too large to fit in the data type:

public int intValue()
public long longValue()
public float floatValue()
public double doubleValue()
public BigInteger toBigInteger()

The ClassLoader Class
The ClassLoader class contains methods for loading new classes into the Java runtime environ-
ment. One of Java’s most powerful features is its capability to load new classes on-the-fly. This
class, along with the Class class makes dynamic class loading possible. All the methods in
ClassLoader are protected, which means that they are only accessible to subclasses of
ClassLoader. In fact, all but one of the methods in ClassLoader are final, leaving a single ab-
stract method to be implemented by the individual class loaders. This abstract method is
loadClass():

protected abstract Class loadClass(String className, boolean resolve)
 throws ClassNotFoundException

The loadClass() method is responsible for finding the class information, whether in a local file
or across the network, and creating a class from it. The loadClass() method obtains an array
of bytes that represent the entire contents of the .class file for the class to be loaded and then
calls defineClass to create an instance of Class for the new class:

protected final Class defineClass(byte data[], int offset, int length)

The length parameter is the number of bytes that define the class, and offset is the location of
the first byte of the data for the class in the data array.

If the resolve parameter in loadClass() is true, the loadClass() method is responsible for
calling the resolveClass() method before returning:

protected final void resolveClass(Class c)

The resolveClass() method makes sure that all classes referenced by class c have been
loaded and resolved. A class cannot be used until it has been resolved. When a class is re-
solved, its class loader is responsible for locating any other classes it references. This is not
convenient when a class references java.lang.Object, for instance. Rather than forcing you to
write class loaders that know how to load all the system classes, the ClassLoader class gives
you a hook into the system class loader, so if you are unable to locate a class, you can try the
system class loader before giving up:

protected final Class findSystemClass(String name)
 throws ClassNotFoundException

Listing 47.5 shows a sample class loader that loads classes from an alternate directory.

The ClassLoader Class

55 1529-5 CH47 9/24/98, 8:53 AM1123

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1124 Chapter 47 java.lang

Listing 47.5 Source Code for MyClassLoader.java

import java.io.*;
import java.util.*;

// This class loader uses an alternate directory for loading classes.
// When a class is resolved, its class loader is expected to be able
// to load any additional classes, but this loader doesn’t want to have
// to figure out where to find java.lang.Object, for instance, so it
// uses Class.forName to locate classes that the system already knows
// about.

public class MyClassLoader extends ClassLoader
{
 String classDir; // root dir to load classes from
 Hashtable loadedClasses; // Classes that have been loaded

 public MyClassLoader(String classDir)
 {
 this.classDir = classDir;
 loadedClasses = new Hashtable();
 }

 public synchronized Class loadClass(String className,
 boolean resolve) throws ClassNotFoundException
 {
 Class newClass = (Class) loadedClasses.get(className);

// If the class was in the loadedClasses table, you don’t
// have to load it again, but you better resolve it, just
// in case.
 if (newClass != null)
 {
 if (resolve) // Should we resolve?
 {
 resolveClass(newClass);
 }
 return newClass;
 }

 try {
// Read in the class file
 byte[] classData = getClassData(className);
// Define the new class
 newClass = defineClass(classData, 0,
 classData.length);
 } catch (IOException readError) {

// Before you throw an exception, see if the system already knows
// about this class
 try {
 newClass = findSystemClass(className);
 return newClass;
 } catch (Exception any) {
 throw new ClassNotFoundException(className);

55 1529-5 CH47 9/24/98, 8:53 AM1124

1125

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

 }
 }

// Store the class in the table of loaded classes
 loadedClasses.put(className, newClass);

// If you are supposed to resolve this class, do it
 if (resolve)
 {
 resolveClass(newClass);
 }

 return newClass;
 }

// This version of loadClass uses classDir as the root directory
// for where to look for classes, it then opens up a read stream
// and reads in the class file as-is.

 protected byte[] getClassData(String className)
 throws IOException
 {
// Rather than opening up a FileInputStream directly, you create
// a File instance first so you can use the length method to
// determine how big a buffer to allocate for the class

 File classFile = new File(classDir, className+”.class”);

 byte[] classData = new byte[(int)classFile.length()];

// Now open up the input stream
 FileInputStream inFile = new FileInputStream(classFile);

// Read in the class
 int length = inFile.read(classData);

 inFile.close();

 return classData;
 }
}

Listing 47.6 shows a simple class for testing the loader.

Listing 47.6 Source Code for LoadMe.java

public class LoadMe extends Object
{
 public LoadMe()
 {
 }

continues

The ClassLoader Class

55 1529-5 CH47 9/24/98, 8:53 AM1125

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1126 Chapter 47 java.lang

Listing 47.6 Continued

 public String toString()
 {
 return “Hello! This is the LoadMe object!”;
 }
}

The TestLoader program, shown in Listing 47.7, uses MyClassLoader to load the LoadMe class
and print it out. It expects the LoadMe.class file to be in a subdirectory called TESTDIR.

Listing 47.7 Source Code to TestLoader.java

//
// This program uses MyTestLoader to load the LoadMe class.
//

public class TestLoader extends Object
{
 public static void main(String[] args)
 {
// Create the class loader. Note: myLoader must be declared as MyClassLoader
// and not ClassLoader because the loadClass method in ClassLoader is
// protected, not public.

 MyClassLoader myLoader = new MyClassLoader(“testdir”);

 try {
// Try to load the class
 Class loadMeClass = myLoader.loadClass(“LoadMe”, true);
// Create a new instance of the class
 Object loadMe = loadMeClass.newInstance();
// Print out the string representation of the instance
 System.out.println(loadMe);
 } catch (Exception oops) {
// If there was an error, just print a whole stack trace
 oops.printStackTrace();
 }
 }
}

The SecurityManager Class
The SecurityManager class is one of the keys to Java’s security. It contains an assortment of
methods to check to see whether a particular operation is permitted. The various Java system
classes, such as the Applet class, the network classes, and the file classes, all check with the
security manager before performing potentially hazardous operations. If the security manager
decides that something is not permitted, it will throw a SecurityException. The System class
provides methods for accessing the current security manager and for setting the security

55 1529-5 CH47 9/24/98, 8:53 AM1126

1127

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

47

VII
Part

Ch

manager if one isn’t already defined. You may not change security managers after one has been
set. These methods are in the System class, not the SecurityManager class:

public static SecurityManager getSecurityManager()
public static void setSecurityManager(SecurityManager)
 throws SecurityException

The Compiler Class
If Java were to remain an interpreted-only language, it would not survive in the business world
against compiled languages like C++. Just-In-Time (JIT) compilers give Java that extra speed
boost it needs. A JIT compiles methods to native machine instructions before executing them.
The compilation only occurs once per method. Some JITs may compile entire classes, rather
than one method at a time. The Compiler class lets you exercise a little control over the JIT.

You can ask the JIT to compile a specific class by passing a Class instance to the
compileClass() method:

public static boolean compileClass(Class clazz)

The compileClass() method returns true if the compilation succeeded, or false if either the
compilation failed or no JIT is available. This is useful if you need to invoke a method and you
don’t want to take the one-time compilation hit when you invoke the method. You ask the JIT to
precompile the entire class before you start invoking methods.

The compileClasses() method is similar to the compileClass() method, except that it com-
piles a set of classes:

public static boolean compileClasses(String classes)

The classes parameter contains the name of the classes you want to compile. This might be
something like java.lang.*. You should consult the documentation for your JIT (if it is avail-
able) to find out more on this method.

You can selectively disable and enable the JIT compiler with the disable and enable methods:

public static void disable()
public static void enable()

Finally, the command() method allows you to pass arbitrary commands to the compiler. This
method is JIT-specific, so you should consult the documentation for a particular JIT to find out
what commands it supports. The format for the command() method is

public static Object command(Object any)

■ How to catch exceptions

There are several types of exceptions that Java insists that you handle in your program.
To do this, you must catch the exception and then perform some action.

■ Creating and throwing your own exceptions

Java’s Exception class enables you to create custom exception objects. You can create
and throw these custom exception objects in your programs.

The Compiler Class

55 1529-5 CH47 9/24/98, 8:53 AM1127

b3/a3/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna CH47 LP#4

1128 Chapter 47 java.lang

■ About Java’s Event class

When you understand how the Event class works, you’re better prepared to deal with
events in your Java programs.

■ Handling all events, including the all-important mouse and keyboard events

The only way your program can interact with the user is through events. Obviously,
handling events is a Java programming must.

■ How to create and send your own event objects

Sometimes you want to create and deliver your own event objects in response to other
Java events.

55 1529-5 CH47 9/24/98, 8:53 AM1128

1129

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

C H A P T E R

Reflection

What Is Reflection? 1130

Creating a Class Knowing Only the List of Constructors 1131

Inspecting a Class for Its Methods 1135

Using getDeclaredMethod() to Invoke a Method 1138

Invoking Methods That Use Native Types as Parameters 1141

Getting the Declared Fields of a Class 1142

48

In this chapter

56 1529-5 CH48 9/24/98, 8:57 AM1129

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

1130 Chapter 48 Reflection

What Is Reflection?
According to Sun, Reflection is a “small, type-safe and secure API which supports introspection
about the classes and objects in the current JVM.” This may need a bit of translation to some of
you, if not most. Essentially, the key word in the definition is introspection. Using Reflection,
you can take an object, such as a Vector, look at it under a microscope, and find out what
classes it extends and what methods and variables it has; and you can do this without knowing
that the object is a vector.

To accomplish the task of inspection, Sun had to add a couple of classes in the java.lang pack-
age, including Field, Method, and Constructor. Each of these classes is used to obtain informa-
tion about their respective characteristics from an object. In addition, to handle the rest of the
class, Sun has added the Array and Modifier classes.

Surrounding the whole use of Reflection is the enhanced Java Security Model. The security
model prevents classes that don’t have access to methods, fields, constructors, and so on from
being able to see them. How the security model works with Reflection is through a fairly tight
coupling of some new class methods with the security manager. To do this, the
SecurityManager itself has been granted an additional method—checkMemberAccess(). When
a class is asked to produce its Method class (note: only a class is allowed to create a Method,
Field or Constructor class) it first queries the SecurityManager to determine if it’s okay to
give the requesting class a copy of its Method class. If it is, fine; if not, the request is denied. If
this sounds like someone trying far too hard to use the word class, look at it this way: Let’s say
you have a scenario where the object Requestor wants to know the methods of object
Provider. In Requestor, you want to know what constructors are available in Provider. To do
this, you might create two classes as seen in Listing 48.1.

As of JDK 1.2, you can also define the accessibility of a class by extending the
AccessibleObject or using the ReflectPermission class. ■

Listing 48.1 Requestor Class Requests Information from the Provider Class

/*
 *
 * Requestor
 *
 */
import java.lang.reflect.*;
public class Requestor{
 public void requestConstuctors(){
 try{
 Constructor con[]= Class.forName(“Provider”).
➥getDeclaredConstructors();
 for (int x=0;x<con.length;x++)
 System.out.println(“Constructor “+x+” = “+con[x]);
 } catch (ClassNotFoundException se){
 System.out.println(“Not allowed to get class info”);
 }

N O T E

56 1529-5 CH48 9/24/98, 8:57 AM1130

1131

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

 }

 public static void main(String args[]){
 Requestor req = new Requestor();
 req.requestConstuctors();
 }
}

/*
 * Provider
 *
 */
class Provider{
 public Provider(){
 }

 public Provider(String s){
 }
}

After you compile this class, which should be called Requestor.java (note that you must com-
pile it using the JDK 1.1 or 1.2; this won’t work under 1.0), you can then run the Requestor
program (also using 1.1 or 1.2). The output you get looks like this:

Constructor 0 = public Provider()
Constructor 1 = public Provider(String)

That’s a pretty neat trick, and one that you quite simply couldn’t accomplish without Reflection.
Under other languages, such as C/C++, access to methods can be accomplished using method
pointers. Because Java has no pointers, it’s necessary to have this Reflection model to gain
access to runtime methods.

Creating a Class Knowing Only the List of
Constructors

Let’s try something else. Instantiate the Provider class using the Provider (String) method.
Under JDK 1.0, this was simply impossible (without using the direct approach, of course).
Listing 48.2 shows just how to do this. Notice that I’ve cheated a bit by using the null parameter
version of newInstance() method for the parameters (which can only be done because I know
that the parameter (String) has a null constructor).

Listing 48.2 Requestor Creates a Provider Without Knowing the Constructor
Name

/*
 *
 * Requestor

continues

Creating a Class Knowing Only the List of Constructors

56 1529-5 CH48 9/24/98, 8:57 AM1131

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

1132 Chapter 48 Reflection

Listing 48.2 Continued

 *
 */
import java.lang.reflect.*;
public class Requestor{
 public void requestConstuctors(){
 Class cl;
 Constructor con[];
 try{
 cl = Class.forName(“Provider”);
 con = cl.getDeclaredConstructors();
 for (int x=0;x<con.length;x++)
 System.out.println(“Constructor “+x+” = “+con[x]);
 Class param[] = con[1].getParameterTypes();
 Object paramValues[] = new Object[param.length];
 for (int x=0;x<param.length;x++){
 if (!param[x].isPrimitive()){
 System.out.println(“param:”+param[x]);
 paramValues[x]=param[x].newInstance();
 }
 }
 Object prov = con[1].newInstance(paramValues
 } catch (InvocationTargetException e){
 System.out.println(“There was an InvocationEception and
➥ we were not allowed to get class info: “+e.getTargetException());
 } catch (Exception e){
 System.out.println(“Exception during construction:”+e);
 }
 }

 public static void main(String args[]){
 Requestor req = new Requestor();
 req.requestConstuctors();
 }
}

class Provider{
 String me;
 public Provider(){
 me = new String();
 }

 public Provider(String x){
 this.me=me;
 }
}

Of course this whole system works, but probably isn’t very practical. After all, it’s not very
often that all you want to do is construct a defaulted object, and at the same time that object
doesn’t have a null constructor of its own. The more likely time when this comes in handy is
when you want to instantiate an object which has a constructor that you expect. For example,

56 1529-5 CH48 9/24/98, 8:57 AM1132

1133

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

if you were to build up an API and the basis of one class is a constructor that takes several
parameters, each class that extends your base class has to overload this constructor. That
seems simple enough, right? For instance, take the ever popular car model. There will be two
classes: Car and Tires (see Listing 48.3).

Listing 48.3 A Car with Tires

public class Tires {
 int number;
 float diameter;
}

public class Car{
 Tires tires;
 public Car (Tires tires){
 this.tires = tires;
 }
}

There’s no need to fill out the rest of this class because it’s irrelevant for the current discus-
sion. The point is that the class Car obviously needs to receive a Tires object from an outside
source. When you go to create a subclass, let’s say Saturn and BMW, you still need to get the
Tires model from an outside source as seen in Listing 48.4.

Listing 48.4 Saturn and BWM Cars with Tires

public class Saturn extends Car{
 public Saturn(Tires tires){
 super(tires);
 }
}

public class BMW extends Car{
 public BMW(Tires tires){
 super(tires);
 }
}

The only problem now is that, under JDK 1.0, you had no truly object-oriented way to handle
each new type of car without coding at least its constructor into the program. You might think
that this sounds like an interface solution, but unfortunately interfaces aren’t broad enough to
handle this situation. Interfaces allow you to create templates for methods, but not construc-
tors. This means that every time a new car line is introduced, you need to go back, find every
instance where the new car needed to be added, and add it in manually. Now, using Reflection
this becomes very easy to do, as seen in Listing 48.5.

Creating a Class Knowing Only the List of Constructors

56 1529-5 CH48 9/24/98, 8:57 AM1133

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

1134 Chapter 48 Reflection

Listing 48.5 The Complete CarShop Creates Cars Using Reflection

/*
 *
 * CarShop
 *
 */
import java.lang.reflect.*;

public class CarShop {
 Car carList[];

 public CarShop (){
 carList = new Car[2];
 createCar(“Saturn”,0);
 createCar(“BMW”,1);
 }

 public void createCar(String carName,int carNum){
 try{
 //create the Tires array, which you’ll use as a
 //the parameter to the constructor
 Object constructorParam[] = new Tires[1];
 constructorParam[0]= new Tires();

 //get the class name for the car that you want
 Class cl = Class.forName(carName);

 //create an array of Classes, and use this to
 //array to find the constructor that you want
 Class parameters[] = new Class[1];
 parameters[0]= Class.forName(“Tires”);
 Constructor con = cl.getDeclaredConstructor(parameters);

 //create a car instance for the carList
 carList[carNum] = (Car)con.newInstance(constructorParam);
 } catch (Exception e){
 System.out.println(“Error creating “+carName +”:”+e);
 }
 }

 public static void main(String args[]){
 new CarShop();
 }
}

In this example, the most important thing is obviously the createCar() method. Here, it’s
broken down step-by-step:

Object constructorParam[] = new Tires[1];
 constructorParam[carNum]= new Tires();

56 1529-5 CH48 9/24/98, 8:57 AM1134

1135

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

As you saw earlier using Reflection, the method newInstance, which allows you to create a new
instance of a class, takes as its parameter an array of objects (Object []). As a result, take a
look at the constructor you hope to use:

Car (Tires tire)

This constructor has one parameter and is of type Tires, so you need to create an array (of
one) with a Tire object as the first (and only) element:

 Class cl = Class.forName(carName);

Next, you need to get the class that you’re looking for. Notice that you’re doing this just by
knowing the name of the class. This means that you can even create a <PARAM> value that would
contain a list of all the currently known cars:

 Class parameters[] = new Class[1];
 parameters[0]= Class.forName(“Tires”);
 Constructor con = cl.getDeclaredConstructor(parameters);

The next step is to find the constructor that matches the one you’re looking for. To do this, you
must create an array of classes. Each of the elements of this array is a class that matches the
order of the parameters for the constructor you’re looking for:

 carList[carNum] = (Car)con.newInstance(constructorParam);

Now that you have obtained the correct constructor and put the parameter array together, you
can finally create a new instance of the car. You’re probably saying to yourself, “All this for what
I could have written as: carList[carNum] = new Saturn(new Tire());? ”

Yes, that’s true, but to really account for this situation you would have needed to have an if
loop that looked like the following:

 if (carName.equals(“Saturn”))
 carList[carNum] = new Saturn(new Tire());

else if (carName.equals(“BMW”))
 carList[carNum] = new BMW(new Tire());

Each time you added a new car, you’d have to go back in and add another if loop. With Reflec-
tion, this isn’t necessary.

Inspecting a Class for Its Methods
In addition to discovering class methods, Reflection can also be used to help you discover
which methods a class has. To do this, a very similar method to getDeclaredConstructors()
has been created, called getDeclaredMethods().

Obtaining a List of Methods
Going back to the Requestor/Provider example used in Listing 48.1, in addition to listing the
constructors, you’ll add a couple of methods to the Provider class and see what happens when
you request them in the Requestor class, as shown in Listing 48.6.

Inspecting a Class for Its Methods

56 1529-5 CH48 9/24/98, 8:57 AM1135

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

1136 Chapter 48 Reflection

Listing 48.6 Reflection Reveals Methods as Well as Constructors

/*
 *
 * Requestor
 *
 */
import java.lang.reflect.*;

public class Requestor{
 public void requestConstuctors(){
 Class cl;
 Constructor con[];
 Method meth[];
 try{
 cl = Class.forName(“Provider”);
 con = cl.getDeclaredConstructors();
 for (int x=0;x<con.length;x++)
 System.out.println(“Constructor “+x+” = “+con[x]);

 meth = cl.getDeclaredMethods();
 for (int x=0;x<meth.length;x++)
 System.out.println(“Method “+x+” = “+meth[x]);

 } catch (NoSuchMethodException e){
 System.out.println(
 ➥”There was an exception and we were not allowed to get
➥class info: “+e);

}
 }

 public static void main(String args[]){
 Requestor req = new Requestor();
 req.requestConstuctors();
 }
}

class Provider{
 int x;
 public Provider(){
 this.x=0;
 }

 public Provider(int x){
 this.x=x;
 }

 public boolean testMe(boolean test){
 return !test;
 }

 public int addThree(int num){
 return num+3;
 }

56 1529-5 CH48 9/24/98, 8:57 AM1136

1137

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

 public char letterD(){
 return ‘D’;
 }

}

Now, when you compile Requestor.java and run it, the output you see should look like this:

Constructor 0 = public Provider()
Constructor 1 = public Provider(int)
Method 0 = public boolean Provider.testMe(boolean)
Method 1 = public int Provider.addThree(int)
Method 2 = public char Provider.letterD()

As you can see, the method contains not only the same modifiers and parameters as the con-
structor did, but also return type. This should not be surprising to you because this is a critical
component of any method. However, make a change to the Provider class as shown in Listing
48.7.

Listing 48.7 The Provider Class Extending java.applet.Applet

/*
 *
 * Provider
 *
 */

class Provider extends java.applet.Applet{
 int x;
 public Provider(){
 this.x=0;
 }

 public Provider(int x){
 this.x=x;
 }

 public boolean testMe(boolean test){
 return !test;
 }

 public int addThree(int num){
 return num+3;
 }

 public char letterD(){
 return ‘D’;
 }

}

Inspecting a Class for Its Methods

56 1529-5 CH48 9/24/98, 8:57 AM1137

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

1138 Chapter 48 Reflection

Now if you run Requestor again, the output should look like this:

Constructor 0 = public Provider()
Constructor 1 = public Provider(int)
Method 0 = public boolean Provider.testMe(boolean)
Method 1 = public int Provider.addThree(int)
Method 2 = public char Provider.letterD()

Can you tell the difference? No, because there is no difference. Despite the fact that you just
made Provider extend java.applet.Applet, which itself has a number of methods, these
methods do not show up in the listing from getDeclaredMethods(). This is because
getDeclaredMethods()returns all the methods that are declared by the current class (or inter-
face) but does not return those methods the class obtains by inheritance.

You might be asking yourself, “Does this mean if I override or overload a method I won’t be
able to detect it because it was obtained through inheritance?” The answer is no on both
counts—you will see these methods. Overloaded methods are actually new, so they are not
obtained through inheritance; and overridden methods are included in the methods list to
avoid this confusion.

Using getDeclaredMethod() to Invoke a Method
As you may have guessed, just like with the constructor example, invoking a method for the
sake of invoking it really isn’t useful except in rare instances, like writing a debugger.

Just like its constructor counterpart, getDeclaredConstructors(), getDeclaredMethods() has
a sibling method, getDeclaredMethod(), that will obtain just the specific method you are
looking for:

public Method getDeclaredMethod(String name, Class parameterTypes[])

Right away you might notice that getDeclaredMethod takes an additional parameter. This is
because, as with a constructor, it’s necessary to find a method based on its parameter list. But
when you were looking for a constructor, it wasn’t necessary to know the name of the construc-
tor, because every constructor’s name is the same as the class. To find a method, however, you
need to specify the method name as well.

Just like its constructor counterpart, getDeclaredMethod does throw a NoSuchMethodException
if no method matches the signature you are looking for. This, of course, means that you need to
enclose any getDeclaredMethod() in a try-catch block.

Now go back to the car example and make a few changes as shown in Listing 48.8.

Listing 48.8 The Car Example with Several Changes

class Car{
 Tires tires;
 boolean running = false;

 public Car (Tires tires){

56 1529-5 CH48 9/24/98, 8:57 AM1138

1139

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

 this.tires = tires;
 }
}

class Saturn extends Car{
 public Saturn(Tires tires){
 super(tires);
 }

 public boolean start(){
 running = true;
 System.out.println(“The Saturn is now running”);
 return true;
 }
}

class BMW extends Car{
 public BMW(Tires tires){
 super(tires);
 }

 public boolean start(){
 running = true;
 System.out.println(“The BMW is now running”);
 return true;
 }

}

First, modify the Car classes and add a start() method to the Saturn and BMW cars. Don’t
add the start() method to Car; that would make life too easy. Next you need to add a method
to the CarShop class to allow it to start the cars. In this case, call the method startCar() and
call it right after you’ve added the Saturn and BMW to your motor pool, as shown in Listing
48.9.

Listing 49.9 The Complete CarShop for Use with the New Cars

/*
 *
 * CarShop
 *
 */
import java.lang.reflect.*;

public class CarShop {
 Car carList[];

 public CarShop (){
 carList = new Car[2];

continues

Using getDeclaredMethod() to Invoke a Method

56 1529-5 CH48 9/24/98, 8:57 AM1139

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

1140 Chapter 48 Reflection

Listing 49.9 Continued

 createCar(“Saturn”,0);
 createCar(“BMW”,1);
 startCar(1);
 }

 public void createCar(String carName,int carNum){
 try{
 //create the Tires array, that you’ll use as a
 //the parameter to the constructor
 Object constructorParam[] = new Tires[1];
 constructorParam[0]= new Tires();

 //get the class name for the car that you want
 Class cl = Class.forName(carName);

 //create an array of Classes, and use this to
 //array to find the constructor that you want
 Class parameters[] = new Class[1];
 parameters[0]= Class.forName(“Tires”);
 Constructor con = cl.getDeclaredConstructor(parameters);

 //create a car instance for the carList
 carList[carNum] = (Car)con.newInstance(constructorParam);
 } catch (Exception e){
 System.out.println(“Error creating “+carName +”:”+e);
 }
 }

 public void startCar(int num){
 try{

 //create an array of Classes, and use this to
 //array to find the method you want
 //since you are actually looking for a null parameter
 //this is an array of 0
 Class parameters[] = new Class[0];
 Class carType = carList[num].getClass();
 Method meth = carType.getDeclaredMethod(“start”,parameters);

 //create a car instance for the carList
 meth.invoke(carList[num],parameters);
 } catch (Exception e){
 System.out.println(“Error starting car “+num +”:”+e);
 }
 }

 public static void main(String args[]){
 new CarShop();
 }
}

56 1529-5 CH48 9/24/98, 8:57 AM1140

1141

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

Now when you run this application, it should notify you that the BMW is now running. It’s
important to point out something about the invoke() method. invoke() requires two param-
eters. The second parameter is the array of parameters required to invoke the method just as
the parameter array was used in the newInstance() method of constructor. However, invoke()
also needs to know which object the method is being called upon, so the first parameter of
invoke() is the correct object. What happens if the object doesn’t have a start() method?
Well, it actually goes a bit further than that. If the object is not an instance of the class that
declared the method, then an exception is thrown.

Going back to Listing 48.9 again, notice that, to obtain the method start(), you need to be
operating on the class BMW or Saturn and not on the object instances of these classes.
java.lang.Object has been blessed with a new method called getClass(), which helps you
solve this problem easily.

At this point, a good object-oriented programmer might ask, “Why would I ever want to use
this method to invoke a method?” After all, a much better design would have you using either
an interface or the start() method, which would be in the car() class. Under either of these
two scenarios it would be unnecessary to find the method before invoking it. This is true, ex-
cept that the world is not always perfect. Without the capability to invoke methods like this
with Reflection, you have put a fairly substantial limitation on programming architecture. Much
more importantly, the getDeclaredMethod()can frequently be used to provide another method
with a method pointer. This means the portion of the method signature that becomes impor-
tant is the parameter list and not necessarily the method name. This level of extension allows
you to create multiple methods, which require similar processing, without the need to create
multiple process layers.

Invoking Methods That Use Native Types as
Parameters

One limitation of the system you’ve seen so far is that you have not seen how to invoke any
methods or constructors that have native types as parameters. For instance, consider the
NewCar in listing 49.10 below.

Listing 49.10 The NewCar Has a Constructor that Requires an int

public class NewCar{
 int numTires;
 public NewCar(int numTires){
 this.numTires = numTires;
 }

 public int getTireCount(){
 return numTires;
 }

}

Invoking Methods That Use Native Types as Parameters

56 1529-5 CH48 9/24/98, 8:57 AM1141

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

1142 Chapter 48 Reflection

To invoke the constructor for NewCar you must provide an int. The getDeclaredContructor()
method, however, requires an array of class objects. How do you get the class for an int? Well,
to handle this very situation the language allows you to add a .class to any native type and
obtain a class object representing the type.

The next challenge is providing an object that represents the native type. You have probably
already guessed that you need to use the wrapper classes in java.lang, in this case
java.lang.Integer. Listing 49.11 below shows a brief example that instantiates the NewCar.

Listing 49.11 The TestNewCar Creates a New Instance of the NewCar Class.

import java.lang.reflect.Constructor;

public class TestNewCar{
 public static void main(String args[]){
 try{
 Class car = Class.forName(“NewCar”);

 Class param[] = {int.class};

 Constructor con = car.getDeclaredConstructor(param);

 Object values[] = {new Integer(4)};

 Object carObj = con.newInstance(values);

 System.out.println(“The car has “+((NewCar)carObj).getTireCount()
➥ +” tires”);
 }catch (Exception e){
 System.out.println(“Something went wrong while invoking NewCar”);
 e.printStackTrace(System.err);
 }
 }
}

Getting the Declared Fields of a Class
The final aspect of Reflection covered in this chapter is obtaining a list of the fields that a class
has. As you might have guessed, the two methods most useful in this endeavor are
getDeclaredFields() and getDeclaredField(). In the previous Provider class (Listing 48.7),
you already had a variable (x), so all you need to do now is take the Requestor class one step
further, as shown in Listing 48.12.

Listing 48.12 Requestor Application That Gets Fields

/*
 *
 * Requestor

56 1529-5 CH48 9/24/98, 8:57 AM1142

1143

b3/a3/mp12 SE Using Java #1529-5 8.10.98 Ayanna CH48 LP#4

48

VII
Part

Ch

 *
 */
import java.lang.reflect.*;

public class Requestor{
 public void requestConstuctors(){
 Class cl;
 Constructor con[];
 Method meth[];
 Field field[];
 try{
 cl = Class.forName(“Provider”);
 con = cl.getDeclaredConstructors();
 for (int x=0;x<con.length;x++)
 System.out.println(“Constructor “+x+” = “+con[x]);

 meth = cl.getDeclaredMethods();
 for (int x=0;x<meth.length;x++)
 System.out.println(“Method “+x+” = “+meth[x]);

 field = cl.getDeclaredFields();
 for (int x=0;x<field.length;x++)
 System.out.println(“Field “+x+” = “+field[x]);

 } catch (Exception e){
 System.out.println(“There was an exception and you were
➥not allowed to get class info: “+e);
 }
 }

 public static void main(String args[]){
 Requestor req = new Requestor();
 req.requestConstuctors();
 }
}

If you’ve been following the previous two examples, you have probably already guessed that
the resulting output from your new Requestor looks like this:

Constructor 0 = public Provider()
Constructor 1 = public Provider(int)
Method 0 = public boolean Provider.testMe(boolean)
Method 1 = public int Provider.addThree(int)
Method 2 = public char Provider.letterD()
Method 3 = public boolean Provider.mouseDown(java.awt.Event,int,int)
Field 0 = int Provider.x

Field() itself can be used to provide a number of widening and narrowing conversions on
Field types, but that area is left to you for further investigation. ●

Getting the Declared Fields of a Class

56 1529-5 CH48 9/24/98, 8:57 AM1143

56 1529-5 CH48 9/24/98, 8:57 AM1144

1145

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

C H A P T E R

Extending Java with Other Languages

Native Methods, a Final Frontier for Java 1146

The Case for “Going Native” 1146

JNI Highlights 1147

Writing Native Methods 1148

Accessing Object Fields from Native Methods 1150

Accessing Java Methods from Native Methods 1155

Accessing Static Fields 1156

Accessing Static Methods 1158

Exception Handling Within Native Methods 1158

49

In this chapter

57 1529-5 CH49 9/24/98, 9:07 AM1145

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

1146 Chapter 49 Extending Java with Other Languages

Native Methods, a Final Frontier for Java
The topic of native methods has been called one of the “final frontiers” of Java, and rightfully
so! That’s only because this potent feature empowers the Java developer to potentially do just
about anything that can be programmatically done on a computer—assuming that a Java imple-
mentation exists for it, of course. Native methods enable programmers to extend the reach of
Java, by selectively implementing methods in other programming languages such as C or C++
when the problem cannot be solved using Java alone.

Prior to the evolution of JDK 1.1, native methods was one of those foreboding, “rocket-
science” Java topics that was seldom discussed and even less understood. And not with-
out ample reason, either! Then, the very implementation of the native method interface
within JVMs had differed quite drastically, depending on the vendor implementing it.
Due to myriad shortcomings, Sun’s native method specification under JDK 1.02 was
superseded by proprietary interfaces such as Netscape’s Java Runtime Interface (JRI),
Microsoft’s Raw Native Interface (RNI), and the Java/COM interface. The lack of a
unified interface meant that the developer had to implement a separate native method
binary for each JVM used, even though they may all have targeted the same platform!

Given the prevailing situation, it was none too surprising that the native method specification
was thoroughly overhauled under the JDK 1.1. The new and improved version, called the Java
Native Interface (JNI), simplifies matters by presenting a unified interface for incorporating
native methods, irrespective of the JVM used, assuming that the vendor conforms to the JNI
specification for supporting native methods. JNI was developed following extensive consulta-
tions between Sun Microsystems, Inc. and other Java licensees, and bears very close resem-
blance to Netscape’s JRI specification.

Some confusion still exists as to whether Microsoft will be adopting the JNI standard within
its JVM implementation. So far, Microsoft has insisted that it will not be adopting JNI, but

rather will support only the RNI and Java/COM interfaces. This is actually one of the parts of the lawsuit
between Sun and Microsoft that you may have heard of. Hopefully by year-end 1998 we will have a
better idea of what to expect in the future. ■

The Case for “Going Native”
Java purists may consider incorporating C or C++ code within Java programs as an act of her-
esy! Why in the world would someone want to program in anything but Java, given the power
and flexibility of the platform-independent JDK? The reasons are many:

■ Java programmers may need access to specialized operating system facilities that are not
available directly through the JDK.

■ You may need direct access to a peripheral device such as a video card, sound card, or
modem to make optimal usage of available functionality.

N O T E

57 1529-5 CH49 9/24/98, 9:07 AM1146

1147

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

■ The Java program may need to interface with third-party middleware and messaging
systems (such as IBM’s MQ Series, Sybase’s Open Server, Momemtum’s XIPC, Lotus
Notes, and so on) or proprietary enterprise software systems such as SAP R/3,
PeopleSoft, Baan, and so on. Because these software solutions come with their own
(usually C-based) proprietary interface APIs, native methods is the only alternative for
their integration with Java.

■ A ton of legacy code already exists at the back end that would continue to work
seamlessly, irrespective of the user interface. The continual movement of legacy systems
to a Java-based intranet/Internet computing environment without extensive code rewrite
is a compelling reason for their rapid integration via native methods.

■ Certain highly time-critical operations within real-time Java systems may need functional-
ity to be implemented as assembly code. In a situation like this, using native methods is
usually the only answer.

Incorporating native methods may bring certain benefits, but there is certainly a price to be
paid:

■ Your Java code loses one of its chief strengths: portability. Because native method
implementation is platform-specific, your native library will have to be re-implemented
and recompiled for each and every platform your Java system will have to run on.

■ Browser security manager policies may prevent you from loading applets that link to
dynamically loadable libraries implementing the native methods. Consequently, native
methods can be used hassle-free only from within Java applications and not applets.

Future versions of browsers may well have a fully customizable security manager, where the
user can load applets implementing native methods on a selective basis. Sun’s HotJava

browser currently provides a customizable security manager. ■

■ Native methods usage involves the management of additional header and C interface
files. The creation of complex native methods itself requires not only a great deal of Java
programming expertise, but also expertise of the implementation language and platform.

JNI Highlights
As mentioned before, JVM’s full compliance with the JDK 1.1 specification presents the same
standard native method interface—the JNI—irrespective of the platform. The highlights of the
JNI are as follows:

■ Native methods can create, update, and inspect Java objects.

■ Java can pass any primitive data types or objects as parameters to native methods.

■ Native methods can return either primitive data types or objects back to the Java
environment.

■ Java instance or class methods can be called from within native methods.

■ Native methods can catch and throw Java exceptions.

N O T E

JNI Highlights

57 1529-5 CH49 9/24/98, 9:07 AM1147

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

1148 Chapter 49 Extending Java with Other Languages

■ Runtime type checking can be performed within native methods.

■ Native methods can implement synchronization to support multithreaded access.

Writing Native Methods
If you still think native methods are the way to go, it is time to dive into the mysterious waters
of the sea of JNI.

All the JNI examples given here are written with the Solaris operating environment in mind,
and the native methods are implemented using C. The examples should work fine on other

platforms, as long as the shared library is created properly for that platform. ■

All native methods are implemented in JNI by closely following a basic six-step program.

Step One—Write the Java Code
Looking at Listing 49.1, you see that the keyword native, within the declaration of the method
greet, indicates that it is implemented outside Java and in a different programming language.
Additionally, the static block tells Java to load the shared library (libsayhello1.so, in the case
of Solaris), within which you can find the actual implementation of the method at runtime.

Listing 49.1 SayHello1.java—Native Methods Demo Program

public class SayHello1 {
 public native void greet();

 static {
 System.loadLibrary(“sayhello1”);
 }
 public static void main(String[] args) {
 new SayHello1().greet();
 }
}

The main method just invokes a new instance of the class SayHello1 and invokes the native
method greet. Notice that the native method is invoked just like any ordinary instance
method.

Step Two—Compile the Java Code to a Class File
No surprises here. Just compile the Java source file using the javac compiler as usual:

javac SayHello1.java

N O T E

57 1529-5 CH49 9/24/98, 9:07 AM1148

1149

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

Step Three—Generate the JNI-Style Header File
Apply javah—the C header and stub file generator given to you as part of the JDK—on the
compiled class file to generate the JNI header file for the class. JNI, unlike the native method
interface specification under JDK 1.02, does not make use of stub files.

javah -jni SayHello1

This generates the corresponding header file, SayHello1.h, to the local directory (see Listing
49.2).

The generated header file always has the naming convention SomeClassFile.h, where
the class SomeClassFile contains the native method declaration, within your Java

source. ■

Listing 49.2 SayHello1.h—Generated Header File

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class SayHello1*/

#ifndef _Included_SayHello1
#define _Included_SayHello1
#ifdef __cplusplus
extern “C” {
#endif
/*
 * Class: SayHello1
 * Method: greet
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_SayHello1_greet
 (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

Step Four—Implement the Native Method
The native method can now be developed, after making sure to include the generated header
file within the native method implementation file. The native method prototypes can be taken
from the header file, to simplify matters (see Listing 49.3).

There are no restrictions for naming the native method implementation file. However, it is better to
choose a filename for the method that has some relationship to the actual Java file within which the
native method is declared.

N O T E

T I P

Writing Native Methods

57 1529-5 CH49 9/24/98, 9:07 AM1149

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

1150 Chapter 49 Extending Java with Other Languages

Listing 49.3 MyHello1.c—Native Method Implementation Program

#include “SayHello1.h”
#include <stdio.h>
JNIEXPORT# void JNICALL# Java_SayHello1_greet (JNIEnv *env, jobject this) {
 printf(“Hi folks! Welcome to the netherworld of native methods!\n”);
}

Step Five—Create the Shared Library
This step varies quite a bit, depending on the target platform, and requires the availability of a
compiler that enables you to create a shared library. For Solaris, a shared object is created
quite easily by using the appropriate compiler option. It is important that the path of the stan-
dard JDK 1.2 includes files that are properly denoted during the compilation process.

The following command has the effect of creating the shared object libsayhello1.so on
Solaris platforms, for example.

cc -G MyHello1.c -I $JAVAHOME/include -I $JAVAHOME/include/solaris -o
➥libsayhello1.so

For Windows 95 and Windows NT, you can create a DLL for the native implementation as
follows:

cl MyHello1.c -I$JAVAHOME\include -I$JAVAHOME\include\win32 -Fesayhello1.dll -MD
➥-LD -nologo
$JAVAHOME\lib\javai.lib

For Windows 95 and Windows NT, you can use any C or C++ compiler that enables you to
create DLLs. You have to make sure that you include the path of the relevant JDK, including

files, when you create the DLL. ■

Step Six—Run the Java Program
Running the application as

java SayHello1

produces the following output:

Hi folks! Welcome to the netherworld of native methods!

On Solaris platforms, please note that the environment variable LD_LIBRARY_PATH should contain
the path of the newly created shared object.

Accessing Object Fields from Native Methods
JNI methods can easily access and even alter the member fields of the invoking object. This
is done by using the various JNI accessor functions made available to programmers via the
interface pointer that is passed by default as the first argument to every JNI method. The JNI

N O T E

T I P

57 1529-5 CH49 9/24/98, 9:07 AM1150

1151

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

interface pointer is of type JNIEnv. The second argument differs on the nature of the native
method. For a non-static native method, the argument is a reference to the object; whereas for
a static method, it is a reference to its Java class.

Accessing Java object members through the accessor functions is what ensures the portability
of the native method implementation. Assuming the vendor of a VM implements the JNI, your
native methods should work irrespective of how the Java objects are maintained internally.

Take a look at the function prototype back in Listing 49.3.

JNIEXPORT# void JNICALL# Java_SayHello1_greet (JNIEnv *env, jobject this)

You see that the first two arguments for this method are passed by default by the Java environ-
ment. The interface pointer env gives you access to the accessor functions, and the object
reference this refers to the instance that invoked the native method.

Listing 49.4 is a modification of Listing 49.1. Here, you have added a couple of public fields to
class, and you see how they can be accessed and changed in Listing 49.5.

Listing 49.4 SayHello2.java—Java Program to Demonstrate Object Access
from Native Methods

public class SayHello2 {

 public String aPal = “Java Joe”;
 public int age=0;
 public native void greet();

 static {
 System.loadLibrary(“sayhello2”);
 }

 public void howOld() {
 System.out.println(aPal + “ is “ + age + “years old today!”);
 }
 public static void main(String[] args) {
 SayHello2 mySayHello2 = new SayHello2();

mySayHello2.greet();
mySayHello2.howOld();

 }
}

Listing 49.5 MyHello2.c—Native Method Implementation Program to
Demonstrate Object Access

#include “SayHello2.h”
#include <studio.h>
JNIEXPORT# void JNICALL# Java_SayHello2_greet (JNIEnv *env, jobject this) {
 jfieldID jf;

continues

Accessing Object Fields from Native Methods

57 1529-5 CH49 9/24/98, 9:07 AM1151

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

1152 Chapter 49 Extending Java with Other Languages

 jclass jc;
 jobject jobj;
 const jbyte *pal;
 jint new_age=2;
 jc = (*env)->GetObjectClass(env, this);
 jf = (*env)->GetFieldID(env,jc,”aPal”,”Ljava/lang/String;”);
 jobj = (*env)->GetObjectField(env,this,jf);
 pal = (*env)->GetStringUTFChars(env,jobj,0);
 printf(“Hi %s! Welcome to the netherworld of native methods!\n”, pal);
 jf = (*env)->GetFieldID(env,jc,”age”,”I”);
 (*env)->SetIntField(env,this,jf,new_age);
}

In Listing 49.5, you see how you can not only access the value of a Java field, but can also reset
Java field values from within the native method itself.

The Java class file and shared library are created as before, and on execution, you get the
following output:

Hi Java Joe! Welcome to the netherworld of native methods!
Java Joe is 2 years old today!

TROUBLESHOOTING

Why am I getting all the exception errors?

If you get a ton of Java exception errors, the most likely cause could be an incorrect type signature for
your GetMethodID() function call. Verify that the signature is correct and recompile your shared
library.

Object fields are accessed and used within native methods by following these four steps:

1. Get the class type of the invoking object.

2. Get the field ID.

3. Use the appropriate GetField()/SetField() accessor functions to retrieve/set the
object field.

4. Convert the retrieved object field as needed to use within the native method.

The GetObjectClass is used to determine the class of the object invoking the native method.
You see that before the value of an object member field is accessed, you first need to obtain a
fieldID for it. The GetFieldID accessor function needs to know the exact field name, as well
as its type signature. Table 49.1 denotes the possible JVM type signatures.

Listing 49.5 Continued

57 1529-5 CH49 9/24/98, 9:07 AM1152

1153

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

Table 49.1 JVM Type Signatures

Type Signature Java Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

Lfully-qualified-class; fully-qualified-class

[type type[]

(arg-types)ret-type method type

Because the accessed field is of type String, its type signature is Ljava/lang/String.

The JNI interface pointer provides many functions to access the actual member field, depend-
ing on its type.

Table 49.2 shows the various GetField() functions that are available.

Table 49.2 Accessor Functions for Java Field Access

GetField Routine Name Native Type Java Type

GetObjectField() jobject Object

GetBooleanField() jboolean boolean

GetByteField() jbyte byte

GetCharField() jchar char

GetShortField() jshort short

GetIntField() jint int

GetLongField() jlong long

GetFloatField() jfloat float

GetDoubleField() jdouble double

Accessing Object Fields from Native Methods

57 1529-5 CH49 9/24/98, 9:07 AM1153

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

1154 Chapter 49 Extending Java with Other Languages

You make use of the GetObjectField function because the target field accessed is a Java ob-
ject. Also, you have to declare an equivalent native type to store the accessed Java field within
the native method.

Lastly, you see that object fields can have their values altered by making use of the appropriate
SetField() function. You make use of the SetIntField() function because the target field set
is of type int. As before, it is important to declare the correct native type to store the value of
the native field that is passed to the Java environment.

Table 49.3 shows the various SetField() functions that are available.

Table 49.3 Accessor Functions for Setting Java Field Values

SetField Routine Name Native Type Java Type

SetObjectField() jobject Object

SetBooleanField() jboolean boolean

SetByteField() jbyte byte

SetCharField() jchar char

SetShortField() jshort short

SetIntField() jint int

SetLongField() jlong long

SetFloatField() jfloat float

SetDoubleField() jdouble double

Table 49.4 denotes the primitive types that can be used within native functions.

Table 49.4 Primitive Types

Java Type Native Type Description

boolean jboolean unsigned 8 bits

byte jbyte signed 8 bits

char jchar unsigned 16 bits

short jshort signed 16 bits

int jint signed 32 bits

long jlong signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

void void N/A

57 1529-5 CH49 9/24/98, 9:07 AM1154

1155

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

Accessing Java Methods from Native Methods
The process of invoking a Java method from within a native method is a little complicated. By
using the techniques demonstrated in Listings 49.6 and 49.7, however, you will also be able to
call other native methods from within a native method. In fact, a native method can even call
itself recursively, if need be. Listing 49.6 is a good example of how a Java method can be in-
voked from a native method, with arguments passed to it. Listing 49.7 shows the C implementa-
tion and demonstrates the actual JNI syntax for accessing Java methods from native methods.

Listing 49.6 SayHello3.java—Java Program to Demonstrate Java Method
Access from Native Methods

public class SayHello3 {

 public String rectArea(int l, int b) {
 return “The area of the rectangle is “ + l*b + “ units” ;
 }
 public native void calc();

 static {
 System.loadLibrary(“sayhello3”);
 }

 public static void main(String[] args) {
 new SayHello3().calc();
 }
}

Listing 49.7 MyHello3.c—Native Method Implementation to Demonstrate
Java Method Access

 #include “SayHello3.h”
 #include <studio.h>
 JNIEXPORT# void JNICALL# Java_SayHello3_greet (JNIEnv *env, jobject this)
{
 jmethodID jm;
 jclass jc;
 jobject jo;
 const jbyte *area;
 jint x,y ;
 x =20;
 y =20;
 jc = (*env)->GetObjectClass(env, this);
 jm = (*env)->GetMethodID(env,jc,”rectArea”,”(II)Ljava/lang/
➥ String;”,x,y);
 jo= (*env)->CallObjectMethod(env,this,jm,x,y);
 area = (*env)->GetStringUTFChars(env,jo,0);
 printf(“%s\n”,area);

}

Accessing Java Methods from Native Methods

57 1529-5 CH49 9/24/98, 9:07 AM1155

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

1156 Chapter 49 Extending Java with Other Languages

The Java class file and shared library is created as before, and on execution, you get
this output:

The Area of the Rectangle is 400 units

Object methods can be called from within native methods by following these five steps:

1. Get the class type of the invoking object.

2. Get the method ID.

3. Initialize the variables that need to be passed as parameters to the Java method.

4. Use the appropriate CallMethod() accessor function to invoke the method.

5. Convert the returned object field as needed for use within the native method.

Looking at the type signatures in Table 49.1, you can deduce that the type signature for the
Java method rectArea() in Listing 49.6 is (II)Ljava/lang/String;. This is because the
method takes in two ints and returns back a String object.

Table 49.5 shows the various CallMethod() accessor functions that are available.

Table 49.5 Accessor Functions to Invoke Java Methods from Native Methods

CallMethod Routine Name Native Type Java Type

CallVoidMethod() void void

CallObjectMethod() jobject Object

CallBooleanMethod() jboolean boolean

CallByteMethod() jbyte byte

CallCharMethod() jchar char

CallShortMethod() jshort short

CallIntMethod() jint int

CallLongMethod() jlong long

CallFloatMethod() jfloat float

CallDoubleMethod() jdouble double

Accessing Static Fields
Thus far you have seen how to work with functions that work on instance fields and methods.
You can access static fields and methods of Java objects in much the same way by using some
of the special functions shown here.

57 1529-5 CH49 9/24/98, 9:07 AM1156

1157

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

GetStaticFieldID() The signature of the field accessed can be obtained from Table
49.1. After the signature has been obtained, the GetStaticFieldID() is used exactly as
the GetFieldID() function.

GetStaticField() Table 49.6 shows the various GetStaticField() functions that can
be used to access static fields. The selected function will depend on the data type of the
Java field accessed.

Table 49.6 Accessor Functions for Accessing Static Java Fields

GetStaticField Routine Name Native Type Java Type

GetStaticObjectField() jobject Object

GetStaticBooleanField() jboolean boolean

GetStaticByteField() jbyte byte

GetStaticCharField() jchar char

GetStaticShortField() jshort short

GetStaticIntField() jint int

GetStaticLongField() jlong long

GetStaticFloatField() jfloat float

GetStaticDoubleField() jdouble double

SetStaticField() Table 49.7 shows the available accessor functions that can be used
to modify the value of static Java fields. The chosen function will depend on the type of
the target static field.

Table 49.7 Accessor Functions for Setting Static Field Values

SetStaticField Routine Name Native Type Java Type

SetStaticObjectField() jobject Object

SetStaticBooleanField() jboolean boolean

SetStaticByteField() jbyte byte

SetStaticCharField() jchar char

SetStaticShortField() jshort short

SetStaticIntField() jint int

SetStaticLongField() jlong long

SetStaticFloatField() jfloat float

SetStaticDoubleField() jdouble double

Accessing Static Fields

57 1529-5 CH49 9/24/98, 9:07 AM1157

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

1158 Chapter 49 Extending Java with Other Languages

Accessing Static Methods
Static Java methods can be invoked just like instance methods, but by making use of the func-
tions GetStaticMethodID() and CallStaticMethod().

GetStaticMethodID() The usage of this function is identical to that of GetMethodID().
The developer will have to determine the method signature using Table 49.1, before
invoking the function.

CallStaticMethod Table 49.8 shows a listing of the available CallStaticMethod()
accessor functions. The developer will have to choose the appropriate one based on the
Java type of the data returned from the function call.

Table 49.8 Accessor Functions for Invoking Static Java Methods

CallStaticMethod Routine Name Native Type Java Type

CallStaticVoidMethod() void void

CallStaticObjectMethod() jobject Object

CallStaticBooleanMethod() jboolean boolean

CallStaticByteMethod() jbyte byte

CallStaticCharMethod() jchar char

CallStaticShortMethod() jshort short

CalStaticIntMethod() jint int

CallStaticLongMethod() jlong long

CallStaticFloatMethod() jfloat float

Exception Handling Within Native Methods
JNI methods can throw exceptions that can then be handled within the invoking Java object.
Following are some of the important functions available within the JNI interface pointer for
exception handling:

Throw

jint Throw(JNIEnv *env, jthrowable obj);

causes a java.lang.Throwable object to be thrown.

Parameters:

env The JNI interface pointer

obj A java.lang.Throwable object

57 1529-5 CH49 9/24/98, 9:07 AM1158

1159

P2/VB mp12 UsingJava1.2 1529-5 8.8.98 ayanna chapter 49 LP#3

49

VII
Part

Ch

Returns:

0 On success

Negative number On failure

ThrowNew

jint ThrowNew(JNIEnv *env, jclass classz, const char *msg);

initializes and constructs a new exception object instance of type classz with the diagnostic
msg and throws it.

Where:

env The JNI interface pointer

classz A subclass of java.lang.Throwable

msg A diagnostic message for the class constructor

Returns:

0 On success

Negative number On failure

FatalError

void FatalError(JNIEnv *env, char *msg);

raises an unrecoverable fatal error

Where:

env The JNI interface pointer

msg An error message

Exception Handling Within Native Methods

57 1529-5 CH49 9/24/98, 9:07 AM1159

57 1529-5 CH49 9/24/98, 9:07 AM1160

1161

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

C H A P T E R

Java Versus C(++)

50

In this chapter

Common Ancestry 1162

Basic Java Syntax 1162

The Structure of Java Programs 1164

Java Data Types 1167

Objects and Classes 1169

Aggregates: Strings, Arrays, and Vectors 1174

Class Hierarchies and Inheritance 1177

Statements 1180

Name Spaces 1182

58 1529-5 CH50 9/24/98, 9:08 AM1161

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1162 Chapter 50 Java Versus C(++)

Common Ancestry
The Java and C++ programming languages both share the C language as a common ancestor,
and thus the three languages share many features and syntactic constructs. But it will be clear
to any C or C++ programmers reading this book that there are also many differences. The
languages are similar, but certainly not identical. C programmers will find that Java is mostly
additive, that it forms a superset of C. Although it is true that some loved (and hated) features
of C are missing in Java—most notably the pre-processor and support for pointers—there are
far more areas where Java introduces new constructs and new features. Most obvious in the
latter category is Java’s support for the object-oriented programming paradigm.

C++ programmers will find the differences between C++ and Java more subtle. Some are fairly
minor, like the scope of a variable declared within a for loop control statement. Others, unfor-
tunately, are quite profound, like the Java object reference model and its support for polymor-
phic behavior.

This chapter contains a concise comparison of C, C++, and Java. If you have prior experience
with C or C++, you can use this chapter to accelerate your progress with Java. If you don’t have
prior experience, you can use this chapter to gain some insights into how Java evolved. And no
matter what your background, you can use this chapter as a quick reference.

Basic Java Syntax
There are many small differences between C/C++ and Java. None of these are particularly
difficult to understand, but there are quite a few of them, and they can be difficult to remember.
This first section covers the most basic differences.

Lexical Structure
The lexical structures of Java, C, and C++ are nearly the same. The source code for the pro-
gram is broken down into tokens that combine to form expressions and statements. All three
languages are freeform languages, which means that there are no special rules for the position-
ing of tokens in the source stream. Whitespace, consisting of blanks, tabs, and newlines, can be
used in any combination to separate tokens. As in C and C++, semicolons are used to delimit
statements. Anywhere a single statement is required, multiple statements can be combined
within braces to form a single compound statement.

CAUTION

Although whitespace can be used to separate tokens, it cannot be used to separate the components of a
token. For example, whitespace cannot be placed between the two characters of an operator such as ++
or *=.

58 1529-5 CH50 9/24/98, 9:09 AM1162

1163

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

Comments
There are three forms of comments in Java:

■ The traditional C comment, introduced with /*, and encompassing all text up to the
first */.

■ The BCPL comment, which is introduced with // and continues until the end of the
current line. Everything to the right of the // on the current line is a comment.

■ The Javadoc comment, introduced with /**, and encompassing all text up to the first */.
Although Javadoc comments look like traditional C comments, they have special
meaning.

◊ See “JDK Tools: Javac, AppletViewer, Javadoc,” (ed says maybe CH04), p. 56

The following code fragment illustrates the three styles:

/* This is the first line of a multi-line comment
this is the second line of the comment */
int tableSize; // This is a single line comment
/** This is a Javadoc comment */

As in C and C++, Java comments do not nest. Take a look at the following example:

/* This is a line of a comment
/* Someone might think this is a nested comment */
But this line is no longer part of a comment
*/ n ■

CAUTION

Many C and C++ programmers are used to being able to nest comments, despite the preceding note. This is
because some C and C++ compiler vendors have added support for nested comments to their products.
Don’t be fooled into thinking that these extensions are actually part of the C or C++ language—they aren’t!

What’s Missing
A number of constructs from C and C++ are not present and not supported in Java. Some of
these, like the lack of pre-processor, get special attention later in this chapter. Others are more
minor and are collected here. In most situations, you can achieve similar results using alternate
Java syntax.

No Pointers Pointers are not supported in Java in any way, although the Java reference
model is very similar to the use of pointers in C++. There are no pointer operators, and there is
no way of directly manipulating memory locations by address. Furthermore, memory cannot
be allocated and de-allocated at programmer convenience as is the case in both C and C++.

No C++ Reference In C++, reference variables can be defined to refer to any native or ab-
stract data type. In Java, all objects of class type are manipulated via references, so no special
syntax is necessary. However, there is no way in Java to declare a reference to a native type.

N O T E

Basic Java Syntax

58 1529-5 CH50 9/24/98, 9:09 AM1163

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1164 Chapter 50 Java Versus C(++)

Instead, one of the Java wrapper classes defined in java.lang can be used (for example,
Integer, Float, and so on).
◊ See “Primitive Types and java.lang Wrapper Classes,” p. 1171

No Structs, Unions, or Enums The C and C++ strict construct no longer exists. A C struct
can be mimicked in Java by defining a class with all data elements public and with no methods.
The enum construct isn’t supported either, but can be mimicked by defining a class with no
methods, and with all data elements public, static, and final. C and C++ unions are not sup-
ported and there is no trivial way to provide similar functionality.

No consts The const keyword, although reserved in Java also, isn’t currently used for any-
thing. In C++, use of the const modifier was encouraged to eliminate the need for #define
constants. In Java, the final modifier can be used to achieve a similar effect: Data elements in
a class that are declared to be final must be initialized when they are declared, and thereafter
cannot be modified.

The Runtime Library
C programmers are accustomed to using the C runtime library in every program they write.
The very first C program a programmer creates is traditionally the “Hello world” program, in
which the following line appears:

printf (“Hello, world!\n”);

The printf function is defined in the C runtime library and is available to be used in any C
program.

In C++, the equivalent functionality is usually provided by classes and methods in the iostream
class library. The traditional first program for a C++ programmer might contain a line like the
following:

cout << “Hello again, world!\n”;

The functionality provided by the iostream class library is again available to any C++ program.

In Java, the functionality you have come to expect in the C runtime library, or in the standard
C++ class libraries, is provided in the Java API. The API defines a large number of classes, each
with many different methods. The traditional first program might now contain the line

System.out.println (“Hello from Java!”);

The println method is defined in the PrintStream class. System.out is an instance of the
PrintStream class. The important thing is that the functionality provided by the Java API,
which includes everything that the old C runtime library does and much more, is available to
every Java program you write.

The Structure of Java Programs
When you first start reading Java code, two things strike you right away. First is the minor
syntax differences like the ones listed in the previous section. Second is the overall structure of
the Java program.

58 1529-5 CH50 9/24/98, 9:09 AM1164

1165

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

The Big Picture
In C, the big picture of a program is that it is a collection of procedures or functions that inter-
act with one another. Processing begins with the function called main, and from there all the
functions call one another. In Java, the big picture is of a collection of class definitions, the
instances of which are interrelated and interact. In some respects, this is the essence of object-
oriented programming.

Java programs themselves are classes and come in two main flavors. Applications are classes
that have a main method, and applets are classes that extend the Applet class.

The definitions of application and applet are not mutually exclusive. By creating a class
that both extends the Applet class and has a main method, it is possible to write one

program that can be used as either application or applet at the user’s choice. ■

In this context, as in many others, C++ is halfway between C and Java. C programs are collec-
tions of functions, Java programs are collections of classes, and C++ programs are collections of
both functions and classes.

Methods Yes, Functions No
As pointed out, C programs are just collections of functions. In C++, most programs are collec-
tions of classes, similar to programs in Java. However, a C++ program begins execution with
the function called main, just as C programs do. Moreover, C++ provides explicit support for
functions that behave like C functions, in addition to methods that are part of class definitions.
Java is much more pure in its object orientation than C++, however, and, as such, provides no
support for functions except as methods defined within a class.

If you must create functionality similar to that provided by C and C++ functions (a math library, for
instance), you can do so by creating a utility class that consists only of static methods and static data
items.

No Pre-Processor
When many C and C++ programmers learn that the pre-processor no longer exists in Java, they
are quite skeptical. The truth is that the pre-processor isn’t supported in Java because the
language no longer has need of it.

Constant Values There are no #define constants in Java. As previously seen, data elements
in a class definition can be declared to be final, however, in which case their initial values can
never be changed. To get as close as possible to the functionality of a #define, you would cre-
ate those data elements to be public, static, and final.

The Java equivalent to the C #define is far superior. Its name is protected by the
compiler, it has a true data type, and its use can be verified for correctness by the

compiler. ■

N O T E

T I P

N O T E

The Structure of Java Programs

58 1529-5 CH50 9/24/98, 9:09 AM1165

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1166 Chapter 50 Java Versus C(++)

Macros C macros, also implemented with the #define construct of the pre-processor, were
designed to provide a function-like construct that could be implemented at compile time, thus
avoiding the runtime overhead associated with a function invocation. Java does not provide an
equivalent to the C macro. Remember, however, that C macros are extremely error-prone and
are a fairly consistent source of program bugs. C++ programmers are encouraged to forego the
#define macro in favor of the C++ inline function. Java does not explicitly support the inline
keyword, but Java compilers are free to inline any function they choose to as part of their gen-
eral optimization process.

Source File Inclusion Java does not provide anything equivalent to the C #include directive
for source file inclusion. In practice, however, there is little need for this in Java code. The two
most common uses of the #include in C are for the creation of #define constants and for the
declaration of function prototypes. As just seen, Java supports constant values through quite a
different syntax, which doesn’t require source file inclusion. And because Java doesn’t support
a method declaration separate from its definition, there is no need for prototypes.

C compilers only support very limited forms of forward reference, meaning that symbols—
function names in this case—must be declared before they are used. In practice, this

means that C programmers must either provide a function prototype—a declaration—or must ensure
that the function definition comes before the first time the function is used. Java, on the other hand,
supports very liberal forward references, thus eliminating the need for separate function
declarations. ■

The following code fragments illustrate the different pre-processor issues just discussed. The
first fragment is C++:

#include <iosteam.h>
#define PLAYERS 2

class Game
{
public:
Game()
{ cout << “Constructing the Game\n”; }
};
Now look at the Java equivalent:
import java.lang.*;
class Game{
public Game()
{ System.out.println (“Constructing the Game”); }
public static final int PLAYERS=23;
}

Notice how the import statement appears to take the place of the #include. The two state-
ments are superficially similar, but in fact accomplish quite different objectives. The #include
does a straight source file inclusion on the part of the C pre-processor. Because the pre-
processor doesn’t understand C syntax (it’s basically a batch-mode text editor), the source file
being included could contain anything. The import statement doesn’t actually include any-
thing, but rather tells the compiler where to look for classes that you want to make use of.

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1166

1167

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

The preceding example imports the java.lang package. In fact, that is the one package that the Java
compiler will import automatically, with or without an import statement. You can make use of classes in
java.lang without explicitly importing them yourself.

Source Filenames
At the moment, most development kits for Java, including the Sun JDK, require that the defini-
tion of a public class be contained in a source file of the same name. Thus, the definition of the
InventoryItem class would have to be contained in a source file named InventoryItem.java.

Although the current naming restrictions apply only to the definition of public classes, it is
common practice in the Java community to define one class per source file, regardless of
whether the class is public or not. This practice will be a little unfamiliar to many C and C++
programmers, who might be amazed at the number of source files used in the creation of a
single Java program. However, it does make Java source code much easier to find—both for
you and for the compiler—and lends some consistency to file naming.

Java Data Types
Java support for data types is stronger and more specific than that in C or C++. In this section,
you look at integral data types, Unicode characters, Booleans, floating-point types, and aggre-
gate types. You also take a look at converting from one Java data type to another.

Integral Data Types
It is in the integral data types that you see most of the differences between Java and C/C++.
Much of what was platform-dependent in C or C++ is now clearly defined in Java. Table 50.1
summarizes the differences.

Table 50.1 Comparison of Java and C/C++ Data Types

Data Type C/C++ Java

byte Didn’t exist; char instead 8 bits usually used

char 8 bits; one ASCII or EBCDIC character 16 bits
one Unicode character

short At least 16 bits 16 bits

int Usually 16 or 32 bits 32 bits

long At least 32 bits 64 bits

There are no unsigned integral data types in Java. ■

T I P

Java Data Types

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1167

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1168 Chapter 50 Java Versus C(++)

Unicode Characters
In Java, the char and String data types are not single-byte ASCII or EBCDIC values, but are
instead 16-bit values taken from the Unicode character set. The larger data type means that a
larger number of possible values are supported, giving greater flexibility to programmers in
non-English or multilingual environments. In the Unicode set, the first 256 characters are iden-
tical to the ASCII characters 0x00-0xFF (which is also ISO standard ISO8859-1).

Specific values from the Unicode character set can be represented in Java using the syntax
\uhhhh, where h is a hexadecimal character representing four of the 16 bits in the Unicode
character. In fact, you don’t need to specify all four hex digits; if fewer than four digits are speci-
fied, then the high-order bits are set to zero.

Java also supports C and C++ escape sequences such as \n, \r, and \t to represent non-
printing control characters. ■

The boolean Data Type
Neither C nor C++ provides a native boolean data type. In both those languages, most program-
mers use int variables to hold Boolean values, with the convention that a value of 0 represents
false and a value of 1 represents true. Furthermore, the logical and relational operators in C
and C++ all produce integer values, and the control statements on loops or an if statement
both take integer values as control expressions.

In Java, the native boolean data type is used in all these situations. The boolean data type sup-
ports only two possible values: true and false. The relational and logical operators all produce
values of boolean type, and the logical operators will only accept operands that are of boolean
type. The control expression in Java loops and the Java if statement may only have boolean
type.

CAUTION

The words true and false are values of the boolean type, just as 1, 2, or 3 are values of an integer type.
Even though they are not defined as keywords in the Java language grammar, they are nonetheless reserved,
so you can’t use them as variable or class names.

Floating-Point Types
Java supports float and double data types, just as C and C++ do. However, in those languages,
the behavior of those data types is platform-dependent. In Java, all floating-point behavior—
including the limits that float and double variables can take—is defined by the IEEE 754 stan-
dard for floating-point arithmetic.

Most modern C and C++ compilers also provide support that is consistent with
IEEE 754. For most programmers, therefore, Java formalizes behavior that they are

already familiar with. ■

N O T E

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1168

1169

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

Aggregate Data Types
Aggregate data types, including strings and arrays, are implemented somewhat differently in
Java. Most notably, String is a native data type in Java, and the + operator can be used to con-
catenate strings. Also, arrays and strings both have known lengths that can be reliably de-
pended on at runtime. As in C and C++, arrays must be statically sized. Dynamically sized
aggregates in Java are supported by way of the Vector class. (See the section “Aggregates:
Strings, Arrays, and Vectors” later in this chapter for more information.)

Type Conversion and Casting
C and C++ both support ad hoc type conversions all over the place—in expression evaluation,
assignments, and function invocations, to name a few places. Java also supports ad hoc conver-
sions, but only under very controlled circumstances. In particular, if a conversion is a narrow-
ing conversion (one that could result in a loss of precision), then the conversion will only be
allowed with an explicit cast. Consider the following example:

byte b=126;
int i=17;
float f=(float)3.50;
b = (byte) (b+i); // cast to byte required
i = (int) f; // cast to int required
f = i; // no cast required...
// this is not a narrowing conversion

Objects and Classes
Java and C++ both support the object-oriented programming paradigm, and hence they both
have support for objects and classes, which C does not. When you are comparing Java and C,
all the syntax that supports object orientation—including support for objects and classes—for
inheritance and for interfaces, will be new. If you are a C programmer unfamiliar with object-
orientation, then it would be best for you to refer back to the material in Chapter 5, “Object-
Oriented Programming,” and Chapter 11, “Classes.”

Even though both C++ and Java support object-orientation, and both include support for ob-
jects and classes, there are a number of subtle and important differences between the two
languages in these areas. This section is a collection of the major differences.

Declaring Reference Types
In addition to the primitive data types (char, int, and so on) are objects, arrays, vectors, and
strings. All these are manipulated by reference rather than by value and are referred to as
reference types. Consider the following declaration:

GameTable chessBoard;

Objects and Classes

58 1529-5 CH50 9/24/98, 9:09 AM1169

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1170 Chapter 50 Java Versus C(++)

If GameTable is a class you have previously defined somewhere, then the preceding declaration
would be syntactically correct in both C++ and Java. However, in C++, this would have created a
new instance of the GameTable class. In Java, the preceding declaration is only a declaration of
the variable chessBoard to be of reference type; it is a reference to a GameTable, but it doesn’t
yet refer to any particular instance of that class. In Java, you must also instantiate the object,
using the new operator:

GameTable chessBoard;
chessBoard = new GameTable ();

In Java, as in C and C++, the declaration of a variable and its initialization can be
combined into one statement:

GameTable chessBoard = new GameTable ();

The above line declares the variable chessBoard to be a reference to a GameTable, and also
instantiates a new GameTable that chessBoard now refers to. ■

Manipulating References
When manipulating objects in Java, it is again important to remember that you are manipulat-
ing references, not instances. In the following code fragment, variables b1 and b2 are distinct
variables, and therefore can hold distinct references; but following the assignment, they both
refer to the same instance:

Box b1, b2; // 2 references to type Box
b1=new Box(2,2); // instantiate b1
b2=b1; // b1 and b2 now both refer to the
 // same instance

The object/reference relationship in Java is also significant when you are comparing refer-
ences. Take a look at the following code fragment:

Box b1, b2; // 2 references to type Box
b1=new Box(2,2); // instantiate b1
b2=new Box(2,2); // instantiate b2 with same values
if (b1==b2) // This expression compares false

In the final line of the example, the references b1 and b2 are being compared. By default, this
only compares true if the two references are actually referring to the same instance. Because
b1 and b2 are referring to two different instances (albeit with the same values), the comparison
has to yield false.

All classes in Java inherit from the Object base class, which defines an isEquals method with the
previously mentioned behavior. If you want comparisons such as the one you’ve just seen to behave
differently, just override isEquals in your own class to produce true or false according to your own
criteria.

N O T E

T I P

58 1529-5 CH50 9/24/98, 9:09 AM1170

1171

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

Method Invocation Call-by-Value and Call-by-Reference
Like C and C++, the default behavior of method invocations in Java is call-by-value. Remember,
though, that objects are always manipulated by reference. This means that when you call a
method and attempt to pass an object as an argument, you are really passing a reference to that
object; the “value” being passed is a reference to an object. In effect, by passing native types as
arguments to a Java method, it is call-by-value; when passing reference types, it is call-by-
reference.

If you need to call a method and pass a reference by value, you can achieve the same effect by taking
a local copy of the object first, as in the following code:

Box b1 = new Box (2,2);
valueMethod (new Box (b1));

In this case, the reference being passed to valueMethod is a new instance that is being initialized
with b1. Any changes made to the reference within the method will not affect b1.

Primitive Types and java.lang Wrapper Classes
In the java.lang package, several classes are defined that “wrap” a primitive data type in a
reference object. For example, an int value can be wrapped in an Integer object. One of these
wrapper classes exists for each of the primitive data types. There are a number of interesting
ways in which these wrapper classes can be used to make your life easier.

Passing Primitive Types by Reference There is no explicit reference syntax in Java analo-
gous to the & reference syntax in C++. For example, in C++, a method can be defined to take a
reference to an argument being passed, rather than taking the argument’s value. In Java, to
pass a primitive data type by reference, you must first wrap the value in an object as follows:

int j = 17;
Integer arg = new Integer (j);
methodCalledByReference (arg);

CAUTION

Note that the wrapper classes supplied in java.lang do not provide methods for setting or updating the
values of primitive type that they contain, which limits their usefulness in situations such as that outlined in
the preceding. If you find yourself trying this too often, you might be thinking C++ instead of thinking Java.

Adding Primitive Types to a Vector The Java Vector class allows you to create a dynamically
sized aggregate of reference types. However, because the elements in the vector must be refer-
ences, you can’t add values of the primitive types to a vector. Instead, wrap the primitive value
in a wrapper object and add that new object to the vector. Here’s an example:

Vector sizes = new Vector ();
Integer small= new Integer (5);
sizes.addElement (small);

T I P

Objects and Classes

58 1529-5 CH50 9/24/98, 9:09 AM1171

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1172 Chapter 50 Java Versus C(++)

The int value 5 has been wrapped in the small object, which has then been added to the sizes
vector.

Because Java hashtables also are designed to store object references, the preceding
comments apply to hashtables as well as to vectors. ■

Converting Primitive Types to Strings The java.lang wrapper classes each define a method
called toString that converts the primitive value to a Java String. This can be very useful
when you need a String but only have a value of a primitive data type. In the following ex-
ample, you need a String version of a floating-point value, so that you can pass it as an argu-
ment to the drawString method from within an Applet’s paint method:

Float temp = new Float (this.interestRate);
g.drawString (temp.toString(), 10, 10);

As you can see, you first wrap the interestRate value in a Float object. Then you invoke the
Float object’s toString method to create a valid Java String, which you then pass to
drawString.

The Object Life Cycle
Like any other data element or data structure, Java objects have a definite life cycle: They are
created, they have a useful life, and then they are destroyed. This is also true of objects created
as part of a C++ program. There are differences, however, in how the two languages manage
the life cycle of an object.

When Objects Are Created In C++, an object is created in one of two ways. If an object is
being stored in a variable, then the object is instantiated— created—when the variable comes
into scope. It is destroyed when the object goes out of scope. If a C++ object is being manipu-
lated via a pointer, however, it is only instantiated when the new operator is used.

Life in Java is a little simpler than this. There is only one way to create and use Java objects,
and that is by reference. Hence, an object doesn’t exist until it is created with the new operator:

Table r; // Table object doesn’t yet exist
r = new Table (); // Only now does the Table object exist

This is very similar to the C++ syntax that would be used if the object were to be manipulated
via a pointer:

Table *r; // C++ code to create pointer
r = new Table (); // C++ code to instantiate Table object

As in C++, it is only when the object is actually instantiated that a constructor method is in-
voked.

Both Java and C++ constructor methods can be overloaded. That is, there can be more
than one of them as long as their signatures (the number and types of the arguments)

are different. ■

N O T E

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1172

1173

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

When Objects Are Destroyed How a C++ object is destroyed depends on how it was created.
If an object is being stored in a variable, then the object is destroyed when the variable goes
out of scope. If a C++ object was created using the new operator, then it is only destroyed when
the programmer explicitly requests it with the delete operator.

Once again, things in Java are a little different. An object is created when it is instantiated with
the new operator. An object is destroyed, at least in principle, when there are no longer any
references to it. Consider the following little code fragment:

Square s1 = new Square (5);
Square s2 = new Square (10);
s2=s1;

As soon as you perform the final assignment, both s1 and s2 refer to the same object. There
are no longer any references to the Square object that was created as Square(10). It is at that
point that the object created as Square(10) is, in principle, destroyed.

Why do I keep saying “in principle?” Because Java uses a form of dynamic memory manage-
ment known as garbage collection. This means that memory deallocation is done automatically
by the Java garbage collector, rather than under the control of the programmer. Because the
garbage collector usually runs in a separate thread, it would be more accurate to say that an
object “is eligible for garbage collection” rather than to say that it is “destroyed.” The distinc-
tion is really only academic, however; whether it is destroyed or just made ready for garbage
collection, the reality is that the object can no longer be used in the program. For all practical
purposes, that object has ceased to exist.

Although Java supports constructors, it doesn’t support explicit destructors, as in C++.
There is a finalize method, however, that you can override in your class definition, and

that is invoked when the object is garbage collected. Because the timing of garbage collection is not
predictable, however, the finalize method is not as commonly used as a destructor is in C++. ■

Java References Versus C++ Pointers
It has probably become clear to you in this section that much of the Java syntax for manipulat-
ing objects is very similar to that used in C++—right down to the use of the new operator to
instantiate an object. But when using the new operator in C++, you are given an address of an
object, which you can then assign to a pointer variable. In Java, the new operator returns an
object reference to you that you can then assign to a reference variable.

Some people, especially those new to Java, feel that the use of references in Java is really the
same as the use of pointers in C++—that it is the same construct with a different name. There
is some truth to this, and if you are familiar with C++ syntax you will likely find the Java syntax
quite easy to pick up. But there is an important difference. In Java, all the memory manage-
ment is done for you automatically, and you can never manipulate a memory address directly.
Whether the Java interpreter uses pointers underneath it all to implement references isn’t
really important. What’s important is that Java programs will, in this regard, be more stable
and reliable than their C and C++ counterparts.

N O T E

Objects and Classes

58 1529-5 CH50 9/24/98, 9:09 AM1173

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1174 Chapter 50 Java Versus C(++)

C++ programmers are familiar with this, which is a pointer variable containing the
address of the object for which a method was invoked. In Java, you have this as well, only

now it is a reference instead of a pointer. Other than that, its meaning is the same. ■

Aggregates: Strings, Arrays, and Vectors
Like C and C++, Java provides a number of mechanisms for creating aggregates of values,
whether those values be of primitive type or of a reference type. In this section, you look at the
three most common aggregates in Java: strings, arrays, and vectors.

Strings
In Java, strings are handled much as they are in C++. The most significant exception is that
after a String is declared, its contents cannot be changed. To actually modify a String, you
must create a StringBuffer object that can be initialized with a String and then modified. You
can then create a new String with the contents of the StringBuffer. The following code frag-
ment illustrates such a process:

//create the initial String object
String badString = new String(“This is a String”);
// create the StringBuffer that we can modify
StringBuffer correction = new StringBuffer(badString);
// make the modification to the StringBuffer object
correction.insert(12,=i=);
// create a new String object with the corrected contents
String goodString = new String(correction);

Java Strings, like many other Java objects, have known and dependable sizes. For a
String object, the length method returns the length of the String as an int. It is not

possible for Strings to “overflow” as it is in C and C++. ■

Arrays
Java arrays are very similar to C and C++ arrays. They are homogenous aggregates (that is,
each element is of the same data type), and they have a fixed size. However, there are also
some subtle differences.

Arrays of Primitive Types In Java, arrays are instances of a hidden array class—hidden in the
sense that there is no Array keyword to denote the class name. Nonetheless, arrays must be
instantiated just as other objects must. The following example declares myArray to be an array
of ints:

int[] myArray;

N O T E

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1174

1175

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

In Java, the empty square brackets that indicate myArray are an array reference that can
be placed just after the data type (as in the preceding), or can be placed after the variable

name:

int myArray[];

Placing them immediately after the type name is the preferred Java style. ■

At this point, however, myArray is a reference variable that doesn’t refer to anything. You must
still instantiate the array object:

myArray = new int[10];

The size of a Java array is fixed at compile time, just as it is in C and C++. If you need to create a
dynamically sized array, use a vector instead.

As in C++, the two steps outlined above can be combined onto one statement, as follows:

int[] myArray = new int[10];

C and C++ programmers are used to being able to initialize arrays at the time they are de-
clared, using syntax similar to the following:

// declaring and initializing a C array
int powers[3] = {3,9,27};

In such situations, the size of the array can be omitted; the compiler determines the size of the
array based on the number of initial values supplied.

The same syntax can be used in Java. The following example accomplishes three distinct tasks:
it declares powers to be an array of ints, instantiates the array, and initializes each element in
the array. The size of the array is taken from the number of initializers:

int[] powers = {3,9,27};

The empty square brackets are also used to denote an array when the array is being passed to
a method as an argument. The following example shows an array of ints and an array of chars
being accepted as arguments in a method definition:

public syntaxExample(int[] thisInt,
char[] thisChar)
{
// method body goes here
}

Arrays of References As in C and C++, it is also possible to have Java arrays of non-primitive
types. In Java, such arrays are of reference types; that is, such an array will be an array of refer-
ences. The basic syntax still holds. The following example creates an array of 31 Month refer-
ences:

Month[] year = new Month[12];

After the preceding line has been executed, an array of 12 Month references will have been
instantiated, and year will be a reference variable that refers to that array. But none of the 12

N O T E

T I P

Aggregates Strings, Arrays, and Vectors

58 1529-5 CH50 9/24/98, 9:09 AM1175

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1176 Chapter 50 Java Versus C(++)

elements in the array yet refer to anything. You have instantiated the array, but you have not
yet instantiated any of the 12 Months. If the Month class has a constructor that takes a String as
an argument, you might go ahead and instantiate the elements of the array as follows:

year[0] = new Month (“January”);
year[1] = new Month (“February”);
year[2] = new Month (“March”);
// ... and so on

Java arrays, like their C and C++ counterparts, use only zero-origin subscripting. Thus, an
array of 12 elements has valid subscripts from 0 to 11 inclusive. ■

Java arrays, like Java Strings, have fixed and dependable sizes. Each array object has a length
variable associated with it that contains the correct length of the array. In the preceding example,
year.length would be 12.

Vectors
In C and C++, dynamic memory allocation under the control of the programmer is a time-
honored tradition—unfortunately a tradition that has produced some pretty unstable code over
the years. In Java, such dynamic memory allocation is not directly possible. However, there are
many situations in which a data structure of dynamic size is critical to the solution of the prob-
lem. In such situations, Java programmers can turn to the Vector class.

Java Vectors are like dynamically sized arrays. They consist of a dynamic number of refer-
ences to objects. References can be added to and removed from the Vector at will, using meth-
ods such as addElement and removeElement. Because all Java classes inherit from the Object
class, it follows that the elements in a Java Vector can be references to any Java class.

When a reference is retrieved from a Vector, it is of type Object. It must therefore be
cast to be of the appropriate reference type before it can be used reliably.

Each element in a Vector is numbered, with element numbers beginning at 0. This is consistent with
the subscripting of Java arrays and with the use of arrays in C and C++. Java Vectors, like Java arrays
and strings, have dependable sizes. The size method in the Vector class returns the number of
elements currently stored in the Vector. ■

The following code fragment shows a Vector of Months, very similar to the array of Months we
had a few pages ago:

MonthVector = new Vector();
MonthVector.addElement (new Month (“January”);
MonthVector.addElement (new Month (“February”);
MonthVector.addElement (new Month (“March”);
// and so on...

For more information on Vectors, take a look at Chapter 33, which covers the java.util
package.
◊ See “java.util,” p. 35

N O T E

T I P

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1176

1177

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

Class Hierarchies and Inheritance
Most Java programs, like most C++ programs, make extensive use of inheritance, in which one
class is defined in terms of another. The new class, also called the derived class or the subclass,
is said to inherit all the characteristics of the original class—also called the base class or the
superclass. When a base class itself inherits characteristics from another class, the result is
said to be a class hierarchy. (For more on inheritance, see Chapter 5 on object-oriented pro-
gramming.)

In a class hierarchy, one class may be both a subclass of some class and a superclass of
another. This should not strike you as being strange. In real life, someone’s parent is also

someone else’s child.

In Java, all classes are subclasses of the Object base class and inherit all its characteristics. ■

The Syntax of Inheritance
The syntax for creating derived classes in Java is different from C++. When deriving a subclass
from a superclass, Java uses the extends keyword in the new class’s definition. The following
example contrasts the syntax for both C++ and Java. In both cases, you are creating a class
called CaptionedRectangle, which inherits from the Rectangle base class.

First, the C++ version:

class CaptionedRectangle : public Rectangle
{
// definition of class here
}

Now here’s the Java equivalent:

class CaptionedRectangle extends Rectangle
{
// definition of class here
}

The instanceof Operator
The instanceof operator is a real bit of convenience. This operator takes two operands: a
reference on the left and the name of a class on the right. The operator returns true if the
object referred to by the reference is an instance of the class on the right or of any of its sub-
classes. In the following example, you only want to invoke the checkInsurance method if obj
refers to an object of the Vehicle class:

void quarterlyUpdates (Object obj)
{
if (obj instanceof Vehicle)
{
obj.checkInsurance ();
}
}

Class Hierarchies and Inheritance

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1177

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1178 Chapter 50 Java Versus C(++)

Because all classes are derived from Object, the expression (obj instanceof
Object) will always return true. ■

Inheritance and Polymorphism
In Java, a variable declared to be of some class type can actually be used to refer to any object
of that class or of any of its subclasses. Given the earlier classes Rectangle and
CaptionedRectangle, you could have the following:

void updateScreen (Rectangle r)
{
r.display ();
}

If r happens to refer to a Rectangle object, then the display method from the Rectangle class
is invoked (if there is one). If r refers to a CaptionedRectangle, then the display method of
the CaptionedRectangle class is invoked. This is the essence of polymorphism, a concept in
object-oriented programming in which a single interface (in this case, the display method) can
actually have multiple implementations.

C++ programmers are familiar with this behavior. However, for a C++ class hierarchy to
exhibit this behavior, the display method in the base class must be declared to be

virtual. Java methods are all “virtual” in the C++ sense. ■

Interfaces Versus Multiple Inheritance
In C++, one class may inherit the characteristics of multiple base classes—a concept known as
multiple inheritance. A Java class, by contrast, may only inherit the characteristics of one base
class. A Java class, however, may be said to implement a Java interface. For example, you might
have the following:

class CaptionedRectangle
extends Rectangle
implements Displayable
{
// class definition goes here
}

A Java interface is similar to a class, but its data items are all static and final, and its methods
are all abstract. Within the definition of the new class, each of the methods in the interface
must be given actual definitions. The interface is really a form of guarantee: If a class is defined
to implement an interface, it is a guarantee to the user of the class that each of the methods in
the interface will be fully defined in the class. Interfaces are covered in depth in Chapter 12,
“Interfaces.”

N O T E

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1178

1179

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

The multiple inheritance mechanism in C++ has a number of subtle problem areas. As a
result, the most reliable and common use of multiple inheritance in C++ programs is when

there is one primary chain of inheritance, and any other classes used as base classes are collections
of utility methods and constant values. This behavior is formalized in the Java interface construct. ■

The super Reference
Just as you have a this reference, which refers to the object for which a method has been
invoked, you also have a super reference, which refers to the this object’s parent class. It can
be used in situations when a method in the derived class needs to explicitly invoke a method
from the superclass. Consider the following example of a display method defined within the
captionedRectangle class:

void display ()
{
System.out.println (this.caption);
super.display ();
}

The super reference can also be used on the first line of a base class constructor method to
explicitly invoke a superclass constructor. Once again, it is instructive to compare the C++ and
Java equivalents here. The following is one possibility in C++ of a CaptionedRectangle con-
structor that takes five arguments: four that define the Rectangle, and one that defines the
caption of the CaptionedRectangle:

// C++ constructor
CaptionedRectangle::CaptionedRectangle
 (int x, int y, int width, int height, String caption):
Rectangle (x,y,width,height)
{
// body of CaptionedRectangle constructor here
}

The Java equivalent might be the following:

// Java constructor
CaptionedRectangle
 (int x, int y, int width, int height, String caption)
{
super (x,y,width,height);
// balance of CaptionedRectangle constructor here
}

No Scope Resolution Operator
Many C++ programmers are alarmed to find that there is no scope resolution operator (the
double colon ::) in Java. In fact, there is no way in Java to elect to invoke a method from a
specific class in a hierarchy.

N O T E

Class Hierarchies and Inheritance

58 1529-5 CH50 9/24/98, 9:09 AM1179

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1180 Chapter 50 Java Versus C(++)

If the method you want to invoke is in the superclass, then the method can be invoked using the
super reference.

Many new Java programmers attempt to invoke a method from elsewhere in the hierarchy
using multiple supers, something like super.super.display(). This is an interesting

idea, but it’s not Java! ■

Statements
By and large, Java supports the same control statements as C++, which in turn are pretty much
the same as in the original C language. The areas of difference are highlighted in this section.
◊ See “Control Flow,” p. 143

Loops
The loop statements in Java are virtually identical to their counterparts in C++. However, in
Java, it is possible to add a label to a loop. The label can then be used as an argument on a
break or continue statement. Here is an example:

start:
for(int j=0;j<20;j++)
for(int k=0;k<20;k++)
for(int l=0;l<20;l++)
if ((j+k+l)==20) break start;

When the break statement is encountered in the if statement, the outermost loop is broken.
This is one effect that was very difficult to achieve in C or C++ without the use of goto.

Because this was the only use of a goto that was generally accepted in practice, and
because the goto is no longer required to achieve this effect, the goto statement has

been eliminated from the Java syntax. ■

You might notice in the preceding example that the control variables (j, k, and l) are defined in
the for loop control statement. This is very convenient in those common situations where the
control variable is only relevant within the loop and has no real meaning outside of the loop.
This syntax is also legal in C++, but there is a subtle difference. In C++, the scope of the control
variable begins with the for loop control statement but then continues to the end of the block.
In Java, the scope of the control variable is only the body of the loop. The variable is undefined
elsewhere in the block.

Conditionals
The explicit condition in the Java if statement and the implicit conditions in the various Java
loops all require an expression that produces a Boolean value. This is not true in C or C++,

T I P

N O T E

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1180

1181

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

where the expression can produce any value at all; a non-zero value is taken to be true, and a
zero value is taken to be false. Thus, a whole category of C and C++ errors is eliminated:

// The world’s most common C error
// luckily enough, this will no longer compile in Java!
if (x = 5)
{
}

Synchronized Statements
With the addition of support for multithreading to the list of Java features comes a few problem
areas. Specifically, you may have sections of code in which multiple threads might modify
objects simultaneously, possibly corrupting the object. The synchronized statement deals with
these critical sections by blocking the execution of code until exclusive access to the object can
be acquired.

The syntax for the synchronized statement is

synchronized (expression) statement

where the expression yields a reference to the object to be protected, and statement is a block
of code to be executed after primary control of the object is acquired.

public swapFirstValues(int[] k)
{
synchronized(k)
{
int temp;
temp=k[0];
k[0]=k[1];
k[1]=temp;
}
}

CAUTION

Do not use the synchronized statement if the object is never accessed by more than one thread, as it
introduces needless processing overhead at runtime.

For more information on threads, refer back to the material in Chapter 13, “Threads.”

Operators and Expressions
The list of operators Java supports is almost identical to that of C++, as is the order of prece-
dence and associativity of those operators (see Chapter 9). Here are the major differences:

■ The instanceof operator has been added, as you’ve already seen.
◊ See “The instanceof Operator,” earlier in this chapter, p. 1177

■ The + operator can now be used with two String objects to concatenate them.

Statements

58 1529-5 CH50 9/24/98, 9:09 AM1181

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

1182 Chapter 50 Java Versus C(++)

■ The right shift operator (>>) now explicitly sign-extends the value, while the new logical
right shift operator (>>>) populates vacant spaces with zero-bits.

■ As you’ve seen, the relational and logical operators all produce Boolean results, and the
logical operators only take Boolean operands.

◊ See “The boolean Data Type,” p. 1168

■ The scope resolution operator has been removed.
◊ See “No Scope Resolution Operator,” p. 1179

■ The comma operator has been removed.

Although the comma has been removed, it can still be used within a for loop control
statement to separate multiple control expressions, as in the following:

for (i=5,j=0; i>j; i--,j++) n ■

Unlike in C++, Java operators cannot be overloaded. This means that the meaning of an opera-
tor is fixed by the grammar of the language. Any special behavior that you want to implement
must be done by using an explicit method invocation.

Java expressions are evaluated in a much more predictable fashion than in C or C++. In any
expression that involves one operator and two operands, the left operand is always evaluated
first and the right operand is evaluated second. In method invocations, the argument list is
evaluated strictly left-to-right.

Name Spaces
Name spaces essentially define the scope of a name or symbol—that portion of a program or
collection of classes in which the name or symbol has meaning. More importantly, distinct
name spaces protect variable and method names from conflicts—so-called name collisions.

The first and simplest difference between Java and C or C++ is that, in Java programs there are
no global variables or functions of any kind. This helps to keep name-space violations and con-
flicts to a minimum.

Java also incorporates the concept of packages to help you manage your name spaces. A pack-
age is a collection of classes. Each package has its own name space. In practice, this means that
the name of a class is combined with its associated package to create a globally unique class
name. Because method and variable names are managed locally within a class, the possibility
of name collisions is essentially eliminated.
◊ See “Packages,” p. 185

Because the classes and methods of the Java API all belong to predefined packages, it is
not possible for someone to create classes or methods that either deliberately or

inadvertently conflict with system-supplied classes or methods. This is for system security and for
protecting the user from programmer error. ■

N O T E

N O T E

58 1529-5 CH50 9/24/98, 9:09 AM1182

1183

P2/VB mp12 UsingJava1.2 1529-5 8.10.98 ayanna chapter 50 LP#4

50

VII
Part

Ch

Java was designed from the ground up to be Internet-enabled. Packages, and the name space
protection they provide, were necessary to provide robustness in the distributed Internet envi-
ronment. But although packages may have been necessary because of the Internet, they have
the added benefit of eliminating the name collisions that are possible with C and C++. ●

Name Spaces

58 1529-5 CH50 9/24/98, 9:09 AM1183

58 1529-5 CH50 9/24/98, 9:09 AM1184

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTVIII LP#2

VIIIP A R T

Debugging Java

51 Debugging Java Code 1187

52 Understanding the .class File 1233

53 Inside the Java Virtual Machine 1253

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTVIII LP#2

1187

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

C H A P T E R

Debugging Java Code

The Architecture of the sun.tools.debug Package 1188

The JDB in Depth 1214

51

In this chapter

60 1529-5 CH51 9/24/98, 9:11 AM1187

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1188 Chapter 51 Debugging Java Code

The Architecture of the sun.tools.debug Package
One of the hurdles for anyone developing in a new language and execution environment such
as Java is learning the appropriate techniques and tools that are available for finding problems
in the applications being written (such as bugs). Besides providing the standard constructs for
creating well-designed, object-oriented applications (inheritance, encapsulation, and polymor-
phism), Java includes new features such as exceptions and multithreading. These features add
a new level of complexity to the debugging process.

To get Java to market as quickly as possible, Sun initially chose not to create a development
environment to support the creation of Java applications and applets. Instead, Sun provided
features and facilities for developers like us to use to create these advanced tools. One of these
facilities is the sun.tools.debug package, called the Java Debugger (JDB) API. The API con-
sists of a set of classes that allow the creation of custom debugging aids that may interact di-
rectly with an application/applet running within a local or remote instance of the JVM.

The package contains one public interface and 20 public classes that work together to allow
you to implement a debugger. The debugging interface is modeled after the client/server
architecture. The JVM is on the server that hosts the target application, and your debugger is a
client that acts as the interface to control the target application. To understand the model, each
class of the JDB API is discussed within the following five categories:

■ Client/server debugger management

■ Stack management

■ Special types

■ Thread management

■ Native types

The way that your debugger interacts with the running application is through a series of re-
mote classes that act as proxies to the objects in your application. A proxy acts as an intermedi-
ary between your debugger and the host JVM. You might think of a proxy as a celebrity with
an agent who acts as the public point of contact. You never communicate directly with the
celebrity, just with the agent. The agent’s sole responsibility is to send messages to the celeb-
rity and relay responses back to the interested party. This is exactly what classes implemented
in the sun.tools.debug package do. The proxy model keeps the classes small and gives a
clean interface for interacting with the host JVM.

Many methods in the JDB API throw the generic Exception exception. This should not be
confused with the exceptions that you may or may not want to catch. The exceptions thrown

by the API typically represent hard-error situations that occur within the JVM as it is servicing a
debugger client request. ■

Before I get into detail on the classes in the sun.tools.debug package, it might be helpful to
see how these classes fit together hierarchically. Figure 51.1 shows the hierarchy (in loose
OMT format) for the JDB API classes.

N O T E

60 1529-5 CH51 9/24/98, 9:11 AM1188

1189

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

Client/Server Debugger Management
One of the most interesting aspects of the debugging facilities that are built into the JVM is
their client/server nature. By using the RemoteDebugger class in conjunction with your imple-
mentation of the DebuggerCallback interface, you can literally control all aspects of the JVM as
it runs an application/applet on your behalf. The debugger client communicates with the JVM
via a private TCP/IP connection using a proprietary and undocumented protocol (for security
reasons). This private connection is why the source code for the Debugger API is not available
in the JDK.

FIG. 51.1
Class hierarchy for the
JDB API.

N O T E

Package: sun.tools.debug Class Hierarchy
(All classes are from this package ecxept for java.lang.Object)

java.lang.Object

DebuggerCallback RemoteDebugger RemoteValue Field StackFrame LocalVariable

RemoteBoolean
RemoteByte
RemoteChar

RemoteDouble
RemoteFloat
RemoteInt

RemoteLong
RemoteShort

RemoteObject RemoteField RemoteStack-
Frame

RemoteStack-
Frame

RemoteClass RemoteArray RemoteString RemoteThread-
Group

Remote Thread

Two more classes can be placed in this category: RemoteClass and RemoteThread.
RemoteClass supports breakpoint and exception management, as well as descriptive

information on the class structure. RemoteThread supports the control of running threads by
manipulating the execution state. As they are subclasses of RemoteObject, you will find them
described in detail in the section “Special Types” later in this chapter. ■

DebuggerCallback Interface The DebuggerCallback interface is used to provide a mecha-
nism for the JVM’s debugger agent to notify your debugger client when something of note has
happened within the target application. These “events” are handled via callback methods that
support breakpoints, exceptions, termination, thread death, and console output. The public API
for the DebuggerCallback interface is shown in Listing 51.1.

60 1529-5 CH51 9/24/98, 9:12 AM1189

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1190 Chapter 51 Debugging Java Code

Listing 51.1 Public API for the DebuggerCallback Interface

public interface DebuggerCallback {
 public abstract void printToConsole(String text) throws Exception;
 public abstract void breakpointEvent(RemoteThread t) throws Exception;
 public abstract void exceptionEvent(RemoteThread t,
 String errorText) throws Exception;
 public abstract void threadDeathEvent(RemoteThread t) throws Exception;
 public abstract void quitEvent() throws Exception;
}

Table 51.1 lists each of the public member methods and what they do.

Table 51.1 The DebuggerCallback Interface Public Member Methods

Name Description

printToConsole Called whenever your target applet sends output to System.out
or System.err and when the debugger agent in the host VM has
messages (especially if you create your RemoteDebugger with the
verbose flag set to true).

breakpointEvent Called when a breakpoint has been reached in the target applica-
tion. t is the thread that was running when the breakpoint was
reached.

exceptionEvent Happens when an exception is thrown in the target application. t
is the thread that was running when the exception occurred, and
errorText contains the message sent with the exception.

threadDeathEvent Signals that thread t has stopped in the target application.

quitEvent Informs you that the target application has ended. This can be a
result of calling System.exit() or returning from the main
thread of the application.

RemoteDebugger If the DebuggerCallback interface is the eyes and ears of your debugger,
then the RemoteDebugger class is the mouth and hands. The RemoteDebugger class is your
“proxy” to the control of the JVM instance that is hosting the target application/applet being
debugged.

To use the RemoteDebugger class, you must first create a class that implements the
DebuggerCallback interface. This class becomes an argument to the constructor of a
RemoteDebugger instance. (Typically, your debugger’s main class would fulfill this require-
ment.) There are two ways to create a RemoteDebugger instance:

■ Connect to a remote instance of the JVM

■ Have an instance of the java command started for you

60 1529-5 CH51 9/24/98, 9:12 AM1190

1191

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

Both run as separate processes and use TCP/IP internally to “talk” to your debugger. After you
have created an instance of RemoteDebugger, you will be in direct control of the target applica-
tion that you will be debugging. You can then begin to make calls against your RemoteDebugger
instance to manipulate your debugging session.

Figure 51.2 shows that the JVM, RemoteDebugger, and DebuggerCallback are related at execu-
tion time.

FIG. 51.2
Relationship between
the JVM,
RemoteDebugger,
and
DebuggerCallback.

Java Virtual Machine Your Debugger

Internal
Debugging Agent Remote Debugger

DebuggerCallback

Target
Application

Server Client

The public API for the RemoteDebugger class is shown in Listing 51.2.

Listing 51.2 Public API for the RemoteDebugger Class

public class RemoteDebugger {
 public RemoteDebugger(String host,
 String password,
 DebuggerCallback client,
 boolean verbose) throws Exception;

 public RemoteDebugger(String javaArgs,
 DebuggerCallback client,
 boolean verbose) throws Exception;

 public void addSystemThread()
 public void addSystemThread(thread t);
 public void close();
 public RemoteObject get(Integer id);
 public RemoteClass[] listClasses() throws Exception;
 public RemoteClass findClass(String name) throws Exception;
 public RemoteThreadGroup[] listThreadGroups(RemoteThreadGroup tg) throws
➥Exception;
 public void gc(RemoteObject save_list[]) throws Exception;
 public void trace(boolean traceOn) throws Exception;

continues

60 1529-5 CH51 9/24/98, 9:12 AM1191

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1192 Chapter 51 Debugging Java Code

 public void itrace(boolean traceOn) throws Exception;
 public int totalMemory() throws Exception;
 public int freeMemory() throws Exception;
 public RemoteThreadGroup run(int argc,
 String argv[]) throws Exception;

 public String[] listBreakpoints() throws Exception;
 public String[] getExceptionCatchList() throws Exception;
 public String getSourcePath() throws Exception;
 public void setSourcePath(String pathList) throws Exception;

}

Table 51.2 lists each of the public member methods and what they do.

Table 51.2 The RemoteDebugger Class Public Member Methods

Name Description

RemoteDebugger (String host, The first constructor is used to connect to an
String password, existing remote JVM. The host argument is the
DebuggerCallback, DNS name of the target machine running the JVM.
client boolean verbose) password is part of the security mechanism used to

debug remote applications securely. client is your
object that implements the DebuggerCallback
interface described previously. And, when set to true,
verbose causes informational messages to be sent to
client.printToConsole() from the host’s JVM.

RemoteDebugger (String The second constructor is very similar to the first,
javaArgs, Debugger except that it is used to debug Java applications
Callback client, locally. This is probably fine for most GUI
boolean verbose) applications, but a console application is difficult to

debug in this way because the target’s output
becomes interspersed with the debugger’s own
informational output. The javaArgs argument
should contain valid optional arguments to the java
command (excluding the target class). The client
and verbose arguments work as mentioned
previously.

addSystemThread() Add the calling thread to the list of threads that are
not suspended by the debugger. These threads are
usually Threads used by the debugger itself.

Listing 51.2 Continued

60 1529-5 CH51 9/24/98, 9:12 AM1192

1193

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

addSystemThread Add the specific thread t to the list of threads that
(Thread t) the debugger will not suspend.

close() Closes down the remote target application/applet
and the host JVM.

get(Integer id) Returns a proxy for the object identified by id. The
returned RemoteObject instance may be cast to its
appropriate type. Use ClassName or instanceof to
test its type.

ListClasses() Returns an array of RemoteClass instances that are
resident in the host JVM.

FindClasses(String name) Searches the host JVM for a class called name. If the
class is not in the VM’s class cache, then it is
searched for on the target machine. If it is not found,
a null is returned. Partial names may be passed in,
but there may be ambiguities between user and
system classes with the same name.

ListThreadGroups Returns an array of RemoteThreadGroup instances
(RemoteThreadGroup tg) for the thread groups that are contained in tg. If tg is

null, then all thread groups are returned.

gc(RemoteObject Causes the garbage collector to be run on the host’s
save_list[]) JVM in order to free all objects that were requested

by this debugger instance. Any objects that were sent
to the RemoteDebugger are not garbage collected
until this call is made, or the debugger exits.
save_list is used to prevent any specific objects
that are still being examined by this debugger
instance from being collected.

trace(boolean traceOn) Toggles the state of the method trace flag in the
remote JVM. This command is only valid if you
created your RemoteDebugger instance using the
constructor that takes javaArgs as the first argu-
ment, or if the remote debugging host is one of the
_g variants.

itrace(boolean traceOn) Toggles the state of the instruction trace flag in the
remote JVM. This command is only valid if you
created your RemoteDebugger instance using the
constructor that takes javaArgs as the first argu-
ment, or if the remote debugging host is one of the
_g variants.

Name Description

continues

60 1529-5 CH51 9/24/98, 9:12 AM1193

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1194 Chapter 51 Debugging Java Code

TotalMemory() Returns the total amount of memory available for use
by the host JVM.

FreeMemory() Returns the amount of memory currently available
for use by the host JVM.

run(int argc,String Causes the host JVM to load in and run a Java
argv[]) class. argv is an array of Strings that represents the

command line to execute. The class name must be
the first array element. argc is the number of
elements that are valid. The RemoteThreadGroup
instance that the class is running in is returned on
success, otherwise null is returned.

ListBreakpoints() Returns the list of breakpoints that are currently
active in the host JVM. The format of the breakpoint
list is either class.method_name or
class:line_number.

GetExceptionCatchList() Returns an array of names of the exceptions that the
host JVM will send to the debugger as if they were
breakpoints.

GetSourcePath() Returns the path string that the host JVM uses when
searching for the source files associated with a given
class. The format is system-dependent.

setSourcePath(String Sets the path string that the host JVM uses when
pathList) searching for the source files associated with a given

class.

When you start up java or appletviewer with the -debug flag, a special password is
displayed. This value must be used for the password argument. ■

Remember, the output of the method trace and the instruction trace is displayed on the
console of the host VM. ■

Special Types
The classes in this category represent proxies that give you access to runtime instance data
within the host JVM containing your target. These classes are considered special because they
are used to represent information on data and control elements other than native types. These

Table 51.2 Continued

Name Description

N O T E

N O T E

60 1529-5 CH51 9/24/98, 9:12 AM1194

1195

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

proxies allow you to inspect and interact with objects and classes that are loaded in the host
JVM. For example, RemoteObject and its subclasses represent objects that your target applet
has instantiated.

RemoteValue RemoteValue is an abstract class that sits at the root of the tree of classes and
acts as a proxy to the remote JVM. This class essentially contains an interface implemented by
the classes that follow the interface down the tree. Because the class contains abstract meth-
ods, you never explicitly instantiate it; rather, you can assume that any of the subclasses consis-
tently and safely implement the methods of RemoteValue.

The public API for the RemoteValue class is shown in Listing 51.3.

Listing 51.3 Public API for the RemoteValue Class

public class RemoteValue
 implements sun.tools.java.AgentConstants { // An undocumented
 // interface containing static
 // constants used internally
 // by RemoteValue
 public String description();
 public static int fromHex(String hexStr);
 public final int getType();
 public final boolean isObject();
 public final boolean isString();
 public static String toHex(int n);
 public abstract String typeName() throws Exception;
}

Table 51.3 lists each of the public member methods and what they do.

Table 51.3 The RemoteValue Class Public Member Methods

Name Description

description() Returns a literal description for this instance of the RemoteValue.

fromHex(String Converts the number in hexStr from its hexadecimal representation
hexStr) to an integer value.

getType() Returns the internal numeric identifier for this RemoteValue’s type.
This value is primarily used internally by the proxy.

isString() Returns true if the RemoteValue is a string.

isObject() Returns true if the RemoteValue instance is an object type versus a
native language type (for example, boolean).

toHex(int n) Converts the integer value to its hexadecimal representation in
String form.

typeName() Returns the literal type name associated with this instance of
RemoteValue.

60 1529-5 CH51 9/24/98, 9:12 AM1195

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1196 Chapter 51 Debugging Java Code

See ShowTypeCodes.java on the CD-ROM for a very simple utility that displays these
values. ■

RemoteField The RemoteField proxy class is similar to the RemoteValue class, except that it
pertains to fields of a RemoteClass or RemoteObject instance. This class provides detailed
descriptive information about a field in an object instance or class definition. A field may be any
of the following: an instance variable, a static (class) variable, an instance method, or a static
(class) method. The public API for the RemoteField class is shown in Listing 51.4.

Listing 51.4 Public API for the RemoteField Class

public class RemoteField
 extends sun.tools.java.Field // An undocumented class containing the
 // instance variables that hold the
 // representative values of the
 // RemoteField
implements sun.tools.java.AgentConstants { // An undocumented interface
 // containing static
 // constants used internally by
 // RemoteField
 public String getModifiers();
 public String getName();
 public String getType();
 public boolean isStatic();
 public String toString();
 public String getTypedName()
}:

Table 51.4 lists each of the public member methods and what they do.

Table 51.4 The RemoteField Class Public Member Methods

Name Description

getModifiers() Returns the access modifiers for this RemoteField in literal form (for
example, public or private).

getName() The literal field name.

getType() The type of this field as a String (such as int, boolean, or
java.lang.String).

isStatic() Returns true if the field is designated as static (see
getModifiers(), discussed previously).

toString() Returns the value of this field in String form, as opposed to its native
type.

getTypedName() Returns a string that describes the field and its type name.

N O T E

60 1529-5 CH51 9/24/98, 9:12 AM1196

1197

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

RemoteObject RemoteObject is a proxy that allows you to interface with an instance of a
class in the host JVM. It is used to access detailed information about the object instance in
question, including its class, field information, and field values. The RemoteObject is what you
use to enumerate through an object instance’s data.

CAUTION

You should be aware that, as you request RemoteObject (or any subclass) instances from the host JVM,
the host JVM will keep these instances in a nongarbage collected area of memory. Your debugger should
either (periodically or on command) call the RemoteDebugger.gc() method to release any
RemoteObject instances in which you are no longer interested.

The public API for the RemoteObject class is shown in Listing 51.5.

Listing 51.5 Public API for the RemoteObject Class

public class RemoteObject
 extends RemoteValue {

 public String description();
 public final RemoteClass getClazz();
 protected void finalize() throws Exception;
 public RemoteField getField(int slotNum) throws Exception;
 public RemoteField getField(String name) throws Exception;
 public RemoteValue getFieldValue(int slotNum) throws Exception;
 public RemoteValue getFieldValue(String name) throws Exception;
 public RemoteField[] getFields() throws Exception;
 public final int getId();
 public String toString();
 public String typeName() throws Exception;
}:

Table 51.5 lists each of the public member methods and what they do.

Table 51.5 The RemoteObject Class Public Member Methods

Name Description

description Overrides RemoteValue.description().

getClazz() Returns an instance of RemoteClass that corresponds to this object
instance.

getField() This overloaded method returns an instance of RemoteField that is
based on either a slot number representing the physical position of
this field within the object or the literal name of the field. If the field
does not exist (slotNum or name is invalid), then Exception is
thrown. If name is not found, the RemoteField instance is returned
as a null.

continues

60 1529-5 CH51 9/24/98, 9:12 AM1197

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1198 Chapter 51 Debugging Java Code

getFieldValue() This overloaded method returns the value of this field as an
instance of RemoteValue. The search is based on either a slot
number representing the physical position of this field within the
object or the literal name of the field. If the field does not exist
(slotNum or name is invalid), then Exception is thrown. If name is
not found, the RemoteValue instance is returned as a null.

getFields() Returns a list of RemoteField instances representing all of the non-
static instance variables defined in this object’s class. An exception
is thrown if host JVM encounters any problems processing the
request.

getId() Returns the instance ID that is used uniquely to identify this object
in the host JVM.

toString() Returns a representation of the object in String form. This is
completely dependent on the type of object instance being used.

typeName() Overrides RemoteValue.typeName().

finalize Contains code that needs to be executed when this object is
collected by the garbage collector.

RemoteClass RemoteClass represents one of the larger APIs in the sun.tools.debug pack-
age and provides details on every aspect of a class definition, including its superclass, fields
(static and instance), the interfaces implemented, and methods. As it is a descendent of
RemoteObject, remember to gc() the instance at some point when your debugger is finished
with it. You can retrieve instances of RemoteClass from RemoteDebugger, RemoteObject, and
RemoteStackFrame instances.

The public API for the RemoteClass class is shown in Listing 51.6.

Listing 51.6 Public API for the RemoteClass Class

public class RemoteClass extends RemoteObject {

 // Descriptive methods:
 public String description();
 public RemoteObject getClassLoader() throws Exception;
 public RemoteField getField(int slotNum) throws Exception;
 public RemoteField getField(String name) throws Exception;
 public RemoteValue getFieldValue(int slotNum) throws Exception;
 public RemoteValue getFieldValue(String name) throws Exception;
 public RemoteField[] getFields() throws Exception;
 public RemoteField getInstanceField(int slotNum) throws Exception;
 public RemoteField[] getInstanceFields() throws Exception;
 public RemoteClass[] getInterfaces() throws Exception;

Table 51.5 Continued

Name Description

60 1529-5 CH51 9/24/98, 9:12 AM1198

1199

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

 public RemoteField getMethod(String name) throws Exception;
 public String[] getMethodNames() throws Exception;
 public RemoteField[] getMethods() throws Exception;
 public String getName() throws Exception;
 public RemoteField[] getStaticFields() throws Exception;
 public RemoteClass getSuperclass() throws Exception;
 public String getSourceFileName();
 public boolean isInterface() throws Exception;
 public String toString();
 public String typeName() throws Exception;

 // Debugging management methods:
 public InputStream getSourceFile() throws Exception;
 public void catchExceptions() throws Exception;
 public void ignoreExceptions() throws Exception;
 public String setBreakpointLine(int lineNo) throws Exception;
 public String setBreakpointMethod(RemoteField method) throws Exception;
 public String clearBreakpoint(int pcLocation) throws Exception;
 public String clearBreakpointLine(int lineNo) throws Exception;
 public String clearBreakpointMethod(RemoteField method) throws Exception;
 public int[] getLineNumbers() throws Exception
 public int getMethodLineNumber(int index) throws IIndexOutOfBoundsException,
 NoSuchLineNumberException, Exception
 public int getMethodLineNumber(String name) throws NoSuchMethodException,
 NoSuchLineNumberException, Exception
}

Tables 51.6 and 51.7 list each of the public member methods and what they do.

Table 51.6 The RemoteClass Class Descriptive Public Member Methods

Name Description

description Overrides RemoteObject.description().

getClassLoader() Returns a RemoteObject instance that represents the class
loader for this class.

getField() This overloaded method returns an instance of RemoteField for
a static member based on either a slot number that represents
the physical position of this field within the object, or based on
the literal name of the field. If the field does not exist (slotNum
or name is invalid), then Exception is thrown. If name is not
found, the RemoteField instance is returned as a null.

getFieldValue() This overloaded method returns the value of a static field as an
instance of RemoteValue. The search is based on either a slot
number that represents the physical position of this field within
the object, or the literal name of the field. If the field does not
exist (slotNum or name is invalid), then Exception is thrown. If
name is not found, the RemoteValue instance is returned as a
null.

continues

60 1529-5 CH51 9/24/98, 9:12 AM1199

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1200 Chapter 51 Debugging Java Code

getFields() Overrides RemoteObject.getFields() but returns an array of
RemoteField instances that represent all of the static fields
available in this class.

getInstanceField() Returns an instance field description as an instance of
RemoteField. The search is based on a slot number represent-
ing the physical position of this field within the object. If the
field does not exist (slotNum invalid), then Exception is thrown.
Note that there is no instance data in the field when called in
this context.

getInstanceFields() Returns an array of RemoteField instances representing all of
the instance fields available in this class. Note that there is no
instance data in the field when called in this context.

getInterfaces() Returns an array of RemoteClass instances representing each of
the interfaces implemented by this class.

getMethod() Uses name to look up and return, an instance of RemoteField
that describes the signature for the specified method.

getMethodNames() Returns a String array containing the names of all methods
implemented in this class.

getMethods() Returns an array of RemoteField instances representing all
methods implemented in this class.

getName() Returns a String containing the name of this class.

getSourceFileName() Returns the filename that contained the Java source statements
used to compile this class. This is just a base name and exten-
sion (format is OS dependent) without any path information (for
example, MyClass.java).

getStaticFields() Returns an array of RemoteField instances representing all of
the static fields available in this class.

getSuperclass() Returns a RemoteClass instance for the superclass of this class.
If no superclass was specified (no extends clause was used in
the class definition), then an instance of java.lang.Object is
returned.

isInterface() Returns true if this RemoteClass instance represents an
interface versus a class definition.

toString() Overrides RemoteObject.toString().

typeName() Overrides RemoteObject.typeName().

Table 51.6 Continued

Name Description

60 1529-5 CH51 9/24/98, 9:12 AM1200

1201

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

getLineNumbers Returns the source file line numbers from the class that have
code associated with them, in the form of an array.

getMethodLineNumber This method returns the first line of the method that is specified
by either a string or the index number.

Table 51.7 The RemoteClass Debugging Management Public Member
Methods

Name Description

getSourceFile() Returns an InputStream instance that you may use to
display lines from the source file used to create this class
(if it is available—a non-null return value). This method is
for providing a list type of command in your debugger
implementation or for providing interactive source-level
debugging. The returned InputStream is typically cast to a
DataInputStream prior to use.

catchExceptions() Tells the host JVM to return control to your debugger
when an instance of this class is thrown. A
ClassCastException is thrown if this class is not a subclass
of Exception. This makes the exception appear as a
breakpoint to your debugger and causes
DebuggerCallback.exceptionEvent() to be called.

ignoreExceptions() Tells the host JVM not to signal your debugger in the case
of this exception being thrown. The host JVM still throws
the exception, just not to you. A ClassCastException is
thrown if this class is not a subclass of Exception. In
practice, it is assumed that catchExceptions() has already
been called for this class.

setBreakpointLine() Allows your debugger to set a breakpoint based on the
source file line number in lineNo. If lineNo is out of range
or some other error occurs, a message is returned.
Otherwise, an empty string (“”) is returned on success. If
successful, when your breakpoint is hit, your
DebuggerCallback.breakpointEvent() is called.

setBreakpointMethod() Allows your debugger to set a breakpoint based on an
instance of RemoteField that contains a reference to a
method in this class. The breakpoint is placed on the first
line of the method. If, for some reason, method is invalid, an
empty string (“”) is returned on success. If successful, your
DebuggerCallback.breakpointEvent() is called when your
breakpoint is hit.

Name Description

continues

60 1529-5 CH51 9/24/98, 9:12 AM1201

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1202 Chapter 51 Debugging Java Code

clearBreakpoint() Your debugger may remove breakpoints using a valid
Program Counter (PC) value as specified in pcLocation. If,
for some reason, pcLocation is invalid, an error message is
returned. Otherwise, an empty string (“”) is returned. This
method has limited value as there is no documented
method for specifying a breakpoint in this manner.

clearBreakpointLine() Removes a breakpoint that was previously specified for
lineNo. If, for some reason, lineNo is invalid, an error
message is returned. Otherwise, an empty string (“”) is
returned.

clearBreakpointMethod() Removes a breakpoint that was previously specified for
method. If, for some reason, method is invalid, an error
message is returned. Otherwise, an empty string (“”) is
returned.

RemoteArray In Java, arrays are objects, which applies to how your debugger views arrays.
So, you have a special type that is called RemoteArray. This type allows you to interrogate the
runtime instance of an array in the host JVM. One of the differences in the RemoteArray class
is that there is no way to get directly to its RemoteField information. So, in your debugger, you
would use RemoteObject.getField() to get this information. Then you would use
RemoteObject.getFieldValue() and cast its return type to RemoteArray to access the actual
elements of the array.

The public API for the RemoteArray class is shown in Listing 51.7.

Listing 51.7 Public API for the RemoteArray Class

public class RemoteArray extends RemoteObject {
 public String arrayTypeName(int type);
 public String description();
 public final RemoteValue getElement(int index) throws Exception;
 public final int getElementType() throws Exception;
 public final RemoteValue[] getElements() throws Exception;
 public final RemoteValue[] getElements(int beginIndex, int endIndex
➥)throws Exception;
 public final int getSize();
 public String toString();
 public String typeName();
}

Table 51.8 lists each of the public member methods and what they do.

Table 51.7 Continued

Name Description

60 1529-5 CH51 9/24/98, 9:12 AM1202

1203

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

Table 51.8 The RemoteArray Class Public Member Methods

Name Description

arrayTypeName() Returns a string that contains the type of array elements as a String.
The type argument is supplied by calling getElementType(), which
is defined later. For any type that is a subclass of java.lang.Object,
the string Object is returned. You need to use
RemoteValue.typeName() on the RemoteValue instance returned by
getElement() or getElements() in order to get the actual object
class name.

description Overrides RemoteObject.description().

getElement() Returns an instance of RemoteValue containing the value of the array
at index. getElement throws an ArrayIndexOutOfBoundsException
if index subscripts off the array’s boundary.

getElementType() Returns a numeric identifier (defined internally) that represents the
data type of the elements contained in the array. Use
arrayTypeName(), defined previously, to get the literal associated
with this type of designator.

getElements() This overloaded method is used to return an array of either all or a
subset of RemoteValue instances. If you specify no arguments, then
all values are returned. If you specify beginIndex (zero based) and
endIndex (maximum of getSize() - 1), then that specific subset of
RemoteValue instances is returned. If either index is invalid, then an
ArrayIndexOutOfBoundsException is thrown.

getSize() Returns the actual number of elements contained in this array
instance.

toString() Overrides RemoteObject.toString().

typeName() Overrides RemoteObject.typeName().

RemoteString RemoteString is the last of the “special types.” It is considered special because
it is a subclass of RemoteObject, but it is close to being a native type because of the way the
compiler treats it. This class is very simple—just about all you can do with a string is display its
contents.

The public API for the RemoteString class is shown in Listing 51.8.

Listing 51.8 Public API for the RemoteString Class

public class RemoteString extends RemoteObject {
 public String description();
 public String toString();
 public String typeName();
}

60 1529-5 CH51 9/24/98, 9:12 AM1203

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1204 Chapter 51 Debugging Java Code

Table 51.9 lists each of the public member methods and what they do.

Table 51.9 The RemoteString Class Public Member Methods

Name Description

description Overrides RemoteObject.description() and returns the value in the
String object or literal null.

toString Overrides RemoteObject.toString() and returns the value in the
String object or literal null.

typeName Overrides RemoteObject.typeName().

Native Types
The native types classes are all proxies based on RemoteValue that are used to examine any
type of field or stack variable based on a nonobject native type. Native types all share an identi-
cal interface to allow complete polymorphic use via the RemoteValue abstract type.

The native types supported by this API are described in Table 51.10.

Table 51.10 Native Types Supported by the RemoteXXX Classes

Native Type RemoteXXX Class

boolean RemoteBoolean

byte RemoteByte

char RemoteChar

double RemoteDouble

float RemoteFloat

int RemoteInt

long RemoteLong

short RemoteShort

The public API shared by the native type classes is shown in Listing 51.9. The XXX portion of
the <RemoteXXX> tag can be replaced with any of the native types using proper capitalization
(for example, RemoteBoolean for Boolean), as described in Table 51.10.

60 1529-5 CH51 9/24/98, 9:12 AM1204

1205

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

The Architecture of the sun.tools.debug Package

Listing 51.9 Public API for the Set of RemoteXXX Classes

public class <RemoteXXX> extends RemoteValue {
 public <native type> get();
 public String toString();
 public String typeName();
}

Table 51.11 lists each of the public member methods and what they do.

Table 51.11 The RemoteXXX Class Public Member Methods

Name Description

get Returns the value contained in the RemoteXXX class as a native value.
The <native type> designator as shown in Listing 51.9 may be
replaced with any type from the Native Type column of Table 51.10
based on the actual RemoteXXX class that the current instance repre-
sents. For example, a RemoteBoolean class returns a real boolean value
from its get() method.

toString Overrides RemoteObject.toString().

typeName Overrides RemoteObject.typeName().

Stack Management
After you get to a point in your debugger where you can begin to stop execution to examine
things, then the stack becomes very important. In the JVM, everything that describes the state
of the current method being executed is held in a stack frame. The stack frame includes items
such as the method arguments, local variables, program counter (PC), method name, and so
on. The RemoteStackFrame represents all of the execution time characteristics of a running
Java method and is the proxy to this unit of control from your debugger. The
RemoteStackFrame, in turn, provides you with information on data that is physically resident in
this stack frame via RemoteStackVariable instances. These instances are the proxies to the
actual variables that are available for the method currently in context. Currently in context can
be defined as the stack frame method that is active.

StackFrame The StackFrame class is very thin and basically used as a placeholder to repre-
sent a method in a suspended thread in the host JVM. It is used as the superclass for
RemoteStackFrame and only includes a constructor that doesn’t take arguments and a
toString() method for retrieving this object’s value in a String.

The public API for the StackFrame class is in Listing 51.10.

60 1529-5 CH51 9/24/98, 9:12 AM1205

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1206 Chapter 51 Debugging Java Code

Listing 51.10 Public API for the StackFrame Class

public class StackFrame {
 public StackFrame();
 public String toString();
}

RemoteStackFrame The RemoteStackFrame class is the proxy that allows you to interact with
the stack frame of a suspended thread in the host JVM. The RemoteStackFrame instance can
basically describe the execution state of itself and enumerate through its variables. Your
debugger uses this class in conjunction with the other debugger classes to display the state of
the method that is in context.

The public API for the RemoteStackFrame class is shown in Listing 51.11.

Listing 51.11 Public API for the RemoteStackFrame Class

public class RemoteStackFrame extends StackFrame {
 public int getLineNumber();
 public RemoteStackVariable getLocalVariable(String name)
 throws Exception;
 public RemoteStackVariable[] getLocalVariables() throws Exception;
 public String getMethodName();
 public int getPC();
 public RemoteClass getRemoteClass();
}

Table 51.12 lists each of the public member methods and what they do.

Table 51.12 The RemoteStackFrame Class Public Member Methods

Name Description

getLineNumber() Returns the line number relative to the beginning of the source
file that is associated with the current position of this stack frame
in a suspended thread.

getLocalVariable() Returns the RemoteStackVariable instance associated with name
in this RemoteStackFrame instance.

getLocalVariables() Returns an array of RemoteStackVariable instances that are
available in this RemoteStackFrame instance.

getMethodName() Returns a String containing the name of the method that is
represented by this RemoteStackFrame instance.

getPC() Returns the JVM’s PC relative to the first bytecode of the method
that this RemoteStackFrame instance represents. The PC is like a
pointer into the Java bytecode stream and is moved as each
bytecode is interpreted by the VM.

60 1529-5 CH51 9/24/98, 9:12 AM1206

1207

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

getRemoteClass() Returns an instance of RemoteClass that defines the method
represented by this RemoteStackFrame instance.

RemoteStackVariable The RemoteStackVariable class is the proxy that gives you access to
the values contained in a RemoteStackFrame instance. The method arguments and the local
variables are all returned as RemoteStackVariable instances that hold the state, the identifica-
tion of the variable, and its current value.

The public API for the RemoteStackVariable class is shown in Listing 51.12.

Listing 51.12 Public API for the RemoteStackVariable Class

public class RemoteStackVariable extends LocalVariable {
 // This is a private class that contains the data
 // items that are exposed via Remote-
 // StackVariable methods
 public String getName();
 public RemoteValue getValue();
 public boolean inScope();
}

Table 51.13 lists each of the public member methods and what they do.

Table 51.13 The RemoteStackVariable Class Public Member Methods

Name Description

getName Returns a String that contains the literal name of this
RemoteStackVariable instance.

getValue Returns a RemoteValue instance that contains the data value for this
variable at this moment. This object may be cast to an appropriate
RemoteValue subclass.

inScope Returns true if this RemoteStackVariable instance is currently in
scope. A RemoteStackVariable is out of scope if the block that defines it
is not in context—for example, a counter defined within a for loop
construct or an exception variable defined within a catch statement.

Thread Management
One of the more challenging tasks when writing Java applications is how to debug threads.
Fortunately for us Java developers, Sun has included special classes to help debug
multithreaded applications. The thread manager in Java is based on two constructs: a thread
group and the threads themselves. Java uses the thread group to help categorize and isolate
related sets of independent execution paths, or threads.

Name Description

The Architecture of the sun.tools.debug Package

60 1529-5 CH51 9/24/98, 9:12 AM1207

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1208 Chapter 51 Debugging Java Code

The debugging aids for multithreaded applications allow us to examine and control the execu-
tion of both thread groups and individual threads. This control and execution is accomplished
through the RemoteThreadGroup and RemoteThread classes.

One of the complexities of debugging multithreaded applications is how to manipulate the
individual threads that are active. When you set a breakpoint in a given class’s method, all
threads that cross that execution path will break. What actually happens is that the current
thread breaks, and the other threads along the same path suspend. In this situation, you may
use the RemoteThreadGroup and RemoteThread class to resume the other related threads while
you continue to debug (step, examine, and more) the single thread that you are interested in.
Keeping that in mind, the techniques for debugging a multithreaded application are essentially
identical to debugging a single-threaded application.

Debugging multithreaded applications can be difficult depending on the logic of how the
threads share data. The Java language provides many built-in facilities to allow you to control
the concurrency of access that threads have over shared data. The synchronized keyword, the
wait() and notify() methods of the Object class, and the sleep() and yield() methods of
the Thread class provide features that help you design your logic so that sharing data is accom-
plished safely in a threaded application. Debugging facilities can help you identify areas of logic
that are missing these concurrency primitives.

The following two topics—RemoteThreadGroup and RemoteThread—describe the proxy classes
that allow us to do this manipulation.

RemoteThreadGroup The RemoteThreadGroup class is a proxy to an instance of a real thread
group running in the host JVM. As such, it represents a container that can hold instances of
RemoteThread as well as embedded RemoteThreadGroup instances. The interface for
RemoteThreadGroup is rather simple and provides the ability to retrieve a list of remote threads
and stop the execution of all threads and thread groups that are contained within the current
group.

The public API for the RemoteThreadGroup class is in Listing 51.13.

Listing 51.13 Public API for the RemoteThreadGroup Class

public class RemoteThreadGroupextends RemoteObject {
 public String getName() throws Exception;
 public RemoteThread[] listThreads(boolean recurse) throws Exception;
 public void stop() throws Exception;
}

Table 51.14 lists each of the public member methods and what they do.

60 1529-5 CH51 9/24/98, 9:12 AM1208

1209

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

Table 51.14 The RemoteThreadGroup Class Public Member Methods

Name Description

getName Returns the name of the current RemoteThreadGroup instance.

listThreads Returns an array of RemoteThread instances that exist in the current
RemoteThreadGroup instance. If recurse is set to true, then all embed-
ded RemoteThreadGroups are traversed and their member
RemoteThread instances are returned as well.

stop Stops the execution of all threads belonging to this thread group. This
is very useful if you are debugging a multithreaded application with
many thread instances running on the same execution path. Alterna-
tively, you could use listThreads() and manually choose the threads
to stop.

RemoteThread The RemoteThread class is at the heart of multithreaded debugging for Java
applications. It provides the interface to control the execution of a thread after execution has
been stopped. Execution may be stopped by a breakpoint being reached, an explicit call to
suspend(), or a call to stop(). After the thread of execution has been suspended (somehow),
you may examine the current state of the thread, single step through the thread, manipulate
the stack frame, and examine any variables that are in scope. Implementing the use of
RemoteThread in your debugger means that you now have everything you need to manage the
execution of remote threads.

Because its API is so large, the RemoteThread class can be broken up into three categories:

■ Basic thread control. Methods that control the overall execution state of the current
thread instance.

■ Execution path control. Methods that control program flow after a thread has been
suspended (either manually, from a caught exception, or because a breakpoint was
reached).

■ Stack frame control. Methods that manipulate the stack frame and examine local
variables and arguments in the current frame.

The public API for the RemoteThread class is in Listing 51.14.

Listing 51.14 Public API for the RemoteThread Class

public class RemoteThreadextends RemoteObject {

 // Basic Thread Control
 public String getName() throws Exception;
 public String getStatus() throws Exception;
 public boolean isSuspended();
 public void resume() throws Exception;
 public void stop() throws Exception;
 public void suspend() throws Exception;

continues

The Architecture of the sun.tools.debug Package

60 1529-5 CH51 9/24/98, 9:12 AM1209

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1210 Chapter 51 Debugging Java Code

 // Execution path control
 public void cont() throws Exception;
 public void next() throws Exception;
 public void step(boolean skipLine) throws Exception;

 // Stack frame control
 public void down(int nFrames) throws Exception;
 public RemoteStackFrame[] dumpStack() throws Exception;
 public RemoteStackFrame getCurrentFrame() throws Exception;
 public int getCurrentFrameIndex();
 public RemoteStackVariable getStackVariable(String name)
 throws Exception;
 public RemoteStackVariable[] getStackVariables() throws Exception;
 public void resetCurrentFrameIndex();
 public void setCurrentFrameIndex(int iFrame);
 public void up(int nFrames) throws Exception;
}

Table 51.15 lists each of the public member methods relating to basic thread control and what
they do.

Table 51.15 The RemoteThread Class Public Member Methods for Basic
Thread Control

Name Description

getName() Returns a String containing the name of this RemoteThread instance.

getStatus() Returns a String containing the literal status of this RemoteThread
instance.

isSuspended() Returns true if this RemoteThread instance is suspended.

resume() Resumes execution of this RemoteThread instance from the current
program counter. It is assumed that the thread is currently suspended.

stop() Terminates execution of this RemoteThread instance. You cannot
resume execution after you stop the thread, but you can examine the
current stack frame.

suspend() Suspends execution of this RemoteThread instance at its current
location. This is similar to the thread instance receiving a breakpoint.
Once suspended, you may use execution path control methods to step
through the thread and the stack frame control methods to examine the
variables of the current frame. Execution of the thread may continue
upon execution of the resume() method.

Listing 51.14 Continued

60 1529-5 CH51 9/24/98, 9:12 AM1210

1211

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

Table 51.16 lists each of the public member methods relating to execution path control and
what they do.

Table 51.16 The RemoteThread Class Public Member Methods for Execution
Path Control

Name Description

cont() Resumes the current RemoteThread instance from a breakpoint. If the
thread is suspended, use resume() instead of cont().

next() Executes to the next line of source in the current RemoteThread instance
and does not “step into” any method calls on the way. That is, it executes
any intermediate method calls without giving you the opportunity to stop
and examine variables and more. This method throws an
IllegalAccessError exception if the thread is not suspended or process-
ing a breakpoint. Also, if there is no line number information for this class,
then next operates like the step() method below.

step() Executes either the next instruction or goes to the next line if skipLine is
true. Executing step(false) at this point puts the PC at the first instruc-
tion of evaluateCounter(), whereas calling next() executes the call to
evaluate-Counter() and leaves the PC pointing to the first instruction of
line 3.

Unlike next(), step() “steps into” any intermediate method calls that are encountered
on the way. The following lines of source are an example (where PC is the current program

counter):

1: myCounter += 1;
2: evaluateCounter(myCounter);
3: System.out.println(“myCounter: “ + myCounter); ■

Table 51.17 lists each of the public member methods relating to stack frame control and what
they do.

Table 51.17 The RemoteThread Class Public Member Methods for Stack
Frame Control

Name Description

down() Moves the stack frame that is currently in context for this
RemoteThread instance down nFrames levels. This is
typically used after executing the up() method in order to
“walk” back down the call stack frames. This command,
when used in conjunction with up(), may be used to help
implement an interactive call stack window. If this
Remote-Thread instance is not suspended or at a

N O T E

The Architecture of the sun.tools.debug Package

continues

60 1529-5 CH51 9/24/98, 9:12 AM1211

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1212 Chapter 51 Debugging Java Code

breakpoint, then an IllegalAccessError exception is
thrown. Also, if nFrames is too great (for example, you try
to go past the bottom frame on the execution stack), an
ArrayOutOfBounds exception is thrown.

dumpStack() Returns an array of RemoteStackFrame instances represent-
ing the execution stack up to and including the current
stack frame. To display the call stack, you can iterate
through the array of RemoteStackFrame instances and call
its toString() method.

getCurrentFrame() Returns the RemoteStackFrame instance for the current
frame.

getCurrentFrameIndex() Returns the index to the current RemoteStackFrame in the
execution stack.

getStackVariable() Returns the RemoteStackVariable instance associated with
name in the current stack frame. A null instance is re-
turned if name is not found.

getStackVariables() Returns the array of RemoteStackVariable instances that
are contained in the current stack frame. These represent
both arguments to the method and local variables (whether
they are in scope at this point).

resetCurrentFrameIndex() Restores the current stack frame to its state prior to
making any calls to up(), down(), or
setCurrentFrameIndex().

setCurrentFrameIndex() Establishes the stack frame at level iFrame to be the
current stack frame in the host JVM.

up() Moves the stack frame that is currently in context for this
RemoteThread instance up nFrames levels. This is typically
used after a breakpoint in order to “walk” up the call stack
frames. When used in conjunction with down(), this
command may be used to help implement an interactive
call stack window. If this RemoteThread instance is not
suspended or at a breakpoint, then an IllegalAccessError
exception is thrown. Also, if nFrames is too great (for
example, you try to go past the top frame on the execution
stack), an ArrayOutOfBounds exception is thrown.

Putting It All Together
By now, you are probably asking yourself, “How can I take advantage of all of this great tech-
nology?” First, you can simply use the JDB described in the next section. Or, you might choose

Table 51.17 Continued

Name Description

60 1529-5 CH51 9/24/98, 9:12 AM1212

1213

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

to think of JDB as a sample application and write your own debugger. In this case, the section
provides you with some basic guidelines for using the classes in the sun.tools.debug package.

On the CD-ROM included with this book is a file called DebuggerSkeleton.java. This is a shell
for a debugger that is based on the sun.tools.debug package. DebuggerSkeleton.java shows
how to get started by implementing the DebuggerCallback interface and instantiating an in-
stance of the RemoteDebugger class.

You can use the following steps as a guide in implementing a custom debugging aid with the
JDB API:

1. Create a base class that implements the DebuggerCallback interface.

2. Create a set of state-oriented instance variables in your base class to hold items such as
your instance of RemoteDebugger, the current thread group, and the current thread (this
is the same model used by JDB).

3. Create an instance of RemoteDebugger using either of the two constructors available. The
constructor you choose depends on whether you want to debug remotely, locally, or
both.

4. If you are creating a command line-based debugger, start up a command loop to accept
interactive debugging commands. If you are developing a GUI-based debugger, then
your command’s logic will typically be executed from button or menu events.

5. You may organize your command processing along the following lines, as shown in Table
51.18.

Table 51.18 Command Processing Organization

Category Description

General These commands handle the general flow of the debugger’s control.
You can take advantage of the RemoteDebugger class instance to
handle these commands. Consider options such as context com-
mands (set the current thread group and thread), memory com-
mands, tracing, and more as potential commands for this category.

Informational These commands display information on the current debugging
target. You use instances of RemoteObject, RemoteClass, and
RemoteStackFrame to display objects, classes, methods, variables,
and source lines.

Breakpoints These commands are used to set/reset breakpoints and exceptions.
These may be implemented by the methods in RemoteClass and
RemoteThread.

Execution These are the commands that may be used once a breakpoint
happens, a thread suspends, or an exception is thrown. You can use
RemoteClass and RemoteThread again to process these requests.

The Architecture of the sun.tools.debug Package

60 1529-5 CH51 9/24/98, 9:12 AM1213

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1214 Chapter 51 Debugging Java Code

The JDB in Depth
Now that you have a good understanding of the underlying debugging facilities in the JDK,
JDB can be examined. JDB really serves two purposes:

■ To be an interactive debugging aid for Java programmers

■ To serve as a sample application for applying the classes in the JDB API

Our discussion of JDB covers all of the commands in detail and describes the major portions of
the JDB API as they are used.

Basic Architecture
As an application, JDB is patterned after the DBX debugger found on many UNIX systems.
This is a command line–oriented debugger that allows you to interact with a running applica-
tion by entering English-like commands for examining and controlling its execution state.
These commands allow you to examine variables, set breakpoints, control threads, and query
the host JVM about the classes that it has loaded. You may also have the host JVM load classes
for you in advance so that you can set breakpoints in methods prior to their execution.

To understand fully the architecture of JDB, it may be helpful to print out or have access to its
source while you are reading this section. When you install the JDK, there is a relatively small
ZIP file in the installed JDK root directory (typically, \ JAVA in the Windows versions) called
SRC.ZIP. This file contains the Java source files for all of the publicly documented Java classes,
including the class that is the foundation for JDB. The SRC.ZIP file must be unzipped with the
Use Directory Names option to preserve the source tree. The source tree follows the package-
naming convention used in the JDK.

For example, if you unzip the SRC.ZIP file into a directory under \JAVA called SRC, you would
find two subdirectories under \JAVA\SRC called \JAVA\SRC\JAVA and \JAVA\SRC\SUN. These
represent the Java source files in the java.* and sun.* collection of packages, respectively.

The source to JDB is based on a class called TTY, or sun.tools.ttydebug.TTY. The source file
(assuming the directory structure in the preceding) would be in
\JAVA\SRC\SUN\TOOLS\TTYDEBUG\TTY.JAVA.

As you look at TTY.java, the first thing you will probably notice is that TTY is a simple class
that derives from Object, as all classes with no extends clause do. But, it does implement the
DebuggerCallback interface, as mentioned previously in the section “Putting It All Together.”

You should note that there are a few instance variables to help support application currency.
Specifically, a reference to a RemoteDebugger instance (debugger), a RemoteThreadGroup
(currentThreadGroup), and a RemoteThread (currentThread) are needed to maintain context
within the currently executing application. This helps when implementing most of the com-
mands that query for information from a suspended thread and method. After a few private
methods, you will see the methods defined in DebuggerCallback, allowing TTY to complete its
contract by implementing this interface.

60 1529-5 CH51 9/24/98, 9:12 AM1214

1215

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

It is now probably easier to jump to the bottom of the source and see its real structure. It starts
with a main method that will be called first when TTY.class is loaded and run. This main essen-
tially parses, collects, and verifies all of the command-line arguments and, if everything looks
good, creates an instance of the TTY class. The rest of the processing takes off from TTY’s cus-
tom constructor.

The only constructor in TTY takes seven arguments; these arguments specify the following:

■ Location and connection information for the remote JVM

■ The class file to load (optional)

■ Output files for the debugger and remote JVM

■ A Boolean flag to denote whether you want lots of informational messages returned by
the remote JVM as your debugging session is active

Once in the constructor, the remote debugger instance is created and, if specified, the initial
class is loaded. Creating an instance of RemoteDebugger actually causes a JVM to be started for
you in the remote system (even if no starting class is specified). After that, a check is made for
an input command file. Finally, the command processing loop is started.

The command loop’s real functionality lies in a method called executeCommand that expects a
tokenized version of the input command line. executeCommand is simply a series of cascading
if-else-if statements that check to see if the first token of the input argument matches one of
the predefined sets of commands supported by JDB. If so, then the helper method associated
with that command is executed. Otherwise, an appropriate error message is displayed (“Huh?
Try help...”).

Now that you have a feel for the general structure of JDB and its source (the TTY class), look at
the actual command-line arguments and commands supported by JDB.

The JDB Command Line
To start JDB in its simplest form, you can type jdb <Enter> at your command prompt. JDB
then performs its initialization and presents you with a > prompt. In fact, three “formal” com-
mand lines start JDB in various modes, as follows:

1. Start JDB and create a VM instance on this machine with no class loaded:
 JDB [-dbgtrace] [<java-args>]

Option Meaning

-dbgtrace If specified, enables verbose messages to be returned from the JVM
instance that is created in order to run the target Java application/
applet. These messages are sent to the printToConsole callback
method and have the format [debugger: <some message>]. That way,
you can filter them in your printToConsole implementation and send
them to a log file or window, for example.

<java-args> This is an optional subset of the arguments that you can specify when
running the java command to start an instance of the JVM. The

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1215

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1216 Chapter 51 Debugging Java Code

currently recognized options are the following: -cs, -checksource,
-noasyncgc, -prof, -v, -verbose, -verify, -noverify, -verifyremote,
-verbosegc, -ms, -mx, -ss, -oss, -D, and -classpath.

2. Start JDB and create a VM instance on this machine with <classname> loaded:
 JDB [-dbgtrace] [<java-args>] <classname> [<args>]

Option Meaning

-dbgtrace Same as above.

<java-args> Same as above.

<classname> This mandatory argument is the .class file to load initially into the
JVM and control by the debugger. Use the run command to begin
execution.

<args> This argument represents any arguments needed by <classname>. It
must be specified here, as there is no way to set up arguments for
<classname>’s main method after JDB starts up.

3. Start JDB and connect to a remote VM instance that is already running a class:

 JDB [-dbgtrace] [-host <hostname>] -password <password>

Option Meaning

-dbgtrace Same as above.

-host <hostname> This optional argument specifies a DNS name or IP
address of a computer runningthe host JVM for the Java
application/applet that you will be debugging. If this
argument is not specified, then localhost is automatically
assumed.

-password <password> This mandatory argument is the password that was
displayed on the console when the JVM hosting the
application/applet to be debugged was loaded. It is
generated by java or appletviewer when the flag
is specified on the respective command lines.

After you enter one of the JDB command lines, the initialization process described previously
takes over and, eventually, the interactive prompt (>) appears.

JDB Input Files
If you choose to run a debug session repeatedly with a specific set of commands, you can cre-
ate a command input file for JDB to use automatically. The command file is a simple ASCII text
file in which each line contains a valid JDB command followed by the line delimiter that is
appropriate to the OS you are running JDB on (for example, CR/LF for Wintel). JDB looks in
three places, in the order shown in Table 51.19, for a command input file.

60 1529-5 CH51 9/24/98, 9:12 AM1216

1217

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

Table 51.19 Locations for the JDB Command Input File

Directory
(System Property) Filename Example

USER.HOME JDB.INI C:\JAVA\JDB.INI

USER.HOME JDBRC /JAVA/.JDBRC

USER.DIR STARTUP.JDB ./STARTUP.JDB

If one of the aforementioned files is found, JDB reads each line and processes the command as
if it were typed in at the console. If you want JDB to exit quietly when it has finished processing
the file, place a quit or exit command as the last line in the command file. Otherwise, you are
left at the JDB prompt with any output from the processed commands visible on the console
window. Also, because the calls made to printToConsole are sent to System.out, you may
redirect the results of these commands to an output file using command-line redirection.

The JDB Command Set
Now that you know how to start JDB, it is useful to know how to operate it as well. To show
some of the features of the JDB command set, I use a small, threaded application where each
thread increments a shared counter and displays the value. Listing 51.15 contains the applica-
tion.

Listing 51.15 MTTest.java—Sample Buggy Application

public class MTTest extends Thread {
 static int count = 0;
 static Object sema = new Object();

 public MTTest(ThreadGroup theGroup, String threadName) {
 super(theGroup, threadName);
 }

 public void run() {
 String myName = getName();
 while (true) {
 synchronized (sema) {
 if(count < 30) {
 System.out.println(myName + “: “ + count);
 count += 1;
 } else break;
 }
 yield();
 }
 System.out.println(“Exiting “ + getName());
 }

 public static void main(String[] args) {
 ThreadGroup theGroup; // To contain the threads

continues

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1217

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1218 Chapter 51 Debugging Java Code

 MTTest[] theThreads; // Array of threads
 // Wait for the user to hit <Enter> to start
 System.out.print(“MTTest: Press the <Enter> key to begin.”);
 System.out.flush();
 try { System.in.read(); }
 catch (java.io.IOException e) {}
 System.out.println(“”);
 // Create the thread group
 theGroup = new ThreadGroup(“MTThreads”);
 // Create the thread array
 theThreads = new MTTest[3];
 // Create and start the threads
 for (int i = 0; i < theThreads.length ; ++i) {
 theThreads[i] = new MTTest(theGroup, “T” + Integer.toString(i));
 if (theThreads[i] != null)
 theThreads[i].start();
 }
 }
}

One of the first things to know about debugging anything with JDB that is multithreaded is
that it is best to have the target application wait until you are ready and run it in a separate
process space. Running in a separate process space prevents the target application’s output
from getting interspersed with the debugger output. Also, having the application wait for you
means that it won’t start running as soon as you start up the JVM that will run your application.

To follow along with the examples associated with each command, complete the following
steps:

1. Use the following command line to compile MTTest with debug information (line
numbers and local variable information):
javac -g MTTest.java

2. Open up two command windows: one for the JVM to run MTTest and the other to run
JDB within. From the first command window, start up the JVM as follows:
java -debug MTTest

The -debug option told the JVM that I was going to communicate with it via external
proxies, and MTTest is the name of the class file to load. After java is started, it displays
the following information on the system console:
Agent password=xxxxxx

where xxxxxx is the password to use when starting up JDB, which is the next step.

3. In the second command window, enter the following command to start JDB and connect
to the running JVM:
jdb -host localhost -password xxxxxx

Listing 51.15 Continued

60 1529-5 CH51 9/24/98, 9:12 AM1218

1219

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

4. To put the debugging session at an interesting point, enter the following in your JDB
command window; you are setting a breakpoint at the start of the run method of MTTest:
>stop in MTTest.run
Breakpoint set in MTTest.run

(Don’t worry about what the commands mean—we get to them in a future section.)

5. In the console window that is actually running MTTest (see step 2), press Enter to let
MTTest start to execute. You should almost immediately hit a breakpoint and see the
following in the JDB console window:

Breakpoint hit: MTTest.run (MTTest:12)
T0[1]

Now that everything is ready to go, the specific commands that are implemented by JDB can
be examined. For clarity, I have broken the commands into groupings based on their function-
ality. By using these categories, you can put each command into its respective slot (see Table
51.20).

Table 51.20 JDB Commands by Group

General Context Information Breakpoint Exception Threads

help/? load classes stop catch suspend

exit/quit run dump clear ignore resume

memory threadgroup list step kill down

gc thread locals next up

itrace use methods cont

trace print

!! threadgroups

threads

where

kill, next, itrace, and trace are undocumented but implemented commands. ■

The rest of this section describes each command and its function.

General Commands
These are the commands that are used to control some of the features of the debugger or
interrogate the state of the remote JVM.

help/? Syntax: help [or ?]

This command displays a list of the “documented” commands that are supported by JDB.

N O T E

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1219

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1220 Chapter 51 Debugging Java Code

exit/quit Syntax: exit [or quit]

Uses: RemoteDebugger.close()

This command terminates your debugging session and JDB. The connection between JDB and
the remote JVM is broken. If debugging locally, the VM is shut down.

memory Syntax: memory

Uses: RemoteDebugger.freeMemeory() and RemoteDebugger.totalMemory()

This command displays the total amount of used and free memory in the remote JVM. For
example, on my system, the memory command displays the following:

Free: 2674104, total: 3145720

gc Syntax: gc

Uses: RemoteDebugger.gc()

This command causes the garbage collection task to run on the remote JVM. The classes that
are not in use by the debugger are freed. JDB automatically tells the JVM not to garbage col-
lect the classes involved with the current RemoteThreadGroup and RemoteThread instances. If
you are having a long debug session, then you should use the gc command to occasionally
remove the RemoteClass instances that have been cached on your behalf by the remote JVM.

itrace (an Undocumented Command) Syntax: itrace on | off

Uses: RemoteDebugger.itrace()

This command enables (on) or disables (off) bytecode instruction tracing on the remote JVM
that is hosting your application. The output is sent to System.out on the remote JVM and can-
not be intercepted from within your debugging session.

The following is sample output from an itrace:

1393B58 6B4AD8 ifeq goto 6B4ADD (taken)
1393B58 6B4ADD aload_0 => java.net.SocketInputStream@139EE80/1481298
1393B58 6B4ADE aload_1 => byte[][2048]
1393B58 6B4ADF iload_2 => 0
1393B58 6B4AE0 iload_3 => 2048
1393B58 6B4AE1 invokenonvirtual_quick
java/net/SocketInputStream.socketRead([BII)I (4)

trace (an Undocumented Command) Syntax: trace on | off

Uses: RemoteDebugger.trace()

This method enables (on) or disables (off) method call tracing on the remote JVM that is host-
ing your application. The output is sent to System.out on the remote JVM and cannot be inter-
cepted from within your debugging session.

The following is sample output from a trace:

Debugger agent [3] | | | < java/lang/Runtime.traceMethodCalls(Z)V returning
Debugger agent [2] | | < sun/tools/debug/Agent.handle(ILjava/io/

60 1529-5 CH51 9/24/98, 9:12 AM1220

1221

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

➥DataInputStream;
Ljava/io/DataOutputStream;)V returning
Debugger agent [2] | | > java/io/DataOutputStream.flush()V (1) entered
Debugger agent [3] | | | > java/io/BufferedOutputStream.flush()V (1) entered
Debugger agent [4] | | | | > java/net/SocketOutputStream.write([BII)V (4)
➥entered
Debugger agent [5] | | | | | > java/net/SocketOutputStream.socketWrite([BII)V
➥(4) entered
Debugger agent [5] | | | | | < java/net/SocketOutputStream.socketWrite([BII)V
➥returning
Debugger agent [4] | | | | < java/net/SocketOutputStream.write([BII)V
➥returning
Debugger agent [4] | | | | > java/io/OutputStream.flush()V (1) entered
Debugger agent [4] | | | | < java/io/OutputStream.flush()V returning
Debugger agent [3] | | | < java/io/BufferedOutputStream.flush()V returning
Debugger agent [2] | | < java/io/DataOutputStream.flush()V returning
Debugger agent [2] | | > java/io/FilterInputStream.read()I (1) entered
Debugger agent [3] | | | > java/io/BufferedInputStream.read()I (1) entered
Debugger agent [4] | | | | > java/io/BufferedInputStream.fill()V (1) entered
Debugger agent [5] | | | | | > java/net/SocketInputStream.read([BII)I (4)
➥entered
Debugger agent [6] | | | | | | > java/net/SocketInputStream.socketRead([BII)I
➥(4) entered

The format of the call information uses the signature described in the section on the class file,
which is described in a subsequent section on the .class file structure.

!! (Repeat Last Command) Syntax: !!

This command re-executes, or repeats, the last entered command. It is not something that is
implemented by any remote class; rather, this command is just a feature that is enabled by the
JDB command processor.

Context Commands
These commands are used to establish context for the debugging session. They set up the
state of the remote JVM and the instance variables used operationally by TTY. To use just about
any of the commands in JDB, the current thread group and current thread must be set. The
initial context is set automatically when you use the run command; otherwise, you must manu-
ally set it using the threadgroup and thread commands.

load Syntax: load <classname>

Uses: RemoteDebugger.findClass()

load causes the remote JVM to search for and load <classname>. If you do not fully qualify the
name of the class to load, the VM tries to look in well-known packages to complete the name. If
the class is not found, an error message is returned. Also, an error message is displayed if no
<classname> is provided. This command does not affect the current context.

run Syntax: run [<classname> [args]]

Uses: RemoteClass.getQualifiedName and RemoteDebugger.run()

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1221

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1222 Chapter 51 Debugging Java Code

This command loads and begins execution of <classname> or the last <classname> specified on
the previous call to the run command. Error messages are returned if the class can’t be found
or if there is a general failure in attempting to start <classname>. This command also sets the
context by establishing initial values for the currentThreadGroup and currentThread.

threadgroup Syntax: threadgroup <thread group name>

Uses: RemoteDebugger.listThreadGroups and RemoteThreadGroup.getName

This command establishes <thread group name> as the default thread group by putting a
reference to its RemoteThreadGroup instance in the currentThreadGroup instance variable. This
command is required for using any of the commands that are relating to breakpoints, excep-
tion, and thread management. For example, you could enter:

>threadgroup MTThreads

to specify the current default thread group.

thread Syntax: thread t@<thread id> | <thread id>

<thread id> is an integer constant representing a thread’s ID number. (See the threads com-
mand.)

Uses: RemoteThreadGroup.listThreads

This command sets <thread id> as the current thread in context relative to the current thread
group by putting a reference to its RemoteThread instance in the currentThread instance
variable. This command is required for using any of the commands relating to breakpoints,
exception, and thread management. It is typically used in conjunction with the threadgroup
command. For example, you could enter:

>thread 5
T0[1]

to specify the current default thread. T0[1] is now the new prompt showing you that your
context is in thread T0, which is the first thread in the current thread group.

use Syntax: use [source file path]

Uses: RemoteDebugger.getSourcePath and RemoteDebugger.setSourcePath

This command is used to display or set the path that the remote JVM uses to find .class and
.java files. If called without any arguments, then the current source file path is displayed. If
called with a path (formatted like the classpath system property), then the source file path is
updated accordingly. For example, to display the current class/source path and then change it,
use this:

>use
.;c:\java\lib\classes.zip
>use .;c:\java\lib\classes.zip;c:\java\lib\classdmp.zip
>use
.;c:\java\lib\classes.zip;c:\java\lib\classdmp.zip

60 1529-5 CH51 9/24/98, 9:12 AM1222

1223

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

Information Commands
These commands are used to display information about the classes that are currently loaded
and known to the remote JVM. They are list-oriented in nature and depend on the context
being established as described previously.

classes Syntax: classes

Uses: RemoteDebugger.listClasses and RemoteClass.description

This command displays the class and interface names that are currently known to the remote
JVM hosting the debugging target. If this list is unusually large, try running the gc command
to free instances of RemoteClass that are being held on your behalf by the remote JVM and the
RemoteDebugger agent.

The following is sample output from the classes command after starting up MTTest:

0x1393768:class(MTTest)
0x1393778:class(sun.tools.debug.Agent)
0x13937a0:class(java.lang.Runtime)
0x1393818:class(java.net.ServerSocket)
0x1393830:class(java.net.PlainSocketImpl)
0x1393840:class(java.net.SocketImpl)
0x1393890:class(java.net.InetAddress)

dump Syntax: dump t@<thread id> | $s<slot id> | 0x<class id> | <name>

t@<thread id> represents a valid thread ID within the current thread group; $s<slot id>
represents the slot/offset to a variable in a stack frame; 0x<class id> represents the numeric
identifier for a currently loaded class; or <name> represents the literal this, a valid class name,
a field name (for example, class.field), an argument name, or a local variable name.

Uses: RemoteThreadGroup.listThreads, RemoteThread.getStackVariables,
RemoteStackVariable.getValue, RemoteDebugger.get, and RemoteDebugger.findClass

This command dumps the detailed description of the specified thread, stack-based variable,
class, field, named local variable, or named argument. If an argument, variable, or field is re-
quested, its name and value are displayed. If a thread or class is specified, a detailed descrip-
tion of the thread or class is displayed, including instance variables and their current values.

The following is an example of dumping the MTTest class:

T0[1] dump MTTest // Could also have entered: dump 0x1393768
 “MTTest” is not a valid field of (MTTest)0x13a0ca8
MTTest = 0x1393768:class(MTTest) {
superclass = 0x1393008:class(java.lang.Thread)
loader = null

private static Thread activeThreadQ = null
private static int threadInitNumber = 2
public static final int MIN_PRIORITY = 1
public static final int NORM_PRIORITY = 5
public static final int MAX_PRIORITY = 10
static int count = 0

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1223

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1224 Chapter 51 Debugging Java Code

}
T0[1]

Note that the second line is a result of the search algorithm used by the dump command.

list Syntax: list [line number]

Uses: RemoteThread.getCurrentFrame, StackFrame.getRemoteClass,
RemoteClass.getSourceFileName, RemoteClass.getGetSourceFile

This command displays one or more source lines for the current thread’s current method.
There must be a thread in context that is running but in a suspended state. Also, the line num-
ber, if specified, must be relative to the top of the source file that defines the current method.
Otherwise, if you don’t specify a line number, then the current line is displayed. This listing
includes the four lines of source immediately before and after the specified line.

The following is how a list with no arguments should look for MTTest at the current breakpoint:

T0[1] list
6 }
7
8 public void run() {
9
10 => String myName = getName();
11
12 while (true) {
13 synchronized (sema) {
15 if (count < 30) {
T0[1]

The => in line 10 denotes the current line of source.

locals Syntax: locals

Uses: RemoteThread.getStackVariables

This command displays all arguments to the current method and local variables that are de-
fined in this stack frame. You must have a thread in context, and you must have compiled your
code with the -g option to get symbol table information for the local variables and arguments
available for debugging.

For example, if you entered locals, you should see the following:

T0[1] locals
Method arguments:
this = Thread[T0,5,MTThreads]
Local variables:
myName is not in scope.
T0[1]

The this argument is present in all methods and is pushed on the stack implicitly by the JVM
invocation logic. The myName variable is not in scope yet, as you are at a breakpoint at the begin-
ning of the method.

60 1529-5 CH51 9/24/98, 9:12 AM1224

1225

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

methods Syntax: methods <classname> | 0x<class id>

Uses: RemoteDebugger.get, or RemoteDebugger.findClass and RemoteClass.getMethods This
command displays all of the methods in the specified class, including the signature of each.
The methods list for MTTest should look like this:

T0[1] methods MTTest
void <init>(ThreadGroup, String)
void run()
void main(String[])
T0[1]

The <init> method is a special name and represents the constructor for this class.

print Syntax: print t@<thread id> | $s<slot id> | 0x<class id> | <name>

t@<thread id> represents a valid thread ID within the current thread group; $s<slot id>
represents the slot/offset to a variable in a stack frame; 0x<class id> represents the numeric
identifier for a currently loaded class; <name> represents the literal this, a valid class name, a
field name (for example, class.field), an argument name, or a local variable name.

Uses: RemoteThreadGroup.listThreads, RemoteThread.getStackVariables,
RemoteStackVariable.getValue, RemoteDebugger.get, and RemoteDebugger.findClass

This command displays a simple description of the specified thread, stack-based variable, class,
field, named local variable, or named argument. If an argument, variable, or field is requested,
then its name and value are displayed. If a thread or class is specified, then the name and ID of
the thread or class are displayed.

The following is an example of printing the MTTest class:

T0[1] print MTTest
MTTest = 0x1393768:class(MTTest)
T0[1]

threadgroups Syntax: threadgroups

Uses: RemoteDebugger.listThreadGroups, RemoteThreadGroup.getName, and
RemoteThreadGroup.description

This command displays the name and description of all active thread groups in the remote
JVM.

The threadgroups command for MTTest looks like this:

T0[1] threadgroups
1. (java.lang.ThreadGroup)0x13930b8 system
2. (java.lang.ThreadGroup)0x139ec60 main
3. (java.lang.ThreadGroup)0x13a0b00 MTThreads
T0[1]

threads Syntax: threads [thread group name]

Uses: RemoteDebugger.listThreadGroups, RemoteThreadGroup.getName,
RemoteThreadGroup.listThreads, RemoteThread.getName, RemoteThread.description, and
RemoteThread.getStatus

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1225

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1226 Chapter 51 Debugging Java Code

This command displays the list of threads for the current or specified thread group. If the
current or specified thread group has embedded thread groups, their threads are listed as well.

Issuing the threads command for MTTest’s named thread group MTThreads should give you
something that is similar to the following:

T0[1] threads MTThreads
Group MTThreads:
1. (MTTest)0x13a0b30 T0 at breakpoint
2. (MTTest)0x13a0b90 T1 suspended
3. (MTTest)0x13a0bd0 T2 suspended
T0[1]

where Syntax: where [all | <thread id>]

Uses: RemoteThreadGroup.listThreads, RemoteThread.dumpStack, and
RemoteStackFrame.toString

This command displays the call stack (the list of methods that were called to get to this point)
for the current thread (as set with the thread command), all threads (for the current thread
group as set with the threadgroup command), or the specified thread (by its ID).

On my system, the command where all gives the following result:

T0[1] where all
Finalizer thread:
Thread is not running (no stack).
Debugger agent:
[1] sun.tools.debug.Agent.handle (Agent:590)
[2] sun.tools.debug.Agent.run (Agent:324)
[3] java.lang.Thread.run (Thread:294)
Breakpoint handler:
[1] java.lang.Object.wait (Object:152)
[2] sun.tools.debug.BreakpointQueue.nextEvent (BreakpointQueue:51)
[3] sun.tools.debug.BreakpointHandler.run (BreakpointHandler:184)
main:
[1] MTTest.main (MTTest:51)
T0:
 [1] MTTest.run (MTTest:12)
T1:
Thread is not running (no stack).
T2:
Thread is not running (no stack).
T0[1]

Breakpoint Commands
These commands allow you to set/remove and control execution flow from a breakpoint.
Breakpoints are the fodder for most debugging sessions in that just about the only way to do
anything while debugging is to stop the application. Or, in Java’s case, a thread must be
stopped unconditionally at some point. That’s exactly what a breakpoint does. After you have
established a breakpoint (you have already seen this briefly in step 4 while setting up the de-
bugging session), you execute your program/thread until the execution path reaches that

60 1529-5 CH51 9/24/98, 9:12 AM1226

1227

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

point. When it does, the execution of that thread stops, and you regain control of the remote
JVM and your application.

Now you can set up and remove breakpoints, “walk” through your program using the step and
next commands, or use cont to continue execution.

stop Syntax 1: stop in <classname>.method | 0x<class id>.method

Uses: RemoteDebugger.findClass or RemoteDebugger.get, RemoteClass.getMethod, and
RemoteClass.setBreakpointMethod

Syntax 2: stop at <classname>:line number | 0x<class id>:line number

Uses: RemoteDebugger.findClass or RemoteDebugger.get and
RemoteClass.setBreakpointLine

This command sets a breakpoint at the first bytecode instruction of the specified method (Syn-
tax 1) or at the first bytecode instruction of the specified line. If Syntax 2 is used, line number is
relative to the beginning of the source file that contains <classname>/<class id>. If stop is
issued with no arguments, then the existing breakpoints are displayed. When a breakpoint is
placed on a method that is part of a multithreaded application/applet, it applies to all active
threads when they cross that method or line of code. The breakpoint remains active until it is
removed with the clear command.

The following example lists the current breakpoints, sets one at line 14 of MTTest, and then
displays the breakpoint list again:

T0[1] stop
Current breakpoints set:
MTTest:10
T0[1] stop at MTTest:12
Breakpoint set at MTTest:12
T0[1] stop
Current breakpoints set:
MTTest:12
MTTest:10
T0[1]

clear Syntax 1: clear <classname>.method | 0x<class id>.method

Uses: RemoteDebugger.findClass or RemoteDebugger.get, RemoteClass.getMethod, and
RemoteClass.clearBreakpointMethod

Syntax 2: clear <classname>:line number | 0x<class id>:line number

Uses: RemoteDebugger.findClass or RemoteDebugger.get, and
RemoteClass.clearBreakpointLine

This command clears an existing breakpoint at the first bytecode instruction of the specified
method (Syntax 1) or at the first bytecode instruction of the specified line. If Syntax 2 is used,
line number is relative to the beginning of the source file that contains <classname>/<class
id>. If clear is issued with no arguments, then the existing breakpoints are displayed. When a
breakpoint is cleared from a method that is part of a multithreaded application/applet, then it
affects all active threads when they cross that method or line of code.

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1227

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1228 Chapter 51 Debugging Java Code

The following example lists the current breakpoints, clears one at the start of MTTest.run, and
then displays the breakpoint list again:

T0[1] clear
Current breakpoints set:
MTTest:12
MTTest:10
T0[1] clear MTTest.run
Breakpoint cleared at MTTest.run
T0[1] clear
Current breakpoints set:
MTTest:12
T0[1]

step Syntax: step

Uses: RemoteThread.step

This command executes the next instruction of the currently stopped thread. If the next in-
struction is a method call, execution stops at the first instruction of the method being invoked.
An error is generated if there is no current thread or the current thread is not suspended at a
breakpoint.

next (An Undocumented Command) Syntax: next

Uses: RemoteThread.next

Like step, the next command steps execution of the currently stopped thread to the next in-
struction. But, if the next instruction is a method invocation, then the method is called and
control returns to the debugger upon return from the method being executed. At that point,
the current instruction is the one immediately following the call. As with step, an error is
generated if there is no current thread or the current thread is not suspended at a breakpoint.

cont Syntax: cont

Uses: RemoteThreadGroup.listThreads, RemoteThread.cont, and
RemoteThread.resetCurrentFrameIndex

This command continues the execution of all suspended threads in the default thread group.
The command is useful when you have been single-stepping through a thread and want to let
the application simply run until the next breakpoint or exception occurs.

Exception Commands
These commands control which exception classes should be caught or ignored by JDB. One of
the more interesting aspects of Java is the notion of exceptions. Exceptions are kind of like
intelligent breakpoints that you can code logic for directly within your application. They are
typically used to trap very specific exceptional situations that should not occur under normal
use.

A feature of the JDB API is the ability to register your interest in a specific exception and have
it behave like a breakpoint so that you can step through the logic coded in the catch block of
the exception handling code. If you choose not to handle a breakpoint in this manner, then the

60 1529-5 CH51 9/24/98, 9:12 AM1228

1229

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

debugging client is notified as if a nonrecoverable breakpoint were reached. That control is
returned to the debugger, but you will not be able to step through the exception logic in the
catch block.

catch Syntax: catch [<classname> 0x<class id>]

Uses: RemoteDebugger.getExceptionCatchList, RemoteDebugger.findClass, or
RemoteDebugger.get and RemoteClass.catchException

This command causes the debugger to catch (via DebuggerCallback.exceptionEvent) occur-
rences of the exception class specified by <classname>/0x<class id> when thrown by the
remote JVM. Throwing the exception class causes execution to stop, as if a breakpoint were
placed at the first executable statement of the catch block that is currently active when trying
the specified exception. In other words, all try-catch blocks in the application that “catch” the
specific exception will become breakpoints. If no class is specified, then the existing caught
exceptions are displayed. An error is generated if the specified class is not a subclass of
Exception.

ignore Syntax: ignore [<classname> 0x<class id>]

Uses: RemoteDebugger.getExceptionCatchList, RemoteDebugger.findClass or
RemoteDebugger.get, and RemoteClass.ignoreException

This command causes the debugger to stop catching occurrences of the exception class speci-
fied by <classname>/0x<class id> when thrown by the remote JVM. This does not stop the
exception from being thrown, but it does stop the debugger from being able to catch the ex-
ception as if it were a breakpoint. If no class is specified, then the existing caught exceptions
are displayed. An error is generated if the specified class is not a subclass of Exception.

Thread Commands
These commands are used to control the execution state and stack of currently active threads.
The thread control commands are something like a manual breakpoint, in that you can stop a
thread in its tracks without needing to code a breakpoint. This can be extremely useful in situa-
tions where you have inadvertently coded an endless loop and can’t see where the flawed logic
exists. You can also resume execution of a thread you have suspended as well as remove it
entirely. After you have suspended a thread, you can then manipulate the current frame within
the call stack that is active. This allows you to examine arguments and local variables in meth-
ods that called the currently suspended method.

suspend Syntax: suspend [thread-id [thread-id ...]]

Uses: RemoteThreadGroup.listThreads and RemoteThread.suspend

This command suspends (stops) the execution of the specified thread(s) or all nonsystem
threads if no thread is specified. This causes a one-time breakpoint to occur at the currently
executing instruction in the affected thread(s).

resume Syntax: resume [thread-id [thread-id ...]]

Uses: RemoteThreadGroup.listThreads and RemoteThread.resume

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1229

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1230 Chapter 51 Debugging Java Code

This command resumes (continues) execution of the specified thread(s) or all nonsystem
threads if no thread is specified. This allows the affected thread to run as if no breakpoints ever
existed at the previously suspended code location.

kill (An Undocumented Command) Syntax: kill <thread group name> <thread id>

Uses: RemoteThreadGroup.listThreads, RemoteThread.stop, and RemoteThreadGroup.stop

This command terminates (permanently stops) the execution of either all threads in the speci-
fied thread group or just the specified thread (by ID). After a thread or thread group has been
terminated, it may not be resumed, and no breakpoint commands (step, next, cont) may be
applied. An error is generated if no arguments are specified or if the specified name or ID is
bad.

up Syntax: up [n frames]

Uses: RemoteThread.up

This command moves the context of the current stack frame from its current position up one
(the default), or n frames. A frame represents the execution state for a method that was being
executed prior to calling into another method. The execution state includes the location of the
line being executed when the method call was made, the line’s arguments (and their current
values), and the line’s local variables (and their current values). At this point, the method’s
state is “pushed,” and a new frame is created for the method being called. Each time a method
is subsequently called from within the next method, the current frame is pushed and a new
frame is put into context. By moving “up” the call stack, the prior method’s arguments and
variables may be examined.

down Syntax: down [n frames]

Uses: RemoteThread.down

This command is used after using the up command. down moves the context of the current
stack frame from its current position down one (the default), or n frames. By moving “down”
the call stack, you progress toward the current state of execution prior to the last suspended
point in the current thread (whether from a breakpoint, caught exception, or explicit call to
suspend).

JDB Wrap-Up
As you can see from the number of commands (33 distinct ones), JDB is actually a very power-
ful debugging facility.

It is an excellent example of how to implement a debugger using Sun’s JDB API. Furthermore,
it is a great sample application for Java system programming. In reality, it would not take much
work to wrap some GUI functionality around the TTY class to make it a little more visually
appealing (subclass it, add a multiline text field for the output, set up menu items for the com-
mand groups, create pop-up windows, and more). Even if you don’t work with the GUI func-
tionality in this manner, you can use JDB to debug your applications on any platform that is
supported by the Sun JDK.

60 1529-5 CH51 9/24/98, 9:12 AM1230

1231

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

51

VIII
Part

Ch

What about debugging strategies? The biggest point to keep in mind is that if you are running
into problems in a multithreaded application, you are going to want to liberally use breakpoints
and exceptions. The nice thing about throwing exceptions in your own code is that you can
catch them like breakpoints without having to know specific source line numbers or method
names and ignore them as well. (Remember, an exception does not have to mean that a cata-
strophic error has occurred. It is simply a signal from one piece of code to another.) You can
create an exception to throw when a loop counter goes beyond a certain value, when a socket
receives a particular message, and so on. The ways that exceptions can be used are truly limit-
less.

Another important feature to use is the where command. You will not realize you are in a recur-
sive situation unless you see what the call stack looks like. Your logic may have intentional
recursion, but it is not a technique that the average business application uses on a regular
basis. After you have a feel for the look of the call stack, you can then use the up and down
commands to move your context through the call stack and check out local variables/argu-
ments that might be affecting your execution.

The last strategy is to have an in-depth understanding of how your compiled class files are
formatted and how the JVM uses them. That’s what is covered in the next two chapters. ●

The JDB in Depth

60 1529-5 CH51 9/24/98, 9:12 AM1231

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH51 LP#2

1232 Chapter 51 Debugging Java Code

60 1529-5 CH51 9/24/98, 9:12 AM1232

1233

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

C H A P T E R

Understanding the .class File

52

In this chapter

A Fundamental Measurement 1234

Elements of the .class File 1234

Definitions 1235

The .class File Structure 1242

So Now What Can I Do? 1251

61 1529-5 CH52 9/24/98, 9:14 AM1233

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1234 Chapter 52 Understanding the .class File

A Fundamental Measurement
The .class file is the fundamental unit of measure for a Java application with respect to the
Java Virtual Machine (JVM). It represents a contract of sorts between a compiler and an imple-
mentation of the JVM. I mention “a compiler” versus “a Java compiler” because, as you will see,
any language compiler can potentially generate .class files and Java bytecodes.

Physically, the .class file is an ordered set of bytes representing extremely dynamic struc-
tures and arrays that describe the compiled version (or runtime image) of an executable unit,
called a class. Most of the components that make up the .class file have a fixed structure
followed by a set of variable-length structures. Some pieces are mandatory, and others are
optional. The important thing to keep in mind is that a process that generates a .class file
must do so in the exact format and style in this chapter. Otherwise, the JVM’s class loader and
verifier will not accept the submitted .class file.

Elements of the .class File
Keeping the .class file in the byte stream–oriented format is very critical for quickly loading
and parsing the information it contains. Implementers of class loaders might take advantage of
the stream I/O classes in Java—for example, to easily read in a .class file piece by piece,
parsing as it is read, or to read it into a byte array and parse it manually.

The concept to keep in mind is that you must read in each section, in order, until its informa-
tion is exhausted. Also, you can’t really read in a section of the file without reading its descrip-
tive information first. For example, a portion of the file is called the Constant Pool. The first
item that you read in is the number of elements that will follow. Then, for each element that
you read in, a descriptor tells you the format of the next element. Finally, you read in the actual
element based on its specific format.

The file itself can be broken up into logical sections:

■ At its highest level, the .class file represents a single compiled Java class. When you
compile a Java source file (.java file) for every class defined within that one file, the
compiler generates a .class file for each one.

■ The next level is the basic class structure. This level includes information about the
class’s properties and subsections for describing the constant values collected for the
class (the Constant Pool) when it was compiled, followed by the class’s interfaces, fields,
methods, and class-level attributes.

■ Then, each subsection can be looked at independently: the Constant Pool and its
elements, the table of interfaces, the field table including properties and attributes, and
the method table including properties and attributes.

The information described in this chapter was gleaned from two sources:

● The online reference materials at the old JavaSoft Web site (www.javasoft.com) and Sun
Web site (www.sun.com).

N O T E

61 1529-5 CH52 9/24/98, 9:14 AM1234

1235

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

● Sessions at JavaOne, Sun’s Worldwide Java Developer Conference held in San Francisco in
May, 1996. ■

Definitions
In order to fully understand the contents of the .class file, you need to first define some com-
mon structures that are used by the various sections it includes. In this section, you examine
the Constant Pool, the format of a signature or type definition, and attributes.

The Constant Pool
The idea of a Constant Pool might be a new concept to you, but Constant Pools have been used
since the early days of compilers and runtime systems. A Constant Pool is used to contain each
distinct literal value encountered while the source code for a class is being compiled. A literal
value in this case might be an actual numeric value, a string literal, a class name, type descrip-
tion, or method signature.

Each time one of these literal values is encountered, the Constant Pool is searched for a match-
ing value in order to avoid putting duplicate values into the pool. If the value is found, its exist-
ing location in the Constant Pool is inserted into the class definition or compiled bytecode
stream. If the value isn’t found in the Constant Pool, it is added. At load time, the Constant Pool
is placed into an array-like structure in memory for quick access. Then, as the rest of the class
is loaded, and at runtime whenever a literal is needed, its value is located in the Constant Pool
by its index and retrieved.

The use of a Constant Pool keeps the size of the compiled class smaller; hence, it loads faster.
At runtime, the Sun implementation of the JVM has a mechanism to make resolving a Constant
Pool reference occur only the first time a distinct value is needed. After that, the resolved value
can be directly referenced in a special array off the Constant Pool. The actual mechanism is
supported by a special set of internal bytecodes called the quick instructions. Because they are
strictly implementation-dependent, they are not part of the formal definition of the Java
bytecodes.

The Constant Pool as it is recorded in the .class file is in a very compacted format. It begins
with a 16-bit unsigned integer value that is the count of elements that follow plus one. (The
extra count is for the zero’th element that is only used at runtime and not included in the ele-
ments contained in the .class file.) What follows the count value is a variable-length array with
each element being a variable-length structure and no padding between elements.

Twelve different types of values and associated structures can be stored in the Constant Pool.
Each structure begins with a single byte-sized integer value called a tag (see Table 52.1). The
tag is used to determine the format of the bytes that follow which make up the remainder of
this element’s structure.

Definitions

61 1529-5 CH52 9/24/98, 9:14 AM1235

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1236 Chapter 52 Understanding the .class File

Table 52.1 Constant Pool Tags

Tag Meaning Note

1 Utf8 string

2 Unicode string Not used at this point

3 Integer value

4 Float value

5 Long value

6 Double value

7 Class reference Only refers to class name

8 String

9 Field reference Only used in bytecode stream

10 Method reference Only used in bytecode stream

11 Interface method Only used in bytecode stream

12 Name and type reference

Now that you know the tag values, let’s look at each Constant Pool element type. All tags are
one byte long, and all lengths and indexes are 16-bit unsigned integer values, unless otherwise
noted.

Tag 1: The Utf8 String The Utf8 constant is used to represent Unicode string values in as
small a representation as possible (see Table 52.2). In a Utf8 string, a character will use from
1–3 bytes depending on its value. It is very oriented towards ASCII values in that all nonnull
ASCII characters will fit in a single byte. The .class file depends heavily on this Constant Pool
entry type, in that all actual string values (including class, field, and method names, types, and
method signatures) are stored in Utf8 constants.

Table 52.2 The Utf8 String Constant

Field Number of Bytes Value

Tag 1 1

Size 2 Length in bytes of the Utf8 string.

Data (Size) The actual Utf8 string.

Tag 2: The Unicode String The Unicode constant is intended to hold an actual Unicode string
but is not used in the .class file itself (see Table 52.3). It can be used internally to hold a true
Unicode string at runtime. Its format is similar to the Utf8 constant, but each character is a
true 16-bit Unicode character.

61 1529-5 CH52 9/24/98, 9:14 AM1236

1237

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

Table 52.3 The Unicode String Constant

Field Number of Bytes Value

Tag 1 2

Size 2 Number of characters in the Unicode string.

Data (Size * 2) The actual Unicode string.

Tags 3 and 4: Integer and Float Values The Integer and Float constants are used to hold
integer and float constant values, respectively, that can be used as initializers to fields or vari-
ables, as well as hard-coded literal values within a Java statement (see Table 52.4).

Table 52.4 The Integer and Float Constants

Field Number of Bytes Value

Tag 1 3 for Integer; 4 for Float.

Data 4 Actual integer or float value in big-endian (MSB first)
order.

Tags 5 and 6: Long and Double Values The Long and Double constants are used to hold long
and double constant values, respectively, that can be used as initializers to fields or variables, as
well as hard-coded literal values within a Java statement (see Table 52.5). For internal reasons,
each Long and Double constant uses up two elements in the Constant Pool. So if a Long constant
starts at Constant Pool location 4, the next constant will be placed in location 6.

Table 52.5 The Long and Double Constants

Field Number of Bytes Value

Tag 1 5 for Long; 6 for Double.

Data 8 Actual long or double value in big-endian (MSB first)
order.

Tag 7: The Class Reference The Class reference constant is an indirection that is used to
refer to the actual literal name of a class (see Table 52.6). All class names used within the
.class file are referred to in this way, except when used in a field, variable, argument, or re-
turn type declaration (see the upcoming section “Type Information”). Also, because arrays are
objects in Java, all array references are based on a Class reference constant.

Definitions

61 1529-5 CH52 9/24/98, 9:14 AM1237

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1238 Chapter 52 Understanding the .class File

Table 52.6 The Class Reference Constant

Field Number of Bytes Value

Tag 1 7

Index 2 Location of a Utf8 string in the Constant Pool containing
the fully qualified class name.

Tag 8: The String Reference The String reference is another indirection used whenever an
actual string literal is encountered in the class definition or bytecode stream (see Table 52.7).
This string can be used as an initializer to a String variable, directly in a Java expression, or as
an argument to a method call.

Table 52.7 The String Reference Constant

Field Number of Bytes Value

Tag 1 8

Index 2 Location of a Utf8 string in the Constant Pool containing
the actual string value.

Tags 9, 10, and 11: The Field, Method, and Interface Method Reference The Field,
Method, and Interface Method reference constants are used within the compiled Java
bytecode stream in order to dynamically reference a field or method that resides in another
class or interface (see Table 52.8). The Class reference is used to dynamically load in the
referenced class, and the Name and Type reference is used to find the specified field to use or
method to call.

Table 52.8 The Field, Method, and Interface Method Reference Constants

Field Number of Bytes Value

Tag 1 9 for Field; 10 for Method; 11 for Interface Method.

Class Index 2 Location of a Class reference in the Constant Pool
containing the following Field or Method reference.

Name/Type 2 Location of a Name and Type Index reference in the
Constant Pool describing a field or method.

Tag 12: The Name and Type Reference The Name and Type reference is used to hold the
actual name of a field, variable, method, or argument and its associated type or signature (see
Table 52.9). These constant types are used anywhere fields, variables, methods, or arguments
are defined and used. See the following section, “Type Information,” for the exact format of the
contents of the Description field.

61 1529-5 CH52 9/24/98, 9:14 AM1238

1239

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

Table 52.9 The Name and Type Reference Constants

Field Number of Bytes Value

Tag 1 12

Name Index 2 Location of a Utf8 string in the Constant
Pool containing the name of a field, var, arg,
or method.

Description Index 2 Location of a Utf8 string in the Constant
Pool containing the Name’s type or signature.

Type Information
In order to have a consistent way of describing the data types of fields, variables, arguments,
and the signatures of methods, the .class file uses a very abbreviated notation. Essentially,
each native type known by the JVM is represented by a single-character shortcut for its full
name, with classes and arrays denoted by a special character for modification. Each type and
signature shortcut is kept in a Utf8 formatted string in the Constant Pool. For the type of a
field or variable, it is just a single type description; for a method signature, it is a series of type
descriptions put together with the arguments first (in order, surrounded by parentheses),
followed by the shortcut for the method’s result type.

Table 52.10 shows the abbreviated type name followed by its real data type.

Table 52.10 Data Type Abbreviations Used by the .class File

Abbreviation Java Type Notes

B byte

C char

D double

F float

I int

J long

S short

Z boolean

V void Only used for methods.

L<classname>; class The capital letter L followed by a fully qualified
class name terminated by a semicolon. Note that
forward slashes, not periods, are used to delimit
the actual package name tokens for the class name.

[Array dimension An open bracket is used to denote each dimension
of an array.

Definitions

61 1529-5 CH52 9/24/98, 9:14 AM1239

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1240 Chapter 52 Understanding the .class File

In order to see how these abbreviations are used, take a look at Listing 52.1. You define a
simple Java class, and for each variable and method, you put its shorthand version in a com-
ment.

Listing 52.1 Shorthand Types and Signatures

class foo {

// TYPE FIELD NAME SHORT-HAND VERSION

 int simpleInt; // I
 boolean simpleBool; // Z
 float[] floatArray; // [F
 char[][] twoDimCharArray; // [[C
 String[][][] threeDimStringArray; // [[[Ljava/lang/String;
 // Note the use of slashes here

 void DoSomething(long arg1, double[][] arg2) { }
 // (J[[D)V
 // Two arguments, a long and a two dimension double array, returning
 // nothing.

 java.net.Socket OpenSocket(String hostname, int port) { }
 // (Ljava/lang/String;I)Ljava/net/Socket;
 // Two arguments, a String object and an integer, returning a Socket
 // object.

 void NoArgsNoResult() { }
 // ()V
 // No arguments, returning nothing

}

Attributes
Attributes are the mechanism that the designers of the .class file structure created to allow
additional descriptive information about the class to be included in the file without changing its
semantics. Attributes are dynamically structured modifiers that contain both mandatory and
optional properties affecting the class, its fields, and its methods. For example, information on
local variables, arguments, and the compiled bytecode for a method are contained in a manda-
tory attribute called the Code attribute.

Also, with respect to using attributes to extend the information in a .class file, Microsoft’s
JVM implementation provides support for interoperability with COM objects by adding new
attributes to the .class file. A class loader and JVM implementation only need to recognize the
mandatory attributes and can ignore the rest. That way, a class compiled for one VM can still
be read (and possibly executed) by another VM.

61 1529-5 CH52 9/24/98, 9:14 AM1240

1241

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

CAUTION

Obviously, if you created a .class file that depended on a VM that supported COM objects, for example, it
would not run with the Sun JVM 1.0.2.

Table 52.11 gives a brief description of the attributes that are recognized by Sun’s JVM
Version 1.0.2.

Table 52.11 Sun 1.0.2 Java .class File Attributes

Attribute Name Mandatory Level Purpose

SourceFile No Class Names the file containing Java source
for this .class file.

ConstantValue Yes Field Holds value of an initializer for a native
typed field.

Exceptions Yes Method Defines the exceptions that are thrown
by this method.

Code Yes Method Defines the physical structure and
bytecodes for a method.

LineNumberTable No Code Contains a program counter to the line
number table for use in debugging.

LocalVariableTable No Code Contains local variable descriptive
information for use in debugging.

When .class file elements use attributes, they are kept in a table and are preceded by an un-
signed 16-bit integer count field holding the number of attributes that immediately follow. The
attributes physically are named variable-length structures that are similar in some respects to
the entries in the Constant Pool described earlier in this section. Each attribute begins with a
fixed-length portion and is followed by a variable number of fields. Attributes can also be
nested in order to allow for extensions to the information that they contain.

All attribute definitions have the same first two fields, as shown in Table 52.12.

Table 52.12 Attribute Definition: The Fixed Portion

Field Number of Bytes Value

Name Index 2 Location of a Utf8 string in the Constant Pool contain-
ing the literal name of this attribute, as defined in Table
52.11.

Length 4 An unsigned integer containing the number of bytes of
data that follow, excluding the six bytes that make up
the fixed portion (Name Index and Length).

Data (Length) The actual variable length structure associated with
this specific attribute definition.

Definitions

61 1529-5 CH52 9/24/98, 9:14 AM1241

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1242 Chapter 52 Understanding the .class File

I describe each attribute’s meaning and structure in context with its actual position in the
.class file. In those discussions, it is assumed that each attribute begins with the Name

Index and Length fields described in Table 52.12. ■

The .class File Structure
Now that I have defined the dynamic elements that are used in the .class file, you can finally
discover its real structure. Table 52.13 shows the first level of description for the fields in the
.class file.

Table 52.13 First Level Fields in the .class File Structure

Field Number of Bytes Value

Magic Number 4 This value acts as a signature and is used to
help ensure the validity of the actual .class
file. As of this writing, it must be the 32-bit
value 0xCAFEBABE.

Minor Version 2 Minor version number used by the compiler
that generated this .class. This integer value
is currently 3 in the JDK 1.0.2 javac compiler.

Major Version 2 Major version number used by the compiler
that generated this .class. This integer value
is currently 45 in the JDK 1.0.2 javac compiler.

Constant Pool Size 2 Number of entries in the following Constant
Pool plus one. That is, this value represents
the actual number of entries in the runtime
version of the Constant Pool, which includes
the zero’th entry. That entry is not included in
Table 52.14.

Constant Pool Varies The actual Constant Pool entries as described
in the earlier section “The Constant Pool.”

Class Flags 2 A series of bit flags (defined in the following
section) that specify the access permissions for
this class or interface definition.

Class Name 2 Index to a Class reference in the Constant
Pool representing the fully qualified name of
this class.

Superclass Name 2 Index to a Class reference in the Constant
Pool representing the fully qualified name for

N O T E

61 1529-5 CH52 9/24/98, 9:14 AM1242

1243

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

the ancestor class to this one. If this value is
zero, Class Name must refer to java.lang.
Object (the only class without a direct
ancestor).

No. of Interfaces 2 The count of interfaces implemented by this
class.

Interface List (Number * 2) An array of Constant Pool indexes pointing to
Class reference entries that name the inter-
faces that this class implements. This array
must be in the same order as the implements
clause encountered when this class was
compiled.

No. of Fields 2 The count of fields (static and instance) that
are defined in this class.

Field Table Varies An array of field information structures as
defined in the following section.

No. of Methods 2 The count of methods (static and instance)
that are defined in this class.

Method Table Varies An array of Method Information structures as
defined in the following section.

No. of Attributes 2 The count of attributes that are defined for this
class.

Attribute Table Varies The table of attributes included in this .class
file. The only attribute recognized at this level
by the Sun JVM 1.0.2 is the SourceFile
attribute defined previously.

As you can now see, the .class file even at its highest level is very dynamic. There is no way to
read in the top level and then go deeper and read the parts that you are interested in. It is
totally sequential in nature and physical structure. Most of the individual fields are pretty clear
from their description. The only exceptions are the flags and embedded arrays for the fields
and methods.

The Class Flags Field
The Class Flags field is a 16-bit unsigned integer that is used to represent a set of Boolean
values that define the structure and access permissions for this .class file (see Table 52.14).
They are predominantly used by the verification pass of the JVM to denote whether this is a
class or interface, and modifiers with respect to class visibility and extension.

Field Number of Bytes Value

The .class File Structure

61 1529-5 CH52 9/24/98, 9:14 AM1243

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1244 Chapter 52 Understanding the .class File

Table 52.14 Class Flag Value Definitions

Bit Position Applies Definition of
(LSb = 1) Logical Name to Class Interface Set

1 PUBLIC Yes Yes The class is accessible from other
classes outside of this package.

5 FINAL Yes No This class cannot be subclassed.

6 SUPER Yes Yes Calls to methods in the super-
class are specially cased.

10 INTERFACE No Yes This class represents an interface
definition.

11 ABSTRACT Yes Yes This class or interface is abstract
and has methods that must be
coded in a subclass or interface
implementation.

The Field Information Structure
The Field Information structure is a second-level set of information used to describe the
name, type, and access permissions associated with a field of this class (see Table 52.15). The
fields can be instance or static (class variables) and can represent native types, specific
object references, or arrays of either one. The JVM uses this information to allocate the appro-
priate amount of space for the class definition in memory and each instance’s data space in
memory.

Table 52.15 Fields in the Field Information Structure

Field Number of Bytes Value

Field Flags 2 A series of bit flags that define the access
permissions for this field.

Field Name 2 Index to a Utf8 string in the Constant Pool
representing the name of this field.

Type 2 Index to a Utf8 string in the Constant Pool
representing the type definition in the
format described in the “Type Information”
section.

No. of Attributes 2 The count of attributes that are defined for
this field.

Attribute Table Varies The table of attributes associated with this
field. The only attribute recognized at this
level by the Sun JVM 1.0.2 is the
ConstantValue attribute defined previously.

61 1529-5 CH52 9/24/98, 9:14 AM1244

1245

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

Table 52.16 defines the meaning for the access flags associated with a field.

Table 52.16 Field Flag Value Definitions

Bit Position Applies Definition of
(LSb = 1) Logical Name to Class Interface Set

1 PUBLIC Yes Yes The field is accessible from other
classes outside this package.

2 PRIVATE Yes No The field is only accessible from
this class. No subclasses or classes
outside this package can access it.

3 PROTECTED Yes No The field is only accessible from
this class and its subclasses.

4 STATIC Yes Yes The field is considered a class
level field and only has one
occurrence in memory that is
shared by all instances of this
class.

5 FINAL Yes Yes This field is only present in this
class definition and cannot be
overridden or have a value
assigned into it after it is initial-
ized.

7 VOLATILE Yes No Denotes that this field’s value is
not guaranteed to be consistent
between accesses. So the compiler
will not generate optimized code
with respect to this field.

8 TRANSIENT Yes No This field’s value is only valid while
an instance of the class is in
memory at runtime. Its value, if
written to, or read from persistent
storage, is ignored.

The ConstantValue Attribute
ConstantValue is a mandatory attribute found in the field information structure of the .class
file. It is used to hold the values that were used to initialize the native typed (non-object) fields
in a class when they were defined (see Table 52.17).

The .class File Structure

61 1529-5 CH52 9/24/98, 9:14 AM1245

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1246 Chapter 52 Understanding the .class File

Table 52.17 Fields Unique to the ConstantValue Attribute

Field Number of Bytes Value

Value 2 Location in the Constant Pool of either an Integer
constant, a Long constant, a Float constant, or a Double
constant.

The type of constant referred to by the Value field is determined by the following table:

Constant Pool Type Holds Values For

Integer constant boolean, byte, char, integer, and short initializers

Long constant long initializers

Float constant float initializers

Double constant double initializers

The Method Information Structure
The Method Information structure is a second-level set of information that is used to describe
the name, signature, and access permissions for a method in this class (see Table 52.18). Meth-
ods can be instance-oriented (only callable from an instance of this class), or they can be
static methods (callable whether an instance of this class is present or not). The JVM uses
the information in these structures, along with the attributes for this method, to create the
internal method table for instances of this class or interface to use.

Table 52.18 Fields in the Method Information Structure

Field Number of Bytes Value

Method Flags 2 A series of bit flags that define the access
permissions for this method.

Method Name 2 Index to a Utf8 string in the Constant Pool
representing the name of this method.

Signature 2 Index to a Utf8 string in the Constant Pool
representing this method’s signature definition
in the format described in the “Type Informa-
tion” section.

No. of Attributes 2 The count of attributes that are defined for this
method.

Attribute Table Varies The table of attributes associated with this
method. The only attributes recognized at this
level by the Sun JVM 1.0.2 are the Exceptions
and Code attributes defined previously.

61 1529-5 CH52 9/24/98, 9:14 AM1246

1247

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

Table 52.19 defines the meaning for the access flags associated with a method.

Table 52.19 Field Flag Value Definitions

Bit Position Applies Definition of
(LSb = 1) Logical Name to Class Interface Set

1 PUBLIC Yes Yes The method is accessible
from other classes outside
this package.

2 PRIVATE Yes No The method is only acces-
sible from this class. No
subclasses or classes
outside this package can
access it.

3 PROTECTED Yes No The method is only acces-
sible from this class and its
subclasses.

4 STATIC Yes No The method is considered a
class level method and can
be called whether an
instance of this class exists
or not.

5 FINAL Yes No This method is only present
in this class definition and
cannot be overridden.

6 SYNCHRONIZED Yes No This method is callable in a
multi-threaded scenario and
will have its access con-
trolled and locked with a
monitor.

9 NATIVE Yes No This method’s implementa-
tion is not in Java bytecodes
but in some other external
form. It must conform to the
native call interface specifi-
cation of the JVM.

11 ABSTRACT Yes Yes This method’s signature is
only defined in this class and
must be implemented in a
subclass. It effectively turns
this class into an abstract
class.

The .class File Structure

61 1529-5 CH52 9/24/98, 9:14 AM1247

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1248 Chapter 52 Understanding the .class File

The Exceptions Attribute Exceptions is a mandatory attribute found in the Method
Information structure of the .class file for a given method (see Table 52.20). It defines
the list of exceptions that are thrown by the method containing this attribute. They are in the
same order as found in the throws clause that was present in the .java source file when this
class was compiled. This information is used by the class loader and JVM to verify that a
method is permitted to throw a given exception.

Table 52.20 Fields Unique to the Exceptions Attribute

Field Number of Bytes Value

Count 2 Number of elements in the following table of Utf8 Constant
Pool entries.

Table (Count * 2) An array of indexes to Utf8 Constant Pool entries.

The Code Attribute Code is a mandatory attribute of the Method Information structure; it
defines the actual compiled representation of its source statements (see Table 52.21). The first
two fields are used by the JVM to know how much space to define for its stack frame. The
bytecodes are executed at runtime, the Exceptions are monitored and handled at runtime,
and the attributes (if present at all) are used while debugging. In Sun’s javac compiler, the
LineNumberTable and LocalVariableTable are inserted when using the -g option. These
attributes are detailed following this description of the Code attribute.

Table 52.21 Fields Unique to the Code Attribute

Field Number of Bytes Value

Stack Depth 2 Maximum allowable depth of the JVM’s
expression stack.

No. Locals 2 Number of local variables (including
arguments) defined in this method.

Code Length 4 Number of bytes used by the following
stream of bytecodes.

bytecodes (Code Length) Stream of Java bytecodes representing the
compiled version of this method’s state-
ments.

Exception Count 2 Number of exceptions that are caught inside
this method as described by Table 52.22.

Exceptions (Count * 8) An ordered table of fixed-length structures
(described in Table 52.22) that detail each
try-catch clause coded in this method.

Attribute Count 2 Number of attributes defined in the follow-
ing attribute table.

61 1529-5 CH52 9/24/98, 9:14 AM1248

1249

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

Attribute Table Varies Table of attributes provided for this
method’s Code attribute. Currently, only the
LineNumberTable and LocalVariableTable
subattributes are supported.

The embedded Exception table has the following format, shown in Table 52.22.

Table 52.22 Fields in the Code Attribute’s Embedded Exception Table

Field Number of Bytes Value

PC Start 2 First bytecode of the try block that this
exception is to handle.

PC End 2 Bytecode address where this exception
handler is no longer active (the bytecode
immediately after the try block).

PC Exception Handler 2 Bytecode location of the beginning of the
actual exception handler.

Exception Type 2 Index into the Constant Pool of a Class
reference constant representing the actual
exception to be handled.

The definition of the embedded attributes of the Code attribute are discussed in the following
sections.

The LineNumberTable Attribute LineNumberTable is an optional attribute of the Code
attribute; it contains a table of program counter to line number translation entries (see Table
52.23). They are in order by PC location and can contain duplicate line number references.
This anomaly is the result of the way that code is generated in general, and by optimizations
performed on the generated Java bytecodes as they are created by Sun’s javac compiler.

Table 52.23 Fields Unique to the LineNumberTable Attribute

Field Number of Bytes Value

Count 2 Number of elements in the following line number
information table.

Table (Count * 4) A table containing line number information elements as
described in Table 52.24.

The actual line number table elements have the following fixed-length structure, as shown in
Table 52.24.

Field Number of Bytes Value

The .class File Structure

61 1529-5 CH52 9/24/98, 9:14 AM1249

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1250 Chapter 52 Understanding the .class File

Table 52.24 Fields in the LineNumberTable Attribute’s Line Number Table

Field Number of Bytes Value

PC Start 2 Program counter location of the start of some bytecodes
associated with a given line number.

Line Number 2 The actual line number (relative to the start of the .java
source file) where these generated bytecodes came
from.

The LocalVariableTable Attribute LocalVariableTable is an optional attribute of the Code
attribute; it contains a table of entries describing the local variables present in this method and
their associated scope (see Table 52.25). They are not in order and include entries repre-
senting the arguments for this method. One point to note here is that every nonstatic method
contains at least one argument (even if there are no arguments in the method’s signature)
representing the current object instance for this class.

Table 52.25 Fields Unique to the LocalVariableTable Attribute

Field Number of Bytes Value

Count 2 Number of elements in the following local variable informa-
tion table.

Table (Count * 10) A table containing local variable information elements as
described in Table 52.26.

The actual local variable table elements have the following fixed-length structure, as shown in
Table 52.26.

Table 52.26 Fields in the LocalVariableTable Attribute’s Local Variable Table

Field Number of Bytes Value

PC Start 2 Program counter location where this variable goes
into scope.

Scope Size 2 The number of bytecodes beginning with PC Start
where this variable remains in scope—for example,
Scope= [‘PC Start’ to (‘PC Start’ + ‘Scope
Size’ - 1)].

Name 2 Location of a Utf8 string in the Constant Pool
containing the literal variable name.

Type 2 Location of a Utf8 string in the Constant Pool
containing the type information for this variable (as
defined in the “Type Information” section).

Variable Slot 2 The slot, or offset, in this method’s stack frame
where the variable’s value is kept.

61 1529-5 CH52 9/24/98, 9:14 AM1250

1251

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

52

VIII
Part

Ch

The SourceFile Attribute
SourceFile is an optional attribute that is used in the high-level .class file structure to hold
the name of the source file that was used to compile this .class file (see Table 52.27). It is
primarily useful for debugging systems to be able to search for the source file and display
source lines as required.

Table 52.27 Fields Unique to the SourceFile Attribute

Field Number of Bytes Value

File Name 2 Location of a Utf8 string in the Constant Pool containing
the literal .java filename.

So Now What Can I Do?
Now that you have a fairly good understanding of the physical format of the class structure,
you can do many things with this information, such as the following:

■ It can help you in understanding how a Java language compiler represents the source
information in binary format.

■ In debugging, it can help you to effectively use JDB.

■ When you attempt to implement a custom debugging aid with the Java Debugger API,
this information can help you parse the .class file.

■ It can help you create your own .class file reader.

Personally, I chose a derivative of the fourth alternative. In order to gain a full understanding of
the nuances that a .class file reader needed to be able to deal with, I implemented a Java
application to help me out. I created a package and utility for parsing a .class file and convert-
ing its information into a displayable string format. The driver utility is called ClassFileDump,
and the package is called com.Que.SEUsingJava.ClassFile.

The utility itself is very simple and just reads some command-line arguments and passes them
on to the main class in the package. The package is comprised of 32 classes that are contained
in eight Java language source files. The starting class to the package is called ClassHeader and
has a simple constructor taking no arguments and two primary methods. The first primary
method is called read and takes a single argument of a java.io.DataInputStream instance.
This instance should be associated with an open .class file. read is completely responsible for
loading and parsing the .class file. It does this by passing the input stream to the 31 other
support classes in the package.

Each class in the package knows about a specific structure or attribute of the .class file and
understands how to read it and convert it to a String. After the read method returns, the utility
calls the toString method on the ClassHeader instance. The toString method takes advan-
tage of the other class instances in the package to convert their respective member data items

So Now What Can I Do?

61 1529-5 CH52 9/24/98, 9:14 AM1251

P2/VB/mpprp12 SEU Java 1.2 #1529-5 8.8.98 dietsch CH52 LP#3

1252 Chapter 52 Understanding the .class File

to String values. The toString method then returns this large string to the driver utility,
where it is sent to System.out.

The ClassFileDump utility can be found on the CD-ROM in two formats. The first one is
the source to the utility and package and is called CLASSDMP_SOURCE.ZIP. The second

format is the executable Java bytecode version and is in a file called CLASSDMP_LIB.ZIP. This file is
in the proper format to add to your CLASSPATH environment variable. For example, if you put
CLASSDMP_LIB.ZIP in your JDK’s \LIB directory, you can modify your classpath to be the following:

;c:\java\lib\classes.zip;c:\java\lib\classdmp_lib.zip

After you have done that, you can execute the utility from anywhere that the java command is
available. ■

The command line for ClassFileDump looks like the following:

java ClassFileDump <.class filename>

For example,

java ClassFileDump ClassFileDump.class

causes the contents of the ClassFileDump utility’s .class file to be sent to System.out, the
console. I chose to send output there because it can be easily redirected to a file. ●

N O T E

61 1529-5 CH52 9/24/98, 9:14 AM1252

1253

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

C H A P T E R

Inside the Java Virtual Machine

Elements of the JVM 1254

53

In this chapter

62 1529-5 CH53 9/24/98, 9:16 AM1253

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1254 Chapter 53 Inside the Java Virtual Machine

Elements of the JVM
The concept and implementation of virtual machines (VMs) have been around for quite some
time. One of the earliest commercial environments with this architecture was the UCSD p-
System. This system was created by Dr. Kenneth Bowles at the University of Southern Califor-
nia, San Diego, in the 1970s. Dr. Bowles was able to create a company, called SofTek
Microsystems, to market the operating system. In fact, the p-System was the core operating
system for the Apple. It was also the alternative operating system to PC-DOS for the IBM PC
after the PC’s introduction in 1980.

Like the Java environment, the UCSD p-System was based on a primary language (Pascal). The
UCSD p-System had a set of primitive core libraries, a machine-independent object file format,
a set of byte-oriented pseudocodes, and a VM definition to interpret them. The p-System and its
version of Pascal even had advanced features such as a full-screen user interface, concurrency
primitives, and a dynamic library mechanism called units. The p-System was ported to many
architectures and had widespread success in the vertical software market.

So, if the p-System was so much like Java, why isn’t it still around today? When I asked Sun’s
chief technology officer, Eric Schmidt, this question, he simply replied, “Have you ever known
a university that knew how to market software?” The point of this is that Java is not so unique
or new. The Java environment is a success because it has the sponsorship of a very successful
company and a much more mature industry.

When you look at the Java environment, you see five major elements:

■ Java language

■ Bytecode definitions

■ Java/Sun core class libraries

■ JVM specification

■ .class file structure

Of these items, the .class file structure, bytecode definitions, and JVM specifications are really
what enabled Java technology to become as widespread (or ubiquitous) as quickly as it has.
Thus, the designers of Java gained almost instant portability of any .class file to any computer/
chip-set with an implementation of the JVM. This portability applied regardless of what kind of
host computer/chip-set was used to compile the source. The concept of “write once, run any-
where” is being realized because of the widespread implementation of the JVM on a wide array
of hardware platforms and architectures.

The remainder of this section describes some of the technical details involved with Sun’s imple-
mentation of the JVM. Clearly, many vendors have created JVM implementations (Natural
Intelligence, Netscape, Microsoft, and more). All of the vendors have contributed some unique
features to their implementations. But, what is fundamentally important is that they all support
Sun’s initial specification for the .class file structure, bytecode definitions, and virtual ma-
chine.

62 1529-5 CH53 9/24/98, 9:16 AM1254

1255

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

The Architecture of a Virtual Machine
So, what really is a virtual machine? It is a software concept that is based on the notion of an
imaginary computer with a logical set of instructions, or pseudocodes, that define the opera-
tions this computer can perform. A VM-oriented compiler will typically take some source lan-
guage. Instead of generating machine code instructions targeted to a particular hardware
architecture, it generates pseudocode streams that are based on the imaginary computer’s
instruction set.

The other side of the equation is how these instructions get executed. This is where an inter-
preter, or what the Java world has been referring to as the VM, takes its role. An interpreter is
really just an application that understands the semantics of the pseudocodes for this imaginary
computer and converts them to machine code instructions for the underlying hardware to
which the interpreter has been targeted. The VM also creates a runtime system internally to
support implementing the semantics of the instructions as they are executed. The runtime
system is also responsible for loading object (or .class) files, memory management, and gar-
bage collection.

Because of the inconsistency in the hardware platform facilities that are used to host a VM,
they are typically based on the concept of a stack machine. A stack machine does not use any
physical registers to pass information between instructions. Instead, it uses a stack to hold
frames representing the state of a method, operands to the bytecodes, space for arguments to
the methods, and space for local variables. There is one pseudoregister called the program
counter—a pointer into the bytecode array of the currently executing instruction.

The actual logic for the interpreter phase of the VM is a very simple loop. Figure 53.1 repre-
sents a flowchart view of the logic that is typically used by a stack-based VM interpreter.

There are two important points to note about how the interpreter actually processes the
bytecode instructions:

■ The majority of all semantic routines that perform the action associated with a given
bytecode get their operands from the stack and place their results back on the stack.

■ The actual bytecodes will typically have arguments that are in line in the bytecode
stream immediately following the bytecode itself.

For example, there are bytecodes that push values from the Constant Pool onto the stack.
These bytecodes have, as an argument, the index of the value in the Constant Pool. When the
semantic for that bytecode is complete, the value will be on the top of the stack, and the pro-
gram counter will point to the bytecode immediately following the argument. Here is what the
bytecode stream might look like for the Load Constant-2 Bytecode:

ldc2 index byte 1 index byte 2 <next bytecode>

Something else that may not be readily apparent is that method calls, exception handlers, and
monitors (the locks used by the synchronize language keyword) are all handled by specific
bytecodes. They are not the responsibility of the interpreter loop itself. The loop is very stupid
in that all it knows how to do is get a bytecode and fire off its associated semantic routine.

Elements of the JVM

62 1529-5 CH53 9/24/98, 9:16 AM1255

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1256 Chapter 53 Inside the Java Virtual Machine

Finally, there are other techniques that an interpreter may use to process the stream of
bytecodes representing the executable instructions for the VM. One common optimized inter-
preter technique is called a threaded interpreter (not to be confused with multithreading). A
threaded interpreter does not use a loop-based approach to traverse the stream of bytecodes.
Instead, the interpreter actually jumps from bytecode semantic to bytecode semantic in a simi-
lar way that a needle and thread are used to make stitches. The big advantage to this technique
is that there is no overhead for the interpreter loop, the instructions are executed, and a simple

FIG. 53.1
The JVM interpreter
loop. .class file

Class Loader

Class Type?

Done

Verifier

Initialize
Interpreter

Loop

More Byte
Codes?

Call the
associated
semantic

Get next Byte
Code

instruction

Update the
Program
Counter

System
(local)
Class

Remote Class

No

Yes

The Java Virtual Machine Interpreter Loader

62 1529-5 CH53 9/24/98, 9:16 AM1256

1257

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

jump is performed at the end. Because this is an implementation choice, it does not affect the
.class file structure and, hence, is an option open to people developing their own VMs.

The other optimization that is becoming increasingly popular is the use of what is called a Just-
in-Time (JIT) compiler. The Microsoft JVM, Microsoft Internet Explorer 4.0, and Netscape
Navigator 4.0 all include JIT technology. The idea of the JIT compiler is that instead of inter-
preting each instruction of the bytecode stream, the set of bytecodes is directly translated into
an equivalent set of machine code instructions for the target system at runtime. This new trans-
lated machine code version of the method is then stored and used whenever a call is made to
that particular method. So, you get the portability based on the .class file and bytecodes. You
also get close-to-native code performance after taking the one-time, up-front translation from
bytecode to machine code.

Now that you have a better feel for the architecture of the VM, let’s examine how it deals with
memory management.

Memory Management and Garbage Collection
One of the major decisions that implementers of runtime systems face is how to handle dy-
namic memory requirements that are placed on the systems by the programs that are execut-
ing within them. The runtime system designer must choose between making the user of the
system responsible for memory management or making the runtime system smart enough to
handle this task.

If you have ever coded in any compiled 3GL such as C, C++, or Pascal, then you have experi-
enced the “pleasure” of handling your own memory management. These languages have
runtime systems that give you primitive methods for allocating and deallocating arbitrarily
sized blocks of memory from a larger chunk of memory called a heap. Allocating your
application’s memory needs from the heap is not a problem if your application has relatively
few dynamic memory requirements, but most object-oriented applications tend to create and
destroy relatively small objects on a frequent basis.

To help deal with this problem, most runtime systems have a heap manager that actively main-
tains the heap in a state where memory is available as much as possible. One of the major
problems that the heap manager tries to solve is called fragmentation, which is a result of allo-
cating and deallocating lots of small, nonuniform pieces of memory from the heap. Typically, a
heap is managed by tracking memory in two lists:

■ Free block list

■ Allocated block list

When a request is made to the heap manager for a chunk of memory, the free list is searched
for a block that can fulfill this request. Most modern heap managers keep the free list in as-
cending order of the free blocks’ sizes. This allows the allocation mechanism to use a “first-fit
strategy,” finding the first-available, smallest block of memory that can satisfy the request. This
strategy helps keep fragmentation of the heap to a minimum.

Elements of the JVM

62 1529-5 CH53 9/24/98, 9:16 AM1257

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1258 Chapter 53 Inside the Java Virtual Machine

Another technique that heap managers use to keep fragmentation of the heap to a minimum is
called coalescing. As memory is returned to the heap, a new block is placed in the free list. As
this process occurs, the free list is examined to see if the piece of memory being returned
immediately precedes or follows another free block. If this is the case, then the two blocks are
merged together, creating one larger free block.

Another issue in heap management is how to deal with a request for more memory than an
individual block on the free list can provide. Such a request requires that the heap manager
take some very proactive steps in order to create more memory. The solution is a technique
called compaction. Compaction is the process of merging all free blocks together by moving
the allocated memory (memory between the free blocks) to one end of the heap, thereby creat-
ing one large, coalesced free block. The real difficulty with this process is that the runtime
system must know the location of every variable (stack-based or dynamic) that refers to any
heap-based object in memory. The system must then update the variable with the new location
of the object that it refers to. This process is very expensive in both time and memory over-
head, but compaction is a reality in any heap-based allocation system.

The other major problem with being responsible for your own memory allocation and, specifi-
cally, deallocation is the concept of dangling references, or garbage. This refers to objects in
memory that you allocated but have lost the reference (or pointer) to, so you cannot explicitly
deallocate the memory. Dangling references are very easy to create. The following C++ code
shows a typical way to create a dangling reference:

int *iArray;
// Create initial array
iArray = new int[3];
...
// Grow the array
if (iArrayCount == 3) {
 int *tempArray = new int[6];
 for (int i = 0;i < 3;++i) tempArray[I] = iArray[I];
 // MAKE A DANGLING REFERENCE:
 iArray = tempArray;
}

Once iArray is overwritten with tempArray, the memory chunk originally pointed to by iArray
is orphaned and now garbage. The memory chunk cannot be reclaimed during compaction,
because it is not on the free list. The only way to deal with this situation is via garbage collec-
tion.

Garbage collection is a technique in which all allocated memory objects that are no longer
needed or referred to may be reclaimed back to the free list without an explicit deallocation. It
is a process of the heap management system, and memory blocks must be structured in spe-
cific ways to take advantage of it. Two common garbage collection techniques can be used:
reference counting, and mark and sweep.

Reference counting requires that each object instance in the heap maintain a field called the
reference count. As a field or variable is assigned a reference to an object, that object’s refer-
ence count is increased by one. When the field or variable that refers to the object goes out of
scope or is destroyed, the reference count is decreased by one. When an object’s reference

62 1529-5 CH53 9/24/98, 9:16 AM1258

1259

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

count reaches zero, it is no longer in use and its space may be collected. This algorithm is fast
during collection but has a performance penalty when any assignment is without objects or an
object is passed as an argument. For each of these situations, the reference count must be
maintained at runtime, causing general slow-downs of the runtime system.

The mark and sweep algorithm requires that each object contain a bit field called the mark bit,
or it is required that an external array is created when the algorithm runs to hold the mark bit.
The algorithm begins by traversing all allocated blocks of memory in the heap and resetting
the marked bit for that block. Next, examine all fields and variables that refer to objects in the
heap, setting the marked bit of the heap object to true. Finally, sweep through the allocated
heap objects and look for any that are not marked. Then, either reclaim the space by putting
the unused objects on the free list, or copy the “live” objects to the end of the heap. Then,
reclaim the original area back to the free list and compact (a variant of mark and sweep known
as stop and copy). This algorithm has low storage overhead and does not affect runtime perfor-
mance overall but may cause longer-than-desired lags in time when the garbage collector runs.

Now that you can see how difficult a problem heap and memory management can be, espe-
cially for the non-Java developer, take a look at how the Java runtime system handles these
problems.

First, the JVM uses two separate heaps for dynamic and static memory allocation. All class
definitions, the Constant Pool, and method tables are kept in a nongarbage collected heap.
Once a class definition has been read in, the structural information and methods stay in
memory. This does add a little storage overhead, but improves performance for classes that
come and go relatively frequently within an application.

The second heap is split into two areas that grow in opposite directions. One area is used to
hold object instances, and the other contains “handles” to those instances. The runtime image
of fields and variables in your Java application that reference object instances do not actually
contain pointers to those objects. They contain pointers to a special, fixed-size, heap-based
memory object called a handle. The handle is a structure that contains two pointers: one to the
object’s method table and the other to the actual object instance. The advantage to this layout is
that the handles never move in memory, so there is never a need to keep track of which vari-
ables point to which objects when updating pointers after compacting. You simply update the
pointer value of the handle structure.

The object space of the heap is managed in a traditional fashion in that there is a free list and
an allocated object list. As objects are instantiated, the free list is searched for the “first-fit
block.” Also, if possible, coalescing happens during this phase (as opposed to when an instance
is put back on the free list) in order to make the garbage collection process faster. In addition,
the dangling reference problem is eliminated by Java, as you are not responsible for explicit
object deallocations. The Java language has a new operator but no corresponding delete.

The garbage collection algorithm used by the JVM applies to all objects in the dynamic heap.
The algorithm runs synchronously whenever the heap manager cannot find any memory in the
free space list. Or, it may also run asynchronously in that a thread for the garbage collector is
kicked off whenever the system is idle for a sufficient period of time. (This is of dubious value,

Elements of the JVM

62 1529-5 CH53 9/24/98, 9:16 AM1259

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1260 Chapter 53 Inside the Java Virtual Machine

because the asynchronous garbage collector will be interrupted and have to start again if a
runnable class becomes ready.) And, you may manually initiate the garbage collection
algorithm by calling the method System.gc(). For highly interactive applications where idle
processing may be at a minimum, you might occasionally want to call the garbage collector
manually.

The actual garbage collector used by the JVM is an implementation of the stop-and-copy algo-
rithm. But, there is a difference. Normally, after the garbage collector finishes its compaction
phase, all variables and fields that relate to an object would need to change. But, because all
object reference variables are handle-based, we don’t need to find and update all variables that
point to active objects. You can simply update the handle in the heap to point to the just-moved
object instance. The algorithm is pretty fast but not ready for real-time applications.

One last aspect to the JVM’s garbage collector is the notion of a Finalizer method. A
Finalizer is a special method called finalize that is declared in the base class
java.lang.Object. It has the following prototype:

 protected void finalize () throws Throwable;

The finalize method is used for cleaning up external resources (such as open files) that
would not normally be performed in routine garbage collection. The garbage collector calls the
finalize method just prior to garbage collecting an object instance. The problem is that gar-
bage collection is not run immediately when you call the System.gc() method; it is simply
scheduled to run. The garbage collector thread runs at a very low priority and may get inter-
rupted frequently. In fact, the garbage collector may never get to dispose of your object before
the application terminates. So, generally speaking, the usefulness of implementing the
finalize method is questionable.

You can do one other trick in a finalize method—“resurrect” an object instance. It is possible
for you to place the value of the this field into some other object reference and stop the object
from being garbage collected. At that point, though, the garbage collector will not call the
finalize method again, even when the object instance is really ready for garbage collection.

That’s all there is to heap management in Java: One heap contains a fixed table of class infor-
mation and methods, and another heap holds the handle table and object instances. You don’t
explicitly deallocate anything (although setting an unused object variable to null will act as a
hint to the garbage collector and heap), and the garbage collector may be run manually by
calling System.gc().

Class File Verification
The last real algorithm that I cover for the JVM is verification. Verification is a process that is
applied to certain class files as they are loaded. Because Java is oriented toward applications
whose pieces (.class files) are potentially scattered anywhere around the globe, you need a
mechanism that can prove these nonlocal classes can be properly executed by the JVM. By
default, the java command will put all classes that were not loaded from the local hard drive
through the verification process. Whether a class is put through the verification process is a
function of the Class Loader and is controlled by arguments that you may specify on the java

62 1529-5 CH53 9/24/98, 9:16 AM1260

1261

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

command line. In the case of browsers that support Java applets, all nonsystem classes are put
through verification.

The verifier exists basically to subvert or thwart any attempts to create or pass off a hostile
.class file. Because classes are loaded over the network from a typically unknown source, the
verifier is applied to them to make sure they conform to the contract between a .class file and
the JVM specification. Another benefit of the verification step is that it speeds execution of the
Java bytecodes at runtime. The speed is increased because the form is good, and the bytecodes
don’t have to verify their own arguments at each execution. The verifier also checks the overall
integrity of the .class file.

The verification process can be broken up into four phases. The first three are performed at
class-load time, with the fourth performed by a subset of the actual Java bytecodes.

The first phase could be called the syntax check phase. It is responsible for ensuring the struc-
tural and syntactic integrity of the .class file being loaded. The following areas are examined
during this phase:

■ The magic number.

■ The version number. Checked to be sure it is in sync with this VM implementation.

■ Mandatory attributes. Checked to be sure they exist and are properly formed.

■ The Constant Pool. Verifies that only valid item types are contained.

The second phase is used to check the “semantic” consistency of the .class file. It is respon-
sible for checking the following areas:

■ The access flags. Checks that they are not being violated for the class, its fields, and its
methods.

■ The lineage of the object. Verifies the superclass field, for example.

■ The Constant Pool items. Checks that these items are well-formed (for example, the
Strings are strings, and so on).

The third phase is the most intense and is called the bytecode verifier. This phase performs a
data-flow analysis on the actual bytecode stream that is contained in each method definition in
the class. The following list represents the major features of the bytecode verifier, which en-
sures the following:

■ The stack is in a consistent state for each bytecode encountered. That is, it verifies there
is no under- or overflow of the expression stack.

■ The arguments to the operands are in the appropriate domain.

■ The types of values being put in or referenced from fields, arguments, and variables are
correct for their usage.

■ The arguments passed to method calls are of the right form.

■ No field or variable is accessed without being properly initialized.

Elements of the JVM

62 1529-5 CH53 9/24/98, 9:16 AM1261

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1262 Chapter 53 Inside the Java Virtual Machine

The final phase is actually performed at runtime and involves checks that could not be per-
formed in phase three, because not all referenced classes are necessarily loaded in that phase.
For each instruction that dynamically refers to another class (either a field or method), the
linkage is examined. Then, the access permissions are checked. Furthermore, if all is OK, the
referenced class is instantiated. Also, if the current bytecode references anything in the Con-
stant Pool, it is resolved, and a special _quick variant of the bytecode instruction is replaced at
that point in the bytecode stream. The _quick variants assume that the value required is di-
rectly accessible with no intermediate Constant Pool resolution requirement.

The JVM Bytecodes
This final section is a reference for the actual JVM bytecode instructions. There is not enough
space in this section to include all of the details that are actually required to implement a JVM,
but you should be able to write a simple bytecode disassembler with this information. Table
53.1 contains the following columns:

Instruction The literal mnemonic for this OpCode

OpCode The actual unsigned bytecode value

#Args The number of byte-sized operands in the bytecode stream that immedi-
ately follow the OpCode for this instruction

Description The basic semantics of this instruction

When the JVM interpreter loop is running, there is actually one logical register that is used—
the Program Counter, which represents the address in the bytecode stream of the currently
executing instruction. Some of the instructions modify this Program Counter in order to alter
the flow of execution. Otherwise, execution flows sequentially through the bytecode stream
from instruction to instruction.

Table 53.1 Java Bytecode Instructions in OpCode Order

Op #
Instruction Code Args Description

nop 0 0 Does nothing, a No Operation.

aconst_null 1 0 Pushes the null object reference on the stack.

iconst_m1 2 0 Pushes the integer constant -1 on the stack.

iconst_0 3 0 Pushes the integer constant 0 on the stack.

iconst_1 4 0 Pushes the integer constant 1 on the stack.

iconst_2 5 0 Pushes the integer constant 2 on the stack.

iconst_3 6 0 Pushes the integer constant 3 on the stack.

iconst_4 7 0 Pushes the integer constant 4 on the stack.

iconst_5 8 0 Pushes the integer constant 5 on the stack.

62 1529-5 CH53 9/24/98, 9:16 AM1262

1263

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

lconst_0 9 0 Pushes the long constant 0 on the stack.

lconst_1 10 0 Pushes the long constant 1 on the stack.

fconst_0 11 0 Pushes the float constant 0 on the stack.

fconst_1 12 0 Pushes the float constant 1 on the stack.

fconst_2 13 0 Pushes the float constant 2 on the stack.

dconst_0 14 0 Pushes the double constant 0 on the stack.

dconst_1 15 0 Pushes the double constant 1 on the stack.

bipush 16 1 Pushes a 1-byte signed value on the stack as an
integer.

sipush 17 2 Pushes a 16-bit signed value on the stack as an
integer.

ldc1 18 1 Uses arg as an 8-bit index into the Constant
Pool and puts the associated item on the stack.

ldc2 19 2 Uses arg as a 16-bit index into the Constant
Pool and puts the associated item on the stack.

ldc2w 20 2 Uses arg as a 16-bit index into the Constant
Pool and pushes the long or double at that
position on the stack.

iload 21 1 Pushes the value of the integer local variable at
the index specified by the argument in the
current method frame on the stack.

lload 22 1 Pushes the value of the long local variable at
the index and index+1 specified by the
argument in the current method frame on the
stack.

fload 23 1 Pushes the value of the float local variable at
the index specified by the argument in the
current method frame on the stack.

dload 24 1 Pushes the value of the double local variable at
the index and index+1 specified by the
argument in the current method frame on the
stack.

aload 25 1 Pushes the value of the object reference local
variable at the index specified by the argument
in the current method frame on the stack.

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1263

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1264 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

iload_0 26 0 Pushes the value of the integer local variable at
index 0 in the current method frame on the
stack.

iload_1 27 0 Pushes the value of the integer local variable at
index 1 in the current method frame on the
stack.

iload_2 28 0 Pushes the value of the integer local variable at
index 2 in the current method frame on the
stack.

iload_3 29 0 Pushes the value of the integer local variable at
index 3 in the current method frame on the
stack.

lload_0 30 0 Pushes the value of the long local variable at
index 0 and 1 in the current method frame on
the stack.

lload_1 31 0 Pushes the value of the long local variable at
index 1 and 2 in the current method frame on
the stack.

lload_2 32 0 Pushes the value of the long local variable at
index 2 and 3 in the current method frame on
the stack.

lload_3 33 0 Pushes the value of the long local variable at
index 3 and 4 in the current method frame on
the stack.

fload_0 34 0 Pushes the value of the float local variable at
index 0 in the current method frame on the
stack.

fload_1 35 0 Pushes the value of the float local variable at
index 1 in the current method frame on the
stack.

fload_2 36 0 Pushes the value of the float local variable at
index 2 in the current method frame on the
stack.

fload_3 37 0 Pushes the value of the float local variable at
index 3 in the current method frame on the
stack.

62 1529-5 CH53 9/24/98, 9:16 AM1264

1265

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

dload_0 38 0 Pushes the value of the double local variable at
index 0 and 1 in the current method frame on
the stack.

dload_1 39 0 Pushes the value of the double local variable at
index 1 and 2 in the current method frame on
the stack.

dload_2 40 0 Pushes the value of the double local variable at
index 2 and 3 in the current method frame on
the stack.

dload_3 41 0 Pushes the value of the double local variable at
index 3 and 4 in the current method frame on
the stack.

aload_0 42 0 Pushes the value of the object reference local
variable at index 0 in the current method frame
on the stack.

aload_1 43 0 Pushes the value of the object reference local
variable at index 1 in the current method frame
on the stack.

aload_2 44 0 Pushes the value of the object reference local
variable at index 2 in the current method frame
on the stack.

aload_3 45 0 Pushes the value of the object reference local
variable at index 3 in the current method frame
on the stack.

istore 45 1 Pops the integer value from the stack and
stores it into the local variable at the index
specified by the argument in the current
method frame.

iaload 46 0 Pops an array index and an integer array
object reference off the stack and pushes the
element at index back onto the stack.

laload 47 0 Pops an array index and a long array object
reference off the stack and pushes the element
at index back onto the stack.

faload 48 0 Pops an array index and a float array object
reference off the stack and pushes the element
at index back onto the stack.

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1265

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1266 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

daload 49 0 Pops an array index and a double array object
reference off the stack and pushes the element
at index back onto the stack.

aaload 50 0 Pops an array index and an array object
reference off the stack and pushes the element
at index back onto the stack.

baload 51 0 Pops an array index and a signed byte array
object reference off the stack and pushes the
element at index back onto the stack.

caload 52 0 Pops an array index and a char array object
reference off the stack and pushes the element
at index back onto the stack.

saload 53 0 Pops an array index and a short array object
reference off the stack and pushes the element
at index back onto the stack.

lstore 55 1 Pops the long value from the stack and stores
it in the local variable at index and index+1
specified by the argument in the current
method frame.

fstore 56 1 Pops the float value from the stack and stores
it in the local variable at the index specified by
the argument in the current method frame.

dstore 57 1 Pops the double value from the stack and
stores it in the local variable at index and
index+1 specified by the argument in the
current method frame.

astore 58 1 Pops the object reference from the stack and
stores it in the local variable at the index
specified by the argument in the current
method frame.

istore_0 59 0 Pops the integer value from the stack and
stores it in the local variable at index 0 in the
current method frame.

istore_1 60 0 Pops the integer value from the stack and
stores it in the local variable at index 1 in the
current method frame.

62 1529-5 CH53 9/24/98, 9:16 AM1266

1267

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

istore_2 61 0 Pops the integer value from the stack and
stores it in the local variable at index 2 in the
current method frame.

istore_3 62 0 Pops the integer value from the stack and
stores it in the local variable at index 3 in the
current method frame.

lstore_0 63 0 Pops the long value from the stack and stores
it in the local variable at index 0 and 1 in the
current method frame.

lstore_1 64 0 Pops the long value from the stack and stores
it in the local variable at index 1 and 2 in the
current method frame.

lstore_2 65 0 Pops the long value from the stack and stores
it in the local variable at index 2 and 3 in the
current method frame.

lstore_3 66 0 Pops the long value from the stack and stores
it in the local variable at index 3 and 4 in the
current method frame.

fstore_0 67 0 Pops the float value from the stack and stores
it in the local variable at index 0 in the current
method frame.

fstore_1 68 0 Pops the float value from the stack and stores
it in the local variable at index 1 in the current
method frame.

fstore_2 69 0 Pops the float value from the stack and stores
it in the local variable at index 2 in the current
method frame.

fstore_3 70 0 Pops the float value from the stack and stores
it in the local variable at index 3 in the current
method frame.

dstore_0 71 0 Pops the double value from the stack and
stores it in the local variable at index 0 and 1 in
the current method frame.

dstore_1 72 0 Pops the double value from the stack and
stores it in the local variable at index 1 and 2 in
the current method frame.

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1267

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1268 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

dstore_2 73 0 Pops the double value from the stack and
stores it in the local variable at index 2 and 3 in
the current method frame.

dstore_3 74 0 Pops the double value from the stack and
stores it in the local variable at index 3 and 4 in
the current method frame.

astore_0 75 0 Pops the object reference from the stack and
stores it in the local variable at index 0 in the
current method frame.

astore_1 76 0 Pops the object reference from the stack and
stores it in the local variable at index 1 in the
current method frame.

astore_2 77 0 Pops the object reference from the stack and
stores it in the local variable at index 2 in the
current method frame.

astore_3 78 0 Pops the object reference from the stack and
stores it in the local variable at index 3 in the
current method frame.

iastore 79 0 Pops an integer value, an array index, and an
integer array object reference off the stack and
stores the integer value in the array element at
index.

lastore 80 0 Pops a long value, an array index, and a long
array object reference off the stack and stores
the long value in the array element at index.

fastore 81 0 Pops a float value, an array index, and a float
array object reference off the stack and stores
the float value in the array element at index.

dastore 82 0 Pops a double value, an array index, and a
double array object reference off the stack and
stores the double value in the array element at
index.

aastore 83 0 Pops an object reference, an array index, and
an object reference array object reference off
the stack and stores the object reference in the
array element at index.

62 1529-5 CH53 9/24/98, 9:16 AM1268

1269

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

bastore 84 0 Pops a signed byte value, an array index, and a
signed byte array object reference off the stack
and stores the signed byte value in the array
element at index.

castore 85 0 Pops a char value, an array index, and a char
array object reference off the stack and stores
the char value in the array element at index.

sastore 86 0 Pops a short value, an array index, and a short
array object reference off the stack and stores
the short value in the array element at index.

pop 87 0 Pops the word from the top of the stack.

pop2 88 0 Pops two words from the top of the stack.

dup 89 0 Duplicates the word at the top of the stack.

dup_x1 90 0 Duplicates the word at the top of the stack and
puts the duplicate value two words down.

dup_x2 91 0 Duplicates the word at the top of the stack and
puts the duplicate value three words down.

dup2 92 0 Duplicates the two words at the top of the
stack.

dup2_x1 93 0 Duplicates the two words at the top of the
stack and puts the duplicate values two words
down.

dup2_x2 94 0 Duplicates the two words at the top of the
stack and puts the duplicate value three words
down.

swap 95 0 Swaps the two words at the top of the stack.

iadd 96 0 Pops the two integer values off the stack, adds
them, and pushes the result on top of the
stack.

ladd 97 0 Pops the two long values off the stack, adds
them, and pushes the result on top of the
stack.

fadd 98 0 Pops the two float values off the stack, adds
them, and pushes the result on top of the
stack.

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1269

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1270 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

dadd 99 0 Pops the two double values off the stack, adds
them, and pushes the result on top of the
stack.

isub 100 0 Pops the two integer values off the stack,
subtracts them, and pushes the result on top of
the stack.

lsub 101 0 Pops the two long values off the stack,
subtracts them, and pushes the result on top of
the stack.

fsub 102 0 Pops the two float values off the stack,
subtracts them, and pushes the result on top of
the stack.

dsub 103 0 Pops the two double values off the stack,
subtracts them, and pushes the result on top of
the stack.

imul 104 0 Pops the two integer values off the stack,
multiplies them, and pushes the result on top
of the stack.

lmul 105 0 Pops the two long values off the stack,
multiplies them, and pushes the result on top
of the stack.

fmul 106 0 Pops the two float values off the stack,
multiplies them, and pushes the result on top
of the stack.

dmul 107 0 Pops the two double values off the stack,
multiplies them, and pushes the result on top
of the stack.

idiv 108 0 Pops the two integer values off the stack,
divides them, and pushes the result on top of
the stack.

ldiv 109 0 Pops the two long values off the stack, divides
them, and pushes the result on top of the
stack.

fdiv 110 0 Pops the two float values off the stack, divides
them, and pushes the result on top of the
stack.

62 1529-5 CH53 9/24/98, 9:16 AM1270

1271

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

ddiv 111 0 Pops the two double values off the stack,
divides them, and pushes the result on top of
the stack.

irem 112 0 Pops the two integer values off the stack,
divides them, and pushes the remainder on top
of the stack.

lrem 113 0 Pops the two long values off the stack, divides
them, and pushes the remainder on top of the
stack.

frem 114 0 Pops the two float values off the stack, divides
them, and pushes the remainder on top of the
stack.

drem 115 0 Pops the two double values off the stack,
divides them, and pushes the remainder on top
of the stack.

ineg 116 0 Pops the integer value off the stack, calculates
its arithmetic negation, and pushes the result
on top of the stack.

lneg 117 0 Pops the long value off the stack, calculates its
arithmetic negation, and pushes the result on
top of the stack.

fneg 118 0 Pops the float value off the stack, calculates its
arithmetic negation, and pushes the result on
top of the stack.

dneg 119 0 Pops the double value off the stack, calculates
its arithmetic negation, and pushes the result
on top of the stack.

ishl 120 0 Pops the shift count and the integer value,
shifts the value left by the low 5 bits of the shift
count, and pushes the integer result on top of
the stack.

lshl 121 0 Pops the shift count and the long value, shifts
the value left by the low 6 bits of the shift
count, and pushes the long result on top of the
stack.

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1271

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1272 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

ishr 122 0 Pops the shift count and the integer value,
arithmetically shifts the value right (extending
the sign) by the low 5 bits of the shift count,
and pushes the integer result on top of the
stack.

lshr 123 0 Pops the shift count and the long value,
arithmetically shifts the value right (extending
the sign) by the low 6 bits of the shift count,
and pushes the long result on top of the stack.

iushr 124 0 Pops the shift count and the integer value,
logically shifts the value right (not extending
the sign) by the low 5 bits of the shift count,
and pushes the integer result on top of the
stack.

iushr 125 0 Pops the shift count and the long value,
logically shifts the value right (not extending
the sign) by the low 6 bits of the shift count,
and pushes the long result on top of the stack.

iand 126 0 Pops two integer values off the stack, performs
a bitwise, and then puts the result back on top
of the stack.

land 127 0 Pops two long values off the stack, performs a
bitwise, and then puts the result back on top of
the stack.

ior 128 0 Pops two integer values off the stack, performs
a bitwise or then puts the result back on top of
the stack.

lor 129 0 Pops two long values off the stack, performs a
bitwise or then puts the result back on top of
the stack.

ixor 130 0 Pops two integer values off the stack, performs
a bitwise x or puts the result back on top of the
stack.

lxor 131 0 Pops two long values off the stack, performs a
bitwise x or puts the result back on top of the
stack.

iinc 132 2 Increments the integer local variable at index
(arg1) in the current method frame by the
signed 8-bit value in (arg2).

62 1529-5 CH53 9/24/98, 9:16 AM1272

1273

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

i2l 133 0 Pops an integer value off the stack, converts it
to a long, and pushes it on the stack.

i2f 134 0 Pops an integer value off the stack, converts it
to a float, and pushes it on the stack.

i2d 135 0 Pops an integer value off the stack, converts it
to a double, and pushes it on the stack.

l2i 136 0 Pops a long value off the stack, converts it to
an integer, and pushes it on the stack.

l2f 137 0 Pops a long value off the stack, converts it to a
float, and pushes it on the stack.

l2d 138 0 Pops a long value off the stack, converts it to a
double, and pushes it on the stack.

f2i 139 0 Pops a float value off the stack, converts it to
an integer, and pushes it on the stack.

f2l 140 0 Pops a float value off the stack, converts it to a
long, and pushes it on the stack.

f2d 141 0 Pops a float value off the stack, converts it to a
double, and pushes it on the stack.

d2i 142 0 Pops a double value off the stack, converts it to
an integer, and pushes it on the stack.

d2l 143 0 Pops a double value off the stack, converts it to
a long, and pushes it on the stack.

d2f 144 0 Pops a double value off the stack, converts it to
a float, and pushes it on the stack.

int2byte 145 0 Pops an integer value off the stack, converts it
to a signed byte, and pushes it on the stack.

int2char 146 0 Pops an integer value off the stack, converts it
to a char, and pushes it on the stack.

int2short 147 0 Pops an integer value off the stack, converts it
to a short, and pushes it on the stack.

lcmp 148 0 Pops long value2 and long value1 from the
stack. If value1 is greater than value2, push
integer 1 on the stack. If value1 equals value2,
push integer 0 on the stack. If value1 is less
than value2, push integer -1 on the stack.

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1273

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1274 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

fcmpl 149 0 Pops float value2 and float value1 from the
stack. If value1 is greater than value2, then
push integer 1 on the stack. If value1 equals
value2, then push integer 0 on the stack. If
value1 is less than value2 or either value is
NaN, then push integer -1 on the stack.

fcmpg 150 0 Pops float value2 and float value1 from the
stack. If value1 is greater than value2, then
push integer 1 on the stack. If value1 equals
value2, then push integer 0 on the stack. If
value1 is less than value2 or either value is
NaN, then push integer 1 on the stack.

dcmpl 151 0 Pops double value2 and double value1 from
the stack. If value1 is greater than value2,
then push integer 1 on the stack. If value1
equals value2, then push integer 0 on the
stack. If value1 is less than value2 or either
value is NaN, then push integer -1 on the stack.

dcmpg 152 0 Pops double value2 and double value1 from
the stack. If value1 is greater than value2,
then push integer 1 on the stack. If value1
equals value2, then push integer 0 on the
stack. If value1 is less than value2 or either
value is NaN, then push integer 1 on the stack.

ifeq 153 2 Pops an integer value off the stack. If it is equal
to 0, then the two args are added together and
added to the current Program Counter;
otherwise, the next instruction is executed.

ifne 154 2 Pops an integer value off the stack. If it is not
equal to 0, then the two args are added
together and added to the current Program
Counter; otherwise, the next instruction is
executed.

iflt 155 2 Pops an integer value off the stack. If it is less
than 0, then the two args are added together
and added to the current Program Counter;
otherwise, the next instruction is executed.

62 1529-5 CH53 9/24/98, 9:16 AM1274

1275

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Elements of the JVM

Op #
Instruction Code Args Description

ifge 156 2 Pops an integer value off the stack. If it is
greater than or equal to 0, then the two args
are added together and added to the current
Program Counter; otherwise, the next
instruction is executed.

ifgt 157 2 Pops an integer value off the stack. If it is
greater than 0, then the two args are added
together and added to the current Program
Counter; otherwise, the next instruction is
executed.

ifle 158 2 Pops an integer value off the stack. If it is less
than or equal to 0, then the two args are added
together and added to the current Program
Counter; otherwise, the next instruction is
executed.

if_icmpeq 159 2 Pops integer value2 and integer value1 from
the stack. If value1 equals value2, then the
two args are added together and added to the
current Program Counter; otherwise, the next
instruction is executed.

if_icmpne 160 2 Pops integer value2 and integer value1 from
the stack. If value1 is not equal to value2, then
the two args are added together and added to
the current Program Counter; otherwise, the
next instruction is executed.

if_icmplt 161 2 Pops integer value2 and integer value1 from
the stack. If value1 is less than value2 then
the two args are added together and added to
the current Program Counter; otherwise the
next instruction is executed.

if_icmpge 162 2 Pops integer value2 and integer value1 from
the stack. If value1 is greater than or equal to
value2, then the two args are added together
and added to the current Program Counter;
otherwise, the next instruction is executed.

if_icmpgt 163 2 Pops integer value2 and integer value1 from
the stack. If value1 is greater than value2,
then the two args are added together and
added to the current Program Counter;
otherwise, the next instruction is executed.

continues

62 1529-5 CH53 9/24/98, 9:16 AM1275

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1276 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

if_icmple 164 2 Pops integer value2 and integer value1 from
the stack. If value1 is less than or equal to
value2, then the two args are added together
and added to the current Program Counter;
otherwise, the next instruction is executed.

if_acmpeq 165 2 Pops object reference value2 and object
reference value1 from the stack. If the values
refer to the same object, then the two args are
added together and added to the current
Program Counter; otherwise, the next
instruction is executed.

if_acmpne 166 2 Pops object reference value2 and object
reference value1 from the stack. If the values
do not refer to the same object, then the two
args are added together and added to the
current Program Counter; otherwise, the next
instruction is executed.

goto 167 2 Adds the two args together, constructing a 16-
bit value, and adds to the current Program
Counter.

jsr 168 2 Adds the two args together, constructing a 16-
bit integer value. Pushes the Program Counter
location of the instruction immediately
following this one onto the stack. Adds the 16-
bit value to the Program Counter to move the
flow of execution to the subroutine. At the
entry to the subroutine, the return address is
popped off the stack and saved in a local
variable for later use in the ret and ret_w
instructions. (This instruction is used when
the JVM processes a finally block.)

ret 169 1 Uses the argument as an index into the
method’s frame to a local variable that contains
the return address of the caller. The return
address is then put into the Program Counter
to move the flow of execution back to the caller
of this subroutine. (This instruction is used
when the JVM processes a finally block.)

62 1529-5 CH53 9/24/98, 9:16 AM1276

1277

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

tableswitch 170 >12 Represents the compiled implementation of a
switch statement where the location of the
desired case is on the stack. After the OpCode,
there may be 0 to 3 bytes of padding in order
to bring the next arguments to a 4-byte
boundary. The next three arguments help
describe the size of the table. After the pad
bytes is a 32-bit integer representing the offset
into the table for the default block. Then
follows two 32-bit values representing the
lowest and highest allowable index values,
respectively. Next is the actual table. The table
is an array of 32-bit integers containing the
offsets from the beginning of this instruction
to the block of code for a case in the switch
statement. There are (high-index – low-index +
1) 32-bit entries in the table, with the first entry
considered to be at offset zero. The index to
be used in the actual lookup is an integer that
must be popped off the stack. If the index
value is not in the range [low-index, high-
index], then the address for the default block
is used. Otherwise, the value of low-index is
subtracted from the index off the stack to
determine the table slot containing the new
offset where the execution point should be
moved.

lookupswitch 171 >12 Represents the compiled implementation of a
switch statement that is based on determining
the index by matching up an integer key,
which is located on the stack with a value in
the table. After the OpCode, there may be 0 to
3 bytes of padding in order to bring the next
arguments to a 4-byte boundary. The next two
arguments help describe the size of the table.
After the pad bytes is a 32-bit integer repre-
senting the offset into the table for the default
block. Then follows a 32-bit value representing
the number of match/offset pairs that make
up the table elements. Next is the actual table.
The table is an array of 32-bit integer pairs
containing a value to compare the key with and

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1277

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1278 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

the offset from the beginning of this instruc-
tion to the block of code for a matching case in
the switch statement. The key to be used in
the actual match is an integer that must be
popped off the stack. If the key does not match
any of the entries in the table, then the address
for the default block is used. Otherwise, the
index value of the matching table entry is
added to the Program Counter. Execution
continues from that point.

ireturn 172 0 Pops an integer value from the current
method’s stack. This integer value is then
pushed onto the stack of the caller’s method
frame. Control is then returned to the caller’s
method.

lreturn 173 0 Pops a long value from the current method’s
stack. This long value is then pushed onto the
stack of the caller’s method frame. Control is
then returned to the caller’s method.

freturn 174 0 Pops a float value from the current method’s
stack. This float value is then pushed onto the
stack of the caller’s method frame. Control is
then returned to the caller’s method.

dreturn 175 0 Pops a double value from the current method’s
stack. This double value is then pushed onto
the stack of the caller’s method frame. Control
is then returned to the caller’s method.

areturn 176 0 Pops an object reference value from the
current method’s stack. This object reference
value is then pushed onto the stack of the
caller’s method frame. Control is then returned
to the caller’s method.

return 177 0 Control is returned to the caller’s method
without pushing any result value onto the
caller’s stack.

getstatic 178 2 Gets a value from a class’s static field. The
arguments are added together to create 16-bit
offset into the Constant Pool to a Field
Reference entry. The class and field are

62 1529-5 CH53 9/24/98, 9:16 AM1278

1279

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

resolved, and the size of the value and its offset
into the class are determined. Based on the
knowledge of its size, the value is retrieved
from the class’s static field area and pushed on
top of the stack.

putstatic 179 2 Puts a value into a class’s static field. The
arguments are added together to create 16-bit
offset into the Constant Pool to a Field
Reference entry. The class and field are
resolved, and the size of the value and its offset
into the class are determined. Based on the
knowledge of its size, the value is popped from
the stack. The value is then placed into the
class’s static field area at the offset determined
from the field information.

putfield 181 2 Puts a value into an object’s nonstatic field. The
arguments are added together to create 16-bit
offset into the Constant Pool to a Field
Reference entry. The class and field are
resolved, and the size of the value and its offset
into the object are determined. Based on the
knowledge of its size, the value is first popped
from the stack, followed by the actual object
reference. The value is then placed into the
object reference at the offset determined from
the field information.

getfield 182 2 Gets a value from an object’s nonstatic field.
The arguments are added together to create
16-bit offset into the Constant Pool to a Field
Reference entry. The class and field are
resolved, and the size of the value and its offset
into the object are determined. Next, the actual
object reference is popped off the stack. The
value is then retrieved from the object
reference at the offset determined from the
field information and pushed on top of the
stack.

invokevirtual 182 2 Invokes an instance method of the object
reference on the stack based on dynamic type
lookup. The arguments are added together to
create a 16-bit offset into the Constant Pool to a
Method Reference entry. The class, method
signature, and location of the method’s

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1279

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1280 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

bytecodes are resolved dynamically to
determine the number of arguments and the
sizes that need to be popped off the stack.
Next, the arguments are popped off the stack,
followed by the object reference of the class
containing the method to be called. The object
reference and arguments (in that order)
become the first local variables in the new
frame that is created for the method to be
called. Finally, control is passed to the method.

invokenonvirtual 183 2 Invokes an instance method of the object
reference on the stack based on compile-time
type lookup. Logic is identical to
invokevirtual, except that the class informa-
tion has already resolved.

invokestatic 184 2 Invokes a class’s static method. Logic is similar
to invokenonvirtual, except that there is no
object reference behind the arguments on the
stack (as static methods don’t require an object
of this type to be instantiated).

invokeinterface 185 4 Invokes an object’s interface method. Logic is
similar to invokevirtual, except that the
number of arguments to the method is present
as the third argument of the OpCode. The
fourth argument is reserved and not used.

new 187 2 Creates a new object based on the class type
defined by the arguments. The arguments are
added together to create a 16-bit Constant Pool
index to a Class Reference entry. The class
information is resolved, and a new object
reference is created for the class. The object
reference is then pushed on the top of the
stack.

newarray 188 1 Allocates a new array containing elements
from one of the Java native data types. The
number of elements to allocate is on the stack
at entry to this OpCode. The argument to this
OpCode may be one of the following type
designators: boolean, 4; char, 5; float, 6;
double, 7; byte, 8; short, 9; int, 10; long, 11.

62 1529-5 CH53 9/24/98, 9:16 AM1280

1281

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

anewarray 189 2 Allocates a new array containing elements of
object references. The number of elements to
allocate is on the stack at entry to this OpCode.
The arguments to this OpCode, when added
together, make up a 16-bit Constant Pool index
to the class type that will be referenced by the
array elements.

athrow 191 0 Throws an exception. The top of the stack
must contain an object reference that is
subclassed from Throwable. The specified
exception object is popped off the stack and
thrown. The process of throwing an exception
requires the current method’s frame to be
searched for an appropriate exception handler.
If one is found, the Program Counter is set to
the address of the first bytecode of the handler.
Otherwise, this method frame is popped, and
the exception is rethrown to the caller of this
method.

checkcast 192 2 Verifies that a cast operation is valid given the
type of object reference on the top of the stack.
The arguments are added together to create a
16-bit Constant Pool index to a Class Reference
entry. The class information is resolved. The
type of object reference on the top of the stack
is compared to the type of class specified by
the Constant Pool entry. If the object on the
stack is an instance of the class found in the
Constant Pool or one of its superclasses,
execution continues with the next instruction.
Otherwise, a ClassCastException is thrown.

instanceof 193 2 Verifies that an object is of the specified type
based on the arguments. The arguments are
added together to create a 16-bit Constant Pool
index to a Class Reference entry. The class
information is resolved and the object refer-
ence is popped off the stack. The type of the
object is compared to the type of class
specified by the Constant Pool entry. If the
object on the stack is an instance of the class
found in the Constant Pool or one of its
superclasses, then the integer value 1 is

Elements of the JVM

continues

62 1529-5 CH53 9/24/98, 9:16 AM1281

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

1282 Chapter 53 Inside the Java Virtual Machine

Table 53.1 Continued

Op #
Instruction Code Args Description

pushed on the stack. Otherwise, the value 0 is
pushed on the stack.

monitorenter 194 0 Enters a monitored section of the current byte-
code stream and pops the object reference off
the top of the stack. Try to allocate an exclu-
sive lock on the object reference. If another
monitor already has this object locked, wait for
it to become unlocked. If the object is already
locked, then just continue. Otherwise, allocate
a new exclusive lock on the object.

monitorexit 195 0 Leaves a monitored section of the current byte-
code stream and pops the object reference off
the top of the stack. The exclusive lock on the
object reference is removed. If no other
threads have this object locked, then any other
threads waiting for this object are notified that
the object is now available.

wide 196 1 Provides for a 16-bit index in local variable
load, store, and increment OpCodes. This is
possible by adding the 8-bit quantity in (arg1)
to the index in the argument of the succeeding
OpCode in the bytecode stream that follows
this one.

multianewarray 197 3 Allocates a new multidimensional array
containing elements of object references. The
number of elements to allocate per dimension
are on the stack at the entry to this OpCode.
The first two arguments to this OpCode, when
added together, make up a 16-bit Constant Pool
index to the class type that will be referenced
by the array elements. The third argument is
the number of dimensions that the array is to
contain.

ifnull 198 2 Pops an object reference off the stack. If it is
null, then the two args are added together and
added to the current Program Counter.
Otherwise, the next instruction is executed.

ifnonnull 199 2 Pops an object reference off the stack. If it is
not null, then the two args are added together
and added to the current Program Counter.
Otherwise, the next instruction is executed.

62 1529-5 CH53 9/24/98, 9:16 AM1282

1283

P2VB/mp12 SE Using Java 1.2 #1529-5 8.8.98 Ayanna CH53 LP#3

53

VIII
Part

Ch

Op #
Instruction Code Args Description

goto_2 200 4 Adds the four args together, constructing a 32-
bit value, and adds to the current Program
Counter.

jsr_w 201 4 Adds the four args together, constructing a 32-
bit integer value. Push the Program Counter
location of the instruction immediately
following this one onto the stack. At entry to
the subroutine, the return address is popped
off the stack and saved in a local variable for
later use in the ret and ret_w instructions.
Add the 32-bit value to the Program Counter to
move the flow of execution to the subroutine.
(This instruction is used when the JVM
processes a finally block.)

breakpoint 202 0 Stops execution and passes control to the
JVM’s breakpoint handler.

ret_w 209 2 Adds the two arguments together to create a
16-bit index into the method’s frame to a local
variable that contains the return address of the
caller. The return address is then put into the
Program Counter to move the flow of execu-
tion back to the caller of this subroutine. (This
instruction is used when the JVM processes a
finally block.)

Elements of the JVM

62 1529-5 CH53 9/24/98, 9:16 AM1283

62 1529-5 CH53 9/24/98, 9:16 AM1284

P2/VB/swg#4 SE Using Java 1.2 #1529-5 7.15.98 Ayanna PTIX LP#1

IXP A R T

JavaScript

54 Java Versus JavaScript 1287

55 Starting with JavaScript 1301

P2/VB/swg#4 SE Using Java 1.2 #1529-5 7.15.98 Ayanna PTIX LP#1

1287

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

54

IX
Part

Ch

C H A P T E R

Java Versus JavaScript

Java and JavaScript 1288

JavaScript Is Not Java 1289

Interpreted Versus Compiled 1290

Object Based Versus Object Oriented 1292

Strong Typing Versus Loose Typing 1293

Dynamic Versus Static Binding 1293

Restricted Disk Access 1294

Different Functionality (Scope Limitations) and Code Integration with HTML 1295

Rapid Evolution Versus Relative Stability 1297

Libraries 1298

JavaScript and Java Integration 1299

54

In this chapter

64 1529-5 CH54 9/24/98, 9:18 AM1287

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

1288 Chapter 54 Java Versus JavaScript

Java and JavaScript
If you’re reading this book from beginning to end, by now you should have a pretty good idea
of what Java is and what it can do for you. Now that you are approaching the end of this book, it
is time to introduce you to another language you will encounter if you plan to build Java applets
on the Web. The next few chapters bring you to a greater understanding of the features of
Netscape’s new scripting language, JavaScript. You learn how it differs from Sun’s Java and
how you can use JavaScript to dramatically enhance your Web pages. You see that JavaScript
and Java are distinct languages that can work together in a Web browser environment to create
pages that are highly interactive.

Programmers often are confused by the similar names of Java and JavaScript. If you were to
say to a friend, “I program in JavaScript,” more often than not, that person will respond with
something like, “Oh, perhaps then you can help me with this Java applet….”

It is a common misconception that Java and JavaScript are just part of the same language. This
is far from true. Although they are similarly named, there are quite a few differences between
them, the first of which is their origin. Around June of 1991, Java was developed at Sun
Microsystems and was originally called Oak. It was officially announced (after much develop-
ment and a name change) in May 1995 at SunWorld ’95. JavaScript was developed at Netscape
Communications Corporation and was originally called LiveScript. Sun renamed Oak to Java
because of copyright issues with another language already called Oak, and Netscape changed
LiveScript to JavaScript after an agreement with Sun to develop JavaScript as a language for
non-programmers. JavaScript was first released with Netscape 2.0.

Before you delve into some of the differences between these two languages, let’s get an over-
view of the major distinctive points and then discuss each in more depth. Table 54.1 lists some
of the major distinctions between Java and JavaScript.

Table 54.1 JavaScript and Java Comparison

JavaScript Java

Developed by Netscape. Developed by Sun.

Code is interpreted by client Code is compiled and placed on server before
(Web browser). execution on client.

Object-based. Objects are built in but Object-oriented. Everything is an extensible
are not classes and cannot use class that can use inheritance.
inheritance.

Data types need not be declared Data types must be declared (strong typing).
(loose typing).

Runtime check of object references Compile-time check of object references
(static binding). (dynamic binding).

Restricted disk access (must ask before Restricted disk access (levels of access set by
writing a file). user; cannot automatically write to disk).

64 1529-5 CH54 9/24/98, 9:18 AM1288

1289

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

54

IX
Part

Ch

JavaScript Is Not Java

Scripts are limited to Web browser Compiled code can run either as a Web applet
functionality. or a standalone application.

Scripts work with HTML elements Can handle many kinds of elements (such as
(tags). audio and video).

The language is rapidly evolving and Most major changes are complete.
changing in functionality.

There are few libraries of standard Java comes with many libraries bundled with
code with which to build Web. the language.

JavaScript Is Not Java
The first thing you need to know is that JavaScript is not Java. It is almost becoming a mantra
for JavaScript programmers who constantly face Java questions, even though the forum (such
as the newsgroup) is clearly JavaScript.

You can write JavaScript scripts and never use a single Java applet. The reason JavaScript has
adopted Java’s name (in addition to the agreement with Sun Microsystems) is because the
language has a similar syntax to Java. Netscape also recognized the momentum building be-
hind Java and leveraged the name to strengthen JavaScript. If you have programmed in Java,
then you will find that JavaScript is both intuitive and easy for you to pick up. There is not
much new for you to learn. The nicest thing about JavaScript, though, is that you don’t need to
have any experience using Java to rapidly create useful scripts.

To give you an example of the similar nomenclature in Java and JavaScript, look at how each
language would handle a specific function called from a specific object.

Suppose in Java you have a class called MyClass that contains a method called MyMethod. You
could call MyMethod in this way:

foo = new MyClass();
result = foo.MyMethod(parameter1, parameter2);

In JavaScript, you can do the same thing. If you have a function called MyObject defined by:

function MyObject(parameter) {
this.firstone = parameter;
this.MyFunction = MyFunction;
}

assuming that MyFunction() has been previously defined, you can then call MyFunction by:

foo = new MyObject(parameter);
foo.MyFunction(someparameter);

In the first part, you have created two properties (basically slots for information inside the
object) called firstone and MyFunction. In the second part, you see how you can create a
specific instance of an object and use that new object’s methods.

JavaScript Java

64 1529-5 CH54 9/24/98, 9:18 AM1289

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

1290 Chapter 54 Java Versus JavaScript

There are many similarities like this between the languages. See the next chapter for details of
the JavaScript syntax.
◊ See Chapter 56, “Starting with JavaScript,” for more information, p. 1333

Interpreted Versus Compiled
JavaScript code is almost always placed within the HTML document where it will be running.
When you load a page that contains JavaScript code, the Web browser contains a built-in inter-
preter that takes the code as it is loaded and executes the instructions (sometimes on-the-fly,
before you see anything on that window). This means that you can usually use View Source
(choose View, Document Source in the Netscape menu) to see the code inside the HTML
document.

JavaScript uses the <script>...</script> tag, similar to Java’s <applet>...</applet> tag.
Everything within the <script>...</script> is ignored by Netscape’s HTML parser, but is
passed on to the JavaScript interpreter. For Web browsers that do not support the
<script>...</script> tag, it is customary to further enclose the JavaScript code in com-
ments. Here is an example in Listing 54.1.

Listing 54.1 JavaScript Code in an HTML Document

<html>
<head>
<title>JavaScript Hello!</title>
<script language=”JavaScript”>
<!-- // to hide from old browsers
var textData = “Hello World!”;
function showWorld(textInput) {
document.write(textInput);
}
//to ignore end comment -->
</script>
</head>
<body bgcolor=white>
<script language=”JavaScript”>
<!--
showWorld(textData);
// -->
</script>
</body>
</html>

The script in Listing 54.1 shows how JavaScript can appear in both the <head> and <body>
elements of an HTML document. This script first loads the function within the <head> element.
(All of the code is read from the top down—remember this when you refer to other pieces of
code so you don’t refer to code that hasn’t been loaded yet.) When the browser encounters the
showWorld(textData) line in the <body> element, the browser displays the text value of
textData—in this case, “Hello World!”.

64 1529-5 CH54 9/24/98, 9:18 AM1290

1291

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

54

IX
Part

Ch

Interpreted Versus Compiled

If you were to do something similar in Java, you would write the code in Java in an editor, com-
pile the code to a .class file, and place that file on your server. You would then use the now
familiar <applet>...</applet> to embed this applet in your HTML document. For example,
the Java code would appear as:

public class HelloWorld extends java.applet.Applet {
public static void main (String args []) {
System.out.println(“Hello World”);
}
}
The HTML code would appear as:
<html>
<head>
<title>Java Example</title>
</head>
<body>
<applet code=”HelloWorld.class” width=150 height=25>
</applet>
</body>
</html>

The benefits of having code interpreted by the browser instead of compiled by a compiler and
run through the browser is primarily that you—as a JavaScript developer—can very quickly
make modifications to your code and test the results via the browser. If you use Java, you must
change the code, compile it, upload it again (if you are testing on your own Web server), and
then view it in your browser. Interpreted code is typically not as fast as compiled code, but for
the limited scope of JavaScript, you will probably see scripts run a little faster than their Java
counterparts (with equivalent functions, such as a scrolling text ticker).

The drawback to having your JavaScript code on the HTML document is that any code you
write will be exposed to anyone else who accesses your page—even those who want to use
your code for their own projects. For small scripts, this is not much of a problem, nor is it a
problem for large projects—if you don’t mind having your efforts used on other pages or im-
proved upon by others. If you have a large project in which you want to keep your code private,
you might consider using Java instead. With the recent implementation of the SRC attribute,
your scripts can now be pulled out of the HTML page and placed in their own file. This dramati-
cally increases their usefulness if you have scripts that you want to reuse often. Overall, it is
more convenient for JavaScript coders to be able to see the results of their changes on-the-fly in
the browser than it is for the code/compile/upload/view of Java.

One feature of this interpreted nature of JavaScript is that you can test out statements on-the-fly
(such as eval(7*45/6) or document.write(“hi1”)). If you are using Netscape Navigator 2.0 or
later, try typing javascript: or mocha: in the URL window. You see that the browser window
changes into interpreter mode with a large frame above a smaller frame. You can type in
JavaScript commands in the smaller frame input box and see the results displayed in the larger
frame (see Figure 54.1).

64 1529-5 CH54 9/24/98, 9:18 AM1291

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

1292 Chapter 54 Java Versus JavaScript

Object Based Versus Object Oriented
JavaScript takes liberally from Java in respect to its overall language structure, but lacks many
of the features that make Java an object-oriented language. JavaScript has built-in objects (such
as Navigator, Window, or Date) that access many browser elements such as windows, links, and
images. Java typically cannot access any of these browser elements and is restricted to the area
(or bounding box) that contains it and any Java windows it subsequently creates.

JavaScript allows you to create new objects that are really functions. Objects in JavaScript are
not true objects because they do not implement inheritance and other features that Java does.
For instance, you cannot create a new class MyWindow that inherits properties of the JavaScript
object window (the top-level object in JavaScript).

Although this limitation may at first seem very constricting, you can still create many useful
functions within JavaScript that can perform many of the same tasks that an equivalent Java
applet can do.

Due to these built-in objects, JavaScript really shines when it comes to accessing or manipulat-
ing browser-based attributes, such as the current time, the value of a given form element, the
third window in your browser, the link you visited five clicks ago, and so on.

Java code can be written to allow a programmer to do just about anything on a computer as a
standalone application or a Java applet. But, JavaScript fills a major gap (at least in the context
of Java applets and Web browsers) by acting as a glue by which Java and the browser can com-
municate. Via JavaScript, you could enter information into a form field in an HTML document,
and a Java applet on that page could use that input to display new information. JavaScript allows

FIG. 54.1
The JavaScript
Interpreter evaluates
statements you type in
the lower window and
displays the results in
the upper window. (Mac
and Windows versions
vary in their display.)

64 1529-5 CH54 9/24/98, 9:18 AM1292

1293

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

54

IX
Part

Ch

Dynamic Versus Static Binding

Java applets to gain access to properties of an HTML page and allows non-programmers access
to various parts of a Java applet—such as public variables.

Although JavaScript does not allow inheritance, there is an interesting new feature called proto-
type. Prototype allows you to add new properties to any object that you created (with the new
statement) and even add new properties to existing built-in objects. What this means is you can
extend existing instances of objects even after they have been defined.

For example, you have an object House that has the properties of Light, GarageDoor, and
BurglarAlarm. You might already have an instance of this called myHouse. But now you want to
extend House by adding ChimneySmoke. Instead of re-defining all of your objects, you can use

House.prototype.ChimneySmoke = ChimneySmoke.

Now the instance called myHouse can access this new property ChimneySmoke by using

myHouse.ChimneySmoke.

Strong Typing Versus Loose Typing
When you are writing JavaScript code, variables don’t need to have data types when they are
declared. This loose typing means that it is much easier for JavaScript writers to work on creat-
ing and manipulating variables without worrying if the data was an int, float, and so on.

In Java, you must explicitly declare what data type a variable will be before you use it. This is
called strong typing and contributes to the overall stability of Java code; but it can cause prob-
lems for new programmers. JavaScript allows you to ignore this and assumes that the type of
value you first assign to a variable is the type you intended it to be. For instance, if you had a
variable HouseType and you assigned it a value of “Victorian,” JavaScript assumes you meant
HouseType to be a string all along and does not complain if you did not specifically set
HouseType to a string. However, if you had first assigned a value of 4 to HouseType, JavaScript
now assumes it is of type INT. Overall, this makes for faster and easier script writing and elimi-
nates needless debugging for variable declarations. However, you must be careful to assign the
correct type of value to a variable.

This loose typing demonstrates one of the areas in which JavaScript seeks to simplify the pro-
cess of writing code. Because JavaScript is directed toward non-programmers or minimal pro-
grammers, the developers sought to simplify the language in as many ways as possible while
still keeping much of the flexibility. Other examples of loose-typed language include
HyperTalk, dBASE, and AppleScript.

Dynamic Versus Static Binding
Because JavaScript is interpreted on the client’s browser, object references are checked on-the-
fly as opposed to Java’s static binding at compile time. Binding simply means that a variable
name is bound to a type—either statically through an explicit declaration of a type with a vari-
able, or dynamically through an implicit association determined by the computer at compile or
runtime. Because of JavaScript’s dynamic nature, objects in JavaScript can be created on-the-fly

64 1529-5 CH54 9/24/98, 9:18 AM1293

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

1294 Chapter 54 Java Versus JavaScript

as well, and might change the functionality of the script due to some outside factor (time, cus-
tomer responses, and so on). The Date object is often used to get information about the Web
browser’s current date, time, day of the year, and more. This object is created at the time the
JavaScript code is interpreted in order to get the correct information.

Java programs—with static binding—are typically more stable, because the entire process of
compiling the code has already been completed via the Java compiler. Any bad or missing
object references have been corrected. This is an advantage when you want the given applica-
tion to load and run quickly on the user’s machine.

Restricted Disk Access
Security is a hot issue in today’s Internet and intranet Web industry for many good reasons.
One of the greatest fears people have when they use the Web (or other Internet applications
such as e-mail) is that a hostile program will enter their computer and damage or compromise
their sensitive data. Java has a comprehensive way of dealing with security that allows it to do
useful things on your computer while keeping it isolated from your sensitive documents. Java
applets typically cannot write to your hard drive at all, or if they do, it is in some extremely
limited way.

Because JavaScript can control so many aspects of your browser, for a while there was some
concern that JavaScript was less safe than Java. This was primarily due to bugs in early ver-
sions of JavaScript that allowed it to send the contents of the file containing your bookmarks
and e-mail address to another remote site through a hidden form, or acquire a list of all the files
on your machine. These problems have been eliminated, and JavaScript is now—for the most
part—as safe as any Java applet you might run via your browser.

Note that JavaScript can write to your hard drive—an essential feature your Web browser has
to write to its cache or save files downloaded via the Web. However, it requires now that you
specifically click Accept in a dialog box to download a file. In a sense, JavaScript is more versa-
tile than Java in this respect, because it allows you to use your browser to create files to save
and work with at a later time.

If you are concerned that some kind of hostile code might damage your machine, you should
be aware that the possibility of virus infection has been around for a long time. Java, with its
assertion of security, has only focused more attention to security issues. Soon, with JavaScript’s
tainting (a system of marking data so that it cannot be sent via a form or mailto: link via
JavaScript) and Java’s digital signatures (an electronic verification of the origin or identity of
the code or information), you will be able to verify that any code—be it Java or JavaScript—
comes from some trusted source. This is very good, because you will be able to allow Java to
perform more sensitive tasks such as update your Oracle database or send and auto-install
updated versions of software on your machine.

Also note that your Web browser (and JavaScript through the browser) can also write informa-
tion to a file called a cookie. This is a file on your machine that allows Web sites to store infor-
mation about you that could be retrieved when you visit that site again. Only the site that wrote
the information to the cookie can retrieve it, and it is usually only used to maintain some kind

64 1529-5 CH54 9/24/98, 9:18 AM1294

1295

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

54

IX
Part

Ch

Different Functionality (Scope Limitations) and Code Integration with HTML

of temporary information about you to carry across different pages (such as a user ID or the
fact that you are from Florida).

Different Functionality (Scope Limitations) and
Code Integration with HTML

JavaScript is limited in scope to your Web browser (either Netscape Navigator or Microsoft
Internet Explorer). Java, on the other hand, can run as a standalone application (like Microsoft
Word) or within the context of a browser as an applet. It is a testimony of the versatility of Java
that it has adapted so quickly to the Web. It was originally intended to run as operating system
and controls on set-top boxes or other small communication appliances. Given that Java will
eventually outstrip C++ as the programming language of choice (at least for Internet program-
mers, if not for all programmers, as its speed increases), it has the functionality and versatility
to run in many different operating systems.

JavaScript is a smaller language for a more limited audience of Web browser programmers.
JavaScript gives to Web programmers the ability to access and modify all of the HTML tags,
form elements, window elements, images, bookmarks, links, and anchors in a Web browser. It
enables the programmer to create Web sites that respond and change based on many factors
such as the time of day or some user profile (see Figure 54.2). JavaScript allows Java applets,
scripts, and browser plug-ins to communicate with each other. This actually is a suite of tech-
nologies called LiveConnect from Netscape and requires some additional code in the Java
applet or plug-in to be “aware” of JavaScript.

FIG. 54.2
This page displays
information based on
the time of day.

64 1529-5 CH54 9/24/98, 9:18 AM1295

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

1296 Chapter 54 Java Versus JavaScript

JavaScript can create HTML files on-the-fly, change attributes of a page instantly(such as the
background color), and allows the client machine to perform many functions that were tradi-
tionally allowed only through CGIs, such as a TicTacToe game. JavaScript allows for form input
validation, where incorrect responses are checked before they are sent back to the browser,
which is much more difficult to do in Java than in JavaScript. Essentially, to get the functional-
ity of JavaScript in Java, you would have to rebuild a mini-browser into your code—a fairly
inefficient solution.

Also, JavaScript can be integrated directly into the HTML of your document. Event handlers,
such as onClick, can modify the behavior of your browser beyond just accessing new docu-
ments. You can create simple calculators in JavaScript that take advantage of the GUI already
present in the browser, as well as the layout capabilities already in place via the presence of
HTML forms or TABLE elements. In other words, you can use your browser to do more than
just access documents. You can use it as a front end to just about any kind of application. If you
use Java, you have GUI capabilities, but you have to manually activate and resolve these capa-
bilities, which might require significant programming on your part. In JavaScript, though, you
let the browser handle most of the GUI problems and concentrate on your creative project.

Here are some examples of how you can integrate JavaScript statements into your HTML. You
saw in Listing 54.1 how you can create scripts via the <script> tag. You can also embed
JavaScript statements directly into your HTML:

pass
your mouse over here for a message!

Instead of showing the URL in the status bar, passing the mouse over the text of the hyperlink
brings up a new dialog box that displays the you noticed me! text. To do this in Java, you
would have to create an applet that draws the link text to the screen, write the code that moni-
tors the mouse location (probably as a separate thread), and write more code to create and
destroy the resulting dialog box. Needless to say, the JavaScript solution is much easier to
implement for the casual Web designer. Also, with LiveConnect, you can let a Java applet tell
JavaScript to open the window and do other tasks without having to write additional code.

Look at the following JavaScript example:

Here, JavaScript allows you to set a value to an HTML attribute via a JavaScript expression. In
this case, if you had defined imgwidth to be 50, the resulting image would have a scaled width
of 50 percent of the window size. Again, if you had to do this in Java, you would have a signifi-
cant amount of code to create—just to mimic the same ability. Even then, you could not easily
share the value of imgwidth with other applets.

Overall, the ability to integrate JavaScript code directly in the HTML source allows Web pro-
grammers to quickly take advantage of the browser’s built-in GUI. Casual scripters can both
leverage their HTML experience as well as any familiarity with Java. Java allows you to create
amazing new applications that can be executed on many operating systems that have had the
Java interpreter ported to them.

64 1529-5 CH54 9/24/98, 9:18 AM1296

1297

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

54

IX
Part

Ch

Rapid Evolution Versus Relative Stability

The capacity for Java to create as diverse a range of applications as C++ is not disputed. How-
ever, if you are a Web page designer who doesn’t have the time to learn how to program Java,
you will find that JavaScript is very useful. On the other hand, if you dislike using proprietary
code in your HTML that only functions with two browsers (even though together they hold
almost 90 percent of the current browser market share), you may decide to tough it out by
using just Java.

Rapid Evolution Versus Relative Stability
JavaScript is the newer of the two languages and, as such, is undergoing a more dramatic se-
ries of changes and improvements. As of this writing, Java Version 1.0.2 is relatively stable.
Most of the statements, operators, syntax, and so on have been well-defined and most likely
will not change significantly in subsequent versions. JavaScript has been rapidly evolving from
the original goal of providing form verification on the client side (instead of a server-side CGI)
to having the potential to simulate a simple game such as Pong or breakout. Some of the fea-
tures of JavaScript include:

■ Java-JavaScript communication

■ JavaScript-Plug-in communication

■ Determination of installed plug-ins

■ Data Tainting (security enhancements)

■ Image reflection (dynamic listing of all images)

■ New event handlers (onMouseOut and more)

■ New attributes to the <script> tag (SRC)

■ New built-in objects (array, string, and so on)

■ New operators (typeof)

■ Object prototypes

As you can see, JavaScript is changing and growing. It provides a powerful way for non-
programmers (or light programmers) to do the following:

■ Access Java applet methods

■ Enable plug-ins and applets to communicate with other elements (other plug-ins, scripts,
and applets)

■ Validate form information on the client side (before it is sent back to the Web server)

■ Generate HTML on-the-fly or based on environment variables (time, date, location, and
so on)

■ Create simple interactive programs (such as a TicTacToe game) completely in JavaScript

The drawback to this is subtle. It may seem at first that adding new features with every new
release of Netscape would be looked upon as a wonderful thing. For the most part this is true,
except now when you sit down at your latest browser and begin programming with JavaScript.
You have to ask yourself if the feature you are using is going to be available to a large audience

64 1529-5 CH54 9/24/98, 9:18 AM1297

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

1298 Chapter 54 Java Versus JavaScript

(specifically, the target audience for your Web site). Not everyone updates their browser every
few months, so every release tends to segment your audience. Another drawback is that, for
every feature added to a language, it opens the possibility that a bug snuck in as well.

For now, it is a good strategy to take advantage of only those features of JavaScript that have
persisted through Version 2.02 of Netscape. If you use 3.0-specific features, be sure to mention
this on the page to inform your visitors. So, another difference between Java and JavaScript is
that, although Java is more powerful and relatively stable as a language, JavaScript is growing
with each version.

It is exciting to see how much a scripter can do now with JavaScript. With 3.0, I have seen
simple paint programs, Pong games, and even LED clocks that change every second. Many of
these scripts would be fairly indistinguishable from their Java counterparts.

If you discover a feature you would like to add to JavaScript, you have the unique
opportunity to talk to the developer of JavaScript (Brendan Eich at Netscape). I expect that

the expansion of features in JavaScript will continue, especially now that it is being compared to
Microsoft’s Visual Basic Script. If you find JavaScript too limited in some way, you may be able to
change it in future versions. Brendan tries to respond to all email he gets, but with such a high volume,
it may take a while for him to respond—if at all. ■

Libraries
Sun delivers Java with a standard set of libraries that act to dramatically enhance its usefulness.
Instead of having to write all the code to handle images, sockets, and so on, the programmers
at Sun have done this for you. You simply have to learn the standard APIs so you can quickly
write terminal emulators, word processors, and more.

JavaScript—because of its relative youth—has not had time to build up any assemblage of
standard code with which to build Web-based applications. One major problem that stalled this
development was that you were forced to embed your code in the HTML document in which
you wanted to use the script. With the addition of the SRC attribute to the <script> tag, you
can now write your code in a separate file and merely reference the script in the page. It is
similar to the CODE attribute in the <applet> tag (this page would load all of the JS files, display
the correct title at the top of the window, and display a clock above the Welcome to my home
page text):

<html>
<head>
<script language=”JavaScript” src=”header.js”></script>
</head>
<body>
<script language=”JavaScript”
src=”http://www.foo.com/scripts/timer.js”></script>
<script language=”JavaScript” src=”body.js”></script>
</body>
</html>

N O T E

64 1529-5 CH54 9/24/98, 9:18 AM1298

1299

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

54

IX
Part

Ch

JavaScript and Java Integration

■ HEADER.JS:

document.write(“<title>Welcome!</title>”);
alert(“Welcome To My Homepage!”);

■ BODY.JS:

document.write(“Welcome to my home page!”);

The ability to refer to a JavaScript file via the SRC attribute allows you to reuse scripts much
more readily than before. It is expected to be only a matter of time before standard libraries of
code are developed and easily accessible. It is somewhat ironic that you can find more standard
code for Java now than you can for JavaScript, given that Java is more complicated.

JavaScript and Java Integration
There are many other examples of differences between Java and JavaScript, such as memory
requirements (and limitations), threads (Java has them, JavaScript doesn’t), and more. But I
think that the differences presented in this chapter will help you to perhaps change your per-
ception of JavaScript.

You should begin to think of JavaScript not as simply an aspect of Java, but instead a comple-
mentary language that allows you to greatly control the behavior of your browser. You can now
pass more of the computation and interactivity from your server down to the user’s client
browser—thus relieving some of the load and improving the performance of your server.
JavaScript is not an all-purpose or a universal scripting language, but in the confines of HTML,
plug-ins, browser events, and windows, JavaScript shines as an easy way to add interactivity to
your Web pages. You will see this in the next chapter.

The decision to use Java or JavaScript will depend not only on your skills as a programmer, but
also on the scope of the Web-related task at hand. Look carefully at the task and see if the
scrolling text, spinning icon, or calculator might more easily be implemented in JavaScript. If
you need to control most of the browser window with specialized text or perhaps have a highly
sophisticated application, then Java is surely the way to go.

The next chapter introduces you to the syntax of JavaScript and gives you a good idea of its
capabilities. You may find that programming in JavaScript is as much fun as creating Java
applets. ●

64 1529-5 CH54 9/24/98, 9:18 AM1299

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.10.98 ayanna CH54 LP#4

1300 Chapter 54 Java Versus JavaScript

64 1529-5 CH54 9/24/98, 9:18 AM1300

1301

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

C H A P T E R

Starting with JavaScript

The Basics 1302

Your First Script 1303

Events 1304

Using Event Handlers 1304

Variables 1306

Variable Names 1307

Variable Scope 1307

Literals 1307

Expressions and Operators 1308

Control Statements 1310

Functions in JavaScript 1315

Arrays 1317

Built-In Functions 1318

Objects 1319

A Final Example 1326

55

In this chapter

65 1529-5 CH55 9/24/98, 9:23 AM1301

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1302 Chapter 55 Starting with JavaScript

The Basics
By now you have read a lot about the newest version of Java, and in the previous chapter, I
began to talk about one of Java’s partners in Web development—JavaScript. You may be won-
dering (if you jumped straight to this chapter or are reading this in the bookstore) why there is
a chapter on JavaScript in a book about Java. The reason is quite simple. JavaScript comple-
ments Java’s capabilities in the Web browser environment. It allows people with little or no
programming experience who are daunted by Java’s complexity to create interactive and Web-
based applications.

JavaScript is a scripting language that is loosely based on Java. By imbedding JavaScript code
in an HTML document, you can have greater control of your user’s experience as well as pass a
larger amount of computation (originally only available via CGI scripts) down to the client-side
browser. These scripts are read sequentially by the browser as it is loading a page and can
execute commands immediately—which may affect the page even before it completes loading.

Because JavaScript lives inside your HTML document, it can either exist as a complete script
that is embedded in the <head> or <body> elements, or it can consist of event handlers that are
written directly into the HTML code.

In Listing 55.1, you can see how to build the skeleton of a JavaScript script in a document via
the <script> tag.

Listing 55.1 The Script Tag

<SCRIPT LANGUAGE=”JavaScript”>
<!-- HTML comment tags to hide script from old browsers
[JavaScript statements...]
// End hiding the code from old browsers -->
</SCRIPT>

You can see from this example that the <script> tag is somewhat similar to the <applet> tag
you use when you embed Java code. The SCRIPT tag has an attribute called LANGUAGE that al-
lows you to specify in which language the browser needs to interpret the following code. This
makes the <script> tag versatile, in that you may eventually use it to embed Visual Basic
Script, TCL, Perl, and more scripts.

Another attribute to the <script> tag is SRC. Implemented in Netscape 3.0, the SRC attribute
allows you to write all of your script in another file and reference that file—instead of having to
paste all of the statements in the HTML. If you use the SRC tag, anything you place between the
<script>...</script> is ignored. Thus, you can place alternative HTML for non-JavaScript-
enabled browsers. Listing 55.2 uses the SRC attribute.

65 1529-5 CH55 9/24/98, 9:23 AM1302

1303

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Your First Script

Listing 55.2 JavaScript with SRC

<SCRIPT LANGUAGE=”JavaScript” SRC=”footer.js”>
You must not have a JavaScript Enabled Browser if
you see this (poor you!) Click here
to go to another page.
</SCRIPT>

In Listing 55.2, the browser loads the script contained within FOOTER.JS as if it had been
typed in the HTML document.

Your First Script
When you start learning about JavaScript, you will find it very useful to begin with the basics.
Immediately start up your Web browser (Netscape Communicator or Microsoft Internet Ex-
plorer) and test out what you learn.

Let’s begin with a simple script and explain what will happen when you load this page. Listing
55.3 is an example of the typical “Hello World!” program that is very popular for testing out new
languages. In this example, you are essentially telling the browser to display the string “Hello
World!” as if you had directly typed that string in your HTML document. (Note that I usually
capitalize my HTML or JavaScript tags. This is simply a programming convention, but it makes
the code easier to read.)

Listing 55.3 “Hello World!” Implemented in JavaScript

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- Hide me from old browsers
document.write(“Hello World!”);
// End Hiding -->
</SCRIPT>
</HEAD>
<BODY>
Are you ready for JavaScript?
</BODY>
</HTML>

Try this one out on your browser and see the results.

Basically, the browser reads this code into the JavaScript interpreter. The text string “Hello
World!” is passed to the write function of the document object, which in turn instructs the
browser to display the phrase “Hello World!” on a new page. Notice that the actual code is not
displayed in the browser window. This is because the HTML parser never received this code,
as it was passed to the JavaScript interpreter after the HTML parser encountered the <SCRIPT>
tag.

65 1529-5 CH55 9/24/98, 9:23 AM1303

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1304 Chapter 55 Starting with JavaScript

Events
Most of the time, you will be building scripts that do such things as store information, display
data in a certain format, perform some calculations, or respond to user actions (called events).
JavaScript has all of the elements that make up a powerful scripting language and can handle
all of these tasks. One of the primary tasks JavaScript is used for is intercepting and handling
events. Just about any way you respond to your browser can be intercepted by JavaScript.
Furthermore, your response can trigger other events, or functions.

Essentially, functions are stored chunks of code that are executed at some interval—either
immediately, when the document is loaded, or in response to some triggered event. Think of
functions as collections of instructions that allow you to pull out some behavior you might want
to perform over and over again or possibly reuse.

When JavaScript encounters an event, it passes it to an event handler. Event handlers are tags
that point to the specific functions to be executed. Table 55.1 lists the events and handlers in
JavaScript.

Table 55.1 Events and Event Handlers in JavaScript

Event Event Handler To Trigger Event

blur onBlur In a form element, user clicks (tabs) away
from element.

click onClick In a form element or link, user clicks
element.

change onChange In a form text, text area, or select object, user
changes value.

focus onFocus In a form element, user clicks (tabs) to
element.

load onLoad Happens when page is loaded.

mouseover onMouseOver Happens when mouse is passed over links or
anchors.

select onSelect In a form, user selects input field.

submit onSubmit In a form, user submits a form (clicks the
Submit button).

unload onUnload User leaves the page.

Using Event Handlers
Although you can use event handlers anywhere in your JavaScript scripts, you usually place
them either inside HTML form elements or alongside anchors or links. The reason for this is

65 1529-5 CH55 9/24/98, 9:23 AM1304

1305

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Using Event Handlers

that JavaScript uses the HTML form as a way to send data to your JavaScript script or perform
some “preprocessing” on the data, not just to send data back to the server.

For example, an enrollment form on your site asks the users a number of questions about
themselves, and you want to make sure they at least fill out their names and ages. Before
JavaScript, the form was submitted directly back to the Web server, which checked that the
appropriate fields were filled out. Then, if they weren’t, the form was sent back to the users,
asking for the appropriate information. Now, JavaScript can check this field before it is sent and
ask the users to fill out that information, without all the overhead of reconnecting to the remote
server.

Let’s look at an example of how you might add an event handler to your existing HTML code.
Most of the time, you follow this general syntax:

<TAG eventHandler=”JavaScript code”>

Of course, TAG is some HTML tag, and eventHandler is any one of the event handlers you saw
in Table 55.1. The “JavaScript code” can be any valid JavaScript code but is usually a call to a
function that you loaded earlier in the document. Listing 55.4 demonstrates an embedded
JavaScript event handler in a common hypertext link. When you click the link, a dialog box
displays the text, followed by an OK button for you to click to return to the page.

Listing 55.4 An Event Handler in an HREF

Click here for a message!

There is a lot to notice in this example:

■ No URL is found in the HREF attribute. Why? You probably don’t want the browser to go
to another page while the user is viewing the pop-up window. When the user clicks the
link, not only is the onClick activated, but the browser attempts to go to the location
specified in the HREF. In this case, you are using this link for its onClick event handler
and not its hypertext reference. An alternative would be to type:

Click here

■ onClick has mixed case. Although HTML is not case sensitive, JavaScript is. This is
important to remember when you are creating functions and variables.

■ alert(...) is the standard function for bringing up an alert dialog box on the screen.
Notice how this function, and all JavaScript functions, behave similarly to Java in that
they use parentheses to contain their arguments. In this case, the argument is the string
‘Wow! It Works!’. Notice also that the quotation marks of that string are single. When
you need to use quotation marks within quotation marks, you nest them by alternating
the single and double quotation marks. If you need more than two “levels” of quotations
in a given element, you should probably think about an alternate way to eliminate that
need.

■ The JavaScript code in quotation marks—”alert(‘Wow! It Works!’);”—ends in a
semicolon. You use the semicolon to end a statement in JavaScript, which is similar to

65 1529-5 CH55 9/24/98, 9:23 AM1305

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1306 Chapter 55 Starting with JavaScript

Perl and other languages (including Java). Unlike Perl, the use of the semicolon is
optional.

Now that you have seen the two main ways you can implement JavaScript in your HTML code
(either in scripts contained by the <SCRIPT>...</SCRIPT> tags or directly embedded in HTML
form elements and links), let’s look at the building blocks of JavaScript code.

Variables
To create a variable in JavaScript, you simply declare it using the keyword var. You can initial-
ize this variable with some value when you declare it, but it is not required. Listing 55.5 shows
some examples of variables created in JavaScript.

Listing 55.5 Variable Declaration in JavaScript

var foo = 23
var a, b, c = “letter”
var aNumber = “99”
var isItTrue = false
var flag1 = false , bingo = null , star

JavaScript is relatively unique in that you cannot explicitly set a type to a variable, such as cast-
ing a string to an integer, like you would in Java. Types are found in JavaScript, but they are set
implicitly. This means that the type a variable has is defined by the context in which it is either
defined or used.

When you initialize a variable with a string value (as variables a, b, and c in Listing 55.5), it is a
string type; if you initialize it with a number, it becomes an integer type value (as in variable foo
in Listing 55.5). The following places a number of variables within a single statement:

bax + bay + baz

This code attempts to treat all of the variables as having the same type as the first variable. If
bax was a string and bay and baz were originally integers, JavaScript would treat bar and baz as
if they were strings. The implicit nature of JavaScript variables allows you to reuse variables
easily without worrying about their type.

If you set some variable day to “Tuesday” and later in the script decide to assign 46 to day, the
JavaScript interpreter (inside the browser) will not complain. Because of this, however, you
should be careful when naming your variables so that they do not overlap in scope and cause
strange errors in your scripts. You will find it extremely helpful to experiment with declaring
and setting variables from the interpreter window I talked about earlier. (In Netscape, just type
javascript: in the open URL window.)

Table 55.2 contains a list of the possible implicit data types in JavaScript, along with their pos-
sible values:

65 1529-5 CH55 9/24/98, 9:23 AM1306

1307

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Literals

Table 55.2 Data Types in JavaScript

Data Type Values

Number 100, -99.99, 0.000001

Boolean true, false

Strings “this is a string”, “This is another”, “5555”

Null A special keyword with a null value

Variable Names
JavaScript follows the same naming rules for creating variable names as Java. Your variable
must start with a letter or an underscore and can contain subsequent numbers, letters, or un-
derscores. Listing 55.6 gives you a sampling of possible variable names in JavaScript. Remem-
ber to keep your names unique; also remember that, in JavaScript, names are case sensitive.

Listing 55.6 Variable Name Examples

Too_hot
cold999
_100JustRight
This_is_a_long_variable_name_but_it_is_valid000

Variable Scope
Earlier, I mentioned that you want to keep your variable names distinct from one another to
prevent overwriting values; but what if you really want to use the same name? This is where
variable scope comes into play. Global variables are accessible by your entire script and all of
its functions. Local variables are accessible only to the function from which they were created.
Those variables are destroyed when that function is complete. To define a variable as a global
variable, simply assign a value to it (such as “foo = 95”).

To define a local variable inside a function, use the var keyword.

Literals
You can think of a literal as the value on the right side of an equality expression. It is the con-
crete way to express values in JavaScript and is very similar to Java’s method. Here is a list of
literals and their possible values:

■ Integers:

Decimal expression as a series of digits not starting with a zero:

(77, 56565565)

65 1529-5 CH55 9/24/98, 9:23 AM1307

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1308 Chapter 55 Starting with JavaScript

Octal expression as a series of digits starting with a zero:

08988

Hexidecimal expression as 0X followed by any digits.

■ Floating point:

Expressed as a series of zero or more digits followed by a period (.) and one or more
digits.

Expressed in scientific notation as a series of digits followed by E or e and some digits
for the exponent (such as -4.666E30).

■ Boolean. True or false.

■ String. Zero or more characters enclosed by single or double quotation marks.

Strings can contain special characters that affect how they are eventually displayed:

■ \b—Backspace

■ \f—Linefeed

■ \n—New line character

■ \r—Carriage return

■ \t—Tab character

■ \”—An escaped quotation mark—a way to display double quotation marks inside a
string

■ \’—Another escaped quotation mark for the single quote

Expressions and Operators
Having values is not enough for a language to be useful. You must have some way to manipu-
late these values meaningfully. JavaScript uses expressions to manipulate numbers, strings,
and so on. An expression is a set of literals, operators, subexpressions, and variables that evalu-
ate to value. You can use expressions to assign a value to a variable, as in:

today = “Friday”

Or an expression can simply evaluate to a value, as in :

45 - 66

JavaScript uses arithmetical expressions that evaluate to some number, string expressions that
evaluate to another string, and logical expressions that evaluate to true or false. Operators
behave very similarly to their cousins in Java. Table 55.3 summarizes the various operators that
are available in JavaScript.

65 1529-5 CH55 9/24/98, 9:23 AM1308

1309

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Expressions and Operators

Table 55.3 JavaScript Operators

Operator Explanation

Computational

+ Numerical addition and string concatenation

- Numerical subtraction and unary negation

* Multiplication

/ Division

% Modulus (remainder)

++ Increment (pre and post)

- - Decrement (pre and post)

Logical

==, !== Equality and inequality (not assignment)

< Less than

<= Less than or equal to

> Greater than

=> Greater than or equal to

! Logical negation (NOT)

&& Logical AND

|| Logical OR

? Trinary conditional selection

, Logical concatenation

Bitwise

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR (XOR)
~ Bitwise NOT

<< Left shift

>> Right shift

>>> Unsigned right shift

65 1529-5 CH55 9/24/98, 9:23 AM1309

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1310 Chapter 55 Starting with JavaScript

Assignment

= Assignment

X= Aggregate assignment (where X can be +, -, *,/,%, &, ^, <<, >>, |,
>>>,~) Example: (A += B is equivalent to A = A + B)

The operator precedence is identical to Java’s. JavaScript uses lazy evaluation going from left to
right. If, while evaluating an expression, it encounters a situation where the expression must be
false, it does not evaluate the rest of the expression and returns false. If you want to group
expressions to be evaluated first, use the parentheses. For example:

 (56 * 99) + (99 - (44 / 5))

A handy expression is the conditional expression. Very underused, this expression allows you
to evaluate some condition quickly and return one of two values. Its syntax is:

 (condition) ? value1 : value2

If the condition is true, then the first value is returned; otherwise, the second is returned. For
example:

isReal = (Imagination <= Reality) true : false

Control Statements
Now that you have assignment and mathematical operators, you can assign values to variables,
perform simple math expressions, and so on. But you still don’t have the ability to write any
kind of meaningful JavaScript code. You need to have some way of controlling the flow of state-
ment evaluation, making decisions based on values, ignoring some statements, and looping
through a series of statements until some condition is met.

This is where control statements come into play. JavaScript groups these statements into condi-
tional (if...else), loop (for, while, break, continue), object manipulation (for...in, new,
this, with), and comments (//, /*...*/). Examples of each of these statements are explored
in this section. (I come back to the object manipulation statements later, after you learn about
JavaScript’s object model.)

JavaScript uses brackets to enclose a series of statements into a complete chunk of code. When
JavaScript encounters these chunks, all of the statements within are evaluated (unless, of
course, JavaScript encounters another branch beforehand, as you learn soon).

Conditional Statements
These are statements that allow your script to make decisions based on criteria you select.

if...else When you want to execute some block of code based on some other condition, you
can use the if statement. Its syntax is:

Table 55.3 Continued

Operator Explanation

65 1529-5 CH55 9/24/98, 9:23 AM1310

1311

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Control Statements

if (someExpressionIsTrue) {
zero or more statements...
}

If you want to either execute some block of code or another, you can use the if...else state-
ment, which forces the execution of one block or the other. Its syntax is:

if (someExpressionIsTrue) {
some statements...
}
else {
some other statements...
}

If you want to execute just one line of code, you can omit the brackets. This is not
recommended, however, because your code will not be as easy to follow later. ■

Listing 55.7 shows how you might implement an if...else statement. It also shows you how
you can chain together multiple else and if statements.

Listing 55.7 if...else Statement Chaining

if...else statement
if (jobs < 100) && (money <= budget) {
poor = true;
free = (99 - x) / jobs ;
}
else if (jobs != overTime) {
workers = “Strike”
}
else {
poor = false;
workers = “Happy”;
}

In a moment, I will talk about functions and how they are constructed in JavaScript (refer to the
“Functions in JavaScript” section later in this chapter). For now, let’s start with a working defi-
nition of a function as some set of instructions that performs an action or returns a value. Be-
cause a function can return a value, it can return a Boolean true or false. Furthermore, you
can use a function call in an if statement as the test. Listing 55.8 shows how you might imple-
ment this.

Listing 55.8 Using a Function as a Conditional

if (pageIsLoaded) {
alert (“All Done!”);
done = true;
}
else {
done = false; }

N O T E

65 1529-5 CH55 9/24/98, 9:23 AM1311

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1312 Chapter 55 Starting with JavaScript

Loop Statements
Sometimes you want to execute a series of statements over and over again until some condition
is met. An example of this is to play a sound in the background of your page until the user
clicks Stop! or to repeatedly divide some number by 6 until it is less than 50. This action is
performed in JavaScript by the for and the while structures.

for A for loop repeats some series of statements until some condition is met. The for loop
structure is virtually identical to the structure in Java. Its syntax is:

for ([some initial expression] ; [condition] ; [increment expression]) {
some expressions...
}

You build a for loop by setting up three expressions that follow a more or less standard format.
The initial expression can be of any degree of complexity, but it usually is simply an initial
assignment of value to the counter variable. In the second expression, the condition is ex-
ecuted once for each pass through the expressions. If the expression evaluates to true, then
the block of expressions is executed. If the expression evaluates to false, the for loop is
completed and the interpreter jumps down the next expression after the loop. The increment
expression is evaluated after each pass through the loop and is usually where the “counter”
variable is incremented or decremented. Essentially, this means you initialize some counter,
test some condition, execute the enclosed statements if true, increment the counter, test the
condition again, and so on.

Although not required, you should use the increment expression to change some value that will
eventually render the condition expression false. Otherwise, your for loop will run forever (or until you
get tired of waiting and reboot your computer).

Listing 55.9 gives you a simple example of a for loop in JavaScript.

Listing 55.9 An Example of a for Loop

<script language=”JavaScript”>
var myMessage = “Here we go again!
”;
var numberOfRepeats = 100;
for (i=0; i < numberOfRepeats ; i++) {
document.write(myMessage);
}
</script>

while The while loop is a simpler version of the for loop in that it tests some expression
each time around and escapes if that expression is false. You will probably use while loops
when the variable you are testing for is also present inside the statement block that you are
executing during each loop. Note that the condition is tested first before the statements are
executed, and that the condition is tested only once for each loop. Here is the standard syntax
for a while loop:

T I P

65 1529-5 CH55 9/24/98, 9:23 AM1312

1313

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Control Statements

while (somecondition) {
some statements;
}

Listing 55.10 repeatedly displays a series of lines that state the current value of tt until tt is
greater than or equal to xx, which, in this case, is 55.

Listing 55.10 An Example of a while Loop

<script language=”JavaScript”>
tt = 0
xx = 55
while (tt <= 55) {
tt += 1;
document.write (“The value of tt is “ + tt +”.
 “);
}
</script>

break and continue
Sometimes you might want to have a finer degree of control over your block of statements
within a for or while loop. Occasionally, you might want to arbitrarily jump out of a loop and
continue down to the next statement. Or, you might want to stop the execution of statements in
the current loop and start a new loop. You can achieve both of these options by using break
and continue. break causes the for or while loop to terminate prematurely and the execution
to jump down to the next line after the loop. continue stops the current loop and begins a new
one.

It is easy to get these statements confused, and their purpose may become unclear over time. An easy
way to remember how these work is to think of break as breaking the loop, which renders the loop
inoperable. Then, the program continues down. You can think of continue as a way of skipping
whatever is below it and starting again. Listings 55.11 and 55.12 mirror Listings 55.9 and 55.10 and
illustrate these control statements.

Listing 55.11 Breaking Out of a for Loop

<script language=”JavaScript”>
var myMessage = “Here we go again!
”;
var numberOfRepeats = 100;
for (i=0; i < numberOfRepeats ; i++) {
document.write(myMessage);
if (i <0) {
document.write(“Invalid Number!”);
break
}
}
</script>

T I P

65 1529-5 CH55 9/24/98, 9:23 AM1313

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1314 Chapter 55 Starting with JavaScript

Listing 55.12 Continuing a while Loop

<script language=”JavaScript”>

var tt = 0;
xx = 55
while (tt <= 55) {
tt += 1;
if (tt < 0) {
continue;
}
document.write (“The value of tt is “ + tt +”.
 “);
}
</script>

Comments
Every language needs to have some way to document exactly what is going on, especially if
you ever intend to reuse your code. It may seem obvious to you when you are deep in the zone
of programming your cool new script. But a few days later, you may find yourself wondering,
“What was I thinking?” It’s always a good idea to comment your code. I talk about comments
here, in control statements, essentially because they are a way of telling the JavaScript inter-
preter to skip over some piece of code or comments, no matter what.

Comments are similar to a for loop that is initially and always false. JavaScript supports two
kinds of comments:

■ Line-by-line version (//)

■ Multiple-line version (/* ... */)

You can place anything you want in either of these comments, except for one thing. Do you
remember when I talked about using HTML comments to keep the older browsers from erro-
neously displaying JavaScript code? In other words, you cannot use --> in your comments
unless you are really intending the script to end.

Notice also that you must place the single-line comment in front of the HTML end comment
notation. This is because the JavaScript interpreter does not recognize --> as anything mean-
ingful and gives you an error if you forget to use // before it.

Why, then, doesn’t the initial line (something such as “Hide me from old browsers”) after the
beginning HTML comment give you a JavaScript error? The reason is that the interpreter
ignores everything else on the line containing <--. This is handy for you, because you can use
this line to describe your script, and so forth.

Listing 55.13 shows both ways of displaying comments.

65 1529-5 CH55 9/24/98, 9:23 AM1314

1315

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Functions in JavaScript

Listing 55.13 An Example of Displaying Comments

<html>
<script language = “JavaScript”>
<!-- Hide this code from old browsers
one = 1
two = 2
// three = 99 everything on this line is ignored....
four = 4 ;
five = 5 ; /* everything on this line, and all
subsequent lines will be ignored, until
we get to the closing comment */
six = 6;
// remember to comment out the last line if you are using the HTML comments also
-->
//You must not have JavaScript if you see this line...
</script>
</html>

Functions in JavaScript
You have now reached one of the most interesting parts of JavaScript. The heart of most scripts
that you build will consist of functions. You can think of a function as a named series of state-
ments that can accept other variables or statements as arguments. Remember how the if
statement was constructed:

 if (someTest) {
zero or more statements
}
You build functions in a very similar way:
function someFunction (arguments) {
some statements
return someValue;
}

Let’s discuss functions in greater detail. As I mentioned earlier in this chapter, functions are
blocks of code that you can reuse over and over again just by calling the blocks by name and
optionally passing some arguments to them. Functions form the heart of most of the scripts
you will build and are almost as fundamental to JavaScript as classes are to Java.

You will see that JavaScript comes with many built-in functions for you to use and allows you to
create your own as well. Suppose, for instance, that you want to use JavaScript to create a small
HTML page. You can use functions to pull out each of the subtasks you want to do, which
makes your code much easier to modify, read, and reuse. Let’s look at Listing 55.14.

65 1529-5 CH55 9/24/98, 9:23 AM1315

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1316 Chapter 55 Starting with JavaScript

Listing 55.14 A Simple Example Using Functions

<html>
<head>
<script language=”javaScript”>
<!-- remember me?
var age = 0;
function myHeader (age) {
document.write(“<TITLE>The “ + age + “Year Old Page</TITLE>”);
}
function myBody (date, color) {
document.write (“ <body bgcolor=” + color + “ >”);
document.write (“<h3>Welcome to My Homepage!</h3>”);
document.write (“The date is “ + date + “
”);
}
function manyLinks (index) {
if (index == 1) {
return “http://www.yahoo.com”;
}
else if (index == 2){
return “http://home.netscape.com”;
}
else return “http://www.idsoftware.com” ;
}
// return the title
myHeader(33);
// done for the moment! -->
</script>
</head>
<script language=JavaScript>
<!--
myBody(“July 22, 1996”, “#ffffff”);
document.write(“Here’s a link!”);
// -->
</script>

In this example, each function encapsulates some HTML code. You can see how you pass
information into each function by means of the arguments. JavaScript passes values by refer-
ence, meaning that when you pass a value to a function, you are really just passing a value
pointer to the function. (A value pointer is just an address, similar to how a house address on
an envelope gives information about how to find the house.) If the function modifies that value,
the value is changed for the entire script, not just the scope of the function. The result of the
code is shown in Figure 55.1.

Also, notice the behavior of return. You can optionally return an explicit value back to the state-
ment that called the function (as in return http://...). The value returned can be of any valid
JavaScript type. If no value is explicitly returned, JavaScript returns true upon successful
completion of the function.

Notice the difference between defining the function and calling the function. You define (or
store into memory) the function by using the function keyword. None of the statements inside
the function are executed until the function is called by using the function name elsewhere in
the script.

65 1529-5 CH55 9/24/98, 9:23 AM1316

1317

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Arrays

CAUTION

You must be careful how you write your scripts when you use functions. Because JavaScript reads scripts
from the top down and left to right, you cannot call functions that have not yet been read in by the
interpreter.

Suppose, for example, you have two functions: myFirst() and mySecond(). If myFirst() appears
above mySecond(), then myFirst() cannot immediately use the mySecond() function. Because of this
linear interpretation and loading of code, you should instead load all of your functions first (usually in the
<HEAD> area) and then call the functions afterwards. It is good practice to place your functions in the
<HEAD> element, because this ensures that all of the code will be loaded into memory before your script
begins to execute commands.

Remember that you don’t necessarily need to pass any information to a function for it to be useful. You
might create a function that writes to the page all of the many lines of HTML that make up the headers of
your HTML pages. After you have written the function once, all you have to do is call it as often as you need—
saving you many keystrokes of typing later.

Arrays
While I am on the subject of functions, it is convenient to introduce another extremely useful
construct in JavaScript—the array. An array is simply an ordered set of values that can be
accessed by a common name and an index (a number representing at what place in the series
that value is located). Before Netscape 3.0, you were forced to create arrays yourself by using a
function you will see quite often in scripts on the Internet. Listing 55.15 shows how to create a
function that builds an array for you.

FIG. 55.1
Output from Listing
55.14.

65 1529-5 CH55 9/24/98, 9:23 AM1317

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1318 Chapter 55 Starting with JavaScript

Listing 55.15 An Array Builder

function MakeArray(n) {
this.length = n;
for (var i = 1; i <= n; i++;) {
this[i] = “ “ }
return this
}
}

You may notice a new keyword here called this. this is a special keyword that refers to the
current object. I talk about this and another keyword you haven’t encountered, new, later in this
section. To create a new array, you simply assign the results of MakeArray to some name, as
shown here:

Letterman = new MakeArray(10);

The new keyword is a way of telling JavaScript that the function to the right of it is an object
constructor, and JavaScript treats it accordingly. To access values in your new array or set any
of the values, use this syntax:

Letterman[1] = “A list”
Letterman[3] = “Not so popular”

In Netscape 3.0, arrays are built in, so all you need to do is use Array instead of your MakeArray
function. In the previous case, this would be:

Letterman = new Array();

You can either set the size of the array when you initialize it or assign some null value to the
highest element in the array.

Built-In Functions
There are a few built-in functions in JavaScript. Table 55.4 lists them with a short description of
the function of each.

Table 55.4 Built-In Functions

Function Description

escape(str) Converts strings to HTML special characters (such as " "
to %20).

unescape(str) Inverse of escape(). %20 to " ".

eval (str) Evaluates a string str as a JavaScript expression.

parseFloat (str, radix) Converts a string to a floating-point number (if possible).

parseInt (str) Converts a string to an integer value (if possible).

65 1529-5 CH55 9/24/98, 9:23 AM1318

1319

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Objects

Now that I have touched on functions that group together statements, let’s look at the equiva-
lent structure for data in general—the all-important object.

Objects
Because you surely have read some part of the rest of this book (unless you decided to skip to
this part first!), you have come face to face with Java objects. Basically, objects are a way of
organizing data and the manipulations you might associate with that data. In Java, you have
classes and methods, but in JavaScript, you have objects and functions. As I mentioned before,
JavaScript comes preloaded with many very useful objects and functions. This section familiar-
izes you with Netscape’s object model and summarizes each of the many built-in objects.

Dot Notation
JavaScript borrows from Java the system of accessing properties and methods (JavaScript
freely mixes the terms function and method) by the use of the dot notation.

Basically, you access information by first naming the top-level object that contains it, as well as
all subsequent objects (or methods) that focus in on that information. Suppose you have an
object called car that contains an object called door. Suppose door contains another object
called doorhandle that uses a method called openDoor(). You could use this method at any
time by using this syntax:

car.door.doorhandle.openDoor()

Let’s say also that the door object has an attribute called color, and that color has a value of
“Red”. You could assign that value to another variable by using a notation similar to this:

myColor = car.door.color.value ;

Methods and Properties
JavaScript objects contain data in the forms of properties and methods. Properties are basically
named values that are associated with a given object. Properties are accessed through that
object. In the previous example of the car, door would have the property of color.

Properties are handy and intuitive ways of storing information about an object. Methods (or
functions) tend to be blocks of code that perform some operations on the object’s properties.
Or, methods perhaps store their results in one of the properties. The openDoor() function is a
method of the object doorhandle. When I discuss the objects that are built in to Navigator, I
cover their associated methods and properties as well.

The Window Object
The Window object is the top-level object in JavaScript. It contains all other objects except the
navigator object, which is not tied to any particular window. Because most of your work is done
inside a Navigator window, this is a useful object that you should become familiar with.

65 1529-5 CH55 9/24/98, 9:23 AM1319

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1320 Chapter 55 Starting with JavaScript

The Window object contains methods to open and close windows, bring up an alert dialog box
(where you just click OK), bring up a confirm dialog box (you click Yes or No), and bring up a
prompt dialog box (where you type in some information). The Window object also contains
properties for all frames that window contains and all child windows Window creates. It also
allows you to change the status line at the bottom of the window (where you see those ticker-
tape messages on many pages).

Table 55.5 lists all of the properties and methods of the Window object.

Table 55.5 Properties and Methods of the Window Object

Properties Description

defaultStatus The default message in the status bar.

document The current document contained in the window.

frames An array that describes all of the frames (if any) in the window.

frame A frame object.

length Reflects the number of frames (if any) in the window.

name The name of the window.

parent Synonymous with the name of the window. Contains the frameset tags.

self Synonymous with the name of the window and refers to the current
window.

status Value appears in the window’s status bar. Usually only lasts a moment
before overwritten by some other event.

top Synonymous with the name of the window and represents the topmost
window.

window Synonymous with the name of the window and refers to the current
window.

location A string specifying the URL of the current document.

Methods Description

alert Brings up an alert dialog box.

close Closes the window.

confirm Brings up a dialog box with Yes or No buttons and a user-specified
message.

open Opens a new window.

prompt Brings up a window with user-specified text and an input box that
allows the user to type in information.

setTimeout Sets a time in milliseconds for an event to occur.

clearTimeout Resets value set by setTimeout.

65 1529-5 CH55 9/24/98, 9:23 AM1320

1321

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

The Document Object
The Document object is extremely useful because it contains so much information about the
current document, and it can create HTML on-the-fly with its write and writeln methods.
Table 55.6 lists the properties and methods of the document object, as well as short descrip-
tions of their purpose.

Table 55.6 Properties and Methods of the Document Object

Properties Description

alinkColor Reflects the ALINK attribute (in the <body> tag).

anchors An array listing all of the HTML anchors in the document (<a name>).

anchor An anchor object.

bgColor Reflects the value of the BGCOLOR attribute.

cookie Reflects the value of a Netscape cookie.

fgColor The value of the TEXT attribute (in the <body> tag).

forms An array listing all the forms in the document.

form A form object.

history An object containing the current browser history (links visited,
number of links visited, and link URLs).

lastModified The date the document was last modified.

linkColor Reflects the LINK attribute of the <body> tag.

links An array of all HTML links in the document (<a href>).

link A link object.

location The URL of the document.

referrer The URL of the document that called the current document.

title Reflects the title of the document.

vlinkColor Reflects the color listed in the VLINK attribute.

Methods Description

clear Clears the window of all content.

close After an open causes the string buffer to be written to the screen.

open Begins a string to be written to the screen. Needs a close to actually
force the writing.

write Writes some expression to the current window.

writeln Same as write but adds a newline character at the end.

Objects

65 1529-5 CH55 9/24/98, 9:23 AM1321

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1322 Chapter 55 Starting with JavaScript

The Form Object
This object is created every time JavaScript encounters a <form>...</form> in your HTML
documents. It contains all of the information stored in your form and can be used to submit
information to a function or back to the server. Table 55.7 describes the properties and meth-
ods of the Form object.

Table 55.7 Properties and Methods of the Form Object

Properties Description

action Reflects the HTML ACTION attribute of the <form> tag.

button A button object (<input type=button>).

checkbox A checkbox object (<input type= checkbox>).

elements An array listing all elements in a form.

encoding The value of the ENCTYPE attribute (for HTML uploads in Netscape).

hidden A hidden object (<input type=hidden>).

length The number of elements in the form.

method The METHOD attribute of <form>.

password A password object (<input type=password>).

radio A radio object (<input type=radio>).

reset A reset button object.

select A select object (<select>...<select>).

submit A submit button object.

target The TARGET attribute of <form>.

text A text object (<input type=text>).

textarea A textarea object (<textarea>...</textarea>).

Method Description

submit Submits the form to the location in the ACTION attribute.

The Navigator Object
The Navigator object is distinct from the window object in that it contains information about the
browser that persists across any given window. In Netscape 3.0, JavaScript adds two new prop-
erties—an object called mimeTypes, which lists all of the mimeTypes the browser can handle,
and plug-ins, which lists all of the registered plug-ins the browser can use. Table 55.8 summa-
rizes the properties of the Navigator object (it has no associated methods).

65 1529-5 CH55 9/24/98, 9:23 AM1322

1323

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Table 55.8 Navigator Object Properties

Properties Description

appCodeName The code name of the browser, such as “Mozilla.”

appName The name of the browser, such as “Netscape.”

appVersion Contains the version information of the browser, such as “2.0 (Win95,
I).”

userAgent Contains the user-agent header that the browser sends to the server to
identify itself, such as “Mozilla/2.0 (Win95, I).”

mimeTypes An array reflecting all possible MIME types the browser can either
handle itself or pass on to a plug-in or helper application
(Netscape 3.0).

plug-ins An array of registered plug-ins that the browser currently has loaded.

The String Object
Other objects are built in to JavaScript that are not specific to either the browser or the window.
The first of these is the String object. This object is very useful because you can use its meth-
ods to modify and add HTML modifications without changing the string itself. One thing to
notice about this object is that you can string together any number of its methods to create
multilayers of HTML encoding. For example:

 “Hello!”.bold().blink()

would return:

<blink>Hello!</blink>

Table 55.9 describes this object.

Table 55.9 Properties and Methods of the String Object

Property Description

length The number of characters in the string.

Methods Description

anchor Converts string to an HTML anchor.

big Encloses string in <big>...</big>.

blink Encloses string in <blink>...</blink>.

bold Encloses string in

charAt Returns the character at some index value. Index reads from left to
right. If char not found, it returns a -1.

continues

Objects

65 1529-5 CH55 9/24/98, 9:23 AM1323

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1324 Chapter 55 Starting with JavaScript

fixed Encloses string in <tt>...</tt>.

fontcolor Encloses string in

indexOf Looks for the first instance of some string and returns the index of the
first character in the target string, or gives a -1 if not found.

italics Encloses string in <i>...</i>.

lastIndexOf Same as indexOf, only begins searching from the right to find the last
instance of the search string, or -1 if not found.

link Converts string into a hyperlink.

small Encloses string in <small>...</small>.

strike Encloses string in <strike>...</strike>.

sub Encloses string in _{...}.

substring Given a start and end index, returns the string contained by those
indices.

sup Encloses string in ^{...}.

toLowerCase All uppercase characters are converted to lowercase (UpPeRcAsE
becomes uppercase).

toUpperCase All lowercase characters are converted to uppercase.

The Math Object
The Math object is both a set of methods that allows you to perform higher-level mathematical
operations on your numerical data and a set of properties that contain some common math-
ematical constants. You can use the Math object anywhere in your scripts, as long as you refer-
ence the methods like this:

Math.PI

Or you can use the with keyword to contain a series of math statements:

with (Math) {
foo = PI
bar = sin(foo)
baz = tan(bar/foo)
}

Table 55.10 gives you a list of the Math properties and methods.

Table 55.9 Continued

Methods Description

65 1529-5 CH55 9/24/98, 9:23 AM1324

1325

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

Table 55.10 Math Properties and Methods

Properties Methods

E abs

LOG2E acos

SQRT1_2 asin

LN2 atan

LOG10E ceil

SQRT2 cos

LN10 exp

PI floor

log

max

min

pow

random

round

sin

sqrt

tan

The Date Object
The final object I examine here is the Date object. This object allows you to grab information
about the client’s current time, year, month, date, and more. In addition, you can quickly create
new date objects that can simplify keeping track of dates or time intervals between events. You
can even parse a text string for date information that can be used elsewhere as a Date object.
This object is most commonly used to create dynamic clocks, change page attributes (such as
the background color) based on the time of day, and so on. Table 55.11 gives you a view of the
Date object’s methods (it has no properties).

Objects

65 1529-5 CH55 9/24/98, 9:23 AM1325

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1326 Chapter 55 Starting with JavaScript

Table 55.11 Methods of the Date Object

Method Description

getDate Returns the current date.

getDay Returns the day of the week from a date object.

getHours Returns the current number of hours since midnight.

getMinutes Returns the current number of minutes past the hour.

getMonth Returns the number of months since January.

getSeconds Returns the number of seconds past the minute.

getTime Returns the current time from the specified date object.

getTimeZoneOffset Returns the offset in minutes for the current location (either
more or less than GMT, or Greenwich Mean Time).

getYear Returns the year from the Date object.

parse Returns the number of milliseconds since January 1, 1970
00:00:00 for the current locale from the Date object.

setDate Argument used to set a Date object.

setHours Argument sets the hours of the Date.

setMinutes Argument sets the minutes of the Date.

setMonth Argument sets the month value.

setSeconds Argument sets the seconds value.

setTime Argument sets the time value of the specified Date object.

setYear Argument sets the year value for the specified Date object.

toGMTString Converts a date to a string using the standard GMT conventions
(for example, Wed, 24 Jul 12:49:08 GMT).

toLocaleString Converts a date to a string but is aware of the locale’s convention
instead of GMT. (7/24/96 10:50:02).

UTC Opposite of toGMTString. Converts a string into the number of
milliseconds since the epoch.).

A Final Example
As a final example of what JavaScript can do, Listing 55.16 is the source code for a Web page
that displays the current time every second. You can see all of the elements that have been
discussed previously in this chapter somewhere within this example. Essentially, this program
gets a Date object every second; parses that object for the current minutes, seconds, and

65 1529-5 CH55 9/24/98, 9:23 AM1326

1327

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

hours; converts those values to a string; and then sets a form input field to that value. Using a
form in this way is quite common in JavaScript. Instead of being a way to input data, the text
input field becomes a “screen” to display the time.

Listing 55.16 A JavaScript Clock

<HTML>
<HEAD>
<TITLE>JavaScript Clock</TITLE>
<script Language=”JavaScript”>
<!-- Hide me from old browsers - hopefully
// Netscapes Clock - Start
// this code was taken from Netscapes JavaScript documentation at
// www.netscape.com on Jan.25.96
var timerID = null;
var timerRunning = false;
function stopclock (){
if(timerRunning)
clearTimeout(timerID);
timerRunning = false;
}
function startclock () {
// Make sure the clock is stopped
stopclock();
showtime();
}
function showtime () {
var now = new Date();
var hours = now.getHours();
var minutes = now.getMinutes();
var seconds = now.getSeconds()
var timeValue = “” + ((hours >12) ? hours -12 :hours)
timeValue += ((minutes < 10) ? “:0” : “:”) + minutes
timeValue += ((seconds < 10) ? “:0” : “:”) + seconds
timeValue += (hours >= 12) ? “ P.M.” : “ A.M.”
document.clock.face.value = timeValue;
// you could replace the above with this
// and have a clock on the status bar:
// window.status = timeValue;
timerID = setTimeout(“showtime()”,1000);
timerRunning = true;
}
// Netscapes Clock - Stop
// end -->
</script>
</HEAD>
<BODY bgcolor=”#ffffff” text=”#000000" link=”#0000ff”
alink=”#008000" vlink=”800080" onLoad=”startclock()”>
<!-- main -->
<table >
<tr>
<td colspan=3>
<form name=”clock” onSubmit=”0">

continues

A Final Example

65 1529-5 CH55 9/24/98, 9:23 AM1327

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1328 Chapter 55 Starting with JavaScript

<div align=right>
<input type=”text” name=”face” size=12 value=””>
</div>
<center>Welcome to My HomePage!</center><p>
</table>
</BODY>
</HTML>

Let’s go through this script and see how it works to create the changing clock you will see in
your browser.

After the initial HTML code starting the page, the browser sees the <SCRIPT> tag and begins to
pass the code into the JavaScript interpreter. The HTML comment <-- hides the JavaScript
code from old browsers.

The next three lines are comments that JavaScript ignores.

The next two lines initialize timerID to null (a special value that acts as a placeholder) and
timerRunning to false (a Boolean value). The variable timerID is used in the setTimeOut and
clearTimeOut function. It just acts as a name to keep track of that specific countdown.

The next five lines define a function called stopclock which tests if the timerRunning value is
true. If so, it calls clearTimeout which frees up the countdown timer called timerID.

The next five lines (after a space) define a function called startclock. All startclock does is
call stopclock and then the function showtime. It’s important to stop the clock before calling
showtime, because showtime resets the countdown timer timerID.

The next 16 lines define the heart of the script, called showtime. This function creates a new
Date object called now and gets the hours, minutes, and seconds values from that object and
assigns them to the variables hour, minutes, and seconds, respectively. By creating this new
object every time showtime is called, the script is getting the most recent time possible, which
is why the clock changes every second.

After the hours, minutes, and seconds are retrieved from the Date object, a new variable
timeValue is created, which is a String object, and it assigns the corrected value of hours to
this string. (The (hours >12) ? hours -12 :hours expression converts the hours from 24-
hour time to 12-hour time.) The next timeValue assignments append the values of minutes and
seconds to the timeValue string—correcting for tens of minutes.

The line

document.clock.face.value = timeValue

places the resulting string into the form text input field that is defined later. By assigning this
value to that field, it causes that value to appear in that box on the page.

The next line in the function showtime (following the three comments) starts a countdown of
one second and calls it timerID. After one second, the function showtime is called again—
essentially, this is a way of calling a this function over and over again every second.

Listing 55.16 Continued

65 1529-5 CH55 9/24/98, 9:23 AM1328

1329

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

55

IX
Part

Ch

The last line in the showtime function sets the timerRunning value to the Boolean true which
would affect the stopclock function (breaking the one-second loop which timerID had been
causing). To test this, run this script and then in the URL input window (at the top of the
browser window), type:

javascript:stopclock()

You see that the clock stops. Typing

javascript:startclock()

in the URL gets the clock running again.

After the function showtime, the rest of the lines close out the script and create via HTML a
table that contains a form called clock with one input field called face.

Notice that, in the <BODY> tag the onLoad=”startclock()” statement, after the entire page is
loaded into the window, the onLoad event handler is triggered, and the startclock function is
called, which begins the script. ●

A Final Example

65 1529-5 CH55 9/24/98, 9:23 AM1329

P2/VB/mpprp12 SE Using Java 1.2, 4E #1529-5 8.8.98 ayanna CH55 LP#3

1330 Chapter 55 Starting with JavaScript

65 1529-5 CH55 9/24/98, 9:23 AM1330

P2/VB/swg#4 SE Using Java 1.2 #1529-5 7.15.98 Ayanna PTX LP#1

XP A R T

Java Resources

56 Java Resources 1333

P2/VB/swg#4 SE Using Java 1.2 #1529-5 7.15.98 Ayanna PTX LP#1

1333

P2/Vb mp12 java 1.2 #1529-5 8.10.98 ayanna CH56 LP#4

56

X
Part

Ch

C H A P T E R

Java Resources

Web Sites 1334

Newsgroups 1337

Mailing Lists 1338

Support for Porting Issues 1338

56

In this chapter

67 1529-5 CH56 9/24/98, 9:49 AM1333

P2/Vb mp12 java 1.2 #1529-5 8.10.98 ayanna CH56 LP#4

1334 Chapter 56 Java Resources

Web Sites
Keeping on top of resources for something that changes as rapidly as the Java world is a daunt-
ing task, to say the least. As a result, any listing of Java resources is going to be obsolete before
it’s completed.

Rather than providing a comprehensive listing of every site that mentions Java (Digital’s
AltaVista Web search engine returns more than hundreds of thousands of hits on the word
“java”), this list is intended to provide information on a few of the ever-expanding number of
Java Web sites as well as data on good places to look for more Web sites. So, these sites are by
no means the totality of what’s out there—this is a starting point for you to begin your Java
reference bookmark lists. These sites are in no particular order and have no other qualification
beyond the fact that I think that Java programmers of all levels will find them useful in
some way.

Because one of Java’s main strengths lies in its capability to embed applets into Web pages, it’s
natural that the Web is an excellent source of information for Java development. These Web
sites provide a great deal of information, from API calls to the latest news in the world of Java—
an invaluable resource for any level of Java programmer.

Earthweb’s developer.com
http://www.gamelan.com/

Originally known as Gamelan (pronounced “gamma-lahn”), this is the granddaddy of all Java
resource sites offering a huge listing of just about anything available on the Web for Java. From
its extensive applet collection to its listing of other outside Java resources, Gamelan is a great
place to start browsing to see what other Java programmers are up to.

Focus on Java
http://java.miningco.com

Focus on Java’s Java Guide in which John Zukowski offers a vast collection of exceptional infor-
mation on Java. John hand picks the best Java tidbits, identifies the best books and tools, and
provides insight into the disparate directions Java is headed. His resource collection is a library
of Java resources categorized by type.

Inside Java
http://www.inside-java.com

Inside Java is a very good source for Java programmers. Here, you can find listings for articles,
what’s new in the field of Java, recourses, a forum for Java discussions, plus chats on Java.
They keep you up to date on what’s going on with changes, updates, and new releases—a good
URL to add to your bookmarks.

67 1529-5 CH56 9/24/98, 9:49 AM1334

1335

P2/Vb mp12 java 1.2 #1529-5 8.10.98 ayanna CH56 LP#4

56

X
Part

Ch

Java Applet Rating Service (JARS)
http://www.jars.com/

The main focus of JARS is to provide ratings for Java applets that are available on the World
Wide Web. Each applet is reviewed by a panel of independent judges, including some of this
book’s authors, who base the rating on a set of criteria. If an applet achieves specified totals for
its rating, distinction might be recognized by the following JARS awards:

■ Top 1 percent Web Applet

■ Top 5 percent Web Applet

■ Top 25 percent Web Applet

■ Top 10 Web Applet (of the month)

■ Top 100 Web Applet (of the month)

In addition, applets with publicly available source code are further acknowledged, and a link to
the source is provided when possible.

JARS is a great site for checking out other programmers’ applets and seeing how yours stacks
up against the rest of the world.

The Java Boutique
http://javaboutique.internet.com/

The Java Boutique has many URL listings, along with applets, reviews, forums, how-to’s, and
many other interesting features.

Java Developer’s Journal
http://www.javadevelopersjournal.com/java/

Java Developer’s Journal has free Java courses, a free three-month trial subscription to its Java
Developer’s Journal magazine, free software, and so on. This site includes a nice feature of
product reviews that can help when you want to buy software.

Java Developers Connection
http://java.sun.com/jdc

A free resource from Sun providing up-to-date material and prerelease software—a must visit
for any serious developer.

Java Lobby
http://www.javalobby.org

The Java Lobby is a group of Java developers dedicated to insuring the “Write Once Run Any-
where” promise of Java. They lobby to make sure that Java is always kept pure.

Web Sites

67 1529-5 CH56 9/24/98, 9:49 AM1335

P2/Vb mp12 java 1.2 #1529-5 8.10.98 ayanna CH56 LP#4

1336 Chapter 56 Java Resources

Java Resources from Netscape
http://developer.netscape.com/library/documentation/javalist.html

Java Resources from Netscape offers a comprehensive listing of Java technical information for
use with its products. At this site, you can find multiple listings and third-party listings covering
just about anything you might want to know about Java.

Java World
http://www.javaworld.com/

A monthly online magazine, Java World is IDG’s magazine for the Java community. Here you
find informative links to resources and how-to’s. You can search for specific information and
check out its “Nuts & Bolt’s” section for great information on software usage.

JavaBeans Site
http://java.sun.com/beans

The root of all JavaBeans information is this wonderful site that includes information and links
to a variety of information on JavaBeans and JavaBeans projects.

Sun’s Home Page
http://java.sun.com/

This is probably the best place to start when looking for Java resources. It’s the home of Sun.
Here you can find extensive documentation on the Java API, the JDK, and the Java language
itself. You can download the latest versions of the JDK and other Java-related tools. Anyone
serious about programming in Java should explore this site fully and return frequently. You can
also find timely information that you can’t find anywhere else.

Javology—The Online Ezine of Java News and Opinion
http://www.javology.com/javology

Javology is a slick online magazine that covers the current events taking place in the Java world.
With articles about breaking news, interviews with the movers and shakers in the Java commu-
nity, and other up-to-date information about what’s happening with Java, Javology helps people
who are interested in Java stay on top of what’s going on.

Microsoft’s Java Home Page
http://www.microsoft.com/java

Microsoft’s site on Java includes information on Microsoft’s implementation of Java and offers
links to Microsoft Java tools. Be aware that Microsoft has been altering its Java VM and the
core APIs, but if that’s okay with you, jump into this site.

67 1529-5 CH56 9/24/98, 9:49 AM1336

1337

P2/Vb mp12 java 1.2 #1529-5 8.10.98 ayanna CH56 LP#4

56

X
Part

Ch

Swing Connection
http://java.sun.com/products/jfc/swingdoc-current/

This site is the home of the Swing (JFC) project offering timely tips and techniques on using
JFC, as well as information about upcoming features.

Team Java
http://www.teamjava.com/

Team Java is intended to assist Java consultants by providing information regarding available
jobs, news, educational materials, and other useful Java resources. Team Java also has an
applet-of-the-day service called Java the Hut. Overall, this site is very useful for people who use,
or plan to use, Java in a professional environment. Even weekend Java warriors will find this
site useful.

Newsgroups
UseNet newsgroups can be a great source of information. They can also be a major pain when
people stop being helpful and start arguing about whatever they feel like arguing about. If
you’re familiar with UseNet, and feel comfortable using it, these newsgroups are a valuable
asset. If you’re not familiar with UseNet news, it’s best to just observe for awhile, get a feel for
the system, stay out of flame wars, and read the FAQ before starting to post.

With that said, the many UseNet newsgroups on Java worth mentioning are as follows:

■ comp.lang.java Java language and programming

■ comp.lang.java.advocacy Java proponents speak out

■ comp.lang.java.announce Java products and other services announced (moderated)

■ comp.lang.java.beans JavaBeans discussions and programming

■ comp.lang.java.databases Java database programming

■ comp.lang.java.gui Graphical interface tips and help

■ comp.lang.java.help General help with the Java language and programming

■ comp.lang.java.machine Java virtual machine discussions

■ comp.lang.java.programmer Java programmer help

■ comp.lang.java.security Java security discussions

■ comp.lang.java.softwaretools Discussion of Java tools to help you be more productive

■ alt.www.hotjava HotJava World Wide Web browser

Be aware that not all news servers make the alt. hierarchy of newsgroups available to its
subscribers. If you have trouble locating it, contact your news administrator. ■

N O T E

Newsgroups

67 1529-5 CH56 9/24/98, 9:49 AM1337

P2/Vb mp12 java 1.2 #1529-5 8.10.98 ayanna CH56 LP#4

1338 Chapter 56 Java Resources

The Northeast Parallel Architecture Server at Syracuse University tracks comp.lang.java,
among other newsgroups. This is a handy way to get all the comp.lang.java postings regarding,
for example, garbage collection.

Mailing Lists
In addition to the mailing list administered by Java-SIG and run by various smaller groups, a
few lists are run out of Sun.

Here’s the address for the list:

java-interest@java.sun.com

This is an extremely high-traffic group, with more than 20,000 subscribers and dozens of
posts every day. The list isn’t moderated, so this isn’t a place for you if you’re easily

overwhelmed. ■

You can subscribe to the list by sending the words subscribe java-interest in the body of your
message to this address:

majordomo@java.sun.com

All the traffic on the Sun lists is gated to comp.lang.java; it’s not necessary to read both the
mailing list and the newsgroup. For more information about Sun’s mailing lists, take a look at
this address:

http://java.sun.com/mail.html

Support for Porting Issues
Java is a popular language, and a lot of people are working hard to see that it becomes a truly
universal one by porting it to as many platforms as possible. The following listing tells where to
connect with some of the porters.

Amiga Porting Issues
Mattias Johansson (matj@o.lst.se) in Sweden runs Porting Java to Amiga, or P’Jami.

There are three email lists:

amiga-hotjava-dev@mail.iMNet.de

This is a closed list. Participants must be approved by the list administrator.

amiga-hotjava@mail.iMNet.de

This is an open mailing list for the exchange of information. To subscribe, send the words
subscribe amiga-hotjava in the body of your message to

mafordom@mail.iMNet.deamiga-hotjava-announce@mail.iMNet.de

N O T E

67 1529-5 CH56 9/24/98, 9:49 AM1338

1339

P2/Vb mp12 java 1.2 #1529-5 8.10.98 ayanna CH56 LP#4

56

X
Part

Ch

This last list broadcasts announcements of Amiga ports. To subscribe, send the words sub-
scribe amiga-hotjava-announce in the body of a message to majordomo@mail.iMNet.de.

DEC Alpha OSF/1 Port
This section covers patches and information about a DEC Alpha port. The Web page is main-
tained by Greg Stiehl.

Web site: http://www.NetJunkies.Com/Java/osf1-port.html

email: stiehl@NetJunkies.com

Linux Porting Issues
Linux is the free, IBM-compatible version of UNIX. Karl Asha (karl@blackdown.com) maintains
several resources for people interested in porting and using Java and HotJava with Linux. .

The Web site is found at this address:

http://www.blackdown.org/java-linux.html

There are two mailing lists for Linux issues: java-linux and java-linux-announce. The first is
a discussion list and the second is a broadcast list.

The address for the mailing list is java-linux@java.blackdown.org

To subscribe to this list, send the word subscribe in the subject line of a message to this
address:

java-linux-request@java.blackdown.org

or

java-linux-announce-request@java.blackdown.org

An anonymous FTP distribution of the Linux Java port is available from this address:

ftp://substance.blackdown.org:/pub/Java

NEXTSTEP Porting Issues
Bill Bumgarner (bbum@friday.com) maintains an open mailing list for the discussion of porting
and integration esoterica that are unique to the NeXT platform.

To subscribe, send the word subscribe in the body of a message to this address:

next-java-request@friday.com

Here’s the address to mail to the list:

next-java-@friday.com

Support for Porting Issues

67 1529-5 CH56 9/24/98, 9:49 AM1339

67 1529-5 CH56 9/24/98, 9:49 AM1340

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTXI LP#2

XIP A R T

Appendix

A What’s on the CD-ROM 1343

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.5.98 Ayanna PTXI LP#2

1343Current C-head at the Bottom of the Page

P2/Vb/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna App A LP#4

A

XI
Part

App

A P P E N D I X

What’s on the CD-ROM

Example Code from the Book 1344

Third-Party Software 1344

Bonus Software 1344

A

In this appendix

69 1529-5 App A 9/24/98, 9:51 AM1343

P2/Vb/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna App A LP#4

1344 Appendix A What’s on the CD-ROM

This book’s CD-ROM includes sample applets, as well as valuable programs, utilities, and other
information. This appendix gives you a brief overview of the contents of the CD-ROM. For a
more detailed look at any of these parts, load the CD-ROM and browse the contents.

Example Code from the Book
Complete examples of applets and applications from the book are included on the CD-ROM—
organized by chapter for quick and easy location and use.

Third-Party Software
Included on this CD-ROM is software that will help you in programming Java, including:

■ JBuilder™ Publisher Edition

■ JBuilder™2 Tutorials

■ Tek-Tools, Inc.’s Kawa

Bonus Software
Bundled on this CD-ROM are software packages that you might find useful, including:

■ Adobe Systems, Inc.’s Acrobat Reader 3.01

■ EarthLink Network’s TotalAccess 2.0

■ Microsoft’s Internet Explorer 4.01

■ Netscape Communicator 4.04

69 1529-5 App A 9/24/98, 9:51 AM1344

1345

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

Index

curves, 567-568
draw() method, 565
ellipses, 567
lines, 433-434, 566
polygons, 438-439
rectangles, 434, 566
rounded rectangles,

436-437, 566
strokes

BasicStroke class, 569
corners, 570
dashed lines, 570
setStroke() method, 571
width, 569

text
character attributes, 578-579
drawing, 576
layouts, 577-578
style strings, 576-577

transformations, 575-576
transparency, 590-592
see also graphics; GUIs

(graphical user interfaces)
3D graphics, see Media

Framework
3-tier systems, 868
32-bit random numbers,

generating, 1070
32 TTL (time to live) value, 768
64 TTL (time to live) value, 768
64-bit random numbers,

generating, 1070
x86 machines, JDK installation,

43-45
128 TTL (time to live) value,

768
255 TTL (time to live) value,

768

+ (plus sign)
add and assign operator (+=),

105
concatenation operator (+),

142, 650
increment operator (++), 105

(pound sign), 611
:: (scope resolution operator),

1180
; (semicolon), 130, 1305
/**...*/ comment notation, 111
/*...*/ comment notation, 110
// comment notation, 111
0 TTL (time to live) value, 768
1 TTL (time to live) value, 768
2-tier systems, 868
2D graphics, 36

buffered images
copying into, 581
drawing, 580-581
emboss effects, 587-590
filtering, 584-585

clipping, 592-594
coordinate space, 433, 564-565
fills

fill() method, 565
gradient color, 571-572
textured, 572-574

filtered images, 581-582
affine tranforms, 582
color changes, 582-583
edge-detection, 583-585
reverse-color lookup, 585

shapes
arbitrary shapes, 569
arcs, 567
circles, 567

Symbols
& (ampersand)

bitwise AND operator (&), 144
C++ reference syntax, 1171
conditional AND operator

(&&), 148-149
logical AND operator (&&), 145

{ } (braces), 85, 128-130, 161
[] (brackets), 130, 1239
^ (caret), XOR operator, 145
, (comma), 130
/= (divide and assign operator),

105
= (equal sign)

assignment operator (=), 144
equality operator (==), 144

! (exclamation point)
!! debugger command, 1221
inequality operator (!=), 144
logical NOT operator, 144

?: (if-then-else operator), 145
- (minus sign)

decrement operator (--), 106
subtract and assign operator

(-=), 105
*= (multiply and assign

operator), 105
() (parentheses), 130
% (percent symbol)

modulus operator (%), 104
modulus and assign operator

(%=), 105
. (period), 130
| (pipe character)

bitwise OR operator (|), 144
logical OR operator (||), 145

1346

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

A
aaload bytecode instruction

(JVM), 1266
aastore bytecode instruction

(JVM), 1268
abs() method, 1110
absolute updates (scrollbars),

352
absolute value function, 1110
abstract classes, 163-164
abstract keyword, 125,

163-164
abstract methods, 125
Abstract Window Toolkit, see

AWT
accept() method, 704, 757
accepting incoming socket

connections, 757
access control

external code, 31
file systems, 31
modifiers, 162

abstract, 163-164
default, 121-122, 177
final, 163, 178
private, 121, 177
protected, 120-121, 163, 177
public, 120, 163, 177
static, 177

networks, 31
system information, 31-32

accessing
applet parameters, 260
databases

CallableStatement class,
903-904

PreparedStatement class,
901-902

Statement class, 898-899
methods

native methods, 1155-1156
static methods, 1158

objects, 1150-1154
COM objects, 967
managed objects, 831-832

static fields, 1156-1157
vectors, 1055-1056

accessor functions
JavaBeans, 923
JNI (Java Native Interface),

1151
CallMethod, 1156
CallStaticMethod, 1158
GetField, 1153

GetFieldID, 1152
GetObjectClass, 1152
GetStaticField, 1157
GetStaticFieldID, 1157
GetStaticMethod, 1158
SetField, 1154
SetStaticField, 1157

Account class, 951-952
ACID (atomicity, consistency,

isolation, durability)
properties, 869, 941-942

aconst_null bytecode
instruction (JVM), 1262

acos() method, 1112
action keys, 387
action() method, 385, 396

event handling, 328-329
whichAction parameter, 337

action property (Form object),
1322

ACTION_EVENT constant, 393
ActionListener interface, 384
actionPeformed() method,

255-256, 385, 486
activation model (RMI)

activatable objects, 825
example, 826-827
group IDs, 826

Activator, see Java Plug-in
ActiveBanner applet, 270-271
activeCount() method, 222,

1103
ActiveX controls, embedding in

applets
catch program block, 256
example, 249-253
layout managers, 254-255
listeners, 255

add and assign operator (+=),
105

addActionListener() method,
483

addAdjustmentListener()
method, 385

addCertificate() method, 792
addController() method, 1002
addElement() method, 1055
addIdentity() method, 793
addImage() method, 451
addItem() method, 339-341
addObserver() method, 1072

addOperation() method, 1038
addresses

Internet hosts, 760-761
converting names to, 761
retrieving, 762

IP (Internet Protocol), 686
multicast, 767
server sockets, 757
URLs (Uniform Resource

Locators), 687
connecting to, 689
format, 688
syntax, 688
URL class, 689

addSection() method, 842
addSelector() method, 1038
addSeparator() method, 413
addSystemThread() method,

1192
addTab() method, 487
addTextFieldValue() method,

524-525
ADK (Applet Developer’s Kit)

configuring, 52
downloading, 51
files, 52
installing, 51-52
testing, 52-53
see also JDK (Java Developer’s

Kit)
ADK.WRI file, 52
Adler32 class, 286
Admin View Module, see AVM
affine transforms, 582
AffineTransform class, 575
AffineTransformOp filter, 582
after() method, 1065
aggregate data types, 1169
alert() method, 1305, 1320
algorithms, mark and sweep

(garbage collection), 1259
aliase option (keytool

command), 789
ALIGN attribute (<APPLET>

tag), 233
aligning

applets, 233
labels, 332

alinkColor property (Document
object), 1321

allocating memory, 30

aaload bytecode instruction

1347

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

allowsMultipleSelections()
method, 343

aload bytecode instruction
(JVM), 1263

aload_0 bytecode instruction
(JVM), 1265

aload_1 bytecode instruction
(JVM), 1265

aload_2 bytecode instruction
(JVM), 1265

aload_3 bytecode instruction
(JVM), 1265

alpha components (color), 551
ALT attribute (<APPLET> tag),

233
AltaVista search engine

AltaVistaList application
constructors, 695-696
designing, 691
displaying results, 697
main() method, 695
parsing hits, 696-697
queries, 696
retrieving Web pages, 696
running, 697
source code, 691-695

Web site, 691
Amiga systems, 1338-1339
ampersand (&)

bitwise AND operator (&), 144
C++ reference syntax, 1171
conditional AND operator

(&&), 148-149
logical AND operator (&&), 145

anchor property (Document
object), 1321

anchor variable
(GridBagConstraints class),
426

anchor() method (JavaScript),
1323

anchors property (Document
object), 1321

AND operators
bitwise (&), 144, 1067
conditional (&&), 148-149
logical (&&), 145

anewarray bytecode instruction
(JVM), 1281

animation
Animator applet

HTML file, 246
images, 246
imported classes, 246

methods, 248-249
source code listing, 245-246
variables, 247

color cycling
Cycler applet, 560-562
overview, 557
RGB image filter, 557-559

double-buffering, 461-462
XOR drawing mode, 447-449
see also graphics; multimedia

Animator sample applet
HTML file, 246
images, 246
imported classes, 246
methods, 248-249
source code listing, 245-246
variables, 247

APIs (Application Programming
Interfaces), see names of
specific APIs

appCodeName property
(Navigator object), 1323

append() method, 653
appendText() method, 349
Applet Developer’s Kit, see

ADK
Applet menu commands

Clone, 56, 66
Close, 57
Edit, 57
Info, 57, 66
Print, 57
Properties, 57, 66
Quit, 57, 66
Reload, 56, 66
Restart, 56, 66
Save, 56
Start, 56
Stop, 56
Tag, 56, 66

<APPLET> HTML tag
attributes

ALIGN, 233
ALT, 233
ARCHIVE, 233, 278
CODE, 229, 232
CODEBASE, 233, 278
HEIGHT, 230-232
HSPACE, 233
OBJECT, 233
VSPACE, 233
WIDTH, 230, 233

example, 1291
AppletContext class, 268
AppletContext interface, 193

applets, 290, 775-776
ActiveX controls

adding, 255
catch program block, 256
example, 249-253
layout managers, 254-255
listeners, 255

animation
color cycling, 557-562
double-buffering, 461-462
example, 245-249
XOR drawing mode, 447-449

application-to-applet
conversions, 310

parameters, 311
security, 311-312
single instances, 311

browser manipulation
status messages, 268-269
Web page display, 269-270

converting to applications
advantages, 296-297
constructors, 309
defaulting, 301-302
event listeners, 305
examples, 298-299, 305-308
frames, 300
methods, 308-309
parameters, 303-304

CORBA, 962-963
defined, 8, 774
displaying, 93
HTML markup, 10, 228-229

alternative text, 230-231
<APPLET> tag, 229-230
frames, 411-412
<PARAM> tag, 231-232, 260

images
adding, 264-265
loading from current

directory, 265-266
initializing, 93
JFC (Java Foundation Classes),

530-531
JMAPI (Java Management API),

830
life cycle, 239-241
object serialization, 803-804
originating addresses, 762
parameters, accessing, 260
real-world examples, 10-13
RMI clients, 817-818
sandbox, 290-291
security

access restrictions, 32
certification authorities,

786-787
key management, 788-789
private-key cryptography,

783-784

applets

1348

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

public-key cryptography,
784-786

Security Manager, 776-777
trust relationships, 787

sound, 266-267
starting, 94
see also applications; names of

specific applets
AppletViewer, 91

Applet menu commands, 56-57
Macintosh version, 65-66
opening, 56

appletViewer command, 56
Application layer

ODBC (Open Database
Connectivity), 862

OSI (Open Systems
Interconnect) model, 682

TCP/IP (Transmission Control
Protocol/Internet Protocol)
network model, 684

applications, 775-776
advantages, 290
applet-to-application

conversions
advantages, 296-297
constructors, 309
event listeners, 305
example, 298-299, 305-308
frames, 300
methods, 308-309
parameters, 303-304

command line, 8, 16-17
converting to applets, 310

parameters, 311
security, 311-312
single instances, 311

defaulting, 301-302
designing

OOP (object-oriented
programming), 75-76

traditional approach, 75
error handling, 293-294
external programs, running,

1109-1110
installing

from .class files, 314-315
from .jar files, 320-321
UNIX platforms, 315-316
Windows platforms, 317-320

internationalization, 664-665
Calendar objects, 671
case scenario, 664
defined, 664
I/O (input/output), 672-676
Locale objects, 665-668
ResourceBundles objects,

668-671

sample application, 677-680
text, 676-677
TimeZone objects, 671

limitations, 294-295
main() method, 291
maintaining multiple, 321-322
packaging, 310
parameters, passing, 292-293
portability, 20
recompiling, 302
structure, 1165
testing, 303
see also applets; names of

specific applications
appName property (Navigator

object), 1323
appVersion property (Navigator

object), 1323
Arc2D class, 567
architecture

Java Debugger, 1214-1215
JavaBeans, 916
JVM (Java Virtual Machine),

1255-1257
ODBC (Open Database

Connectivity)
application layer, 862
driver manager layer, 863

ARCHIVE attribute (<APPLET>
tag), 233, 278

archives, see .jar files
arcs, drawing, 567
areturn bytecode instruction

(JVM), 1278
arg data member (Event class),

395
arithmetic functions, see math

functions
arithmetic operators

Java, 104
JavaScript, 1309

ArithmeticException
exceptions, 369

arraycopy() method, 1106
ArrayIndexOutOfBoundsException

exceptions, 369, 1056
arrays, 1174-1176

bounds, 772
C/C++, 1174
declaring, 108
defined 108
examples, 109
IDL (Interface Definition

Language), 947

indexing, 109
JavaScript, 1317-1318
populating, 109
primitive types, 1174-1175
sizing, 108
see also vectors

ArrayStoreException, 369
arrayTypeName() method,

1203
ascent (fonts), 441, 446, 659
asin() method, 1112
Assembly Language, 72
assignment operators

Java, 104-105, 144
JavaScript, 1310

associativity
equality operators, 148
operators, 133
relational operators, 145

astore bytecode instruction
(JVM), 1266

astore_0 bytecode instruction
(JVM), 1268

astore_1 bytecode instruction
(JVM), 1268

astore_2 bytecode instruction
(JVM), 1268

astore_3 bytecode instruction
(JVM), 1268

atan() method, 1112
atan2() method, 1112
athrow bytecode instruction

(JVM), 1281
atomicity, consistency,

isolation, and durability
(ACID) properties, 869,
941-942

attack scenarios (security),
26-27

Attribute Table field
.class File structure, 1243
.class Method Information

structure, 1246
attributes

.class file, 1240-1241
Code, 1248-1249
ConstantValue, 1245-1246
Exceptions, 1248
LineNumberTable,

1249-1250
LocalVariableTable, 1250
SourceFile, 1251

fonts, 656-658

applets

1349

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

HTML (Hypertext Markup
Language)

<APPLET> tag, 229-333, 278
<PARAM> tag, 232
<SCRIPT> tag, 1298

IDL (Interface Definition
Language), 948

text, 578-579
audio

adding to applets, 266-267
loading files, 266
media player, 997-998

@author name tag (javadoc), 63
-author option (javadoc

command), 63
available() method, 600-601
AVM (Admin View Module),

429-430
content managers

Command interface, 835
creating, 834
example, 835-838
Selectable interface, 834-835

dialog boxes, 843
button dialogs, 846-847
error dialogs, 844
information dialogs, 844
progress dialogs, 847-849
question dialogs, 845-846
warning dialogs, 844

icons, 838-839
property books, 840-841
task pages

example, 842-843
TaskSession objects,

841-842
AWT (Abstract Window

Toolkit), 36, 326, 432
buttons

action method, 328-329
adding to applets, 327
creating, 327
event listeners, 330-331
labeling, 327

canvases, 354-356
check boxes

checking state, 333
creating, 332-333
listening for events, 333-334

clipping regions, 459-461
color

changing, 458
darkening, 459
lightening, 459
pre-defined colors, 459
RGB (red, green, blue) color

model, 457-458

component display methods,
357

coordinate system, 433
dialogs, 407

creating, 416-417
OK Dialog Box example,

417-420
display methods, 356-357
drawing modes, 447-449
extensions, 429-430
frames, 407

creating, 409
cursors, 410-411
deleting, 410
hiding, 410
icons, 411
sizing, 410
standalone applets, 411-412
titling, 410

input events, 361-362
insets, 428-429
labels

aligning, 332
creating, 331
text, 332

layout managers, 406-407
BorderLayout, 421-424
CardLayout, 421
FlowLayout, 421-422
GridBagLayout, 421, 425-428
GridLayout, 421-423
null, 429

lists
adding items, 341
creating, 341
deleting items, 342
deselecting items, 342
event handling, 343-347
replacing items, 341
selecting items, 342

media trackers
creating, 451
example, 453-454
image IDs, 451
status flags, 452

menu bars, 412
menus

action events/methods,
413-414

adding to menu bars, 413
check boxes, 413
creating, 412
example, 414-415
menu items, 412-413
pop-up, 339-340, 415-416
separators, 413
submenus, 413
tear-off, 412

MVC (Model-View-Controller)
model, compared, 501

panels, 407
adding to applets, 408
creating, 408-409
nesting, 408-409

platform differences, 467
positioning/sizing methods,

357-359
print jobs, 463-464
radio buttons

checking state, 335
creating, 335
listening for events, 336-338

rendering methods, 360-361
scrollbars

creating, 352-353
event handling, 354
line increments, 353
minimum/maximum

position values, 353
page increment, 353

ScrollPanes, 407
adding components to, 420
listening for events, 421

 shapes
drawing, 449-451
lines, 433-434
ovals, 437-438
polygons, 438-440
rectangles, 434-437

text
drawing, 440-442
font metrics, 445-446
fonts, 442-445

text areas
adding text, 348-349
creating, 347
event handling, 349-352
read-only, 348
replacing text, 349
selecting text, 348

text fields
adding text, 348
creating, 347
echo characters, 348-349
event handling, 349-352
read-only, 348
selecting text, 348

utility classes
Dimension, 455
Point, 454-455
Rectangle, 455-457

see also graphics; JFC (Java
Foundation Classes)

AWT (Abstract Window Toolkit)

1350

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

B
BACKGROUND attribute (text),

579
baload bytecode instruction

(JVM), 1266
banking application (CORBA)

Account class, 951-952
BankingImpl object, 953-956
client, 958-959
IDL (Interface Definition

Language) interface, 949-951
JavaIDL skeletons, 952
server, 956-957

base-10 logarithms, 1112
baseline, 441, 579
Basic look and feel driver, 505
BasicStroke class, 569-570
bastore bytecode instruction

(JVM), 1269
batch files

creating, 317
installing, 318-319
testing, 318

BCPL comments, 1163
BeanBox, 920
BeanInfo class, 930-932
beans, see JavaBeans
before() method, 1065
bgColor property (Document

object), 1321
BIDI_EMBEDDING attribute

(text), 579
BIDI_NUMERIC attribute

(text), 579
big() method (JavaScript),

1323
BigBlue application (inner

classes example), 182-183
BigDecimal class, 1121
binding

defined, 1293
dynamic, 1293
ports, 701
security, 29
static binding, 1294

bipush bytecode instruction
(JVM), 1263

bit sets, 1067-1068
see also bitwise operators

BitSet class, 1067-1068

bitwise operators, 1067-1068
Java, 136-137

AND operator (&), 144
OR operator (|), 144
sample operations, 138
truth tables, 137-138

JavaScript, 1309
blink() method (JavaScript),

1323
blocking reads, 600
blocks

defined, 128
example, 128-129
scope, 129-130

blur event (JavaScript), 1304
body (interfaces)

example, 196-197
methods, 197-198
variables, 198

bold() method (JavaScript),
1323

bookmarks, 871
Boolean class, 1114-1115
Boolean data type

C/C++, 1168
Java

Boolean wrapper class,
1114-1115

values, 98
JavaScript, 1307

Boolean expressions
control flow statements, 150
true/false operations, 144-145

Boolean literals (JavaScript),
1308

Boolean operators, 148-149
Boolean variables

casting, 141
changing, 101
converting, 141
declaring, 99
identifiers, 100-101
values, 99

booleanValue() method, 1114
BorderLayout manager,

421-424
borders

cascading, 480-481
creating, 480
example, 479-480

bound properties (JavaBeans),
924-925

Bowles, Kenneth, 1254

Box class, 483
BoxLayout manager, 483-484
braces ({ }), 85, 128-130, 161
brackets ([]), 130, 1239
BrandCombineOp filter,

582-583
break statement

Java, 156
JavaScript, 1313-1314

breakpoint bytecode instruction
(JVM), 1283

breakpointEvent() method,
1190

breakpoint commands (JBD)
clear, 1227-1228
cont, 1228
next, 1228
step, 1228
stop, 1227

bridges, JDBC-ODBC, 876
brighter() method, 459
broadcasting datagrams,

764-765, 768
browsers

AppletViewer, 91
Applet menu commands,

56-57
Macintosh version, 65-66
opening, 56

controlling with applets
changing Web page, 269-270
status messages, 268-269

Java Plug-in, 234, 531
configuring, 236-237
in Netscape, 235-236
Internet Explorer, 235

JEditor application, 525-526
Netscape Navigator, 92

BSTR data type, 970
buckets (hashtables), 1059
buckets (objects), 1085
buffered images

copying into, 581
drawing, 580-581
emboss effects, 587-590
filtering, 581-582

AffineTransformOp, 582
BrandCombineOp, 582-583
ColorConvertOp, 583
ConvolveOp, 583-585
LookupOp, 585
RescaleOp, 585-586
ThresholdOp, 587

BACKGROUND attribute (text)

1351

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

buffered streams, 598-599,
624

BufferedInputStream class,
598

BufferedOutputStream class,
599

buffers (string)
adding characters to, 1097
capacity, 652, 1098
converting to strings, 1098
creating, 651-652, 1096
length, 652, 1098
manipulating, 653, 1098

built-in functions (JavaScript),
1318-1319

BulletinLayout layout manager,
850-851

bundling .jar files, 274
button dialogs (AVM), 846-847
button property (Form object),

1322
ButtonDialog class, 846-847
ButtonGroup class, 481-483
ButtonLayout manager, 851
buttonPress() method, 842
buttons

adding to applets, 327
creating, 327
event handling

action method, 328-329
event listeners, 330-331

JFC (Java Foundation Classes)
event listeners, 475
example, 473-474
mnemonics, 475
tooltips, 475-476

labeling, 327
radio buttons

checking state, 335
creating, 335
event handling, 336-338

byte array streams, 626-627
byte data type

converting to strings, 1117
maximum values, 102
values, 98

ByteArrayInputStream class,
598, 626

ByteArrayOutputStream class,
599, 626

bytecode
defined, 84
interpretation, 20-21

opcode, 22
verification, 29, 773, 1261

bytecode instructions (JVM),
1235

aaload, 1266
aastore, 1268
aconst_null, 1262
aload, 1263
aload_0, 1265
aload_1, 1265
aload_2, 1265
aload_3, 1265
anewarray, 1281
areturn, 1278
astore, 1266
astore_0, 1268
astore_1, 1268
astore_2, 1268
astore_3, 1268
athrow, 1281
baload, 1266
bastore, 1269
bipush, 1263
breakpoint, 1283
caload, 1266
castore, 1269
checkcast, 1281
d2f, 1273
d2i, 1273
d2l, 1273
dadd, 1270
daload, 1266
dastore, 1268
dcmpg, 1274
dcmpl, 1274
dconst_0, 1263
dconst_1, 1263
ddiv, 1271
dload, 1263
dload_0, 1265
dload_1, 1265
dload_2, 1265
dload_3, 1265
dmul, 1270
dneg, 1271
drem, 1271
dreturn, 1278
dstore, 1266
dstore_0, 1267
dstore_1, 1267
dstore_2, 1268
dstore_3, 1268
dsub, 1270
dup, 1269
dup_x1, 1269
dup_x2, 1269
dup2, 1269
dup2_x1, 1269
dup2_x2, 1269

f2d, 1273
f2i, 1273
f2l, 1273
fadd, 1269
faload, 1265
fastore, 1268
fcmpg, 1274
fcmpl, 1274
fconst_0, 1263
fconst_1, 1263
fconst_2, 1263
fdiv, 1270
fload, 1263
fload_0, 1264
fload_1, 1264
fload_2, 1264
fload_3, 1264
fmul, 1270
fneg, 1271
frem, 1271
freturn, 1278
fstore, 1266
fstore_0, 1267
fstore_1, 1267
fstore_2, 1267
fstore_3, 1267
fsub, 1270
getfield, 1279
getstatic, 1278
goto, 1276
goto_2, 1283
i2d, 1273
i2f, 1273
i2l, 1273
iadd, 1269
iaload, 1265
iand, 1272
iastore, 1268
iconst_0, 1262
iconst_1, 1262
iconst_2, 1262
iconst_3, 1262
iconst_4, 1262
iconst_5, 1262
iconst_m1, 1262
idiv, 1270
if_acmpeq, 1276
if_acmpne, 1276
if_icmpeq, 1275
if_icmpge, 1275
if_icmpgt, 1275
if_icmple, 1276
if_icmplt, 1275
if_icmpne, 1275
ifeq, 1274
ifge, 1275
ifgt, 1275
ifle, 1275
iflt, 1274
ifne, 1274

bytecode instructions

1352

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

ifnonnull, 1282
ifnull, 1282
iinc, 1272
iload, 1263
iload_0, 1264
iload_1, 1264
iload_2, 1264
iload_3, 1264
imul, 1270
ineg, 1271
instanceof, 1281
int2byte, 1273
int2char, 1273
int2short, 1273
invokeinterface, 1280
invokenonvirtual, 1280
invokestatic, 1280
invokevirtual, 1279
ior, 1272
irem, 1271
ireturn, 1278
ishl, 1271
ishr, 1272
istore, 1265
istore_0, 1266
istore_1, 1266
istore_2, 1267
istore_3, 1267
isub, 1270
iushr, 1272
ixor, 1272
jsr, 1276
jsr_w, 1283
l2d, 1273
l2f, 1273
l2i, 1273
ladd, 1269
laload, 1265
land, 1272
lastore, 1268
lcmp, 1273
lconst_0, 1263
lconst_1, 1263
ldc1, 1263
ldc2, 1263
ldc2w, 1263
ldiv, 1270
lload, 1263
lload_0, 1264
lload_1, 1264
lload_2, 1264
lload_3, 1264
lmul, 1270
lneg, 1271
lookupswitch, 1277
lor, 1272
lrem, 1271
lreturn, 1278
lshl, 1271
lshr, 1272

lstore, 1266
lstore_0, 1267
lstore_1, 1267
lstore_2, 1267
lstore_3, 1267
lsub, 1270
lushr, 1272
lxor, 1272
monitorenter, 1282
monitorexit, 1282
multianewarray, 1282
new, 1280
newarray, 1280
nop, 1262
overview, 1262
pop, 1269
pop2, 1269
putfield, 1279
putstatic, 1279
ret, 1276
ret_w, 1283
return, 1278
saload, 1266
sastore, 1269
sipush, 1263
swap, 1269
tableswitch, 1277
wide, 1282

bytes, converting to characters,
627-628, 672

ByteToCharConverter class,
672

C
-c option (javap command), 61
C/C++ languages

comment notation, 110-111
compared to Java, 136

arrays, 1174-1176
comments, 1163
conditionals, 1181
const keyword, 1164
constant values, 1165
data types, 1167-1169, 1172
enum construct, 1164
expressions, 1182
inheritance, 1177-1179
instanceof operator, 1177
lexical structure, 1162
loops, 1180
macros, 1166
methods/functions, 1165,

1171
name spaces, 1182-1183
objects, 1172-1173
object orientation, 1169

operators, 1181-1182
passing by reference, 1171
pointers, 1163, 1173
polymorphism, 1178
preprocessor, 1165
program structure, 1165
references, 1163, 1169-1170
runtime library, 1164
scope resolution, 1180
source files, 1166-1167
strings, 1174
struct construct, 1164
super reference, 1179
synchronized statements,

1181
Unicode characters, 1168
unions, 1164
vectors, 1171, 1176
wrapper classes, 1171

compiled code, 40
calculating

cosine, 1112
logarithms, 1111
minimum/maximum numbers,

1110
powers, 1111
rounded numbers, 1111
sine, 1112
square roots, 1111
tangents, 1112

Calendar class, 671
call stack, 1063-1064
CallableStatement objects

creating, 902
parameters

access methods, 902-903
register methods, 902

sample application, 904
callbacks, 959-960
calling

COM (Component Object
Model) objects

Excel, 974-975
Java, 976-979
Visual Basic, 974

Java methods
call-by-reference, 1171
call-by-value, 1171
Reflection API, 1138-1141

JavaScript functions, 1316-1317
CallMethod() accessor

functions, 1156
caload bytecode instruction

(JVM), 1266
canRead() method, 609
canUseInstrument() method,

1028

bytecode instructions

1353

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

canUseOperation() method,
1038

canvases, 354-356
canWrite() method, 609
CAP_BUTT value (stroke

corners), 569
CAP_ROUND value (stroke

corners), 569
CAP_SQUARE value (stroke

corners), 569
capacity

hashtables, 1059
string buffers, 652
vectors

checking, 1058
increasing, 1058
increments, 1055
reducing, 1058

capacity() method, 652, 1058,
1098

Car class (Reflection example),
1133

CardLayout manager, 421
caret (^), 145
cascading borders, 480-481
cassette identifiers (JCC), 1018
CassetteControl class, 1017

declaring, 1018
methods

GetCurrentVersionIdentifier(),
1018

getDependencyIdentifiers(),
1018

getExpirationDate(), 1020
getJCMForLatestVersion(),

1019
install(), 1019

cassettes (JCC), 1016-1017
cassette identifiers, 1018
CassetteControl class,

1017-1018
instruments, 1017

example, 1022-1028
Instrument interface, 1020
InstrumentAdministration

interface, 1021
returning information about,

1020-1021
storing, 1021
visual representation, 1021

operation cassettes, 1034
protocols

example, 1029-1033
Protocol interface, 1028-1029
PurchaseProtocol interface,

1029

service cassettes
example, 1035-1037
ServiceUI interface,

1034-1035
user interface cassettes

example, 1038-1047
WalletUI interface,

1037-1038
versions, identifying, 1018

cast operator, 140-141
casting, 89

Booleans, 141
characters, 141
data types, 1169
integers, 141
security, 772

castore bytecode instruction
(JVM), 1269

catch command (JDB), 1229
catchExceptions() method,

1201
catching exceptions, 367-377

finally blocks, 377
multiple exceptions, 375-377
online documentation, 365-366
runtime exceptions, 374-375
throws clauses, 367-368
try-catch blocks, 364

ceil() method, 1111
cell editors, 517-519
cert field (JAR directive files),

285
certificates (security), 792
certificates() method, 791
certification authorities,

786-787
chain field (JAR directive files),

285
chaining if-else statements

(JavaScript), 1311
change event (JavaScript),

1304
changeToY() method, 620-621
changeToZ() method, 621-622
char array streams, 627
char data type

Character wrapper class,
1113-1114

maximum values, 102
values, 98

character attributes (text),
578-579

Character class, 1113-1114

character literals
escape characters, 113-114
octal escape literals, 114

character sets
converting, 672
encoding schemes, 672-674

character variables, 106
casting, 141
converting

characters to bytes, 627-628
integers to characters, 89

CharArrayReader class, 627
CharArrayWriter class, 627
charAt() method

Java, 647, 652, 1095
JavaScript, 1323

CharToByteConverter class,
672

charWidth() method, 446, 659
check boxes

creating, 332-333
event handling, 333-334
JFC (Java Foundation Classes)

aligning, 483, 486
event listeners, 483
example, 481-482
panels, 484-485

state, checking, 333
checkAll() method, 452
checkbox property (Form

object), 1322
checkcast bytecode instruction

(JVM), 1281
CheckedInputStream class,

286
CheckedOutputStream class,

286
checkError() method, 604
checkID() method, 452
checkMemberAccess() method,

1130
checksource option (java

command), 58
child classes, 159
Choice class, 339
CircleCanvas class, 355-356
circles, drawing, 437-438, 567
Class class

forName() method, 1089
newInstance() method,

1089-1090
Reflection API methods, 1090

Class class

1354

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

.class files, 1234
attributes, 1240-1241

Code, 1248-1249
ConstantValue, 1245-1246
Exceptions, 1248
LineNumberTable,

1249-1250
LocalVariableTable, 1250
SourceFile, 1251

ClassFileDump utility,
1251-1252

Constant Pool, 1235
Class constant, 1237-1238
Double constant, 1237
Field constant, 1238
Float constant, 1237
Integer constant, 1237
Interface Method constant,

1238
Long constant, 1237
Method constant, 1238
Name reference constant,

1238
String constant, 1238
tags, 1235-1236
Type reference constant,

1238
Unicode string constant,

1236-1237
Utf8 string constant, 1236

data type abbreviations,
1239-1240

embedded Exception table,
1249

Field Information structure,
1244-1245

File structure, 1242-1244
installing, 314-315
Method Information structure,

1246-1247
verification, 1260-1262

Class Flags field (.class File
structure), 1242-1244

Class IDs (CLSIDs), 967
Class Loader application

source code, 1123-1125
testing, 1125-1126

Class Name field (.class File
structure), 1242

Class reference constant
(Constant Pool), 1237-1238

classes, 78-79, 158-159
Account, 951-952
adding to packages, 185-186
Adler32, 286
AffineTransform, 575
AppletContext, 268
Arc2D, 567

BasicStroke, 569-570
BeanInfo, 930-932
BigDecimal, 1121-1123
BigInteger, 1119-1121
BitSet, 1067-1068
Boolean, 1114-1115
BorderLayout, 423-424
Box, 483
BufferedInputStream, 598
BufferedOutputStream, 599
ButtonDialog, 846-847
Byte, 1117
ByteArrayInputStream, 598, 626
ByteArrayOutputStream, 599,

626
ByteToCharConverter, 672
Calendar, 671
CallableStatement, 902-903
CassetteControl, 1017

declaring, 1018
methods, 1019-1020

Character, 1113-1114
CharArrayReader, 627
CharArrayWriter, 627
CharToByteConverter, 672
CheckedInputStream, 286
CheckedOutputStream, 286
Choice, 339
Class, 1089-1090
ClassLoader

methods, 1123
security, 29-30, 773-774

ColorModel, 551
Compiler, 1127-1128
compiling, 1127
Component, 396-397
Connection, 883-885
ContentHandler, 748-749
CRC32, 286
DatabaseMetaData, 885-891
DatagramPacket, 721, 764
DatagramSocket, 762-764
DataInputStream, 598, 626
DataOutputStream, 599, 626
DataTruncation, 909-910
Date, 906-907
DateField, 850
declaring, 162

GameBoard example,
160-162

HelloApplet example, 93
HelloWorld example, 85-86
Reflection API, 1131-1135

DefaultMutableTreeNode, 519
Deflater, 286
DeflaterOutputStream, 286
designing, 80
Dictionary, 1060
Dimension, 455
DirectColorModel, 552

Double, 1119
DoubleField, 849-850
Driver, 878
DriverManager, 877-879
Ellipse2D, 567
Error, 380
ErrorDialog, 844
Event

data members, 395
event constants, 393-394
keyboard constants, 392-393
methods, 395

File, 599, 608-609
FileDescriptor, 599
FileInputStream, 598, 605-606
FileOutputStream, 599, 606-607
FilterInputStream, 599
FilterOutputStream, 599
final, 772
Float, 1118
FlowLayout, 422
Font, 656
GregorianCalendar, 671
GridBagConstraints, 425-426
GridBagLayout, 425-428
GridLayout, 422-423
GZIPInputStream, 286
GZIPOutputStream, 286
Hashtable, 1059-1060
HTTPURLConnection, 746-747
Icon, 838
Identity, 791-792
IdentityScope, 792-793
importing, 186

HelloWorld example, 92-93
InitStartStop applet

example, 243
StartPainter example, 262

IndexColorModel, 552-553
InetAddress, 760-761
Inflater, 286
InflaterInputStream, 286
InformationDialog, 844
inheritance, 76-78
inner classes, 181-185

defined, 181-182
sample application, 182-183
sychronization, 184

InputEvent, 390-391
InputStream, 598-601
Insets, 428
instantiating, 167-168, 187-188
Integer, 1115-1116
IntegerField, 849
Introspector, 922, 930
JAbstractTableModel class,

516-517
JButton class

event listeners, 475
example, 473-474

.class files

1355

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

mnemonics, 475
tooltips, 475-476

JCheckBoxMenuItem class, 510
JComboBox class, 511-513
JEditor class

hyperlink events, 527
pages, 527
Web browser application,

525-526
JFrame class, 473
JLabel component, 472
JMenuBar class, 510
JProgressBar class

constructors, 493
example, 490-492
threads, 493-494

JProgressMonitor class
constructor, 496
example, 494-496
run() method, 496-497

JProgressMonitorInputStream
class, 498-498

JSlider class
constructors, 489
event handling, 490
example, 488-489
tick marks, 490

JTabbedPane class
addTab() method, 487
example, 486-487
insertTab() method, 488

JTable class, 514-515
JTextField class, 528
JToolBar class, 507-509
Line2D, 566
LineNumberInputStream, 598
LineNumberReader, 631-632
loading, 1123-1126
Locale

display methods, 667-668
JDK-supported locales,

665-666
static constants, 668

Long, 1116
Math, 1110-1113
MemoryImageSource, 541-543
MulticastSocket, 734-735
names

assigning, 164
finding, 1090

Number, 1115
Object, 1081-1088
ObjectInputStream, 630
ObjectOutputStream, 629
objects, compared, 78-79
OutputStream, 599, 602
Package, 1091
PipedInputStream, 599
PipedOutputStream, 599
PipeInputStream, 615

PixelGrabber, 543-544
Point, 454-455
Point2D, 566
PreparedStatement

database access, 901-911
object methods, 899
parameter-related methods,

899-900
PrintStream, 599
PrintWriter, 604
Process, 1109-1110
ProgressDialog, 847
Properties, 1061-1063
PropertyBookIndexPanel, 840
PropertyBookSection, 840
PushbackInputStream, 598, 633
QuestionDialog, 845-846
Random, 1069-1070
RandomAccessFile, 599,

612-615
Reader, 674-676
Rectangle, 455-457
Rectangle2D, 566
referencing

dot notation, 169
super variable, 171-172
this variable, 170-171

RegKey, 976
RemoteArray, 1202-1203
RemoteClass, 1198-1202
RemoteDebugger, 1190

methods, 1192-1194
public API, 1191-1192

RemoteField, 1196
RemoteObject, 1197-1198
RemoteStackFrame, 1206-1207
RemoteStackVariable, 1207
RemoteString, 1203-1204
RemoteThread

methods, 1210-1212
public API, 1209-1210

RemoteThreadGroup,
1208-1209

RemoteValue, 1195
resolving, 1123
ResourceBundles, 668-671

accessing, 671
naming conventions, 669

ResultSet, 904-906
ResultSetMetaData, 891, 893

methods, 892
return values, 892

returning information about,
1090, 1091

RGBImageFilter, 553-554
RoundRectangle2D, 566
Runtime, 1108
SecurityManager, 30, 1126
SequenceInputStream, 599, 632
ServerSocket, 704

Short, 1117
Signature, 790-791
Signer, 792
Socket, 70-704
SQLExceptions, 893
SQLWarnings, 893-894
Stack, 1063, 1064
StackFrame, 1205
state, 158
Statement

database access, 898-899
methods, 897-898

StreamTokenizer, 599, 633-636
String, 638, 1091-1095
StringBuffer, 638, 1096-1098
StringBufferInputStream, 598,

628
StringTokenizer, 1068-1069
subclasses, 159
superclasses, 159, 164-165
System, 1105-1108
TaskSection, 841-842
TextLayout, 577
Thread, 1099

extending, 209
methods, 1100-1103

ThreadGroup, 1103-1104
Throwable, 1104-1105
Time, 907
Timestamp, 908
TimeZone, 671
Types, 908-909
URL, 689
URLConnection, 744-746
URLDecoder, 747
URLEncoder, 747
URLStreamHandler, 747-748
Vector, 1054
Void, 1119
WarningDialog, 844
Writer, 674-676
YThread, 623
ZipEntry, 286
ZipInputStream, 286
ZipOutputStream, 286
see also JFC (Java Foundation

Classes)
classes command (JDB), 1223
ClassFileDump utility,

1251-1252
ClassLoader class

methods, 1123
security, 29-30, 773-774

-classpath dirs option
java command, 59
javadoc command, 62
javap command, 61

-classpath dirs option

1356

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

CLASSPATH environment
variable

JDK (Java Developer’s Kit)
updates, 43

tool settings, 64
-classpath option

javac command, 60
javah command, 62

clear command (JDB),
1227-1228

clearBreakpoint() method,
1202

clearBreakpointLine() method,
1202

clearBreakpointMethod()
method, 1202

clearing, see deleting
clearRect() method, 434
clearTimeout() method

(JavaScript), 1320
click event (JavaScript), 1304
clickCount data member (Event

class), 395
client/server programming, 17

databases, 867
bookmarks, 871
cursors, 870-872
replication, 872
tier architecture, 867-868
transactions, 868-870

debugger management
DebuggerCallback interface,

1189-1190
RemoteDebugger class,

1190-1194
TCP (Transmission Control

Protocol) client/server
application

client, 707-711
implementing, 718
protocol design, 706-707
running, 718
server, 712-717
stock data, 711-712, 717

clients
CORBA (Common Object

Request Broker Architecture)
banking client example,

958-959
creating, 957-958

datagram client application,
766-767

RMI (Remote Method
Invocation)

applet clients, 817-818
example, 815
running, 817

socket clients, 754-756
TCP (Transmission Control

Protocol) StockQuoteClient
class constructor, 711
main() method, 711
socket connection, 711
source code listing, 707-711
stock data, displaying/

obtaining, 711-712
UDP (User Datagram Protocol)

getTimes() method,
731-732

printTimes() method, 732
running, 732
sample application, 727-731
starting, 731

clip() method, 592
clipping, 592-594
clipping regions, 459-460
clipRect() method, 460
Clock applet

converting to application
frame, 300
main() method, 299
parameters, 301-302

source code, 297-299
Clock applications

Java, 305-308
batch file, 317
wrapper script, 316

JavaScript, 1326-1329
Clone command (Applet menu),

56, 66
clone() method, 1082-1083
cloning objects, 1082-1083
Close command

Applet menu, 57
AppletViewer File menu, 65

close() method
Java, 601-602, 1193
JavaScript, 1320

closing
input streams, 601
server sockets, 757
socket connections, 711, 752

CLSIDs (Class IDs), 967
coalescing (memory), 1258
Code attribute (.class file),

1248-1249
CODE attribute (<APPLET>

tag), 229, 232
code blocks

defined, 128
example, 128-129
scope, 129-130

code listings, see listings
CODEBASE attribute

(<APPLET> tag), 233, 278
collating text, 676
Collection interface,

1050-1051
collections

defined, 1050
indexes, 1051-1052
iterators, 1053
maps, 1052-1053
objects

inserting, 1050
removing, 1051

status, checking, 1051
colon (:), 1180
ColorConvertOp filter, 583
ColorModel class, 551
colors

alpha values, 551
changing, 458

BandCombineOp filter,
582-583

ColorConvertOp filter, 583
RGB image filters, 553-557

cycling, 557-562
darkening, 459
lightening, 459
models

ColorModel class, 551
DirectColorModel class, 552
IndexColorModel class,

552-553
RGB, 457-458

pre-defined colors, 459
reducing, 587
reverse-color lookup, 585
thresholds, 587
transparency, 590-592
wash effect, 585-586

ColumnLayout manager, 851
COM (Component Object

Model), 966
interfaces, 967-970
objects

accessing, 967
calling from Excel, 974-975
calling from Java, 976-979
calling from Visual Basic,

974
CLSIDs, 967
creating, 971-973

vtables, 969
see also IDL (Interface

Definition Language)
combo boxes, 511-514
comma (,), 130

CLASSPATH environment variable

1357

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

Command interface, 835
command() method, 1127
command-line applications, 8,

16-17
commands

Applet menu
Clone, 56, 66
Close, 57
Edit, 57
Info, 57, 66
Print, 57
Properties, 57, 66
Quit, 57, 66
Reload, 56, 66
Restart, 56, 66
Save, 56
Start, 56
Stop, 56
Tag, 56, 66

AppletViewer, 56
idlgen, 950
importclasses, 834
jar, 276-277
jarsigner, 282-283

-ids option, 284
-keypass option, 284
-keystore option, 283
-sigfile option, 284
-signedjar option, 284
-storepass option, 283
-verbose option, 284
-verify option, 284

java, 57-59
javac, 60
javadoc, 62-63
javah, 61-62
javap, 61
javatlb, 971
JDB (Java Debugger)

!! (repeat last command),
1221

catch, 1229
classes, 1223
clear, 1227-1228
cont, 1228
down, 1230
dump, 1223-1224
exit, 1220
gc, 1220
help, 1219
ignore, 1229
itrace, 1220
jdb, 1215-1216
kill, 1230
list, 1224
load, 1221
locals, 1224
memory, 1220
methods, 1225

next, 1228
print, 1225
resume, 1229
run, 1221
step, 1228
stop, 1227
suspend, 1229
thread, 1222
threadgroup, 1222
threadgroups, 1225
threads, 1225-1226
trace, 1220-1221
up, 1230
use, 1222
where, 1226

ls, 46
mktyplib, 970
ODBC (Open Database

Connectivity) command
sequence, 866-867

commentChar() method, 635
comments, 1163

C style, 110
C++ style, 111
javadoc, 111
JavaScript, 1314-1315

Commerce Client, see JCC
(Java Commerce Client)

commerce messages (JCC),
1016

Common Object Request
Broker Architecture, see
CORBA

compaction (memory), 1258
compareTo() method, 644,

1094
comparing

dates, 1065
objects, 1081-1082
strings, 1093-1094

compareTo() method, 644
equals() method, 644
example, 645-647
regionMatches() method,

645
compileClass() method, 1127
compileClasses() method,

1127
Compiler class, 1127-1128
compilers

disabling, 1127
enabling, 1127
javac, 22, 59-60
JIT (just-in-time) compiler,

20, 41
Macintosh Java compiler, 67
security, 29, 772

compiling
applets, 241-242
applications

HelloWorld example, 84
HelloWorldJFC example,

469
classes, 1127
IDL (Interface Definition

Lanaguage) definitions,
950-951

managed objects, 833
media player, 991
native methods, 1148
ODL (Object Definition

Language) files, 970
security, 29, 772

Component class, 396-397
Component Object Model, see

COM
ComponentListeners, 361
components

AVM (Admin View Module)
content managers, 834-838
dialogs, 843-849
icons, 838-839
layout managers, 850-852
property book, 840-841
self-validating fields, 849-850
task pages, 841-843

AWT (Abstract Window
Toolkit)

buttons, 327-331
canvases, 354-356
check boxes, 332-334
clipping regions, 459-461
color, 457-459
component display methods,

357
coordinate system, 433
dialogs, 407, 416-420
display methods, 356-357
drawing modes, 447-449
extensions, 429-430
frames, 407-412
input events, 361-362
insets, 428-429
labels, 331-332
layout managers, 406-407,

421-428
lists, 341-347
media trackers, 451-454
menu bars, 412
menus, 339-340, 412-416
panels, 407-409
platform differences, 467
positioning/sizing methods,

357-359
print jobs, 463-464
radio buttons, 335-338

components

1358

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

rendering methods, 360-361
scrollbars, 352-354
ScrollPanes, 407, 420-421
text areas, 347-352
text fields, 347-352
utility classes, 454-457

JavaBeans, 36
architecture, 916
BeanBox, 920
customizers, 933-935
designing, 918-921
Enterprise JavaBeans,

937-938
events, 927-929
introspection, 922, 930-932
JNDI, 938
methods, 923
non-GUI environments,

936-937
packaging, 918
properties, 922-926
state persistence, 917

JFC (Java Foundation Classes)
borders, 479-481
buttons, 473-476
check boxes, 481-486
JLabel, 472
pop-up menus, 476-478
progress bars, 490-494
progress monitors, 494-498
sliders, 488-490
tabbed panes, 486-488

layering, 470
compound if statements, 152
CompoundBorders, 481
compressing files, 274
com.sun.java.swing package,

see Swing
concat() method, 650, 1096
concatenating strings, 116,

141-142, 650, 1096
concatenation operator (+),

142, 650
conditional AND operator,

148-149
conditional OR operator,

148-149
conditional statements

C/C++, 1181
JavaScript, 1310-1311

Configure AppletViewer file
(ADK), 52

configuring ADK (Applet
Developer’s Kit), 52

confirm() method (JavaScript),
1320

conformance levels (ODBC),
864-865

Connection class, 883-885
connections

JDBC (Java Database
Connectivity), 883-885

ODBC (Open Database
Connectivity), 865

to URLs (Uniform Resource
Locators), 689

Console file (ADK), 52
const keyword, 1164
Constant Pool

element types
Class constant, 1237-1238
Double constant, 1237
Field constant, 1238
Float constant, 1237
Integer constant, 1237
Interface Method constant,

1238
Long constant, 1237
Method constant, 1238
Name constant, 1238
String constant, 1238
Type constant, 1238
Unicode constant, 1236-1237
Utf8 string constant, 1236

tags, 1235-1236
Constant Pool field (.class File

structure), 1242
Constant Pool Size field (.class

File structure), 1242
constants

IDL (Interface Definition
Language), 943

mathematical constants, 1113
ConstantValue attribute (.class

file), 1245-1246
constrained properties

(JavaBeans), 925-926
constructors

applet-to-application
conversions, 309

declaring, 166
overloading, 165
returning list of, 1130-1131
TCP (Transmission Control

Protocol) client application,
711

consumers (images), 537-540
cont command (JDB), 1228
cont() method, 1211
contactServer() method, 711

containers, 406-407
components, adding/removing,

407-408
dialogs

creating, 416
features, 417
OK Dialog Box example,

417-420
frames

creating, 409
cursors, 410-411
deleting, 410
hiding, 410
icons, 411
menus, 412-416
sizing, 410
standalone applets, 411-412
titling, 410

panels
adding to applets, 408
creating, 408-409
nesting, 408-409

ScrollPanes
adding components to, 420
listening for events, 421

see also components
contains() method, 456, 1057
containsKey() method, 1053
containsValue() method, 1053
content managers (AVM)

Command interface, 835
creating, 834
example, 835-838
Selectable interface, 834-835

ContentHandler class, 748-749
context commands (JDB)

load, 1221
run, 1221
thread, 1222
threadgroup, 1222
use, 1222

continue statement
Java, 156
JavaScript, 1313-1314

controlDown() method, 395
controlled access, see access

control
controllerUpdate() method,

986
controlling flow, see flow

control
controls (ActiveX), embedding

in applets
catch program block, 256
example, 249-253
layout managers, 254-255
listeners, 255

components

1359

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

com.sun.java.awt package, see
AWT (Abstract Window
Toolkit)

converting
applets to applications

advantages, 296-297
constructors, 309
defaulting, 301-302
event listeners, 305
example, 298-299, 305-308
frames, 300
methods, 299, 308-309
parameters, 303-304

applications to applets, 310
parameters, 311
security, 311-312
single instances, 311

bytes to characters, 627-628
character sets, 672
data objects to strings, 651
data types, 139

Booleans, 141
C/C++ versus Java, 1169
cast operator, 140-141
characters, 141
explicit conversions, 139
implicit conversions, 139-140
integers, 141
to strings, 1172

dates to strings, 1066
host names to network

addresses, 761
integers to characters, 89, 1116
negative numbers to positive

numbers, 1110
strings

case, 651, 1096
to byte data types, 1117
to double data types, 1119
to integers, 1115-1116
to long data types, 1116

ConvolveOp filter, 583-585
cookie property (Document

object), 1321
cookies, 1294
coordinate space, 564-565
coordinate system, 433
copying

images
into BufferedImage, 581
into memory, 543-544

memory to images, 541-543
objects

clone() method, 1082-1083
vector objects to arrays,

1056
subdirectories, 315

CORBA (Common Object
Request Broker Architecture),
940

applets, 962-963
banking application

Account class, 951-952
BankingImpl object, 953-956
BankingServer, 957
client, 958-959
IDL (Interface Definition

Language) interface,
949-951

JavaIDL skeletons, 952
server initialization, 956

callbacks, 959-960
data type mapping, 961-962
ORB (Object Request Broker),

940
remote method wrappers, 962
RMI (Remote Method

Invocation), compared,
963-964

services
Event, 941
Lifecycle, 941
Naming, 941
Object Querying, 942
Persistence, 941
Properties, 942
Transaction, 941-942

wrapping around objects,
960-961

see also IDL (Interface
Definition Language)

Core conformance level, 864
Core Grammar conformance

level, 865
cos() method, 1112
cosines, calculating, 1112
countComponents method, 408
counting

bits, 1067
observers, 1072
stack frames, 1102
string tokens, 654
threads, 222-223

countObservers() method,
1072

countStackFrames() method,
1102

countTokens() method, 654,
1069

coupling, 73
Crayon applet, 544-551
CRC32 class, 286

createCar() method, 1134
createImage() method, 309
createMenu() method, 510
createNewFile() method, 608
createQuery() method, 696
createTempFile() method, 608
createTemporaryFile() method,

611
createTransformedShape()

method, 576
CropImageFilter filter, 540
cropping images, 536-537
cross-platform issues, 20
cryptographic systems

private-key, 783-784
public-key, 784-786

-cs option (java command), 58
cubic curves, drawing,

567-568
currentThread() method, 1102
currentTimeMillis() method,

1106
cursors, 870

applications, 871
dynamic cursors, 871
frame cursors, 410-411
keyset-driven cursors, 871
mixed cursors, 871
positioned UPDATE/DELETE,

872
static cursors, 871

curves, drawing, 567-568
curveTo() method, 569
customizers (JavaBeans),

933-935
customizing

exception classes, 377-380
sockets, 705-706

RMISocketFactory, 822-823
sample application, 823-825
server sockets, 821
socket classes, 820-821
streams, 818-820

-cvf option (jar command), 276-
277

Cycler applet, 560-562
cycling colors

Cycler applet, 560-562
RGB image filter, 557-559

cycling colors

1360

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

D
-d option

javac command, 60
javadoc command, 62
javah command, 62

d2f bytecode instruction (JVM),
1273

d2i bytecode instruction (JVM),
1273

d2l bytecode instruction (JVM),
1273

dadd bytecode instruction
(JVM), 1270

daemon threads, 225-226,
1101-1102

daload bytecode instruction
(JVM), 1266

darkening colors, 459
darker() method, 459
dashed strokes, creating, 570
dastore bytecode instruction

(JVM), 1268
Data Link layer (OSI model),

683
data members (Event class),

395
data sources (ODBC), 864-865
data streams, see streams
data structures, 1050
data types, 98

adding to vectors, 1171
aggregate, 1169
Booleans, 1168

casting, 141
converting, 141
values, 99

BSTR, 970
C/C++, 1167
casting, 141, 1169
.class file abbreviations,

1239-1240
converting, 139

C/C++ versus Java, 1169
cast operator, 140-141
explicit conversions, 139
implicit conversions, 139-140
to strings, 1172

floating-point, 1168
IDL (Interface Definition

Language), 943-944
integers, 101-102

casting, 141
converting, 141
maximum values, 102

interfaces as, 201-204
JavaScript, 1306-1307
JVM-type signatures, 1153
mapping, 961-962
native methods, 1154
numerical values, 98-99
passing, 1171
security, 772
wrapper classes

Boolean, 1114-1115
Byte, 1117
Character, 1113-1114
Double, 1119
Float, 1118
Integer, 1115-1116
Long, 1116
Number, 1115
Short, 1117
Void, 1119

DatabaseMetaData class,
885-891

databases (relational), 856-857
bookmarks, 871
client/server design

multitier, 868
overview, 867
three-tier, 868
two-tier, 868

cursors, 870
applications, 871
dynamic cursors, 871
keyset-driven cursors, 871
mixed cursors, 871
postioned UPDATE/

DELETE, 872
static cursors, 871

example, 857-858
JDBC (Java Database

Connectivity), see JDBC
joins

defined, 859
dynamic, 859
equi-joins, 862
inner, 860
outer, 860-861
self, 861
SQL statements, 862
static, 859
subtract, 861

keystore, 282
ODBC (Open Database

Connectivity)
architecture, 862-863
command sequences,

866-867
conformance levels, 864-865
connections, 865
data sources, 864
drivers, 863
functions, 865

relationships, 857
replication, 872
tables, 857
transactions, 868

ACID (atomicity,
consistency, isolation,
durability) properties, 869

DTC (Distributed
Transaction Coordinator),
869-870

DatagramPacket class, 721,
764

datagrams, 762-763
broadcasting, 764-765
client application, 766-767
creating, 721
maximum size of, 721
multicast, 768
packets, creating/querying, 764
receiving, 721-722, 763
sending, 722, 763
server application, 765-766
sockets, 762-764

DatagramSocket class,
762-764

DataInput interface, 625
DataInputStream class, 598,

626
DataOutput interface, 626
DataOutputStream class, 599,

626
dataReady() method, 752
DataStore object, 1021
DataTruncation class, 909-910
Date class, 906-907
date fields (AVM), 850
Date object

Java
reading, 801-802
writing to file, 799-800

JavaScript, 1325-1326
Date() method, 1064
date/time methods (JavaScript),

1325-1326
DateField class, 850
DateRead applet, 803-804
DateRead application

running, 803
source code, 801-802

dates
comparing, 1065
converting to strings, 1066
creating, 1064-1065
querying, 1066-1067

-d option

1361

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

DateWrite application
(serialization example),
799-800

running, 801
source code, 799-800

DaytimeServer sample
application (UDP server)

byte arrays, 726
request handling, 726
running, 726
source code, 723-725
starting, 726

-dbgtrace option (jdb
command), 1215-1216

dcmpg bytecode instruction
(JVM), 1274

dcmpl bytecode instruction
(JVM), 1274

DCOM (Distributed Component
Object Model), 966

dconst_0 bytecode instruction
(JVM), 1263

dconst_1 bytecode instruction
(JVM), 1263

ddiv bytecode instruction
(JVM), 1271

deallocate() method, 988
-debug option

AppletViewer command, 56
java command, 59

debugger (JDB), 1188
architecture, 1214-1215
client/server management

DebuggerCallback interface,
1189-1190

RemoteDebugger interface,
1190-1194

command processing
organization, 1213

command-line, 63-64, 1215-1216
commands

!! (repeat last command),
1221

catch, 1229
classes, 1223
clear, 1227-1228
cont, 1228
down, 1230
dump, 1223-1224
exit, 1220
gc, 1220
help, 1219
ignore, 1229
itrace, 1220
kill, 1230
list, 1224

load, 1221
locals, 1224
memory, 1220
methods, 1225
next, 1228
print, 1225
resume, 1229
run, 1221
step, 1228
stop, 1227
suspend, 1229
thread, 1222
threadgroup, 1222
threadgroups, 1225
threads, 1225-1226
trace, 1220-1221
up, 1230
use, 1222
where, 1226

debugging strategies, 1230-1231
input files, 1216-1217
native types, 1204-1205
sample application, 1217-1219
special types, 1194

RemoteArray class,
1202-1203

RemoteClass class,
1198-1202

RemoteField class, 1196
RemoteObject class,

1197-1198
RemoteString class,

1203-1204
RemoteValue class, 1195

stack mangement
RemoteStackFrame class,

1206-1207
RemoteStackVariable class,

1207
StackFrame class, 1205

thread mangement, 1207-1208
RemoteThread class,

1209-1212
RemoteThreadGroup class,

1208-1209
DebuggerCallback interface

methods, 1190
public API, 1189

DEC Alpha systems, 1339
declaring

arrays, 108
classes

access specifiers, 162-164
accessibility, 1130
GameBoard example,

160-162
HelloApplet example, 93
HelloWorld example, 85-86

COM (Component Object
Model) interfaces

importlib statement, 969
method definitions, 970
sample ODL file, 967-969

constructors, 166
fonts, 443
interfaces

extended interfaces, 195-196
names, 194
Product.java example,

193-194
public, 194
syntax, 194

JavaScript functions, 1316
IDL (Interface Definition

Language) modules, 942, 949
managed objects, 832-833
methods

access specifiers, 120-122
in interfaces, 197-198
method modifiers, 122-126
names, 126
parameter lists, 126-128

references, 1163, 1169-1170
unions, 946
variables, 99

characters, 106
in interfaces, 198
integers, 102-103
JavaScript, 1306
loose typing, 1293
strong typing, 1293

whitespace, 109-110
decode() method, 1116
decoding URLs (Uniform

Resource Locators), 747
decrement operator (--),

105-106
default keyword, 121-122, 177
defaulting, 301-302
DefaultMutableTreeNode class,

519
defaultStatus property (window

object), 1320
#define constants (C/C++),

1165
defining, see declaring
Deflater class, 286
DeflaterOutputStream class,

286
delete option (keytool

command), 789
DELETE statement, 872
delete() method, 609

delete() method

1362

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

deleteCharAt() method, 653
deleteObservers() method,

1072
deleteOnExit() method, 608,

612
deleting

certificates, 792
characters from string buffer,

653
files on exit, 611-612
identities, 793
leading spaces, 651, 1096
list items, 342
objects

from collections, 1051
from hashtables, 1060-1061
from maps, 1053
from vectors, 1058

observers, 1072
pop-up menu items, 339
trailing spaces, 651, 1096
tree nodes, 524

deliverEvent() method, 396,
402

denial-of-service attacks,
782-783

-depend option (javac
command), 60

descent (fonts), 441, 446, 659
description() method, 1195
deselect() method, 342
deselecting list items, 342
design

JavaBeans
events, 919
initial values, 919-920
methods, 919
properties, 918-919
TextDisplayer example,

920-921
TextReader example, 921

object-oriented design
class design, 80
example, 75-76
objects, 79-81

structured development, 73
traditional approach, 75

destroy() method, 94, 222,
239

destroying
objects, 1173
threads, 222

Developer’s Kit, see JDK (Java
Developer’s Kit)

dialog boxes, 407
AVM (Admin View Module),

843
button dialogs, 846-847
error dialogs, 844
information dialogs, 844
progress dialogs, 847-849
question dialogs, 845-846
warning dialogs, 844

creating, 416
features, 417
OK Dialog Box example,

417-420
Dictionary class, 1060
digit() method, 1114
digital signatures

certificates, 792
certification authorities, 786-787
identities

Identity class, 791-792
IdentityScope class, 792-793

.jar files, 789
certificates, 281
directive files, 285
jarsigner utility, 282-284
keystore databases, 282
public/private keys, 281

key classes, 790
key management, 788-789
policies, 789
sample application, 793
Signature class, 790-791
signers, 792
see also security

Digitas Course Decision
Assistant Web site, 13

Dimension class, 455
DirectColorModel class, 552
directive files (jar), 285
directories

listing, 610
operations, 610-611

disabling
AWT (Abstract Window

Toolkit) components, 362
compiler, 1127
menu items, 413

disassember (javap), 60-61
discriminators, 946
display methods (AWT),

356-357
displaying

applets, 93
graphics, 356-357
HTML (Hypertext Markup

Language), 525-527

slider tick marks, 490
system properties, 1063

dispose method, 410
Distributed Component Object

Model (DCOM), 966
Distributed Transaction

Coordinator (DTC), 869-870
divide and assign operator (/=),

105
DLLs (dynamic link libraries),

loading, 1108
dload bytecode instruction

(JVM), 1263
dload_0 bytecode instruction

(JVM), 1265
dload_1 bytecode instruction

(JVM), 1265
dload_2 bytecode instruction

(JVM), 1265
dload_3 bytecode instruction

(JVM), 1265
dmul bytecode instruction

(JVM), 1270
dneg bytecode instruction

(JVM), 1271
DNS (Domain Name System),

686
do-while loops, 153-154
-doctype option (javadoc

command), 62
Document object (JavaScript),

1321
document property (window

object), 1320
documentation (Java API), 95
doLayout() method, 360
Domain Name System (DNS),

686
dot notation, 169, 1319
Double constant (Constant

Pool), 1237
double data type

converting to strings, 1119
Double wrapper class, 1119
maximum values, 107
values, 99

double fields (AVM), 849-850
double precision floating-point

literals, 115
double-buffering, 461-462
DoubleField class, 849-850

deleteCharAt() method

1363

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

doubleToLongBits() method,
1119

doUpdate() method, 1020
down command (JDB), 1230
down() method, 1211
downloading

ADK (Applet Developer’s Kit),
51

JDK (Java Developer’s Kit),
44-45

JFC (Java Foundation Classes),
468

draw() method, 565
draw3DRect() method,

435-436
drawBytes() method, 442
drawChars() method, 442
drawImage() method, 248,

449-451
cropping images, 536-537
example, 535
flipping images, 535-536
scaling images, 534

drawing
arbitrary shapes, 569
arcs, 567
buffered images, 580-581
circles, 567
coordinate space, 564-565
curves, 567-568
ellipses, 567
fills

fill() method, 565
gradient color, 571-572
textured, 572-574

Graphics2D object, 564
lines, 566
modes, 447-449
rectangles, 566
rounded rectangles, 566
strokes

BasicStroke class, 569
corners, 570
dashed lines, 570
setStroke() method, 571
width, 569

text, 440-442
character attributes, 578-579
layouts, 577-578
styled strings, 576-577

transformations, 575-576
drawLine() method, 433-434
drawOval() method, 437-438
drawPolygon() method, 438-

439
drawRect() method, 434

drawRoundRect() method,
436-437

drawString() method, 257,
440, 576

drem bytecode instruction
(JVM), 1271

dreturn bytecode instruction
(JVM), 1278

Driver class, 878
driver manager layer (ODBC),

863
DriverManager class, 877-879
drivers

JDBC (Java Database
Connectivity)

Compliant certification, 910
JDBC-ODBC bridge, 876

ODBC (Open Database
Connectivity)

conformance levels, 864-865
overview, 863

pluggable look and feel, 505-506
dstore bytecode instruction

(JVM), 1266
dstore_0 bytecode instruction

(JVM), 1267
dstore_1 bytecode instruction

(JVM), 1267
dstore_2 bytecode instruction

(JVM), 1268
dstore_3 bytecode instruction

(JVM), 1268
dsub bytecode instruction

(JVM), 1270
DTC (Distributed Transaction

Coordinator), 869-870
dual keyword, 969
dump command (JDB),

1223-1224
dumpStack() method, 1102,

1212
dup bytecode instruction

(JVM), 1269
dup_x1 bytecode instruction

(JVM), 1269
dup_x2 bytecode instruction

(JVM), 1269
dup2 bytecode instruction

(JVM), 1269
dup2_x1 bytecode instruction

(JVM), 1269
dup2_x2 bytecode instruction

(JVM), 1269

dynamic binding, 1293-1294
dynamic cursors, 871
dynamic joins, 859
dynamic loading, 1089-1090

E
E constant, 1113
echo characters, 348-349
echoCharIsSet() method, 349
edge-detection (images),

584-585
Edit command (Applet menu),

57
Edit file (ADK), 52
editors

cell editors, 517-519
JEditor

hyperlink events, 527
pages, 527
Web browser application,

525-526
Eich, Brendan, 1298
Electronic Commerce

Framework, see JCC (Java
Commerce Client)

elementAt() method, 248,
1056

elements property (Form
object), 1322

elements() method, 1057
Elevator class

extending, 166
overloaded methods, 167
source code, 166

Ellipse2D class, 567
ellipses, drawing, 567
email mailing lists

Amiga porting issues, 1338
Linux porting issues, 1339
NEXTSTEP porting issues,

1339
Embedded API (Application

Programming Interface), 38
emboss effect (graphics),

587-590
empty stacks, testing for, 1063
empty vectors

creating, 1054
testing for, 1056

empty() method, 1063

empty() method

1364

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

EmptyBorders, 481
enabling

AWT components, 362
compiler, 1127
menu items, 413

encapsulation, 29
encode() method, 747
encoding URLs (Uniform

Resource Locators), 747
encoding property (Form

object), 1322
encryption

private-key, 783-784
public-key, 784-786

endsWith() method, 641,
1094

ensureCapacity() method, 653,
1058, 1098

Enterprise API (Application
Programming Interface), 37

Enterprise JavaBeans
application partitioning, 937-938
JNDI (Java Naming and

Directory Interface), 938
reusability, 938
running, 937
server components, 937
see also JavaBeans

enum construct (C/C++), 1164
enumerate() method, 223,

1103
enumeration

sample application, 184
vector objects, 1056-1057

Enumeration interface,
1056-1057

enumValue() method, 977
environment variables

CLASSPATH, 64
JDK (Java Developer’s Kit)

installation, 43
swing_home, 468

equal sign (=), 144
equality, testing for,

1081-1082
equality operators, 144-148

associativity, 148
sample program, 147

equals() method, 609, 644,
1065, 1081-1082

equi-joins, 862
Error classes, 380

error dialog boxes (AVM), 844
error handling

error classes, 380-381
native methods, 1158-1159
see also exceptions

ErrorDialog class, 844
escape characters

Java, 113-114
JavaScript, 1308

escape sequences, 1168
escape() function (JavaScript),

1318
eSuite program, 11
eval() function (JavaScript),

1318
evaluating expressions, 132

operator associativity, 133
order of evaluation, 135
precedence, 133-135

event adapters, 928-929
Event class

data members, 395
event constants, 393-394
keyboard constants, 392-393
methods, 395

event handlers (JavaScript)
implementing, 1305-1306
table of, 1304

event handling, 364, 381-382
action() method, 385
actionPerformed() method, 385
buttons

action() method, 328-329
event listeners, 330-331

check boxes, 333-334
component input events,

361-362
custom events, 402-403
duplicate code, 401-402
event listeners, 330-331

applet-to-application
conversions, 305

ComponentListeners, 361
defined, 382
FocusListeners, 361
KeyListener, 387
media player, 987
MouseMotionListeners, 361

Java 1.02 event model
Component class, 396-397
Event class, 392-395
handleEvent() method,

399-401
keyboard, 398

Java 1.1 event model, 383-386

JavaBeans, 917
adapters, 928-929
designing, 919
multicast events, 927-928
unicast events, 928

keyboard events
action keys, 387
key codes, 387, 390

lists, 343-347
modifier keys, 390-391
mouse events, 391-392
pop-up menus, 340
radio buttons, 336-338
scrollbars, 354
sliders, 490
text areas, 349-352
text fields, 349-352

event listeners
applet-to-application

conversions, 305
button applications, 330-331
ComponentListeners, 361
defined, 382
FocusListeners, 361
KeyListener, 387
media player, 987
MouseListener, 391-392
MouseMotionListeners, 361

Event service (CORBA), 941
event transmission, 917
evt data member (Event class),

395
Excel

COM objects, calling, 974-975
functions, creating, 975

@exception class tag (javadoc),
63

Exception table (.class file),
1249

exceptionEvent() method,
1190

exceptions
ArithmeticException, 369
ArrayIndexOutOfBounds, 1056
ArrayIndexOutOfBoundsException,

369
ArrayStoreException, 369
catching

finally blocks, 377
multiple exceptions, 375-377
runtime exceptions, 374-375
throws clause, 367-368
try-catch blocks, 364

classes, customizing, 377-380
defined, 364
determining exceptions to

handle, 371-373

EmptyBorders

1365

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

FileNotFoundException, 369
handling

HelloWorld example, 89-90
media player, 985
native methods, 1158-1159

IDL (Interface Definition
Language), 947-948

IntrospectionException, 932
IOException, 369
JDB (Java Debugger) exception

commands, 1229
NullPointerException, 293-294,

369
NumberFormatException, 369
online documentation, 365-366
OutOfMemoryException, 369
returning information about,

369-370
SecurityException, 369
SQL, 893
StackOverflowException, 369
StringIndexOutOfBoundsException,

369
throwing, 204-205, 366-367
UnknownServiceException, 743

Exceptions attribute (.class
file), 1248

exclamation point (!)
!! command, 1221
logical NOT operator, 144

exec() method, 1109
executable code security

applets, 32
external code access, 31
file system access, 31
system information access,

31-32
execute() method, 835
executeQuery() method, 879,

897-898
executeUpdate() method, 879,

898
executing applications

external programs, 1109-1110
flow control

Boolean expressions, 150
conditional operator, 150
defined, 151
equality operators, 146-148
if statements, 151
if-else statements, 151-152
iteration statements, 152-154
JavaScript, 1310-1314
jump statements, 156
logical expressions, 148-149
relational operators, 145-146

switch statements, 154-156
true/false operators, 144-145

HelloWorld application, 85
exists() method, 608
exit command (JDB), 1220
exiting VM (virtual machine),

1107
exitValue() method, 1110
exp() method, 1112
explicit type conversions

cast operator, 140-141
defined, 139

expressions
Boolean, 144-145
C/C++ versus Java, 1182
defined, 132
evaluating, 132

operator associativity, 133
order of evaluation, 135
precedence, 133-135

JavaScript, 1308
see also operators

Extended Grammar
conformance level, 865

extending
classes, 209, 164-165
interfaces, 195-196, 811

external programs
access restrictions, 31
running, 1109-1110

extracting
JDK (Java Developer’s Kit), 46
string segments, 652, 1095

example, 648-650
getBytes() method, 648
getChars() method, 647
substring() method, 648

F
f2d bytecode instruction (JVM),

1273
f2i bytecode instruction (JVM),

1273
f2l bytecode instruction (JVM),

1273
fadd bytecode instruction

(JVM), 1269
faload bytecode instruction

(JVM), 1265
FAMILY attribute (text), 579
fastore bytecode instruction

(JVM), 1268

-fclient option (idlgen
command), 951

fcmpg bytecode instruction
(JVM), 1274

fcmpl bytecode instruction
(JVM), 1274

fconst_0 bytecode instruction
(JVM), 1263

fconst_1 bytecode instruction
(JVM), 1263

fconst_2 bytecode instruction
(JVM), 1263

fdiv bytecode instruction (JVM),
1270

fgColor property (Document
object), 1321

Field Flags field (.class File
Information structure), 1244

Field Information structure
(.class file), 1244

Field Name field (.class File
Information structure), 1244

Field reference constant
(Constant Pool), 1238

Field Table field (.class File
structure), 1243

FieldLayout manager, 852
fields

.class file fields
Attribute Table, 1243-1246
Class Flags, 1242-1244
Class Name, 1242
Constant Pool, 1242
Constant Pool Size, 1242
Field Flags, 1244
Field Name, 1244
Field Table, 1243
Interface List, 1243
Magic Number, 1242
Major Version, 1242
Method Flags, 1246
Method Name, 1246
Method Table, 1243
Minor Version, 1242
No. of Attributes, 1243-1246
No. of Fields, 1243
No. of Interfaces, 1243
No. of Methods, 1243
Signature, 1246
Superclass Name, 1242
Type, 1244

accessing
access modifiers, 177-178
direct access, 172-173
methods, 173-174, 178-179
native methods, 1150-1154

fields

1366

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

AVM (Admin View Module)
date, 850
double, 849-850
integer, 849

declaring in interfaces, 198
defined, 172
identifiers, 176
.jar directive files, 285
referencing, 201
returning list of, 1142-1143
scope, 174-176
static fields, 1156-1157

File class, 599
constructors, 608
methods, 608-609

File structure (.class file)
Attribute Table field, 1243
Class Flags field, 1242-1244
Class Name field, 1242
Constant Pool field, 1242
Constant Pool Size field, 1242
Field Table field, 1243
Interface List field, 1243
Magic Number field, 1242
Major Version field, 1242
Method Table field, 1243
Minor Version field, 1242
No. of Attributes field, 1243
No. of Fields field, 1243
No. of Interfaces field, 1243
No. of Methods field, 1243
Superclass Name field, 1242

file system security, 31
FileDescriptor class, 599
FileInputStream class, 598,

605-606
FileNotFoundException, 369
FileOutputStream class, 599,

606-607
files

.class files, 1234
attribute definitions, 1241
Class Flag values, 1243-1244
ClassFileDump utility,

1251-1252
Code attribute, 1241,

1248-1249
Constant Pool, 1235-1238
ConstantValue attribute,

1241, 1245-1246
data type abbreviations,

1239-1240
embedded Exception table,

1249
Exceptions attribute, 1241,

1248
Field Information structure,

1244-1245

File structure, 1242-1243
installing, 314-315
LineNumberTable attribute,

1241, 1249-1250
LocalVariableTable

attribute, 1241, 1250
Method Information

structure, 1246-1247
SourceFile attribute, 1241,

1251
testing, 315

ADK (Applet Developer’s Kit)
program group, 52

batch files
creating, 317
installing, 318-319
testing, 318

directory operations, 610-611
File objects, 608-609
header files, 1149
.jar files

advantages, 274
bundling, 274
compressing, 274
compatibility issues, 274,

279
creating, 276-277
digital signatures, 789
extracting, 277
installing, 320-321
listing contents, 277
loading, 278-279
manifest files, 280-281
portability, 274-275
reading, 287-288
related classes, 285-286
security, 275, 279-284
when to use, 275

JDB (Java Debugger) input
files, 1216-1217

naming, 48
ODL (Object Definition

Language), compiling, 970
RandomAccessFile class

constructors, 612
example, 614-615
methods, 613-614

reading, 605-606
security, 605
source files

inclusion, 1166
naming, 1167

temporary files
creating, 611
deleting on exit, 611-612

writing to, 606-607
ZLIB, 288

fill variable
(GridBagConstraints class),
425

fill() method, 565
fill3DRect() method, 435
fillInStackTrace() method,

1105
fillOval() method, 437
fillRect() method, 434
fillRoundRect() method, 436
fills

fill() method, 565
gradient color, 571-572
ovals, 438
rectangles, 434

3D rectangles, 435
rounded rectangles, 436

textured, 572-574
filter() method, 582
filterIndexColorModel()

method, 553
filtering

images, 581-582
AffineTransformOp, 582
BrandCombineOp, 582-583
ColorConvertOp, 583
ConvolveOp, 583-585
CropImageFilter, 540
example, 540-541
LookupOp, 585
RescaleOp, 585-586
RGB image filters, 553-557
ThresholdOp, 587

streams, 623-624
FilterInputStream class, 599
FilterOutputStream class, 599
filterRGB() method, 553
final classes, 772

declaring, 163
security implications, 28

final keyword, 125, 163, 178
final methods, 28
finalization, 1084
finalize() method, 1084, 1173,

1260
garbage collection, 179-181

Finalizer methods, 1260
finally blocks, 377
FindClasses() method, 1193
firstElement() method, 1056
fixed fonts, 441
fixed() method (JavaScript),

1324

fields

1367

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

flags
class flag value definitions,

1243-1244
field flag value definitions,

1245-1247
flickering animations,

troubleshooting, 461-462
flipping images, 535-536
fload bytecode instruction

(JVM), 1263
fload_0 bytecode instruction

(JVM), 1264
fload_1 bytecode instruction

(JVM), 1264
fload_2 bytecode instruction

(JVM), 1264
fload_3 bytecode instruction

(JVM), 1264
Float constant (Constant Pool),

1237
float data type

Float wrapper class, 1118
maximum values, 107
values, 99

floating-point data types, 1168
floating-point literals

Java, 114-115
JavaScript, 1308

floating-point variables
maximum values, 106
operations, 107
states, 107

floatToIntBits() method, 1118
floor() method, 1111
flow control, 144

Boolean expressions, 150
C/C++ versus Java, 1180-1181
conditional operators, 150
defined, 151
equality operators, 148
if statements, 151-152
iteration statements, 152-153

do-while loops, 153-154
for loops, 154
while loops, 153

JavaScript
break statements, 1313-1314
comments, 1314-1315
conditional statements,

1310-1311
continue statements,

1313-1314
loops, 1312-1313

FlowLayout manager, 421-422
jump statements, 156

logical expressions
conditional AND, 148-149
conditional OR, 148-149
unary logical operators, 149

quality operators, 146-148
relational operators, 145-146
switch statements, 154-156
true/false operators, 144-145

flush() method, 602
flushing streams, 602
fmul bytecode instruction

(JVM), 1270
fneg bytecode instruction

(JVM), 1271
fno-cpp option (idlgen

command), 951
focus event (JavaScript), 1304
FocusListeners, 361
FONT attribute (text), 579
fonts

ascent/descent, 441, 659
attributes, 656-658
choosing, 442
creating, 443, 659-660
displaying, 660-662
example, 444-445
fixed fonts, 441
font metrics, 445-446
leading, 441, 659
listing available, 444
metrics, 658-659
point size, 442, 660
proportional, 441
styles, 442

for loops
Java, 154
JavaScript, 1312

forcing garbage collection,
1108

forDigit() method, 1114
FOREGROUND attribute (text),

579
Form object (JavaScript), 1322
form property (Document

object), 1321
forms property (Document

object), 1321
forName() method,

1089-1090
forward references, 1166
fragmentation, 1257
frame property (window object),

1320

frame register, 23
frames, 407

creating, 409
cursors, 410-411
deleting, 410
hiding, 410
icons, 411
JFC, 473
menus

action events/methods,
413-414

adding to menu bars, 413
check boxes, 413
creating, 412
example, 414-415
menu items, 412-413
pop-up menus, 415-416
separators, 413
submenus, 413
tear-off, 412

sizing, 410
standalone applets, 411-412
titling, 410

frames property (window
object), 1320

freeMemory() method, 1109,
1194

frem bytecode instruction
(JVM), 1271

freturn bytecode instruction
(JVM), 1278

fromHex() method, 1195
fserver option (idlgen

command), 951
fstore bytecode instruction

(JVM), 1266
fstore_0 bytecode instruction

(JVM), 1267
fstore_1 bytecode instruction

(JVM), 1267
fstore_2 bytecode instruction

(JVM), 1267
fstore_3 bytecode instruction

(JVM), 1267
fsub bytecode instruction

(JVM), 1270
FTP (File Transfer Protocol)

sites
Nagle algorithm, 706
TCP (Transmission Control

Protocol) specification, 700
well-known ports, 700

FTP (File Transfer Protocol) sites

1368

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

functions
accessor functions

CallMethod, 1156
CallStaticMethod, 1158
GetField, 1153
GetObjectClass, 1152
GetStaticField, 1157
GetStaticFieldID, 1157
GetStaticMethod, 1158
SetField, 1154
SetStaticField, 1157

Java support for, 1165
one-way hash functions, 281
see also methods

G
-g option (javac command), 60
game sprite engines, 190
GameBoard class, 160-162
Gamelan Web site, 1334
garbage collection (memory)

Finalizer methods, 1260
forcing, 1108
heap, 24

finalize() method, 179-181
security, 30

mark and sweep algorithm,
1259

process, 1259-1260
reference counting, 1258

GaugeApplet dialog box,
847-848

gc command (JDB), 1220
gc() method, 1193
generating

GUIDs (Globally Unique
Identifiers), 970

random numbers
Math class, 1110
Random class, 1069-1070

GenericCreditCard interface,
1020-1022

genkey option (keytool
command), 789

geometric shapes, see shapes
getAbsoluteFile() method, 608
getAbsolutePath() method,

608
getAddress() method, 722,

762
getAlignment() method, 332
getAllByName() method, 761

getAllPackages() method,
1091

getAppletContext() method,
308-309

getAscent() method, 446, 659
getAudioClip() method, 266
getAutoCommit() method, 884
getBackground() method, 356
getBlockIncrement() method,

353
getBoolean() method, 1114
getBounds() method, 439
getByName() method, 761
getBytes() method, 648
getChars() method, 647, 652,

1098
getClass() method, 1088
getClassLoader() method,

1199
getClickCount() method, 391
getClientContainer() method,

1034
getClip() method, 461
getClipBounds() method, 460
getCodeBase() method, 265,

309
getColumns() method, 349
getComponent() method, 407
getComponentAt() method,

358
getConnection() method,

879-880
getContent() method, 742-743
getContents() method,

overriding, 670
getContext() method, 1021
getControlPanelComponent()

method, 993
getCurrentFrame() method,

1212
getCurrentFrameIndex()

method, 1212
getCurrentVersionIdentifier()

method, 1018
getCursorType method, 411
getDate() method (JavaScript),

1326
getDay() method

Java 1066
JavaScript, 1326

getDeclaredContructor()
method, 1142

getDeclaredField() method,
1142-1143

getDeclaredFields() method,
1142-1143

getDeclaredMethod() method,
1138-1141

getDeclaredMethods() method,
1138

getDefaultToolkit() method,
444

getDependencyIdentifiers()
method, 1018

getDescent() method, 446,
659

getDescription() method, 1020
getDisplayLanguage() method,

667
getDocumentBase() method,

265, 309
getDoInput() method, 746
getDoOutput() method, 746
getDrivers() method, 879
getEchoChar() method, 349
getElement() method, 1203
getElements() method, 1203
getElementType() method,

1203
getErrorStream() method,

1109
getExceptionCatchList()

method, 1194
getExpirationDate() method,

1020
getFamily() method, 656
getFD() method, 613
getfield bytecode instruction

(JVM), 1279
getField() method, 1197-1199
getFieldID() method, 1152
getFields() method,

1198-1200
getFieldValue() method,

1198-1199
getFilePointer() method, 613
getFollowRedirects() method,

747
getFont() method, 357, 443,

656, 659

functions

1369

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

getFontList() method, 444
getFontMetrics() method, 445,

657-658
getForeground() method, 356
getGainControl() method, 997
getHeaderField() method, 744
getHeaderFieldKey() method,

744
getHeight() method, 446,

 659-660
getHits() method, 696-697
getHost() method, 744
getHostName() method, 762
getHours() method

(JavaScript), 1326
getId() method, 1198
getImage() method, 264-266
getInetAddress() method, 751
getInputStream() method, 703,

1109
getInstance() method, 790
getInstanceField() method,

1200
getInstanceFields() method,

1200
getInstrument() method, 1021
getInstrumentEditUI() method,

1021
getInteger() method, 1115
getInterface() method, 768
getInterfaces() method, 1200
getItem() method, 339
getItemSelectable() method,

336
getJCMDescription() method,

1034
getJCMForLatestVersion()

method, 1019
getKeyChar() method, 390
getKeyCode() method, 387
getLabel() method, 327, 338,

835
getLeading() method, 446,

659
getLevel() method, 998
getLineNumber() method,

631, 1206
getLineNumbers() method,

1201

getLocalHost() method, 761
getLocalPort() method, 751,

757
getLocalVariable() method,

1206
getLocalVariables() method,

1206
getMapSize() method, 553
getMaxAdvance() method, 446
getMaxAscent() method, 446
getMaxDescent() method, 446
getMaximum() method, 353
getMaxPriority() method, 1104
getMessage() method, 369,

1104
getMetaData() method, 906
getMethod() method, 1200
getMethodLineNumber()

method, 1201
getMethodName() method,

1206
getMethodNames() method,

1200
getMethods() method, 1200
getMinimum() method, 353
getMinimumSize() method,

357
getMinutes() method

(JavaScript), 1326
getModel() method, 524
getModifiers() method, 390,

1196
getMonth() method

(JavaScript), 1326
getName() method, 223, 608,

656, 835, 1021, 1028,
1200, 1207, 1210

getNewInstrumentUI() method,
1021

getObject() method, 1022
getObjectClass() method, 1152
getOrientation() method, 353
getOutputStream() method,

703
getPackage() method, 1091
getPage() method, 695-696
getPageDimension() method,

463
getParameter() method, 260

getParent() method, 360, 608,
1104

getParentFile() method, 608
getPath() method, 608
getPC() method, 1206
getPixelSize() method, 551
getPoint() method, 391
getPort() method, 744, 751
getPrintJob() method, 463
getPriority() method, 215
getProgressMonitor() method,

498
getProperty() method, 1062,

1107
getProtocol() method, 743
getProxy() method, 747
getPublicKey() method, 791
getQuotes() method, 711
getReceiveBufferSize() method,

705
getRef() method, 744
getRemoteClass() method,

1207
getResolution() method, 463
getResourceBundle() method,

669
getResponseCode() method,

746
getResponseMessage()

method, 746
getRGB() method, 551, 581
getRGBdefault() method, 551
getRows() method, 349
getSecond() method

(JavaScript), 1326
getSelectedCheckbox()

method, 335
getSelectedImage() method,

1035
getSelectedIndex() method,

339, 342
getSelectedIndexes() method,

342
getSelectedItem() method,

339, 342
getSelectedItems() method,

342
getSelectedText() method, 348
getSelectionEnd() method, 348

getSelectionEnd() method

1370

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

getSelectionStart() method,
348

getSelectorText() method,
1035

getSendBufferSize() method,
705

getSimpleGraphic() method,
1021

getSize() method, 262-263,
357, 656, 1203

getSoLinger() method, 751
getSoTimeout() method, 751
getSourceFile() method, 1201
getSourceFileName() method,

1200
getSourcePath() method, 1194
getStackVariable() method,

1212
getStackVariables() method,

1212
getState() method, 333, 986
getStateChange() method, 336
getstatic bytecode instruction

(JVM), 1278
getStaticFields() method, 1200
getStatus() method, 1210
getString() method, 797
getStyle() method, 657
getSuperclass() method, 1200
getSystemScope() method, 792
getTcpNoDelay() method, 752
getText() method, 332
getTime() method

Java, 1066
JavaScript, 1326

getTimeBuffer() method, 726
getTimes() method, 731-732
getTimezoneOffset() method,

1066
getTimeZoneOffset() method

(JavaScript), 1326
getTitle() method, 410
getTransparentPixel() method,

553
getType() method, 1020, 1195
getTypedName() method, 1196
getUnitIncrement() method,

353
getUnselectedImage() method,

1035

getValue() method, 353, 1207
getViewport() method, 421
getVisualComponent() method,

986
getVisualRepresentation()

method, 1021
getWarning() method, 906
getWarnings() method, 893
getWhen() method, 391
getWidths() method, 446
getYear() method (JavaScript),

1326
Globally Unique Identifiers

(GUIDs), 967
defining, 969
generating, 970

GOT_FOCUS constant, 393
goto bytecode instruction

(JVM), 1276
goto_2 bytecode instruction

(JVM), 1283
grabPixels() method, 544
gradient color fills, 571-572
GradientPaint object, 571-572
graphics

adding to applets, 264-266
animation

color cycling, 557-562
double-buffering, 461-462
example, 245-249
XOR drawing mode, 447-449

buffered images
copying into, 581
drawing, 580-581
emboss effects, 587-590
filtering, 584-585

canvases, 354-356
clipping, 592-594
clipping regions, 459-460
color

alpha values, 551
changing, 458, 553-557,

582-583
cycling, 557-562
darkening, 459
lightening, 459
models, 457-458, 551-553
pre-defined colors, 459
reducing, 587
reverse-color lookup, 585
thresholds, 587
transparency, 590-592
wash effect, 585-586

consumers, 537-540
coordinate space, 433, 564-565

copying to memory, 543-544
cropping, 536-537
display methods, 356-357
drawing modes, 447-449
drawing to screen, 534-535
fills

fill() method, 565
gradient color, 571-572
textured, 572-574

filtered images, 540-541, 581-582
affine tranforms, 582
color changes, 582-583
edge-detection, 583-585
reverse-color lookup, 585

flipping, 535-536
icons, 528-530
memory, 541-543
platform differences, 466
positioning, 357-359
printing, 462-464
producers, 537-540
rendering, 360-361
scaling, 534
shapes

arbitrary shapes, 569
arcs, 567
circles, 567
curves, 567-568
draw() method, 565
ellipses, 567
lines, 433-434, 566
polygons, 438-439
rectangles, 434, 566
rounded rectangles, 436-437,

566
sizing, 357-359
strokes

BasicStroke class, 569
corners, 570
dashed lines, 570
setStroke() method, 571
width, 569

text
character attributes, 578-579
drawing, 440-442, 576
fonts, 442-446
layouts, 577-578
style strings, 576-577

tracking
example, 453-454
ID numbers, 451

transformations, 575-576
transparency, 590-592
see also AWT (Abstract Window

Toolkit); GUIs (graphical user
interfaces); JFC (Java
Foundation Classes)

Graphics2D object, 564
Grayer applet, 556-557

getSelectionStart() method

1371

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

GreatRace.java (thread
example)

code listing, 209-211
methods

init(), 212
run(), 223-224
start(), 213

running, 215
GregorianCalendar class, 671
GridBagConstraints class,

425-426
GridBagLayout manager, 421

example, 427-428
variables, 425-426

gridheight variable
(GridBagConstraints class),
425

GridLayout manager, 421-423
gridwidth variable

(GridBagConstraints class),
425

gridx variable
(GridBagConstraints class),
425

gridy variable
(GridBagConstraints class),
425

grow() method, 456
GUIDGEN utility, 970
GUIDs (Globally Unique

Identifiers), 967
defining, 969
generating, 970

GUIs (graphical user interfaces)
borders

cascading, 480-481
example, 479-480
setting, 480

buttons
action method, 328-329
adding to applets, 327
creating, 327
event listeners, 330-331
JButton class, 473-475
labeling, 327
mnemonics, 475

canvases, 354-356
check boxes

aligning, 483, 486
checking state, 333
creating, 332-333
JFC (Java Foundation

Classes), 481-483
listening for events, 333-334
panels, 484-485

clipping regions, 459-461

color
changing, 458
darkening, 459
lightening, 459
pre-defined colors, 459
RGB (red, green, blue) color

model, 457-458
combo boxes, 511-512
component display methods,

357
container basics, 406-408
coordinate system, 433
dialogs, 407

creating, 416-417
OK Dialog Box example,

417-420
display methods, 356-357
drawing modes, 447-449
extensions, 429-430
frames, 407

creating, 409
cursors, 410-411
deleting, 410
JFrame class, 473
hiding, 410
icons, 411
sizing, 410
standalone applets, 411-412
titling, 410

icons, 472-473
input events, 361-362
insets, 428-429
labels

aligning, 332
creating, 331
text, 332

layout managers, 406-407
BorderLayout, 421-424
BoxLayout, 483-484
BulletinLayout, 850-851
ButtonLayout, 851
CardLayout, 421
ColumnLayout, 851
FieldLayout, 852
FlowLayout, 421-422
GridBagLayout, 421, 425-428
GridLayout, 421-423
null, 429
RowLayout, 851

lists
adding items, 341
creating, 341
deleting items, 342
deselecting items, 342
event handling, 343-347
replacing items, 341
selecting items, 342
Swing, 513-514

media trackers
creating, 451
example, 453-454

image IDs, 451
status flags, 452

menu bars, 412
check box items, 510-511
Swing, 510

menus
action events/methods,

413-414
adding to menu bars, 413
check boxes, 413
creating, 412
example, 414-415
menu items, 412-413
pop-up, 339-340, 415-416,

476-478
separators, 413
submenus, 413
tear-off, 412

MVC (Model-View-Controller)
model, compared, 501

panels, 407
adding to applets, 408
creating, 408-409
nesting, 408-409

platform differences, 467
pluggable look and feel

changing, 506
drivers, 504-506

positioning/sizing methods,
357-359

print jobs, 463-464
progress bars

configuring, 493
creating, 493
example, 490-492
updating, 493-494

progress monitors
constructor, 496
example, 494-496
input streams, 497-498
run() method, 496-497

radio buttons
checking state, 335
creating, 335
listening for events, 336-338

rendering methods, 360-361
scrollbars

creating, 352-353
event handling, 354
line increments, 353
minimum/maximum

position values, 353
page increment, 353

ScrollPanes, 407
adding components to, 420
listening for events, 421

shapes
drawing, 449-451
lines, 433-434
ovals, 437-438

GUIs (graphical user interfaces)

1372

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

polygons, 438-440
rectangles, 434-437

sliders
constructors, 489
event handling, 490
example, 488-489
tick marks, 490

tabbed panes
addTab() method, 487
example, 486-487
insertTab() method, 488

tables
cell editors, 517-519
example, 514-515
table models, 516-517

text
drawing, 440-442
font metrics, 445-446
fonts, 442-445

text areas
adding text, 348-349
creating, 347
event handling, 349-352
read-only, 348
replacing text, 349
selecting text, 348

text fields
adding text, 348
creating, 347
echo characters, 348-349
event handling, 349-352
read-only, 348
selecting text, 348
Swing, 528

toolbars, 507-509
tooltips, 475-476
trees, 519

creating nodes, 521
example, 519-521
models, 521-524
removing nodes, 524
text field values, 524-525

utility classes
Dimension, 455
Point, 454-455
Rectangle, 455-457

see also AWT (Abstract Window
Toolkit); graphics; JFC (Java
Foundation Classes)

GZIPInputStream class, 286
GZIPOutputStream class, 286

H
handleEvent() method, 328,

345, 396
implementing, 399
overriding, 399-401

hasChanged() method, 1071
hash codes, 1085
hash functions, 281
hashCode() method, 609, 641,

1085
Hashtable() method, 1059
hashtables

buckets, 1059
capacity, 1059
creating, 1059-1060
keys, 1059
objects, adding/removing,

1060-1061
values, 1059

hasMoreElements() method,
1056

hasMoreTokens() method,
654, 1068

hasPrevious() method, 1054
header files (JNI), 1149
heap

coalescing, 1258
compaction, 1258
garbage collection

Finalizer methods, 1260
mark and sweep algorithm,

1259
process, 1259-1260
reference counting, 1258

management, 1257
HEIGHT attribute (<APPLET>

tag), 230-232
Hello World applet

HTML (Hypertext Markup
Language) file, 238

source code, 237-238
Hello World! script

(JavaScript), 1303
HelloApplet classes

(HelloWorld applet), 93
HelloWorld applet

classes
HelloApplet, 93
importing, 92-93

code listing, 90
HTML (Hypertext Markup

Language) file, 90-91
paint() method, 93
running

Appletviewer, 91
Netscape, 92

HelloWorld application,
291-292

casting, 89
compiling, 84

creating, 84
error handling, 89-90, 294
HelloWorld class, 85-86
JFC (Java Foundation Classes)

Close Window button, 471
compiling, 469
icons, 472-473
JLabel component, 472
main() method, 470
pane layering, 470
running, 469-470
source code, 468-471

main() method, 86
parameters, 293
printing, 463-464
running, 85
source code listing, 84
user input, 88-89
writing to screen

multiple strings, 87-88
print() method, 87
println() method, 86

-help option
java command, 58
javah command, 61

help command (JDB), 1219
heterogenous objects, reading,

797-798
hidden property (Form object),

1322
hide() method, 357, 410
hiding frames, 410
hierarchical databases, 857
history

Java, 1288
programming

Assembly Language, 72
OOP (object-oriented

programming), 74
procedural languages, 73
structured development, 73
traditional design, 75

history property (Document
object), 1321

holder structures (unions), 947
-host option (jdb command), 63
HSPACE attribute (<APPLET>

tag), 233
HTML (Hypertext Markup

Language)
displaying, 525-527
JavaScript integration

advantages, 1296-1297
examples, 1296
event handlers, 1296
script markup, 1290

GUIs (graphical user interfaces)

1373

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

tags
<APPLET>, 10, 278, 1291
<PARAM>, 231-232, 260
<SCRIPT>, 1290, 1302

HTMLView
JEditor

hyperlink events, 527
pages, 527
Web browser application,

525-526
JTextField, 528

HTTPURLConnection class,
746-747

hyperlinks, 527
hyperlinkUpdate() method,

527
Hypertext Markup Language,

see HTML
hyphen (-), 106

I
i variable, 175
I/O (input/output), 598

internationalization
character set converters,

672-674
readers, 674-676
writers, 674-676

streams, 598-599, 1105-1106
buffered streams, 624
byte array streams, 626-627
char array streams, 627
closing, 601
data streams, 624-626
defined, 598
FileInputStream class,

605-606
FileOutputStream class,

606-607
filtered streams, 623-624
flushing, 602
InputStream class, 600
LineNumberReader class,

631-632
marking, 601
object streams, 628-631
OutputStream class, 602
PipeInputStream class, 615
PushbackInputStream class,

633
reading, 600-601
SequenceInputStream class,

632
StringBufferInputStream

class, 628

System.in object, 603
System.out object, 603
tokenizers, 633-636
writing to, 602

i2d bytecode instruction (JVM),
1273

i2f bytecode instruction (JVM),
1273

i2l bytecode instruction (JVM),
1273

iadd bytecode instruction
(JVM), 1269

iaload bytecode instruction
(JVM), 1265

IANA (Internet Assigned
Numbers Authority), 700

iand bytecode instruction
(JVM), 1272

iastore bytecode instruction
(JVM), 1268

IBM’s ADK (Applet Developer’s
Kit)

configuring, 52
downloading, 51
files, 52
installing, 51-52
testing, 52-53

Icon class, 838
Icon interface, 528
IconCanvas object, 838
icons

AVM (Admin View Module),
838-839

JFC (Java Foundation Classes),
472-473, 528-530

iconst_0 bytecode instruction
(JVM), 1262

iconst_1 bytecode instruction
(JVM), 1262

iconst_2 bytecode instruction
(JVM), 1262

iconst_3 bytecode instruction
(JVM), 1262

iconst_4 bytecode instruction
(JVM), 1262

iconst_5 bytecode instruction
(JVM), 1262

iconst_m1 bytecode instruction
(JVM), 1262

id data member (Event class),
395

identifiers, 100-101
cassette identifiers (JCC), 1018
CLSIDs (class IDs), 967

creating, 100
GUIDs (Globally Unique

Identifiers), 967
defining, 969
generating, 970

UUIDs (Universally Unique
Identifiers), 967

variables, 176
identities (security)

Identity class, 791-792
IdentityScope class, 792-793

identities() method, 792
Identity class, 791-792
IdentityScope class, 792-793
IDEs (integrated development

environments), 40
idiv bytecode instruction (JVM),

1270
IDL (Interface Definition

Language), 37, 940, 967
arrays, 947
attributes, 948
banking application

Account class, 951-952
BankingImpl object, 953-956
BankingServer, 957
client, 958-959
compiling, 950-951
interface, 949-950
JavaIDL skeletons, 952
server initialization, 956

constants, 943
data types, 943-944
enumerated types, 944-945
exceptions, 947-948
interfaces, 948
methods, 949
modules

defining, 942
nesting, 943

sequences, 947
structures, 945-946
unions

declaring, 946
discriminators, 946
holder structures, 947

idlgen command, 950
-ids option (jarsigner

command), 284
if statements

Java, 151-152
JavaScript, 1310-1311

if-then-else operator (?:), 145
if_acmpeq bytecode instruction

(JVM), 1276
if_acmpne bytecode instruction

(JVM), 1276

if_acmpne bytecode instruction

1374

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

if_icmpeq bytecode instruction
(JVM), 1275

if_icmpge bytecode instruction
(JVM), 1275

if_icmpgt bytecode instruction
(JVM), 1275

if_icmple bytecode instruction
(JVM), 1276

if_icmplt bytecode instruction
(JVM), 1275

if_icmpne bytecode instruction
(JVM), 1275

ifeq bytecode instruction (JVM),
1274

ifge bytecode instruction
(JVM), 1275

ifgt bytecode instruction (JVM),
1275

ifle bytecode instruction (JVM),
1275

iflt bytecode instruction (JVM),
1274

ifne bytecode instruction
(JVM), 1274

ifnonnull bytecode instruction
(JVM), 1282

ifnull bytecode instruction
(JVM), 1282

IGMP (Internet Group
Management Protocol), 733

ignore command (JDB), 1229
ignoreExceptions() method,

1201
iinc bytecode instruction

(JVM), 1272
iload bytecode instruction

(JVM), 1263
iload_0 bytecode instruction

(JVM), 1264
iload_1 bytecode instruction

(JVM), 1264
iload_2 bytecode instruction

(JVM), 1264
iload_3 bytecode instruction

(JVM), 1264
imageComplete() method, 539
images, see graphics; GUIs

(graphical user interfaces)
imageUpdate() method, 539
implementing interfaces

example, 198-199
extended interfaces, 195

method bodies, 200
modifers, 199
overridden methods, 199
parameter lists, 199-200

implicit type conversions,
139-140

import option (keytool
command), 789

importclasses command, 834
importing

classes, 186
HelloWorld example, 92-93
InitStartStop applet

example, 243
StartPainter example, 262

managed objects, 834
packages, 186-187

imul bytecode instruction
(JVM), 1270

in parameter (IDL), 948
#include directive (C), 1166
incoming data, waiting for,

752-754
incoming socket connections,

accepting, 757
increment operator (++),

105-106
IndexColorModel class,

552-553
indexed properties, 924
indexes

arrays, 109
collections, 1051-1052

indexOf() method
Java, 641-642, 1057, 1095
JavaScript, 1324

ineg bytecode instruction
(JVM), 1271

inequality operator (!=), 144
InetAddress class, 760-761
InetAddress objects, 702-703
Inflater class, 286
InflaterInputStream class, 286
Info command (Applet menu),

57, 66
information commands (JDB)

classes, 1223
dump, 1223-1224
list, 1224
locals, 1224
methods, 1225
print, 1225

threadgroups, 1225
threads, 1225-1226
where, 1226

information dialog boxes
(AVM), 844

InformationDialog class, 844
inheritance, 76-78

C/C++ versus Java, 1177
Java support for, 21
multiple, 1178-1179
polymorphism, 1178

init() method, 93, 239
Animator applet, 248
InternetApplet applet, 254
media player, 987
StarPainter applet, 262

initializing
applets, 93
JavaScript variables, 1306

initSign() method, 791
InitStartStop applet

compiling, 241-242
imported classes, 243
methods

paint(), 243
repaint(), 244
update(), 244

source code listing, 240-241
initVerify() method, 791
inline keyword, 1166
inner classes

advantages, 182, 185
defined, 181-182
sample application, 182-183
synchronization, 184

inner joins, 860
inout parameter (IDL), 948
input events (AWT

components), 361-362
input files (JDB), 1216-1217
input streams

ByteArrayInputStream class,
626

closing, 601
customizing, 819-820
FileInputStream class, 605-606
InputStream class, 600
marking, 601
ObjectInputStream class, 630
PipeInputStream class, 615
PushbackInputStream class,

633
reading, 600-601
SequenceInputStream class,

632

if_icmpeq bytecode instruction

1375

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

input/output, see I/O
INPUT_METHOD_SEGMENT

attribute (text), 579
InputEvent class, 390-391
InputStream class, 598-601
inScope() method, 1207
insert() method, 653, 1097
insertElementAt() method,

1055
insertTab() method, 488
insertText() method, 349
insets, 428-429
Insets class, 428
insets variable

(GridBagConstraints class),
426

Inside Java Web site, 1334
install() method, 1019
installing

ADK (Applet Developer’s Kit),
51-52

applications
from .class files, 314-315
from .jar files, 320-321
UNIX platforms, 315-316
Windows platforms, 317-320

JDK (Java Developer’s Kit)
from CD-ROM

directories, 41-42
SPARC Solaris, 43-44
Windows 95, 42-43
Windows NT, 42-43
x86 machines, 43-44

JDK (Java Developer’s Kit)
from download

Macintosh, 48-49
SPARC Solaris, 45-46
Windows 95, 47-48
Windows NT, 47-48
x86 machines, 45-46

instance methods, 123
instance variables, 123
instanceof bytecode instruction

(JVM), 1281
instanceOf operator, 1177
instantiating

classes, 167-168, 187-188
objects

managed, 831
String, 639

Instrument interface,
1020-1021

InstrumentAdministration
interface, 1021

instruments (JCC), 1017-1020
example, 1022-1028
Instrument interface, 1020
InstrumentAdministration

interface, 1021
returning information about,

1020-1021
storing, 1021
visual representation, 1021

int data type
Integer wrapper class,

1115-1116
values, 98, 102

int2byte bytecode instruction
(JVM), 1273

int2char bytecode instruction
(JVM), 1273

int2short bytecode instruction
(JVM), 1273

Integer constant (Constant
Pool), 1237

integer fields (AVM), 849
integer literals

Java, 112-113
JavaScript, 1307

IntegerField class, 849
integers, 101-102

BigInteger objects, creating,
1120-1121

casting, 141
converting, 141

integers to strings, 89, 1116
strings to integers, 1115

declaring, 102-103
maximum values, 102
operations, 103

integrated development
environments (IDEs), 40

Interface Definition Language,
see IDL

Interface List field (.class File
structure), 1243

Interface Method constant
(Constant Pool), 1238

interfaces, 21, 192-193
ActionListener, 384
AppletContext, 193
as data types

output, 202-204
parameter types, 201-202

body
example, 196-197
methods, 197-198
variables, 198

Collection, 1050-1051

Command, 835
DataInput, 625
DataOutput, 626
DebuggerCallback, 1189-1190
declaring

importlib statement, 969
method definitions, 970
Product.java example,

193-194
public interfaces, 194
sample ODL file, 967-969
syntax, 194

Enumeration, 1056-1057
extending, 195-196
fields, 201
GenericCreditCard, 1020-1022
GUIDs, 967-970
Icon, 528
IDL (Interface Definition

Language), 948, 967
implementing

example, 198-199
method bodies, 200
modifiers, 199
overridden methods, 199
parameter lists, 199-200

Instrument, 1020-1021
InstrumentAdministration, 1021
Iterator, 1053
KeyListener, 387
limitations, 192
List, 1051-1052
ListIterator, 1053-1054
Map, 1052-1053
MouseListener, 391
multiple inheritance, compared,

1178
naming, 194
ObjectInput, 628
ObjectOutput, 628
Observer, 1073
Operation, 1034
PropertyChangeListener, 925
Protocol, 1028
Remote, 811
Runnable, 209
Selectable, 834-835
Serializable, 1084
ServiceUI, 1034-1035
VetoableChangeListener, 925
WalletUI, 1037-1038

internationalization, 664-665
Calendar objects, 671
case scenario, 664
defined, 664
I/O (input/output)

character set converters,
672-674

readers, 674-676
writers, 674-676

internationalization

1376

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

Locale objects
creating, 665
display method, 667-668
JDK-supported locales,

665-666
static constants, 668

ResourceBundles objects, 668
accessing, 671
creating, 669-671
naming conventions, 669

sample application, 677-680
text

boundaries, 677
collating, 676
formatting, 676

TimeZone objects, 671
InternationalTest sample

application, 677-680
Internet host addresses

converting names to, 761
overview, 760-761
retrieving, 762

Internet Assigned Numbers
Authority (IANA), 700

Internet Group Management
Protocol (IGMP), 733

Internet Protocol, see IP
InternetApplet applet

HTML (Hypertext Markup
Language) file, 253

methods
actionPerformed(), 255
add(), 255
drawString(), 257
init(), 254-255
paint(), 256
setFont(), 255
setLayout(), 254
showDocument(), 256

source code listing, 251-254
interpreters, 20-21

Java
command-line options, 57-59
Java Runner, 66-67

JavaScript 1290-1291
intersection() method, 456
intersects() method, 456
introspection, 930

example, 931-932
Introspector class, 922

IntrospectionException
exception, 932

Introspector class, 922, 930
invalidate() method, 360

invalidating AWT (Abstract
Window Toolkit) components,
360

invoke() method, 1141
invokeAndWait() method, 494
invokeinterface bytecode

instruction (JVM), 1280
invokeLater() method, 494
invokenonvirtual bytecode

instruction (JVM), 1280
invokestatic bytecode

instruction (JVM), 1280
invokevirtual bytecode

instruction (JVM), 1279
invoking

AppletViewer, 56
COM (Component Object

Model) objects
Excel, 974-975
Java, 976-979
Visual Basic, 974

Java methods
call-by-reference, 1171
call-by-value, 1171
Reflection API, 1138-1141

JavaScript functions, 1316-1317
IOException, 369
ior bytecode instruction (JVM),

1272
iostream class library (C++),

1164
IP (Internet Protocol)

addresses, 686
multicasting, 732-734

addresses, 733
advantages, 733
limitations, 733
MBONE, 734
multicast groups, 733
TTL (time to live)

parameters, 734
unicasting, 732

ipadx variable
(GridBagConstraints class),
426

ipady variable
(GridBagConstraints class),
426

irem bytecode instruction
(JVM), 1271

ireturn bytecode instruction
(JVM), 1278

isAbsolute() method, 609
isBold() method, 657

isDaemon() method, 226,
1102

isDirectory() method, 609
isEditable() method, 348
isEmpty() method, 1056
isFile() method, 609
isHidden() method, 609
ishl bytecode instruction (JVM),

1271
ishr bytecode instruction

(JVM), 1272
isInfinite() method, 1118
isInterface() method, 1200
isItalic() method, 657
isModal method, 417
isMultipleMode() method, 343
isNaN() method, 1118
isObject() method, 1195
isolated transactions, 942
isPlain() method, 657
isResizable method, 411
isSelected() method, 342
isStatic() method, 1196
isString() method, 1195
isSuspended() method, 1210
istore bytecode instruction

(JVM), 1265
istore_0 bytecode instruction

(JVM), 1266
istore_1 bytecode instruction

(JVM), 1266
istore_2 bytecode instruction

(JVM), 1267
istore_3 bytecode instruction

(JVM), 1267
isub bytecode instruction

(JVM), 1270
italics() method (JavaScript),

1324
ItemEvent object, 336
itemStateChanged() method,

336
iteration statements, 152-153

do-while loops, 153-154
for loops, 154
while, 153

Iterator interface, 1053
iterators, 1052-1053

internationalization

1377

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

itrace command (JDB), 1220
itrace() method, 1193
iushr bytecode instruction

(JVM), 1272
ixor bytecode instruction (JVM),

1272

J
-J option

javac command, 60
javadoc command, 63

JAbstractTableModel class,
516-517

.jar (Java archives) files
advantages, 274
bundling, 274
compressing, 274
compatibility issues

backward compatibility, 274
browser compatibility, 279

creating, 276-277
digital signatures, 789
extracting, 277
installing, 320-321
listing contents, 277
loading, 278-279
manifest files, 280-281
portability, 274-275
reading, 287-288
related classes, 285-286
security, 275, 279-280

certificates, 281
directive files, 285
jarsigner utility, 282-284
keytool utility, 282
manifest files, 280-281
public/private keys, 281

when to use, 275
jar utility

command-line options
cvf option, 276-277
tvf option, 277
xvf option, 277

creating archives, 276-277
extracting archives, 277
listing archive contents, 277

JARS (Java Applet Rating
Service), 1335

jarsigner utility, 282-283
-ids option, 284
-keypass option, 284
-keystore option, 283
-sigfile option, 284
-signedjar option, 284

-storepass option, 283
-verbose option, 284
-verify option, 284

Java Applet Rating Service
(JARS), 1335

Java archives, see .jar files
Java Beans, see JavaBeans
Java Boutique Web site, 1335
Java Commerce Client, see JCC
Java Commerce Messages

(JCM), 1016
Java Database Connectivity, see

JDBC
Java Debugger, see JBD
Java Developer’s Journal Web

site, 1335
Java Developers Connection

Web site, 1335
Java Developer’s Kit, see JDK
Java Guide Web site, 1334
Java Lobby Web site, 1335
Java look-and-feel driver, 506
Java Management API, see

JMAPI
Java Media Framework, see

Media Framework
Java Naming and Directory

Interface (JNDI), 938
Java Native Interface, see JNI
Java Plug-in, 234

configuring, 236-237
in Internet Explorer, 235
in Netscape, 235-236

Java Resources from Netscape
Web site, 1336

Java Runner utility, 66-67
java utility, 57-59
Java Virtual Machine, see JVM
Java World Web site, 1336
java.applet package, 9, 36, 189

see also applets
java.bean package, see

JavaBeans
java.io package, 10, 35, 189

see also I/O (input/output)
java.lang package, 10, 35, 189,

1080-1081
availability of classes, 190
Class class, 1089-1091
Math class, 1110-1113

Object class
clone() method, 1082-1083
equals() method, 1081-1082
finalize() method, 1084
getClass() method, 1088
hashCode() method, 1085
notify() method, 1085-1088
toString() method, 1082
wait() method, 1085-1088

object wrapper classes, 1113,
1171

BigDecimal, 1121
BigInteger, 1119-1121
Boolean, 1114-1115
Byte, 1117
Character, 1113-1114
ClassLoader, 1123-1126
Compiler, 1127-1128
Double, 1119
Float, 1118
Integer, 1115-1116
Long, 1116-1117
Number, 1115
SecurityManager, 1126-1127
Short, 1117
Void, 1119

Package class, 1091
Process class, 1108-1110
Runtime class, 1108-1110
String class, 638, 1091-1096

charAt() method, 1095
compareTo() method, 1094
concat() method, 1096
constructors, 640
endsWith() method, 1094
indexOf() method, 1095
lastIndexOf() method, 1095
length() method, 1093
regionMatches() method,

1094
replace() method, 1096
startsWith() method, 1094
String() method, 1092-1093
toCharArray() method,

1095
toLowerCase() method,

1096
toUpperCase() method,

1096
trim() method, 1096
valueOf() method, 1093

StringBuffer class, 1096-1098
System class, 1105-1108
Thread class, 1099-1103
ThreadGroup class, 1103-1104
Throwable class, 1104-1105
see also data types; strings;

threads

java.lang package

1378

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

java.lang.reflect package
(Reflection), 36, 806

classes
creating, 1131-1135
listing declared fields,

1142-1143
defined, 1130
methods

invoking, 1138-1141
returning list of, 1130-1131,

1135-1138
security model, 1130

java.net package, 10, 35, 189
see also networking

java.rmi package, see RMI
java.security package, see

security
java.sql.* packages, see SQL
java.text package, 676-677

see also internationalization
java.util package, 35, 189

see also ADTs; dates;
hashtables; utilities

JavaBeans, 36
architecture, 916
BeanBox, 920
customizers, 933-935
designing

events, 919
initial values, 919-920
methods, 919
properties, 918-919
TextDisplayer example,

920-921
TextReader example, 921

Enterprise JavaBeans
application partitioning,

937-938
reusability, 938
running, 937
server components, 937

event handling, 917
adapters, 928-929
multicast events, 927-928
unicast events, 928

introspection
example, 931-932
Introspector class, 922, 930

JNDI, 938
methods, 917, 923
non-GUI environments, 936-937
packaging, 918
properties, 916-917, 922

bound, 924-925
constrained, 925-926
indexed, 924
PropertyEditors, 932-933
single-value, 922-924

state persistence, 917
Web site, 1336

javac utility, 22, 59-60
javadoc utility

command-line options, 62-63
comment notation, 111, 1163
tags, 63

javah utility, 61-62
JavaH utility (Macintosh), 67
javakey utility, 284-285
javap utility, 60-61
JAVAREG tool, 972
JavaScript, 1302

arrays
creating, 1317-1318
sizing, 1318

code
interpreting, 1291
reuse, 1299
standard code, 1298-1299

comments, 1314-1315
compared to Java, 1288-1290
control statements

break, 1313-1314
continue, 1313-1314
for loops, 1312
if-else, 1310-1311
while loops, 1312-1313

data types, 1306-1307
dynamic binding, 1293-1294
event handlers

implementing, 1305-1306
table of, 1304

expressions, 1308
functions, 1319

alert(), 1305, 1320
anchor(), 1323
big(), 1323
blink(), 1323
bold(), 1323
calling, 1316-1317
charAt(), 1323
clearTimeout(), 1320
close(), 1320
defining, 1316
escape(), 1318
eval(), 1318
fixed(), 1324
getDate(), 1326
getDay(), 1326
getHours(), 1326
getMinutes(), 1326
getMonth(), 1326
getSeconds(), 1326
getTime(), 1326
getTimeZoneOffset(), 1326
getYear(), 1326
indexOf(), 1324

italics(), 1324
lastIndexOf(), 1324
link(), 1324
open(), 1320
parse(), 1326
parseFloat(), 1318
parseInt(), 1318
prompt(), 1320
setDate(), 1326
setHours(), 1326
setMinutes(), 1326
setMonth(), 1326
setSeconds(), 1326
setTime(), 1326
setTimeout(), 1320
setYear(), 1326
small(), 1324
strike(), 1324
sub(), 1324
submit(), 1322
substring(), 1324
sup(), 1324
toGMTString(), 1326
toLocaleString(), 1326
toLowerCase(), 1324
toUpperCase(), 1324
unescape(), 1318
UTC(), 1326

history of, 1288
HTML (Hypertext Markup

Language) integration,
1296-1297

script markup, 1290,
1302-1303

Java integration, 1299
literals, 1307-1308
loose typing, 1293
new features, 1297
objects

Date, 1325-1326
Document, 1321
dot notation, 1319
Form, 1322
limitations, 1292-1293
Math, 1324-1325
methods, 1319
Navigator, 1322-1323
properties, 1319
prototypes, 1293
String, 1323-1324
window, 1319-1320

operators
arithmetic, 1309
assignment, 1310
bitwise, 1309
logical, 1309
precedence, 1310

scope limitations, 1295
scripts

Clock, 1326-1329
Hello World!, 1303

java.lang.reflect package

1379

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

security, 1294-1295
stability, 1297-1298
variables

declaring, 1306
initializing, 1306
naming, 1307
scope, 1307

JAVATLB command, 971
JavaWallet, 37
Javology Web site, 1336
JBD (Java Debugger), 1188

architecture, 1214-1215
client/server management

DebuggerCallback interface,
1189-1190

RemoteDebugger interface,
1190-1194

command processing
organization, 1213

command-line, 63-64, 1215-1216
commands

!! (repeat last command),
1221

catch, 1229
classes, 1223
clear, 1227-1228
cont, 1228
down, 1230
dump, 1223-1224
exit, 1220
gc, 1220
help, 1219
ignore, 1229
itrace, 1220
kill, 1230
list, 1224
load, 1221
locals, 1224
memory, 1220
methods, 1225
next, 1228
print, 1225
resume, 1229
run, 1221
step, 1228
stop, 1227
suspend, 1229
thread, 1222
threadgroup, 1222
threadgroups, 1225
threads, 1225-1226
trace, 1220-1221
up, 1230
use, 1222
where, 1226

debugging strategies, 1230-1231
input files, 1216-1217
native types, 1204-1205
sample application, 1217-1219

special types, 1194
RemoteArray class,

1202-1203
RemoteClass class,

1198-1202
RemoteField class, 1196
RemoteObject class,

1197-1198
RemoteString class,

1203-1204
RemoteValue class, 1195

stack mangement
RemoteStackFrame class,

1206-1207
RemoteStackVariable class,

1207
StackFrame class, 1205

thread mangement, 1207-1208
RemoteThread class,

1209-1212
RemoteThreadGroup class,

1208-1209
JButton class

event listeners, 475
example, 473-474
mnemonics, 475
tooltips, 475-476

JCC (Java Commerce Client),
1016-1017

CassetteControl class
cassette identifiers, 1018
declaring, 1018
getCurrentVersionIdentifier()

method, 1018
getDependencyIdentifiers()

method, 1018
getExpirationDate()

method, 1020
getJCMForLatestVersion()

method, 1019
install() method, 1019

commerce messages, 1016
instruments, 1017-1020

example, 1022-1028
Instrument interface, 1020
InstrumentAdministration

interface, 1021
returning information about,

1020-1021
storing, 1021
visual representation, 1021

operation cassettes, 1034
protocol cassettes

example, 1029-1033
Protocol interface, 1028-1029
PurchaseProtocol interface,

1029
service cassettes

example, 1035-1037
ServiceUI interface,

1034-1035

user interface cassettes
example, 1038-1047
WalletUI interface,

1037-1038
JCheckBoxMenuItem class,

510
JCM (Java Commerce

Messages), 1016
JComboBox class, 511-513
jdb command, 1215-1216
JDBC (Java Database

Connectivity), 37, 856, 874,
910

advantages, 910-911
applications, 879-880

Query example, 881-882
Update example, 882-883

classes, 875-877
Connection, 883-885
DatabaseMetaData, 885-891
Driver, 878
DriverManager, 877-879
ResultSetMetaData, 891-893
SQLExceptions, 893
SQLWarnings, 893-894

communication layers, 875
data sources, 876
design, 874
JDBC Compliant certification,

910
JDBC-ODBC bridge, 876
ResultSet objects, 904-906
security, 876
statements, 896-897

CallableStatement object,
902-904

PreparedStatement object,
899-902

Statement object, 897-899
supporting classes

DataTruncation, 909-910
Date, 906-907
Time, 907
Timestamp, 908
Types, 908-909

transaction isolation modularity,
884

URLs, 878
Web site, 874

JDK (Java Developer’s Kit),
9-10, 34-40

installing from CD-ROM, 41-42
Windows 95, 42-43
Windows NT, 42-43
x96 machines, 43-44

installing from download, 44
Macintosh, 48-49
SPARC Solaris, 45-46

JDK (Java Developer’s Kit)

1380

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

Windows 95, 47-48
Windows NT, 47-48
x86 machines, 45-46

Macintosh version, 64-65
AppletViewer, 65-66
Java compiler, 67
Java Runner, 66-67
JavaH, 67

system requirements, 44-45
testing

Macintosh, 50
test project, 49
Windows NT, 49-50

see also ADK (Applet
Developer’s Kit)

JEditor class
hyperlink events, 527
pages, 527
Web browser application,

525-526
JFC (Java Foundation Classes),

468
2D Graphics API, see 2D

graphics
applets, 530-531
borders

cascading, 480-481
example, 479-480
setting, 480

browser configuration, 531
buttons

event listeners, 475
example, 473-474
mnemonics, 475
tooltips, 475-476

check boxes
aligning, 483, 486
creating, 481-482
event listeners, 483
panels, 484-485

combo boxes, 511-513
downloading, 468
editor

hyperlink events, 527
pages, 527
Web browser application,

525-526
frames, 473
HelloWorld application

Close Window button, 471
compiling, 469
JLabel component, 472
main() method, 470
running, 469-470
source code, 468-471

icons, 472-473, 528-530
labels, 472

MVC system, 500
AWT, compared, 501
examples, 502-503
object diagram, 501-502

panes
layering, 470
tabbed, 486-488

pluggable look-and-feel, 504-505
changing, 506-507
drivers, 505-506

pop-up menus
creating, 478
example, 476-478

progress bars
configuring, 493
creating, 493
example, 490-492
updating, 493-494

progress monitors
constructor, 496
example, 494-496
input streams, 497-498
run() method, 496-497

sliders
constructors, 489
event handling, 490
example, 488-489
tick marks, 490

Swing
cell editors, 517-519
combo boxes, 511-514
JAbstractTableModel,

516-517
JButton, 473-476
JCheckBoxMenuItem, 510
JComboBox, 511-513
JEditor, 525-527
JFrame, 473
JLabel, 472
JMenuBar, 510
JProgressBar, 490-494
JProgressMonitor, 494-497
JProgressMonitorInputStream,

498-498
JSlider class, 488-490
JTabbedPane, 486-488
JTable, 514-515
JTextField, 528
JToolBar class, 507-509
KeyAccelerators, 511
lists, 511-514
menu bars, 510-511
tables, 514-517
text fields, 528
toolbars, 507-509
trees, 519-525

tables, 514-515
text fields, 528
toolbars, 507-509

see also AWT (Abstract Window
Toolkit); graphics

JFrame class, 473
JIT (just-in-time) compiler, 20,

41
enabling/disabling, 1127

JLabel component, 472
JMAPI (Java Management API)

applets, 830
AVM (Admin View Module)

content managers, 834-838
dialogs, 843-849
icons, 838-839
layout managers, 850-852
property book, 840-841
self-validating fields, 849-850
task pages, 841-843

Managed Object Server, 830
managed objects

accessing, 831-832
compiling, 833
importing, 834
instantiating, 831
methods, 833
properties, 832-833

startup Web pages, 831
JmapiHome.html page

(JMAPI), 831
JMenuBar class, 510
JNDI (Java Naming and

Directory Interface), 938
JNI (Java Native Interface),

1147-1148
advantages, 1146-1147
disadvantages, 1147
exception handling, 1158-1159
header files, 1149
method access

Java methods, 1155-1156
static methods, 1158

native methods
compiling, 1148
implementing, 1149-1150

object access, 1150
data types, 1154
GetField functions, 1153
GetFieldID method, 1152
GetObjectClass method,

1152
sample program, 1151-1152
SetField functions, 1154

shared libraries, 1150
static field access, 1156
writing native methods, 1148

JDK (Java Developer’s Kit)

1381

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

-jni option (javah command),
61

join() method, 1100
JOIN_BEVEL value (stroke

corners), 570
JOIN_MITER value (stroke

corners), 570
JOIN_ROUND value (stroke

corners), 570
joinGroup() method, 735, 767
joins

defined, 859
dynamic joins, 859
equi-joins, 862
inner joins, 860
outer joins, 860-861
self joins, 861
SQL statements, 862
static joins, 859
subtract, 861

JProgressBar class
constructors, 493
example, 490-492
threads, 493-494

JProgressMonitor class
constructor, 496
example, 494-496
run() method, 496-497

JProgressMonitorInputStream
class, 498-498

JSlider class
constructors, 489
event handling, 490
example, 488-489
tick marks, 490

jsr bytecode instruction (JVM),
1276

jsr_w bytecode instruction
(JVM), 1283

JTabbedPane class
addTab() method, 487
example, 486-487
insertTab() method, 488

JTable class, 514-515
JTextField class, 528
JToolBar class, 507-509
jump statements, 156
just-in-time (JIT) compiler, 20,

41
enabling/disabling, 1127

JUSTIFICATION attribute
(text), 579

JVM (Java Virtual Machine),
22, 1254

advantages, 41
architecture, 1255-1257
bytecode instructions

aaload, 1266
aastore, 1268
aconst_null, 1262
aload, 1263
aload_0, 1265
aload_1, 1265
aload_2, 1265
aload_3, 1265
anewarray, 1281
areturn, 1278
astore, 1266
astore_0, 1268
astore_1, 1268
astore_2, 1268
astore_3, 1268
athrow, 1281
baload, 1266
bastore, 1269
bipush, 1263
breakpoint, 1283
caload, 1266
castore, 1269
checkcast, 1281
d2f, 1273
d2i, 1273
d2l, 1273
dadd, 1270
daload, 1266
dastore, 1268
dcmpg, 1274
dcmpl, 1274
dconst_0, 1263
dconst_1, 1263
ddiv, 1271
dload, 1263
dload_0, 1265
dload_1, 1265
dload_2, 1265
dload_3, 1265
dmul, 1270
dneg, 1271
drem, 1271
dreturn, 1278
dstore, 1266
dstore_0, 1267
dstore_1, 1267
dstore_2, 1268
dstore_3, 1268
dsub, 1270
dup, 1269
dup_x1, 1269
dup_x2, 1269
dup2, 1269
dup2_x1, 1269

dup2_x2, 1269
f2d, 1273
f2i, 1273
f2l, 1273
fadd, 1269
faload, 1265
fastore, 1268
fcmpg, 1274
fcmpl, 1274
fconst_0, 1263
fconst_1, 1263
fconst_2, 1263
fdiv, 1270
fload, 1263
fload_0, 1264
fload_1, 1264
fload_2, 1264
fload_3, 1264
fmul, 1270
fneg, 1271
frem, 1271
freturn, 1278
fstore, 1266
fstore_0, 1267
fstore_1, 1267
fstore_2, 1267
fstore_3, 1267
fsub, 1270
getfield, 1279
getstatic, 1278
goto, 1276
goto_2, 1283
i2d, 1273
i2f, 1273
i2l, 1273
iadd, 1269
iaload, 1265
iand, 1272
iastore, 1268
iconst_0, 1262
iconst_1, 1262
iconst_2, 1262
iconst_3, 1262
iconst_4, 1262
iconst_5, 1262
iconst_m1, 1262
idiv, 1270
if_acmpeq, 1276
if_acmpne, 1276
if_icmpeq, 1275
if_icmpge, 1275
if_icmpgt, 1275
if_icmple, 1276
if_icmplt, 1275
if_icmpne, 1275
ifeq, 1274
ifge, 1275
ifgt, 1275
ifle, 1275

JVM (Java Virtual Machine)

1382

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

iflt, 1274
ifne, 1274
ifnonnull, 1282
ifnull, 1282
iinc, 1272
iload, 1263
iload_0, 1264
iload_1, 1264
iload_2, 1264
iload_3, 1264
imul, 1270
ineg, 1271
instanceof, 1281
int2byte, 1273
int2char, 1273
int2short, 1273
invokeinterface, 1280
invokenonvirtual, 1280
invokestatic, 1280
invokevirtual, 1279
ior, 1272
irem, 1271
ireturn, 1278
ishl, 1271
ishr, 1272
istore, 1265
istore_0, 1266
istore_1, 1266
istore_2, 1267
istore_3, 1267
isub, 1270
iushr, 1272
ixor, 1272
jsr, 1276
jsr_w, 1283
l2d, 1273
l2f, 1273
l2i, 1273
ladd, 1269
laload, 1265
land, 1272
lastore, 1268
lcmp, 1273
lconst_0, 1263
lconst_1, 1263
ldc1, 1263
ldc2, 1263
ldc2w, 1263
ldiv, 1270
lload, 1263
lload_0, 1264
lload_1, 1264
lload_2, 1264
lload_3, 1264
lmul, 1270
lneg, 1271
lookupswitch, 1277
lor, 1272
lrem, 1271
lreturn, 1278

lshl, 1271
lshr, 1272
lstore, 1266
lstore_0, 1267
lstore_1, 1267
lstore_2, 1267
lstore_3, 1267
lsub, 1270
lushr, 1272
lxor, 1272
monitorenter, 1282
monitorexit, 1282
multianewarray, 1282
new, 1280
newarray, 1280
nop, 1262
overview, 1262
pop, 1269
pop2, 1269
putfield, 1279
putstatic, 1279
ret, 1276
ret_w, 1283
return, 1278
saload, 1266
sastore, 1269
sipush, 1263
swap, 1269
tableswitch, 1277
wide, 1282

class file verification, 1260
benefits, 1261
bytecode verifier, 1261
runtime, 1262
semantic check phase, 1261
syntax check phase, 1261

garbage collection
Finalizer methods, 1260
heap, 24
mark and sweep algorithm,

1259
process, 1259-1260
reference counting, 1258

memory management
coalescing, 1258
compaction, 1258
heap manager, 1257

method area, 24
registers, 23
security

attack scenarios, 26
compiled code, 29
executable code, 31-32
Java language level, 28-29
limitations, 33-34
overview, 24-25
potential targets, 26
runtime, 29-30
solution strategy, 25-28

stack, 23

K
key classes, 790
key codes, 387, 390
key data member (Event class),

395
KEY_EVENT constant, 393
KEY_PRESS constant, 393
KEY_RELEASE constant, 393
KeyAccelerators, 511
keyboard

event handling
Java 1.0 model, 398
Java 1.1 model, 387, 390

KeyAccelerators, 511
modifiers keys, 390-391

keyboard constants (Event
class), 392-393

keyChar data member (Event
class), 395

keyDown() method, 396
KeyListener interface, 387
-keypass option (jarsigner

command), 284
keyPressed method, 387
keyReleased method, 387
keys, public/private, 281
keyset-driven cursors, 871
keystore databases, 282
-keystore option (jarsigner

command), 283
keystores, 788
keytool utility, 282, 788
keyTyped() method, 387
keyUp() method, 396
keywords

abstract
class declarations, 163-164
method declarations, 125

case sensitivity, 95
const, 1164
default

class declarations, 177
method declarations,

121-122
defined, 94
dual, 969
final, 163, 178

class declarations, 163
method declarations, 125

inline, 1166
list of, 94-95

JVM (Java Virtual Machine)

1383

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

native, 126
native1, 126
new, 1318
odl, 969
private

class declarations, 177
method declarations, 121

protected
class declarations, 163, 177
method declarations,

120-121
public

class declarations, 163, 177
method declarations, 120

static, 122-125, 177
super, 1179
synchronized, 126, 220
this, 1318
uuid, 969
var, 1306
see also statements

kill command (JDB), 1230

L
-l option (javap command), 61
l2d bytecode instruction (JVM),

1273
l2f bytecode instruction (JVM),

1273
l2i bytecode instruction (JVM),

1273
labels, 129, 327

aligning, 332
creating, 331
editing text, 332
JFC, 472

ladd bytecode instruction
(JVM), 1269

laload bytecode instruction
(JVM), 1265

land bytecode instruction
(JVM), 1272

LANGUAGE attribute
<SCRIPT> tag, 1302
text, 579

Last In, First Out (LIFO)
format, 86

lastElement() method, 1056
lastIndexOf() method

Java, 642, 1057, 1095
JavaScript, 1324

lastModified property
(Document object), 1321

lastModified() method, 609
lastore bytecode instruction

(JVM), 1268
lastPageFirst() method, 463
layering components, 470
layers

OSI (Open Systems
Interconnect) model, 682-683

TCP/IP (Transmission Control
Protocol/Internet Protocol)
network model, 683-684

Application layer, 684
Link layer, 685
Network layer, 685
Transport layer, 685

layout managers, 406-407
BorderLayout, 421-424
BoxLayout, 483-484
BulletinLayout, 850-851
ButtonLayout, 851
CardLayout, 421
ColumnLayout, 851
FieldLayout, 852
FlowLayout, 421-422
GridBagLayout, 421

example, 427-428
variables, 425-426

GridLayout, 421-423
null, 429
RowLayout, 851

layout() method, 360
layouts (text), 577-578
lcmp bytecode instruction

(JVM), 1273
lconst_0 bytecode instruction

(JVM), 1263
lconst_1 bytecode instruction

(JVM), 1263
ldc1 bytecode instruction

(JVM), 1263
ldc2 bytecode instruction

(JVM), 1263
ldc2w bytecode instruction

(JVM), 1263
ldiv bytecode instruction (JVM),

1270
leading, 441, 659
leading (fonts), 446
leading spaces, deleting, 651,

1096
leaveGroup() method, 735,

767

length, determining
string buffers, 652
strings, 640

length property
Form object, 1322
String object, 1323
window object, 1320

length() method, 609, 640,
652, 1093

lexical structure, Java versus
C/C++, 1162

libraries
DLLs (dynamic link libraries),

loading, 1108
shared libraries, 1150

Lifecycle service (CORBA), 941
LIFO (Last In, First Out)

format, 86
lightening colors, 459
line updates (scrollbars), 352
Line2D class, 566
LineNumberInputStream class,

598
LineNumberReader class,

631-632
LineNumberTable attribute

(.class file), 1249-1250
lines, drawing, 433-434, 566
lineTo() method, 569
linger time (sockets), 751
Link layer (TCP/IP network

model), 685
link property (Document

object), 1321
link() method (JavaScript),

1324
linkColor property (Document

object), 1321
linker, 21
linking

media players, 1002-1006
security, 29

links property (Document
object), 1321

Linux, 1339
list command (JDB), 1224
List interface, 1051-1052
-list option (keytool command),

789
list() method, 609-610, 1063

list() method

1384

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

LIST_DESELECT constant, 394
LIST_EVENT constant, 394
LIST_SELECT constant, 394
ListBreakpoints() method,

1194
ListClasses() method, 1193
listening for events, 381-382

ActionListener interface,
384-386

applet-to-application
conversions, 305

buttons, 330-331
check boxes, 333-334
event listeners, 382-384

ComponentListeners, 361
defined, 382
FocusListeners, 361
KeyListener, 387
media player, 987
MouseListener, 391-392
MouseMotionListeners, 361

hyperlink events, 527
Java 1.0 model

Component class, 396-397
Event class, 392-395
keyboard events, 398

lists, 343-347
pop-up menus, 340
radio buttons, 336-338
scrollbars, 354
text areas, 349-352
text fields, 349-352

listFiles() method, 609
listings (code listings)

ActiveBanner sample applet,
270-271

AltaVistaList application,
691-695

animation
color cycling, 557-559
Cycler applet, 560-562
double-buffering, 462
XOR drawing mode, 447-449

applets, creating
<APPLET> tag, 234
alternative information, 231
catch program block, 256
InitStartStop example,

240-241
paint() method, 257
<PARAM> tag, 232
sample HTML file, 229

arithmetic operators, 104
arrays, declaring, 109
assignment operators, 105
AVM (Admin View Module)

content manager, 835-838
icons, 838-839

progress dialog, 847-848
property book, 840-841
question dialog, 845-846
task pages, 842-843

browsers
displaying Web pages, 270
status messages, 269

buttons
BGSetter.java, 330-331
button controls, creating,

255
Button1Applet.java, 328-329
Button2Applet.java, 331

canvases, 355-356
check boxes, event handling,

334
class fields

accessing with methods,
173-174

direct access, 173
protected fields, 179
scope, 174-176

.class file shorthand types, 1240
Class Loader application

source code, 1124-1125
testing, 1126

classes
instantiating, 167
instantiating without

importing, 187-188
referencing parts of, 169
Runner, 199-200

Clock applet, 297-299
Clock application

complete source code,
305-308

main() method, 299,
303-304

parameters, 301-302
Clock script

batch file, 317
wrapper script, 316

COM interfaces, defining,
968-969

COM objects
calling, 977-978
creating, 971-972

comments
C++ style, 111
javadoc notation, 111
traditional style, 110

CORBA (Common Object
Request Broker Architecture)
application

Account class, 951-952
BankingImpl object, 953-956
BankingServer, 957
client, 958-959

IDL (Interface Definition
Language) interface, 950

Crayon applet, 544-551
datagrams

client application, 766-767
server application, 765-766

debugger
DebuggerCallback interface,

1190
native types classes, 1205
RemoteArray class, 1202
RemoteClass class,

1198-1199
RemoteDebugger class,

1191-1192
RemoteField class, 1196
RemoteObject class, 1197
RemoteStackFrame class,

1206
RemoteStackVariable class,

1207
RemoteString class, 1203
RemoteThread class,

1209-1210
RemoteValue class, 1195
sample application,

1217-1218
StackFrame class, 1206

digital signatures, 793
directory operations, 610-611
Elevator class

extending, 166
overloaded methods, 167
source code, 166

enumeration of elements, 184
equality operators, 147
equals() method, 1081-1082
event handling

action() method, 385
actionPerformed() method,

385
custom evwnts, 402-403
duplicate code, 401
handleEvent() method

implementation, 399-403
Java 1.1 model, 386
mouse clicks, 397

Excel functions, creating, 975
exceptions

applet with custom
exception class, 378-381

applet without exception
handling, 371-381

exception classes, 378
finally program block, 377
handling and passing on,

368
multiple, 376
returning information about,

370

LIST_DESELECT constant

1385

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

runtime, 374-375
throwing, 367
try-catch blocks, 364

finalize() method, 180-181
fonts

attributes, 657-658
displaying, 660-661

fooBar class, 295
GameBoard class declaration,

160-161
getProperty() method, 1107
graphics

3D rectangles, 435
clipping, 592-593
clipping regions, 460
copying memory to images,

542
cropping, 536-537
drawImage() method,

450-451
emboss effect, 587-590
filtering, 540-541
flipping, 535-536
lines, 434
loading from current

directory, 265
media trackers, 453-454
ovals, 438
polygons, 439-440
rounded rectangles, 437
scaling, 534
text layouts, 577-578
textured fills, 573-574
transparency, 591-592

Hello World! script, 1303
HelloWorld applet

HTML file, 91, 238
source code, 90, 237

HelloWorld application, 292
casting, 89
error handling, 294
parameters, 293
print() method, 87
println() method, 87
source code, 84
strings, 87-88
user input, 88

heterogeneous objects, reading,
797-798

I/O (input/output)
file input streams, 606
file output streams, 607
LineNumberReader class,

631-632
object streams, 629-631
System class, 603

implicit type conversions, 140
inner classes application,

182-183

instance methods example,
122-123

interfaces
constant fields, 201
as data types, 201-204
exceptions, 204-205
extending, 195
ImageConsumer example,

196-197
implementing, 198-199
Product.java example,

193-194
internationalization example,

678-679
InternetApplet

HTML file, 253
Java source code, 251-252

.jar files
directive file, 285
loading, 279
manifest files, 280-281
reading, 287

Java Plug-in
in Internet Explorer, 235
in Netscape, 235

JavaBeans
accessor methods, 923
BeanInfo class, 931-932
bound properties, 925
constrained properties, 926
customizers, 934-935
event adapters, 929
TextDisplayer bean, 920-921
TextReader bean, 921

JavaScript
arrays, 1318
break statement, 1313
Clock application, 1327-1328
comments, 1315
continue statement, 1314
event handlers, 1305
for loops, 1312
functions, 1316
functions as conditionals,

1311
HTML markup, 1290
if-else statements, 1311
variable declaration, 1306
variable names, 1307
while loops, 1313

JCC (Java Commerce Client)
instrument cassette,

1022-1028
protocol cassette, 1029-1033
service cassette, 1035-1037
user interface cassette,

1039-1047

JDBC (Java Database
Connectivity)

CallableStatement class,
903-904

PreparedStatement class,
901

Statement class, 898-899
JFC (Java Foundation Classes)

applet, 531
bordered components,

479-480
buttons, 473-474
cell editors, 518-519
check box panel, 484-485
check boxes, 482
combo boxes, 512
HelloWorld application,

468-471
icons, 528-530
JEditor, 525
list view models, 513-514
multiple views, 507-509
pop-up menus, 477-478
progress bars, 491-492
progress monitor, 494-496
progress monitor input

stream, 497-498
sliders, 488-489
tabbed panes, 486-487
table models, 516-517
tables, 514
tooltips, 475-476
tree models, 522-523
tree nodes, 520-521

layout managers
BorderLayout, 424
GridBagLayout, 427-428

lists
event handling, 343-344
ListApplet.java, 345-346

managed objects, 832
media player

associated URL, 984
BasicPlayer.java, 989-990
control panel, 994-995
controllerUpdate method,

986
CustomPlayer.java,

1007-1014
event listening, 987
HTML file, 991
linking, 1003-1006
prefetching media, 985
progress bar, 999-1002
rate of play, 997
resizing, 998
starting, 988
stopping, 988-989

menu application, 414-415

listings (code listings)

1386

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

native methods
header file, 1149
implementation program,

1150
Java method access, 1155
object access, 1151
sample program, 1148

objects, passing, 127
observables

IntLabel.java, 1073-1074
IntScrollbar.java, 1074-1075
IntTextField.java, 1076-1077
ObservableApplet1.java,

1075-1076
ObservableApplet2.java,

1077-1078
ObservableInt.java,

1072-1073
OK dialog box, 417-420
PaintBanner sample applet, 264
panels, creating/nesting,

408-409
pipe application

PipeApp.java, 617-618
YThread.java, 618
ZThread.java, 618-619

pluggable look-and-feel,
changing, 507

printing, 463-464
Properties class, save()

method, 1063
radio buttons

creating, 335
event handling, 336-337

reflection
Car example, 1138-1139
Car with tires example, 1133
Carshop example, 1134-1135
Carshop with updates,

1139-1140
creating classes, 1131-1132
extending java.applet.Applet,

1137
method invokation,

1141-1142
returning list of fields,

1142-1143
returning list of methods,

1130-1131, 1136-1137
relational operators example,

146
RGB (red, green, blue) image

filters
Grayer.java, 556-557
GrayFilter.java, 555-556
GrayModel.java, 554-555

RMI (Remote Method
Invocation)

activation model, 826-827
applet client, 818
client, 815
remote interface, 811
remote object, 811-812
sockets, 824-825

<SCRIPT> tag, 1302
SRC attribute, 1303

serialization
customized serialization, 807
DateRead applet, 803
DateRead application,

801-802
DateReader class, 808
DateWrite application, 800
DateWriter class, 807-808
SerializeObject example,

804-805
signaling threads, 1087-1088
sockets

client application, 754-756
custom server socket, 821
custom socket, 820-821
custom streams, 819-820
reading incoming data,

752-754
RMISocketFactory, 822-823
server application, 758-760

sound, playing, 267
SRC attribute (<SCRIPT> tag),

1303
stack, 1064
standalone applet with frames,

411-412
StarPainter applet

HTML file, 261
Java source code, 260-261

static methods, 124-125
strings

comparing, 646-647
extraction, 649-650
reading, 796-797
substrings, 642-643
tokenizing, 655

super variable, 171
TCP (Transmission Control

Protocol)
client application, 707-711
server application, 712-717

temporary files
deleting on exit, 612
source code, 611

text
drawing, 442
fonts, 444-445

text fields
event handling, 350
TextApplet.java, 351

this variable, 170-171
threads

daemons, 226
displaying, 1103
GreatRace.java example,

209-213, 223-224
priority, 216
synchronizing, 220
Threader.java example,

211-213
UDP (User Datagram Protocol)

client application, 727-731
Java multicasting, 737
MultiCastReceiver

application, 738-739
MultiCastSender

application, 736-737
server application, 723-725

Web sites, connecting to, 256
see also applets; applications

ListIterator interface,
1052-1054

listRoots() method, 609
lists

creating, 341
event handling, 343-347
items

adding, 341
deleting, 342
deselecting, 342
replacing, 341
selecting, 342

Swing, 511-514
ListThreadGroups() method,

1193
listThreads() method, 1209
literals, 112

character literals
escape characters, 113-114
octal escape literals, 114

floating-point literals, 114-115
integers, 112-113
JavaScript, 1307-1308
string literals, see strings

LiveScript, see JavaScript
lload bytecode instruction

(JVM), 1263
lload_0 bytecode instruction

(JVM), 1264
lload_1 bytecode instruction

(JVM), 1264

listings (code listings)

1387

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

lload_2 bytecode instruction
(JVM), 1264

lload_3 bytecode instruction
(JVM), 1264

lmul bytecode instruction
(JVM), 1270

lneg bytecode instruction
(JVM), 1271

load command (JDB), 1221
load event (JavaScript), 1304
LOAD_FILE constant, 394
loadClass() method, 1123
loading

audio files, 266
classes

class loader application,
1123-1126

loadClass() method, 1123
DLLs (dynamic link libraries),

1108
dynamic loading, 1089-1090
images, 265-266
.jar files, 278-279

loadLibrary() method, 1108
loadQuotes() method, 717
Locale objects

creating, 665
display methods, 667-668
JDK-supported locales, 665-666
static constants, 668

locals command (JDB), 1224
LocalVariableTable attribute

(.class file), 1250
locate() method, 358
location property

Document object, 1321
window object, 1320

location() method, 358
log variable, 175
log() method, 1111
logarithms, calculating, 1111
logical expressions

conditional AND, 148-149
conditional OR, 148-149
unary logical operators, 149

logical operators
Java, 144
JavaScript, 1309

Long constant (Constant Pool),
1237

long data type
converting to strings, 1116
Long wrapper class, 1116
maximum values, 102
values, 98

long long data type, 944
longBitsToDouble() method,

1119
LookupOp filter, 585
lookupswitch bytecode

instruction (JVM), 1277
loop() method, 267
loops

breaking, 1313
C/C++, 1180
do-while, 153-154
for

Java, 154
JavaScript, 1312

while
Java, 153
JavaScript, 1312-1313

loose typing, 1293
lor bytecode instruction (JVM),

1272
LOST_FOCUS constant, 394
Lotus eSuite program, 11
lowercase strings, converting to

uppercase, 1096
lowerCaseMode() method, 636
lrem bytecode instruction

(JVM), 1271
lreturn bytecode instruction

(JVM), 1278
ls command, 46
lshl bytecode instruction (JVM),

1271
lshr bytecode instruction

(JVM), 1272
lstore bytecode instruction

(JVM), 1266
lstore_0 bytecode instruction

(JVM), 1267
lstore_1 bytecode instruction

(JVM), 1267
lstore_2 bytecode instruction

(JVM), 1267
lstore_3 bytecode instruction

(JVM), 1267
lsub bytecode instruction

(JVM), 1270

lushr bytecode instruction
(JVM), 1272

lxor bytecode instruction (JVM),
1272

M
Machine Language, 72
Macintosh

JDK (Java Developer’s Kit)
installation, 48-49

testing, 50
Macintosh-specific tools, 64-65

AppletViewer, 65-66
Java compiler, 67
Java Runner, 66-67
JavaH, 67

look-and-feel driver, 506
macros (C), 1166
Magic Number field (.class File

structure), 1242
mailing lists

Amiga porting issues, 1338
Linux porting issues, 1339
NEXTSTEP porting issues,

1339
main() method, 291

AltaVistaList application, 695
HelloWorld application, 86
PipeApp application, 619-620
TCP client application, 711
TCP server application, 717

Major Version field (.class File
structure), 1242

makeVisible() method, 343
Managed Object Server, 830
managed objects (JMAPI)

accessing, 831-832
compiling, 833
importing, 834
instantiating, 831
methods, 833
properties, 832-833

Management API, see JMAPI
manifest files (.jar), 280-281
many-to-many relationships,

857
Map interface, 1052-1053
mapping data types, 961-962
maps, adding/removing objects,

1052-1053

maps, adding/removing objects

1388

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

mark and sweep algorithm
(garbage collection), 1259

mark() method, 600-601
marking input streams,

600-601
markSupported() method,

600-601
Math class

abs() method, 1110
mathematical constants, 1113
max() method, 1110
min() method, 1110
powers/logarithms, 1111-1112
random numbers, 1110
rounding methods, 1111
trig functions, 1112

math functions
abs(), 1110
ceil(), 1111
exp(), 1112
floor(), 1111
large decimal values, 1121-1123
large integer values, 1119-1121
log(), 1111
max(), 1110
min(), 1110
pow(), 1111
random(), 1110
rint(), 1111
sqrt(), 1111
trig functions, 1112

Math object (JavaScript),
1324-1325

math operators, 104, 1309
mathematical constants, 1113
MatteBorders, 480
max() method, 1110
MBONE (Multicast Backbone),

734
Media Framework

media player
adding to applications,

986-987
BasicPlayer.java, 989-990
compiling, 991
control panel, 993-995
creating, 984-985
CustomPlayer.java,

1006-1014
event listening, 987
exception handling, 985
HTML file, 991
linking, 1002-1006
media time setting, 996
prefetching, 985
progress bar, 999-1002

rate of play, 996-997
resizing, 998
sound volume, 997-998
starting, 988, 996
states, 992-993
stopping, 988-989

overview, 37, 984
media streams, 1006
media trackers

creating, 451
example, 453-454
image IDs, 451
status flags, 452

memory
allocating, 30
determining available memory,

1109
garbage collection

Finalizer methods, 1260
mark and sweep algorithm,

1259
process, 1259-1260
reference counting, 1258

images
copying images to memory,

543-544
copying memory to images,

541-543
management, 116

coalescing, 1258
compaction, 1258
heap manager, 1257

pointers, 117
memory command (JDB), 1220
MemoryImageSource class,

541
constructors, 542
sample applet, 542-543

menu bars
creating, 412
Swing

check box items, 510-511
createMenu() method, 510
creating, 510

menus
action events/methods, 413-414
adding to menu bars, 413
check boxes, 413
creating, 412
example, 414-415
menu items

adding, 412
enabling/disabling, 413

pop-up, 339-340, 415-416,
476-478

separators, 413
submenus, 413
tear-off, 412

message digests, 281
metadata functions

DatabaseMetaData class,
885-891

ResultSetMetaData class,
891-893

metaDown() method, 395
method area (JVM), 24
Method Flags field (.class

Method Information
structure), 1246

Method Information structure
(.class file)

Attribute Table field, 1246
field flag values, 1247
Method Flags field, 1246
Method Name field, 1246
Signature field, 1246

Method Name field (.class
Method Information
structure), 1246

method property (Form object),
1322

Method reference constant
(Constant Pool), 1238

Method Table field (.class File
structure), 1243

methods, 120
abs(), 1110
accept(), 704, 757
accessing

access modifers, 120-126
accessor methods, 923
native methods, 1155-1156
static methods, 1158

acos(), 1112
action(), 385, 396

button events, 328-329
whichAction parameter, 337

actionPeformed(), 255-256, 385,
486

activeCount(), 222, 1103
addActionListener(), 483
addAdjustmentListener(), 385
addCertificate(), 792
addController(), 1002
addElement(), 1055
addIdentity(), 793
addImage(), 451
addItem(), 339-341
addObserver(), 1072
addOperation(), 1038
addSection(), 842
addSelector(), 1038
addSeparator, 413
addSystemThread(), 1192
addTab(), 487

mark and sweep algorithm

1389

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

addTextFieldValue(), 524-525
after(), 1065
allowsMultipleSelections(), 343
append(), 653
appendText(), 349
arraycopy(), 1106
arrayTypeName(), 1203
asin(), 1112
atan(), 1112
atan2(), 1112
available(), 600-601
before(), 1065
booleanValue(), 1114
breakpointEvent(), 1190
brighter(), 459
buttonPress(), 842
canRead(), 609
canUseInstrument(), 1028
canUseOperation(), 1038
canWrite(), 609
capacity(), 652, 1058, 1098
catchExceptions(), 1201
ceil(), 1111
certificates(), 791
changeToY(), 620-621
changeToZ(), 621-622
charAt(), 647, 652, 1095
charWidth(), 446, 659
checkAll(), 452
checkError(), 604
checkID(), 452
checkMemberAccess(), 1130
clearBreakpoint(), 1202
clearBreakpointLine(), 1202
clearBreakpointMethod(), 1202
clearRect(), 434
clip(), 592
clipRect(), 460
clone(), 1082-1083
close(), 601-602, 1193
command(), 1127
commentChar(), 635
compareTo(), 644, 1094
compileClass(), 1127
compileClasses(), 1127
compiling, 20
concat(), 650, 1096
constructors

applet-to-application
conversions, 309

declaring, 166
overloading, 165
returning list of, 1130-1131
TCP client application, 711

cont(), 1211
contactServer(), 711
contains(), 456, 1057
containsKey(), 1053
containsValue(), 1053
controlDown(), 395

controllerUpdate(), 986
cos(), 1112
countComponents(), 408
countObservers(), 1072
countStackFrames(), 1102
countTokens(), 654, 1069
createCar(), 1134
createImage(), 309
createMenu(), 510
createNewFile(), 608
createQuery(), 696
createTempFile(), 608
createTemporaryFile(), 611
createTransformedShape(),

576
currentThread(), 1102
currentTimeMillis(), 1106
curveTo(), 569
darker(), 459
dataReady(), 752
Date(), 1064
deallocate(), 988
declaring, 120, 197-198

bodies, 200
exception lists, 204-205
parameter lists, 199-200

decode(), 1116
delete(), 609
deleteCharAt(), 653
deleteObserver(), 1072
deleteObservers(), 1072
deleteOnExit(), 608, 612
deliverEvent(), 396, 402
description(), 1195
deselect(), 342
destroy(), 94, 222, 239
digit(), 1114
dispose(), 410
doLayout(), 360
doubleToLongBits(), 1119
doUpdate(), 1020
down(), 1211
draw(), 565
draw3DRect(), 435-436
drawBytes(), 442
drawChars(), 442
drawImage(), 248, 449-451

cropping images, 536-537
flipping images, 535-536
scaling images, 534

drawLine(), 433-434
drawOval(), 437-438
drawPolygon(), 438-439
drawRect(), 434
drawRoundRect(), 436-437
drawString(), 257, 440, 576
dumpStack(), 1102, 1212
echoCharIsSet(), 349
elementAt(), 248, 1056
elements(), 1057

empty(), 1063
encode(), 747
endsWith(), 641, 1094
ensureCapacity(), 653, 1058,

1098
enumerate(), 223, 1103
enumValue(), 977
equals(), 609, 644, 1065,

1081-1082
exception lists, 204-205
exceptionEvent(), 1190
exec(), 1109
execute(), 835
executeQuery(), 879, 897-898
executeUpdate(), 879, 898
exists(), 608
exitValue(), 1110
exp(), 1112
fill(), 565
fill3DRect(), 435
fillInStackTrace(), 1105
fillOval(), 437
fillRect(), 434
fillRoundRect(), 436
filter(), 582
filterIndexColorModel(), 553
filterRGB(), 553
finalize(), 179-181, 1084, 1173,

1260
findClasses(), 1193
firstElement(), 1056
floatToIntBits(), 1118
floor(), 1111
flush(), 602
forDigit(), 1114
forName(), 1089-1090
freeMemory(), 1109, 1194
fromHex(), 1195
gc(), 1193
getAbsoluteFile(), 608
getAbsolutePath(), 608
getAddress(), 722, 762
getAlignment(), 332
getAllByName(), 761
getAllPackages(), 1091
getAppletContext(), 308-309
getAscent(), 446, 659
getAudioClip(), 266
getAutoCommit(), 884
getBackground(), 356
getBlockIncrement(), 353
getBoolean(), 1114
getBounds(), 439
getByName(), 761
getBytes(), 648
getChars(), 647, 652, 1098
getClass(), 1088
getClassLoader(), 1199
getClickCount(), 391
getClientContainer(), 1034

methods

1390

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

getClip(), 461
getClipBounds(), 460
getCodeBase(), 265, 309
getColumns(), 349
getComponent(), 407
getComponentAt(), 358
getConnection(), 879-880
getContent(), 742-743
getContents(), 670
getContext(), 1021
getControlPanelComponent(),

993
getCurrentFrame(), 1212
getCurrentFrameIndex(), 1212
getCurrentVersionIdentifier(),

1018
getCursorType(), 411
getDay(), 1066
getDeclaredContructor(), 1142
getDeclaredField(), 1142-1143
getDeclaredFields(), 1142-1143
getDeclaredMethod(),

1138-1141
getDeclaredMethods(), 1138
getDefaultToolkit(), 444
getDependencyIdentifiers(),

1018
getDescent(), 446, 659
getDescription(), 1020
getDisplayLanguage(), 667
getDocumentBase(), 265, 309
getDoInput(), 746
getDoOutput(), 746
getDrivers(), 879
getEchoChar(), 349
getElement(), 1203
getElements(), 1203
getElementType(), 1203
getErrorStream(), 1109
getExceptionCatchList(), 1194
getExpirationDate(), 1020
getFamily(), 656
getFD(), 613
getField(), 1197-1199
getFieldID(), 1152
getFields(), 1198-1200
getFieldValue(), 1198-1199
getFilePointer(), 613
getFollowRedirects(), 747
getFont(), 357, 443, 656, 659
getFontList(), 444
getFontMetrics(), 445, 657-658
getForeground(), 356
getGainControl(), 997
getHeaderField(), 744
getHeaderFieldKey(), 744
getHeight(), 446, 659-660
getHits(), 696-697
getHost(), 744
getHostName(), 762

getId(), 1198
getImage(), 264-266
getInetAddress(), 751
getInputStream(), 703, 1109
getInstance(), 790
getInstanceField(), 1200
getInstanceFields(), 1200
getInstrument(), 1021
getInstrumentEditUI(), 1021
getInteger(), 1115
getInterface(), 768
getInterfaces(), 1200
getItem(), 339
getItemSelectable(), 336
getJCMDescription(), 1034
getJCMForLatestVersion(),

1019
getKeyChar(), 390
getKeyCode(), 387
getLabel(), 327, 338, 835
getLeading(), 446, 659
getLevel(), 998
getLineNumber(), 631, 1206
getLineNumbers(), 1201
getLocalHost(), 761
getLocalPort(), 751, 757
getLocalVariable(), 1206
getLocalVariables(), 1206
getMapSize(), 553
getMaxAdvance(), 446
getMaxAscent(), 446
getMaxDescent(), 446
getMaximum(), 353
getMaxPriority(), 1104
getMessage(), 369, 1104
getMetaData(), 906
getMethod(), 1200
getMethodLineNumber(), 1201
getMethodName(), 1206
getMethodNames(), 1200
getMethods(), 1200
getMinimum(), 353
getMinimumSize(), 357
getModel(), 524
getModifiers(), 390, 1196
getName(), 223, 608, 656, 835,

1021, 1028, 1200, 1207, 1210
getNewInstrumentUI(), 1021
getObject(), 1022
getObjectClass(), 1152
getOrientation(), 353
getOutputStream(), 703
getPackage(), 1091
getPage(), 695-696
getPageDimension(), 463
getParameter(), 260
getParent(), 360, 608, 1104
getParentFile(), 608
getPath(), 608
getPC(), 1206

getPixelSize(), 551
getPoint(), 391
getPort(), 744, 751
getPrintJob(), 463
getPriority(), 215
getProgressMonitor(), 498
getProperty(), 1062, 1107
getProtocol(), 743
getProxy(), 747
getPublicKey(), 791
getQuotes(), 711
getReceiveBufferSize(), 705
getRef(), 744
getRemoteClass(), 1207
getResolution(), 463
getResourceBundle(), 669
getResponseCode(), 746
getResponseMessage(), 746
getRGB(), 551, 581
getRGBdefault(), 551
getRows(), 349
getSelectedCheckbox(), 335
getSelectedImage(), 1035
getSelectedIndex(), 339, 342
getSelectedIndexes(), 342
getSelectedItem(), 339, 342
getSelectedItems(), 342
getSelectedText(), 348
getSelectionEnd(), 348
getSelectionStart(), 348
getSelectorText(), 1035
getSendBufferSize(), 705
getSimpleGraphic(), 1021
getSize(), 262-263, 357, 656,

1203
getSoLinger(), 751
getSoTimeout(), 751
getSourceFile(), 1201
getSourceFileName(), 1200
getSourcePath(), 1194
getStackVariable(), 1212
getStackVariables(), 1212
getState(), 333, 986
getStateChange(), 336
getStaticFields(), 1200
getStatus(), 1210
getString(), 797
getStyle(), 657
getSuperclass(), 1200
getSystemScope(), 792
getTcpNoDelay(), 752
getText(), 332
getTime(), 1066
getTimeBuffer(), 726
getTimes(), 731-732
getTimezoneOffset(), 1066
getTitle(), 410
getTransparentPixel(), 553
getType(), 1020, 1195
getTypedName(), 1196

methods

1391

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

getUnitIncrement(), 353
getUnselectedImage(), 1035
getValue(), 353, 1207
getViewport(), 421
getVisualComponent(), 986
getVisualRepresentation(),

1021
getWarning(), 906
getWarnings(), 893
getWhen(), 391
getWidths(), 446
grabPixels(), 544
grow(), 456
handleEvent(), 328, 345, 396

implementing, 399
overriding, 399-401

hasChanged(), 1071
hashCode(), 609, 641, 1085
Hashtable(), 1059
hasMoreElements(), 1056
hasMoreTokens(), 654, 1068
hasPrevious(), 1054
hide(), 410
hide(), 357
hyperlinkUpdate(), 527
identities(), 792
IDL (Interface Definition

Language), 949
ignoreExceptions(), 1201
imageComplete(), 539
imageUpdate(), 539
indexOf(), 641-642, 1057, 1095
init(), 93, 239

Animator applet, 248
InternetApplet applet, 254
media player, 987
StarPainter applet, 262

initSign(), 791
initVerify(), 791
inScope(), 1207
insert(), 653, 1097
insertElementAt(), 1055
insertTab(), 488
insertText(), 349
install(), 1019
instance methods, 123
intersection(), 456
intersects(), 456
invalidate(), 360
invoke(), 1141
invokeAndWait(), 494
invokeLater(), 494
invoking

call-by-reference, 1171
call-by-value, 1171
Relection API, 1138-1141

isAbsolute(), 609
isBold(), 657
isDaemon(), 226, 1102
isDirectory(), 609

isEditable(), 348
isEmpty(), 1056
isFile(), 609
isHidden(), 609
isInfinite(), 1118
isInterface(), 1200
isItalic(), 657
isModal(), 417
isMultipleMode(), 343
isNaN(), 1118
isObject(), 1195
isPlain(), 657
isResizable(), 411
isSelected(), 342
isStatic(), 1196
isString(), 1195
isSuspended(), 1210
itemStateChanged(), 336
itrace(), 1193
JavaScript, 1319

alert(), 1305, 1320
anchor(), 1323
big(), 1323
blink(), 1323
bold(), 1323
calling, 1316-1317
charAt(), 1323
clearTimeout(), 1320
close(), 1320
defining, 1316
escape(), 1318
eval(), 1318
fixed(), 1324
getDate(), 1326
getDay(), 1326
getHours(), 1326
getMinutes(), 1326
getMonth(), 1326
getSeconds(), 1326
getTime(), 1326
getTimeZoneOffset(), 1326
getYear(), 1326
indexOf(), 1324
italics(), 1324
lastIndexOf(), 1324
link(), 1324
open(), 1320
parse(), 1326
parseFloat(), 1318
parseInt(), 1318
prompt(), 1320
setDate(), 1326
setHours(), 1326
setMinutes(), 1326
setMonth(), 1326
setSeconds(), 1326
setTime(), 1326
setTimeout(), 1320
setYear(), 1326
small(), 1324

strike(), 1324
sub(), 1324
submit(), 1322
substring(), 1324
sup(), 1324
toGMTString(), 1326
toLocaleString(), 1326
toLowerCase(), 1324
toUpperCase(), 1324
unescape(), 1318
UTC(), 1326

join(), 1100
joinGroup(), 735, 767
keyDown(), 396
keyPressed, 387
keyReleased, 387
keyTyped, 387
keyUp(), 396
lastElement(), 1056
lastIndexOf(), 642, 1057, 1095
lastModified(), 609
lastPageFirst(), 463
layout(), 360
leaveGroup(), 735, 767
length(), 609, 640, 652, 1093
lineTo(), 569
list(), 609-610, 1063
ListBreakpoints(), 1194
ListClasses(), 1193
listFiles(), 609
listRoots(), 609
ListThreadGroups(), 1193
listThreads(), 1209
loadClass(), 1123
loadLibrary(), 1108
loadQuotes(), 717
locate(), 358
location(), 358
log(), 1111
longBitsToDouble(), 1119
loop(), 267
lowerCaseMode(), 636
main(), 291

AltaVistaList application, 695
HelloWorld application, 86
PipeApp application, 619-620
TCP client application, 711
TCP server application, 717

makeVisible(), 343
mark(), 600-601
markSupported(), 600-601
max(), 1110
metaDown(), 395
min(), 1110
mkdir(), 609
mkdirs(), 609
mouseClicked(), 391
mouseDown(), 396
mouseDrag(), 396
mouseDragged(), 392

methods

1392

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

mouseEnter(), 396
mouseEntered(), 391
mouseExit(), 396
mouseExited(), 391
mouseMove(), 396
mouseMoved(), 392
mousePressed(), 391
mouseReleased(), 391
mouseUp(), 396
moveTo(), 569
mute(), 998
naming, 126
narrow(), 945
native methods, 1146-1148

compiling, 1148
data types, 1154
exception handling,

1158-1159
header files, 1149
implementing, 1149-1150
Java method access,

1155-1156
object access, 1150-1154
shared libraries, 1150
static field access, 1156-1157
static method access, 1158
writing, 1148

newAudioClip(), 267
newInstance(), 1089
next(), 879, 1211
nextDouble(), 1070
nextElement(), 1056
nextFloat(), 1070
nextGaussian(), 1070
nextInt(), 1070
nextLong(), 1070
nextToken(), 633, 654,

1068-1069
notify(), 1085-1088
notifyObservers(), 1071
openConnection(), 690, 742-743
openStream(), 690, 742-743
ordinaryChar(), 635
ordinaryChars(), 635
overriding, 166-167, 199
paint(), 93, 360, 432, 502

Animator applet, 248
InitStartStop applet, 243
InternetApplet applet, 256
StarPainter applet, 262

parameter lists, 126-128
paramString(), 395
parseByte(), 1117
parseInt(), 1115
parseLong(), 1116
parseNumbers(), 636
peek(), 1063
play(), 267
pop(), 1063
populate(), 1038

postEvent(), 361
pow(), 1111
preferredSize(), 357
prefetch(), 993
prepareCall(), 902
print(), 87, 604
println(), 86, 604
printOutput(), 697
printQuotes(), 712
printStackTrace(), 369, 1105
printTimes(), 732
printToConsole(), 1190
processMouseEvent(), 478
propertyChange(), 925
propertyNames(), 1062
push(), 1063
putAll(), 1052
quadTo(), 569
quitEvent(), 1190
quitServer(), 711
quoteChar(), 635
random(), 263, 1110
read(), 600

exception handling, 367
reading user input, 88-89

readBoolean(), 613
readByte(), 613
readChar(), 613
readDouble(), 613
readFloat(), 613
readFully(), 613
readInt(), 613
readLine(), 613, 797
readLong(), 613
readShort(), 613
readUnsignedByte(), 613
readUnsignedShort(), 613
readUTF(), 613
rebind(), 813
receive(), 763
regionMatches(), 645, 1094
rehash(), 1061
remote method wrappers, 962
RemoteDebugger(), 1192
remove(), 342, 407, 1060
removeAll(), 342, 407
removeAllElements(), 1058
removeCertificate(), 792
removeElement(), 1058
removeElementAt(), 1058
removeIdentity(), 793
removeSelectedNode(), 524
removeSelector(), 1038
renameTo(), 609
repaint(), 244, 360, 432
replace(), 650, 653, 1096
replaceItem(), 341
replaceText(), 349
reset(), 600-601
resetCurrentFrameIndex(),

1212

resetSyntax(), 636
resize(), 410
resolveClass(), 1123
resume(), 1210
returning list of, 1130-1131,

1135-1138
rint(), 1111
rollback(), 879
rotate(), 575
round(), 1111
run()

Animator applet, 249
TCP client/server

application, 718
runFinalization(), 1108
scale(), 575
search(), 1063
security, 28
seek(), 613
selectAll(), 348
send(), 763
serveQuotes(), 717
setAccelerator(), 511
setActionCommand(), 483
setAlignment(), 332
setAllowUserInteraction(), 745
setAutoCommit(), 884
setBackground(), 356
setBlockIncrement(), 353
setBorder(), 480
setBounds(), 456
setBreakpointLine(), 1201
setBreakpointMethod(), 1201
setCallback(), 960
setChanged(), 1071
setCharAt(), 653, 1098
setClip(), 461
setColor(), 458
setColorModel(), 538
setCommerceContext(), 1029,

1034, 1038
setCurrentFrameIndex(), 1212
setCursor(), 410
setDaemon(), 226, 1102
setEchoChar(), 349
setEditable(), 348
setElementAt(), 1055
setFollowRedirects(), 746
setFont(), 255, 357, 657, 660
setForeground(), 356
setHelpMenu(), 413
setHints(), 538
setHorizontalTextPosition(),

484
setIcon(), 473
setIconImage(), 411
setID(), 1034
setInterface(), 768
setLabel(), 327
setLastModified(), 609
setLayout(), 254

methods

1393

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

setLength(), 1098
setLevel(), 998
setLineNumber(), 631
setLocation(), 357
setMajorTickSpacing(), 490
setMaxPriority(), 1104
setMediaTime(), 996
setMenuBar, 412
setMinorTickSpacing(), 490
setMnemonic(), 475
setMultipleSelections(), 343
setName(), 223
setObject(), 1022
setPage(), 527
setPaint(), 572
setPixels(), 538
setPriority(), 215-217, 1102
setProperties(), 1108
setProtocolJCM(), 1029
setPublicKey(), 791
setRate(), 996
setReadOnly(), 609
setReceiveBufferSize(), 705
setResizable(), 411
setRGB(), 581
setRootVisible(), 521
setScrollPosition(), 420
setSeed(), 1070
setSendBufferSize(), 705
setSize(), 456, 1059
setSocketFactory(), 823
setSoLinger(), 705, 751
setSoTimeout(), 705, 751
setSourcePath(), 1194
setState(), 333
setStroke(), 571
setTcpNoDelay(), 706, 751
setText(), 332
setTime(), 1066
setTransform(), 576
setUnitIncrement(), 353
setValue(), 353
setValues(), 353
setVerticalTextPosition(), 484
setWalletGate(), 1029, 1034
shear(), 575
shiftDown(), 395
show(), 357, 410
showDocument(), 269
showStatus(), 268
shutdown(), 1020
sign(), 791
sin(), 1112
size(), 1056, 1059
skip(), 600-601
skipBytes(), 613
slashStarComments(), 635
sleep(), 221-222, 1100-1101
sqrt(), 1111

start(), 94, 239, 1099
Animator applet, 248
media player, 985
starting threads, 221

startServing(), 726
startsWith(), 641, 1094
statusAll(), 452
statusID(), 452
step(), 1211
stop(), 239, 1099, 1210

Animator applet, 249
media player, 988
stopping threads, 221

String(), 1092-1093
stringWidth(), 446, 659
substring(), 577, 648, 1095
suspend(), 222, 1210
synchronizing, 220
syncStart(), 996
tan(), 1112
threadDeathEvent(), 1190
Throw(), 1158
ThrowNew(), 1159
toCharArray(), 1095
toGMTString(), 1066
toHex(), 1195
toLocaleString(), 1066
toLowerCase(), 651, 1096
toString(), 369, 395, 609,

657-659, 1066, 1082, 1116,
1196, 1200

totalMemory(), 1109, 1194
toUpperCase(), 651, 1096
toURL(), 609
trace(), 1193
translate(), 395, 575
trim(), 651, 1096
trimToSize(), 1058
typeName(), 1195, 1200
uninstall(), 1019
union(), 457
update(), 244, 360, 432
updateUI(), 507
validate(), 360
valueOf(), 651, 1093
Vector(), 1054
vetoableChange(), 926
wait(), 1085-1088
waitFor(), 1109
waitForAll(), 452
waitForID(), 451
whatHappened(), 960
whitespaceChars(), 634
wordChars(), 634
write(), 602
writeBoolean(), 613
writeByte(), 613
writeBytes(), 613
writeChar(), 614
writeChars(), 614

writeDouble(), 614
writeFloat(), 614
writeInt(), 614
writeLong(), 614
writeShort(), 614
writeUTF(), 614
yield(), 222, 1101
see also RMI (Remote Method

Invocation)
methods command (JDB),

1225
metrics (font), 445-446,

658-659
Metromix Web site, 13
Microsoft Web site, 1336
MIME content handlers,

creating, 748-749
mimeTypes property (Navigator

object), 1323
min() method, 1110
Minimum Grammar

conformance level, 865
Minor Version field (.class File

structure), 1242
MISC_EVENT constant, 394
mixed cursors, 871
mkdir() method, 609
mkdirs() method, 609
MKTYPLIB program, 970
mnemonics, 475
MOContentManagerApplet.html

page (JMAPI), 831
modal dialogs, 416
Model-View-Controller model,

see MVC model
modes (drawing), 447-449
modifier keys, 390-391
modifiers, 120-126, 162

abstract
class declarations, 163-164
method declarations, 125

default
class declarations, 177
method declarations,

121-122
final, 163, 178

class declarations, 163
method declarations, 125

private
class declarations, 177
method declarations, 121

modifiers

1394

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

protected
class declarations, 163, 177
method declarations,

120-121
public

class declarations, 163, 177
method declarations, 120

static, 122-125, 177
see also keywords; statements

modifiers data member (Event
class), 395

modules (IDL), 942
defining, 942
nesting, 943

modulus and assign operator
(%=), 105

modulus operator (%), 104
monitorenter bytecode

instruction (JVM), 1282
monitorexit bytecode

instruction (JVM), 1282
MOPropertyBookApplet.html

page (JMAPI), 831
Motif look and feel driver, 506
mouse, event handling,

391-396
MOUSE_DOWN constant, 394
MOUSE_DRAG constant, 394
MOUSE_ENTER constant, 394
MOUSE_EVENT constant, 394
MOUSE_EXIT constant, 394
MOUSE_MOVE constant, 394
MOUSE_UP constant, 394
mouseClicked() method, 391
mouseDown() method, 396
mouseDrag() method, 396
mouseDragged() method, 392
mouseEnter() method, 396
mouseEntered() method, 391
mouseExit() method, 396
mouseExited() method, 391
MouseListener interface, 391
MouseMotionListeners, 361
mouseMove() method, 396
mouseMoved() method, 392
mouseover event (JavaScript),

1304
mousePressed() method, 391
mouseReleased() method, 391
mouseUp() method, 396

moveTo() method, 569
-ms val option (java command),

59
multianewarray bytecode

instruction (JVM), 1282
Multicast Backbone (MBONE),

734
multicast events, 927-928
multicasting, 767-768

IP, 732-734
addresses, 733
advantages, 733
limitations, 733
MBONE, 734
multicast groups, 733
TTL parameters, 734

Java classes, 734-735
UDP applications

MultiCastReceiver, 738-740
MultiCastSender, 735-737

MulticastSocket class, 734-735
multimedia, 984

animation
Animator applet, 245-249
color cycling, 557-562
double-buffering, 461-462
XOR drawing mode, 447-449

applets
ActiveBanner example,

270-271
images, 264-266
sound, 266-267

media player
adding to applications,

986-987
BasicPlayer.java, 989-990
compiling, 991
control panel, 993-995
creating, 984-985
CustomPlayer.java,

1006-1014
event listening, 987
exception handling, 985
HTML (Hypertext Markup

Language) file, 991
linking, 1002-1006
media time setting, 996
prefetching, 985
progress bar, 999-1002
rate of play, 996-997
resizing, 998
sound volume, 997-998
starting, 988, 996
states, 992-993
stopping, 988-989

see also graphics
multiple applications,

maintaining on same system,
321-322

multiple exceptions, catching,
375-377

multiple inheritance,
1178-1179

Multiplexing look and feel
driver, 506

multiply and assign operator
(*=), 105

multithreading, 208
debugging, 1207-1208

RemoteThread class,
1209-1212

RemoteThreadGroup class,
1208-1209

security, 28, 772
synchronization

limitations, 220-221
synchronized keyword,

219-220
see also threads

multitier systems, 868
MutableAttributeSet object, 578
mute() method, 998
MVC (Model-View-Controller)

model, 500
AWT (Abstract Window

Toolkit) design, compared,
501

examples
changing values, 503
obtaining value information,

503
painting to screen, 502

object diagram, 501-502
-mx val option (java command),

59

N
Nagle algorithm, 706
NAME attribute (<PARAM>

tag), 232
name property (window object),

1320
Name reference constant

(Constant Pool), 1238
name spaces

C/C++ versus Java, 1182-1183
encapsulation, 29

naming conventions
class fields, 176
classes, 164
interfaces, 194
JavaScript variables, 1307

modifiers

1395

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

JNDI (Java Naming and
Directory Interface), 938

methods, 126
ResourceBundles class, 669
source files, 1167
UNIX file names, 48
variables, 100, 176

Naming service (CORBA), 941
narrow() method, 945
native keyword, 126
native methods, 1146-1147

compiling, 1148
exception handling, 1158-1159
header files, 1149
implementing, 1149-1150
JNI (Java Native Interface),

1146-1148
method access

Java methods, 1155-1156
static methods, 1158

object access, 1150
data types, 1154
GetField functions, 1153
GetFieldID() method, 1152
GetObjectClass() method,

1152
sample program, 1151-1152
SetField functions, 1154

shared libraries, 1150
static field access, 1156
writing, 1148

native types classes (debugger),
1204-1205

native1 keyword, 126
Navigator object (JavaScript),

1322-1323
negative numbers, converting to

positive numbers, 1110
nesting

classes, see inner classes
IDL (Interface Definition

Language) modules, 943
panels, 408-409

NetProphet applet, 10
Netscape

Navigator browser, 92
Web site, 1336

network data model, 857
Network layer

OSI (Open Systems
Interconnect) model, 683

TCP/IP (Transmission Control
Protocol) network model, 685

network protocols
DNS (Domain Name System),

686
IGMP (Internet Group

Management Protocol), 733
IP (Internet Protocl)

addresses, 686
multicasting, 732-734
unicasting, 732

RMI (Remote Method
Invocation), 810

activation model, 825-827
applets, 817-818
CORBA, compared, 963-964
Registry, starting, 816
Remote Method patch, 814
remote objects, 810, 816-817
sample application, 811-817
sockets, 818-825
socket factory, 822-823

TCP (Transmission Control
Protocol), 686-687

binding, 701
client/server application,

706-712, 717-718
Nagle algorithm, 706
ports, 687, 701
RFC 793 specification, 700

TCP/IP (Transmission Control
Protocol/Internet Protocol),
682-685

UDP (User Datagram
Protocol), 720

client application, 727-732
creating datagrams, 721
receiving datagrams,

721-722
sending datagrams, 722
server application, 723-726
sockets, 720-722

networking, 742
datagrams

broadcasting, 764-765
client application, 766-767
overview, 762-763
packets, 764
receiving, 763
sending, 763
server application, 765-766

Internet host addresses, 760-
762

OSI (Open System
Interconnect) model, 682-683

security, 24-25
access restrictions, 31-32
attack scenarios, 26
potential targets, 26
solution strategy, 25-28

sockets, 700-701
clients, 754-756
closing, 711
connections, 7569-750
customizing, 705-706,

818-823
datagram sockets, 762-764
defined, 700
incoming data, waiting for,

752-754
linger time, 751
multicasting, 767-768
opening, 711
returning information about,

750-751
RFC 793 specification, 700
RMI (Remote Method

Invocation) application,
823-825

ServerSocket class, 704
server socket application,

757-760
Socket class, 702-704
streams, 750
timeouts, 751
UDP (User Datagram

Protocol), 720-722
new bytecode instruction

(JVM), 1280
new keyword, 116-117, 1318
newarray bytecode instruction

(JVM), 1280
newAudioClip() method, 267
newInstance() method, 1089
newsgroups, 1337-1338
next command (JDB), 1228
next() method, 879, 1211
nextDouble() method, 1070
nextElement() method, 1056
nextFloat() method, 1070
nextGaussian() method, 1070
nextInt() method, 1070
nextLong() method, 1070
NEXTSTEP mailing list, 1339
nextToken() method, 633,

654, 1068-1069
No Delay option (sockets), 752
No. of Attributes field

.class Field Information
structure, 1244

.class File structure, 1243

.class Method Information
structure, 1246

No. of Attributes field

1396

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

No. of Fields field (.class File
structure), 1243

No. of Interfaces field (.class
File structure), 1243

No. of Methods field (.class File
structure), 1243

-noasyncgc option (java
command), 59

-noclassgc option (java
command), 59

-nodepreciated option (javadoc
command), 62

nodes (trees)
creating, 521
example, 519-521
removing, 524
text field values, 524-525

-noindex option (javadoc
command), 63

non-exclusive resources, 993
non-modal dialog boxes, 416
nop bytecode instruction (JVM),

1262
NOT operator, 144
notify() method, 1085-1088
notifyObservers() method,

1071
-notree option (javadoc

command), 63
-noverify option (java

command), 59
-nowarn option (javac

command), 60
NT

Java applications, installing,
317-320

JDK (Java Developer’s Kit)
installation

downloaded files, 47-48
environment variables, 43
removing previous versions,

42
testing, 49-50
unpacking files, 43

Null data type (JavaScript),
1307

null layout manager, 429,
850-851

null pointer exceptions,
293-294

null strings, 640
NullPointerException, 369
Number data type (JavaScript),

1307

NumberFormatException, 369
numbers

random, generating
Math class, 1110
Random class, 1069-1070

rounding, 1111
see also math functions

O
-O option (javac command), 60
-o option (javah command), 62
OBJECT attribute (<APPLET>

tag), 233
Object class

clone() method, 1082-1083
equals() method, 1081-1082
finalize() method, 1084
getClass() method, 1088
hashCode() method, 1085
notify() method, 1085-1088
toString() method, 1082
wait() method, 1085-1088

Object Definition Language, see
ODL

Object Querying service
(CORBA), 942

Object Request Broker (ORB),
940

object wrapper classes
Boolean, 1114-1115
Byte, 1117
Character, 1113-1114
Double, 1119
Float, 1118
Integer, 1115-1116
Long, 1116
Number, 1115
Short, 1117
Void, 1119

object-oriented programming,
see OOP

ObjectInput interface, 628
ObjectInputStream class, 630
ObjectOutput interface, 628
ObjectOutputStream class, 629
objects, 74-75

accessing, 1150-1154
activatable, 825-827
advantages, 158
buckets, 1085
CallableStatement

creating, 902
parameter access methods,

902-903

parameter register methods,
902

parameters, 902
sample application, 904

classes, compared, 78-79
cloning, 1082-1083
COM (Component Object

Model)
accessing, 967
calling, 974-979
CLSIDs (class IDs), 967
creating, 971-973

comparing, 1081-1082
CORBA (Common Object

Broker Request Architecture)
applets, 962-963
callbacks, 959-960
client application, 957-959
data type mapping, 961-962
Event service, 941
Lifecycle service, 941
Naming service, 941
Object Querying service,

942
ORB (Object Request

Broker), 940
Persistence service, 941
Properties service, 942
remote method wrappers,

962
RMI (Remote Method

Invocation), compared,
963-964

server application, 949-957
Transaction service, 941-942
wrapping, 960-961

creating
C++ versus Java, 1172
new operator, 116-117

DataStore, 1021
DataTruncation, 909
Date, 1064-1065
DCOM (Distributed

Component Object Model),
966

defined, 74
destroying, 1173
determining class, 1088
File, 608
finalization, 1084
GradientPaint, 571-572
Graphics2D, 564
handles, 29
hash codes, 1085
IconCanvas, 838
InetAddress, 702-703
ItemEvent, 336
JavaScript

Date, 1325-1326
Document, 1321
dot notation, 1319

No. of Fields field

1397

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

Form, 1322
limitations, 1292-1293
Math, 1324-1325
methods, 1319
Navigator, 1322-1323
properties, 1319
prototypes, 1293
String, 1323-1324
window, 1319-1320

Locale
creating, 665
display methods, 667-668
JDK-supported locales,

 665-666
static constants, 668

managed objects
accessing, 831-832
compiling, 833
importing, 834
instantiating, 831
methods, 833
properties, 832-833

as multiple entities, 78
MutableAttributeSet, 578
observables, 1070-1071

adding observers, 1072
checking, 1071
counting observers, 1072
deleting observers, 1072
IntLabel example, 1073-1074
IntScrollbar example,

1074-1075
IntTextField example,

1076-1077
notifying observers, 1071
sample applet, 1075-1078

PreparedStatement
database access, 901-911
object methods, 899
parameter-related methods,

899-900
reading

heterogeneous objects,
797-798

strings, 796-797
remote

binding into Registry,
816-817

creating, 810
removing

from collections, 1051
from hashtables, 1060-1061
from maps, 1053
from vectors, 1058

ResourceBundles
accessing, 671
creating, 669-671
naming conventions, 669
overview, 668

ResultSet, 904-906

serialization, 798-799, 1084-1085
applets, 803-804
browser support, 799
DateRead example, 801-802
DateWrite example, 799-800
errors, 801
JDK (Java Developer’s Kit)

version 1.02, 801
JDK (Java Developer’s Kit)

version 1.1, 801
object references, 799
output streams, 800
SerializeObject example,

804-805
signaling

notify signals, 1085-1088
wait signals, 1086-1088

Statement, 896
accessing databases with,

898-899
creating, 897
methods, 897-898

storing
hashtables, 1060
maps, 1052
vectors, 1055

streams
ObjectInput interface, 628
ObjectOutput interface, 628
reading, 630-631
writing to, 629-630

string representations, 1082
StyledString, 576
System.in, 603
System.out, 603
TextAttributeSet, 578
TexturePaint, 572-574
ThreadDeath, 221
URLs (Uniform Resource

Locators)
creating, 689, 742-743
reading, 690

URLConnection, 690
Variant, 978

observables, 1070-1071
checking, 1071
examples

IntLabel, 1073-1074
IntScrollbar, 1074-1075
IntTextField, 1076-1077
ObservableApplet1,

1075-1076
ObservableApplet2,

1077-1078
ObservableInt, 1072-1073

observers, 1071-1072
Observer interface, 1073
octal escape literals, 114
octet data type, 943

ODBC (Open Database
Connectivity)

architecture
application layer, 862
driver manager layer, 863

command sequences, 866-867
conformance levels, 864-865
cursors, 871
data sources, 864-865
drivers, 863
functions, 865
JDBC-ODBC bridge, 876
Setup program, 880

ODL (Object Definition
Language)

COM interfaces, 967-969
files, compiling, 970
keywords, 969

odl keyword, 969
OK Dialog Box example,

417-420
onBlur event handler

(JavaScript), 1304
onChange event handler

(JavaScript), 1304
onClick event handler

(JavaScript), 1304
one-to-many relationships, 857
one-to-one relationships, 857
one-way hash functions, 281
onFocus event handler

(JavaScript), 1304
onLoad event handler

(JavaScript), 1304
onMouseOver event handler

(JavaScript), 1304
onSelect event handler

(JavaScript), 1304
onSubmit event handler

(JavaScript), 1304
onUnload event handler

(JavaScript), 1304
OOP (object-oriented

programming), 21-22, 72
C++ support for, 1169
classes, 158-159
code organization, 78
history, 74
inheritance, 76-78

C/C++ versus Java, 1177
Java support for, 21
multiple, 1178-1179
polymorphism, 1178

object-based languages,
compared, 1292-1293

OOP (object-oriented programming)

1398

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

objects as multiple entities, 78
program design

class design, 80
class hierarchies, 80
example, 75-76
identifying objects, 79
object creation, 81
object differences, 80
object relationships, 79

security issues, 28
opcode, 22

table of, 1262-1283
see also bytecode instructions

open database connectivity, see
ODBC

Open Local command
(AppletViewer File menu), 65

Open Systems Interconnect
(OSI) Reference Model,
682-683

Open URL command
(AppletViewer File menu), 65

open() method (JavaScript),
1320

openConnection() method,
690, 742-743

opening socket connections,
711

openStream() method, 690,
742-743

operand stack, 23
operating systems

Amiga, 1338-1339
cross-platform issues, 20
DEC Alpha systems, 1339
Linux, 1339
NeXT platforms, 1339
UNIX

filenames, 48
Java applications, installing,

315-316
JDK (Java Developer’s Kit),

testing, 49-50
Window 3.1, ADK (Applet

Developer’s Kit) installation
configuring, 52
downloading, 51
files, 52
testing, 52-53

Windows 95
Java applications, installing,

317-320
JDK (Java Developer’s Kit)

installation, 42-43, 47-50

Windows NT
Java applications, installing,

317-320
JDK (Java Developer’s Kit)

installation, 42-43, 47-50
operation cassettes (JCC),

1034
Operation interface, 1034
operators, 103

arithmetic operators, 104
assignment operator, 104-105
associativity, 133
bitwise operators, 136-137,

1067-1068
sample operations, 138
truth tables, 137-138

Boolean operators, 148-149
C/C++, 1181-1182
cast, 140-141
concatenation operator, 650
conditional operators, 150
equality operators, 146-148
increment/decrement

operators, 105-106
instanceOf, 1177
JavaScript

precedence, 1310
table of, 1308-1310

new operator, 116-117
order of evaluation, 135
precedence, 133-135
relational operators, 145-146
shift operators, 138-139
unary logical operator, 149

optop register,23
OR operators

bitwise (|), 144, 1067
conditional (&&), 148-149
logical (||), 145

ORB (Object Request Broker),
940

order of evaluation
C/C++, 136
Java, 135

ordinaryChar() method, 635
ordinaryChars() method, 635
Organic look-and-feel driver,

506
organizing code, 78
OSI (Open Systems

Interconnect) Reference
Model, 682-683

-oss val option (java command),
59

out parameter (IDL), 948

outer joins, 860-861
OutOfMemoryException, 369
output, see I/O
output streams

ByteArrayOutputStream class,
626

customizing, 820
FileOutputStream class, 606-607
flushing, 602
ObjectOutputStream class, 629
OutputStream class, 599, 602
writing to, 602

OutputStream class, 599, 602
ovals, drawing, 437
overloading constructors, 165
overriding methods, 166-167

getContents() method, 670
handleEvent() method, 399-401
interface implementation, 199

P
p-System (USCD), 1254
Package class, 1091
-package option (javap

command), 61
package statement, 185-186
packages

classes
adding, 185-186
importing, 186

defined, 8, 1182
importing, 186-187
versions, determining, 1091
see also names of specific

packages and technologies
packaging

applications, 310
JavaBeans, 918

packets, TTL (time to live)
values, 768

page dimensions (print jobs),
determining, 463

page updates (scrollbars), 352
paint() method, 93, 360, 432,

502
Animator applet, 248
InitStartStop applet, 243
InternetApplet applet, 256
StarPainter applet, 262

PaintBanner sample applet,
264

OOP (object-oriented programming)

1399

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

painting JFC (Java Foundation
Classes) components, 502

Palle Pedalpost applet (Web
site), 11

panels, 407
adding to applets, 408
creating, 408-409
nesting, 408-409

panes
layering, 470
tabbed

addTab() method, 487
example, 486-487
insertTab() method, 488

@param param descr tag
(javadoc), 63

<PARAM> HTML tag, 231-232,
260

parameter lists (method
declarations), 126-128

parameters
accessing, 260
applet-to-application

conversions, 303-304
application-to-applet

conversions, 311
passing, 127

by reference, 128, 1171
by value, 128, 1171
to applications, 292-293

paramString() method, 395
parent classes, 159
parent property (window

object), 1320
parentheses, 130
parse() method (JavaScript),

1326
parseByte() method, 1117
parseFloat() function

(JavaScript), 1318
parseInt() method

Java, 1115
JavaScript, 1318

parseLong() method, 1116
parseNumbers() method, 636
parsing URLs (Uniform

Resource Locators), 747-748
partitioning Enterprise

JavaBeans applications,
937-938

passing parameters, 127
by reference, 128, 1171
by value, 128, 1171
to applications, 292-293

-password option (jdb
command), 63

password property (Form
object), 1322

peek() method, 1063
percent symbol (%), 104
period (.), 130
persistence

CORBA (Common Object
Request Broker Architecture)
services, 941

JavaBeans, 917
Physical layer (OSI model),

683
PI constant, 1113
pipe character (|)

bitwise OR operator (|), 144
logical OR operator (||), 145

PipedInputStream class, 599
PipedOutputStream class, 599
PipeInputStream class, 615
pipes

application, 616
changeToY() method,

620-621
changeToZ() method,

621-622
main() method, 619-620
PipeApp.java, 617-618
YThread class, 623
YThread.java, 618
ZThread.java, 618-619

PipedInputStream class,
615-616

PipedOutputStream class,
615-616

PixelGrabber class
overview, 543-544
sample applet, 544-551

pixel values, 552
PL/SQL, 859
platforms

Amiga, 1338-1339
cross-platform issues, 20
DEC Alpha systems, 1339
Linux, 1339
NeXT platforms, 1339
UNIX

filenames, 48
Java applications, installing,

315-316
JDK (Java Developer’s Kit),

testing, 49-50
Window 3.1, ADK (Applet

Developer’s Kit) installation

configuring, 52
downloading, 51
files, 52
testing, 52-53

Windows 95
Java applications, installing,

317-320
JDK (Java Developer’s Kit)

installation, 42-43, 47-50
Windows NT

Java applications, installing,
317-320

JDK (Java Developer’s Kit)
installation, 42-43, 47-50

play() method, 267
Plug-in (Java Plug-in), 234

configuring, 236-237
in Internet Explorer, 235
in Netscape, 235-236

plug-ins property (Navigator
object), 1323

pluggable look-and-feel,
504-505

changing, 506-507
drivers, 505-506

plus sign (+)
concatenation operator (+),

142, 650
increment operator (++), 105

Point class, 454-455
point size (fonts), 442, 660
Point2D class, 566
pointers, 117, 1163

compared to Java references,
1173

security issues, 28
policytool utility, 790
polygons, drawing

drawPolygon() method,
438-439

Polygon class, 439-440
polymorphism, 1178
pop bytecode instruction (JVM),

1269
pop() method, 1063
pop-up menus

creating, 339, 415-416
event handling, 340
items

adding, 339
removing, 339
selecting, 339

JFC (Java Developer’s Kit)
creating, 478
example, 476-478

pop-up menus

1400

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

pop2 bytecode instruction
(JVM), 1269

populate() method, 1038
populating arrays, 109
portability of Java applications,

20, 1338
Amiga, 1338-1339
DEC Alpha, 1339
.jar files, 274-275
Linux, 1339
NeXT platforms, 1339

ports, 687
binding, 701
IANA specification, 700

positioned UPDATE/DELETE,
872

positioning AWT components,
357-359

postEvent() method, 361
POSTURE attribute (text), 579
pound sign (#), 611
pow() method, 1111
powers (mathematical),

calculating, 1111
pre-defined colors, 459
pre-processor, 1165
precedence

Java operators, 133-135
relational operators, 145
shift operators, 139

JavaScript operators, 1310
preferredSize() method, 357
prefetch() method, 993
prefetched state (media player),

993
prefetching media, 985
prepareCall() method, 902
PreparedStatement objects

database access, 901-911
object methods, 899
parameter-related methods,

899-900
Presentation layer (OSI model),

683
primitive data types, 98

adding to vectors, 1171
aggregate, 1169
Booleans, 1168

casting, 141
converting, 141
values, 99

BSTR, 970

C/C++, 1167
casting, 141, 1169
.class file abbreviations,

1239-1240
converting, 139

C/C++ versus Java, 1169
cast operator, 140-141
explicit conversions, 139
implicit conversions, 139-140
to strings, 1172

floating-point, 1168
IDL (Interface Definition

Language), 943-944
integers, 101-102

casting, 141
converting, 141
maximum values, 102

interfaces as, 201-204
JavaScript, 1306-1307
JVM-type signatures, 1153
mapping, 961-962
native methods, 1154
numerical values, 98-99
passing, 1171
security, 772
wrapper classes

Boolean, 1114-1115
Byte, 1117
Character, 1113-1114
Double, 1119
Float, 1118
Integer, 1115-1116
Long, 1116
Number, 1115
Short, 1117
Void, 1119

Print command (Applet menu),
57

print command (JDB), 1225
print jobs, creating, 463
print() method, 87, 604
printing

example, 463-464
print jobs, creating, 463
PrintWriter class, 604
stack trace, 1102, 1105
system properties, 1107-1108

println() method, 86, 604
printOutput() method, 697
printStackTrace() method,

369, 1105
PrintStream class, 599
printTimes() method, 732
printToConsole() method,

1190
PrintWriter class, 604

priority of threads, 1102
changing, 215-217
finding, 215
platform differences, 217-219

private key (.jar files), 281
private keyword, 121, 177
private methods, 121
-private option (javap

command), 61
private-key encryption,

783-784
procedural languages, 73
Process class, 1109-1110
processes, 208

see also threads
processMouseEvent() method,

478
producers (images), 537-538
-prof option (java command),

59
program counter register, 23
program listings, see listings
progress bars

configuring, 493
creating, 493
example, 490-492
media player, 999-1002
updating, 493-494

progress dialogs (AVM),
847-849

progress monitors
constructor, 496
example, 494-496
input streams, 497-498
run() method, 496-497

ProgressDialog class, 847
prompt() method (JavaScript),

1320
properties

JavaBeans
bound, 924-925
constrained, 925-926
customizers, 933-935
designing, 918-919
indexed, 924
initial values, 919-920
overview, 916-917, 922
PropertyEditors, 932-933
single-value, 922-924

JavaScript, 1319
Document object, 1321
Form object, 1322
Math object, 1325
Navigator object, 1323

pop2 bytecode instruction

1401

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

String object, 1323
window object, 1320-1321

managed objects, 832-833
system properties

displaying, 1063
printing, 1107-1108
querying, 1062
saving, 1062
storing, 1061

Properties class, 1061-1063
Properties command

Applet menu, 57, 66
AppletViewer File menu, 65

Properties service (CORBA),
942

property books (AVM),
840-841, 840

PropertyBookIndexPanel class,
840

PropertyBookSection class,
840

propertyChange() method, 925
PropertyChangeListener

interface, 925
PropertyEditors (JavaBeans),

932-933
propertyNames() method,

1062
proportional fonts, 441
protected classes, 163, 177
protected keyword

class declarations, 163, 177
method declarations, 120-121

protected methods, 120-121
-protected option (javap

command), 61
protocol cassettes (JCC), 1017

example, 1029-1033
Protocol interface, 1028-1029
PurchaseProtocol interface,

1029
Protocol interface, 1028
protocols

DNS (Domain Name System),
686

IGMP (Internet Group
Management Protocol), 733

IP (Internet Protocol)
addresses, 686
multicasting, 732-734
unicasting, 732

RMI (Remote Method
Invocation), 810

activation model, 825-827
applets, 817-818
CORBA, compared, 963-964
Registry, starting, 816
Remote Method patch, 814
remote objects, 810, 816-817
sample application, 811-817
sockets, 818-825
socket factory, 822-823

TCP (Transmission Control
Protocol), 686-687

binding, 701
client/server application,

706-712, 717-718
Nagle algorithm, 706
ports, 687, 701
RFC 793 specification, 700

TCP/IP (Transmission Control
Protocol/Internet Protocol),
682-685

UDP (User Datagram Protocol)
client application, 727-732
creating datagrams, 721
receiving datagrams,

721-722
sending datagrams, 722
server application, 723-726
sockets, 720-722

prototypes (JavaScript), 1293
public classesm declaring, 163,

177
public interfaces, 194
public key (.jar files), 281
public keyword

class declarations, 163, 177
method declarations, 120

public methods, 120
-public option (javap

command), 61
public-key encryption, 784-786

certification authorities, 786-787
key management, 788-789

pull media streams, 1006
push media streams, 1006
push() method, 1063
PushbackInputStream class,

598, 633
putAll() method, 1052
putfield bytecode instruction

(JVM), 1279
putstatic bytecode instruction

(JVM), 1279
pw1118.exe program, 51

Q-R
quadratic curves, drawing, 567
quadTo() method, 569
querying

AltaVistaList application, 696
datagram packets, 764
dates, 1066-1067
system properties, 1062

question dialog boxes (AVM),
845-846

QuestionDialog class, 845-846
Quit command

Applet menu, 57, 66
AppletViewer File menu, 65

quitEvent() method, 1190
quitServer() method, 711
quoteChar() method, 635

radio buttons
creating, 335
event handling, 336-338
state, checking, 335

radio property (Form object),
1322

Random class, 1069-1070
random number generators

Math class, 1110
Random class, 1069-1070

random() method, 263, 1110
RandomAccessFile class, 599

constructors, 612
example, 614-615
methods, 613-614

read() method, 600
exception handling, 367
reading user input, 88-89

read-only text areas, 348
read-only text fields, 348
readBoolean() method, 613
readByte() method, 613
readChar() method, 613
readDouble() method, 613
Reader class, 674-676
readFloat() method, 613
readFully() method, 613
reading

files
FileInputStream class,

605-606
.jar files, 287-288

reading

1402

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

objects
heterogeneous objects,

797-798
serialization, 801-802
URL objects, 690

streams
input streams, 600-601
JProgressMonitorInputStream

class, 497-498
object streams, 630-631

strings, 796-797
READING attribute (text), 579
readInt() method, 613
readLine() method, 613, 797
readLong() method, 613
readShort() method, 613
readUnsignedByte() method,

613
readUnsignedShort() method,

613
readUTF() method, 613
realized state (media player),

993
rebind() method, 813
receive() method, 763
recompiling applications, 302

see also compiling
Rectangle2D class, 566
rectangles

drawing, 566
3D rectangles, 435-436
drawRect() method, 434
rounded rectangles, 436-437,

566
Rectangle utility class, 455-457
resizing, 456

reference counting (garbage
collection), 1258

references
arrays, 1175-1176
compared to pointers, 1173
declaring, 1163, 1169-1170
manipulating, 1170

referencing
classes

dot notation, 169
super special variable,

171-172
this special variable, 170-171

primitive data types, 168
referrer property (Document

object), 1321

Reflection, 36, 806
classes

creating, 1131-1135
listing declared fields,

1142-1143
defined, 1130
methods

invoking, 1138-1141
returning list of, 1130-1131,

1135-1138
security model, 1130

regionMatches() method, 645,
1094

registering media player as
listener, 987

registers, 23
Registry, RMI (Remote Method

Invocation) application, 816
RegKey class, 976
rehash() method, 1061
relational databases, see

databases
relational operators

associativity, 145
precedence, 145
sample program, 146

relationships, 857
relative URLs (Uniform

Resource Locators),
returning, 265

Reload command (Applet
menu), 56, 66

Remote interface, extending,
811

Remote Method Invocation, see
RMI

Remote Method patch, 814
remote method wrappers, 962
remote objects

binding into Registry, 816-817
creating, 810

RemoteArray class, 1202-1203
RemoteClass class

methods, 1199-1202
public API, 1198-1199

RemoteDebugger class, 1190
methods, 1192-1194
public API, 1191-1192

RemoteDebugger() method,
1192

RemoteField class, 1196
RemoteObject class,

1197-1198

RemoteStackFrame class,
1206-1207

RemoteStackVariable class,
1207

RemoteString class, 1203-1204
RemoteThread class

methods
basic thread control, 1210
execution path control, 1211
stack frame control,

1211-1212
public API, 1209-1210

RemoteThreadGroup class,
1208-1209

RemoteValue class, 1195
remove() method, 342, 407,

1060
removeAll() method, 342, 407
removeAllElements() method,

1058
removeCertificate() method,

792
removeElement() method,

1058
removeElementAt() method,

1058
removeIdentity() method, 793
removeSelectedNode() method,

524
removeSelector() method,

1038
removing, see deleting
renameTo() method, 609
rendering AWT (Abstract

Window Toolkit) components,
360-361

repaint() method, 244, 360,
432

replace() method, 650, 653,
1096

replaceItem() method, 341
replaceText() method, 349
replacing

list items, 341
string sections, 650, 653, 1096

replication, 872
RescaleOp filter, 585-586
reserved words, see keywords
reset property (Form object),

1322
reset() method, 600-601

reading

1403

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

resetCurrentFrameIndex()
method, 1212

resetSyntax() method, 636
resize method, 410
resizing

clipping regions, 460
media player, 998
rectangles, 456
shapes, 575
vectors, 1058-1059

resolution (print jobs), 463
resolveClass() method, 1123
resolving classes, 1123
ResourceBundles objects, 668

accessing, 671
creating, 669-671
naming conventions, 669

Restart command (Applet
menu), 56, 66

restricting access, see access
control

ResultSet objects, 904-906
ResultSetMetaData class,

891-893
resume command (JDB), 1229
resume() method, 1210
ret bytecode instruction (JVM),

1276
ret_w bytecode instruction

(JVM), 1283
return bytecode instruction

(JVM), 1278
@return descr tag (javadoc), 63
return statements, 126, 156
reusing JavaScript code, 1299
reverse-color lookup, 585
RFCs (Requests for Comments)

RFC 1700 (ports specification),
700

RFC 793 (TCP specification),
700

RFC 896 (Nagle algorithm), 706
RGB (red, green, blue) color

model, 457-458, 551
color cycling, 557-559
image filters

overview, 553-554
sample applications, 554-557

RGBImageFilter class
overview, 553-554
sample applications, 554-557

rint() method, 1111

RMI (Remote Method
Invocation), 810

activation model
activatable objects, 825
example, 826-827
group IDs, 826

applets, 817-818
CORBA (Common Object

Request Broker Architecture),
compared, 963-964

Registry, starting, 816
Remote Method patch, 814
remote objects

binding into Registry,
816-817

creating, 810
sample application

client, 815-817
remote interface, 811
remote objects, 811-813
security manager, 813
server, 814
stubs, 814-815

sockets
custom streams, 818-820
sample application, 823-825
server sockets, 821
socket classes, 820-821
socket factory, 822-823

RMISocketFactory,
customizing, 822-823

rollback() method, 879
rotate() method, 575
rotating shapes, 575
round() method, 1111
rounding numbers, 1111
RoundRectangle2D class, 566
RowLayout manager, 851
Rubik’s Cube applet (Web

site), 11
run command (JDB), 1221
run() method

Animator applet, 249
TCP (Transmission Control

Protocol) client/server
application, 718

RUN_DIRECTION attribute
(text), 579

runFinalization() method,
1108

Runnable interface, 209
running applications, see

executing applications

runtime
class file verification, 1262
exceptions

catching, 374-375
returning information about,

369-370
types of, 368-370

security
ClassLoader, 29-30
memory management, 30
SecurityManager class, 30

Runtime class, 1108
runtime library (C), 1164

S
-s option (javap command), 61
saload bytecode instruction

(JVM), 1266
sandbox security model, 280,

290-291
sastore bytecode instruction

(JVM), 1269
Save command (Applet

menu), 56
SAVE_FILE constant, 394
saving system properties, 1062
scale() method, 575
scaling images, 534
scarce resources, 993
scope

blocks, 129-130
JavaScript code, 1295-1297, 1307
variables, 174-176

scope resolution operator (::),
1180

<SCRIPT> HTML tag, 1290
attributes

LANGUAGE, 1302
SRC, 1298, 1302

example, 1302
scripts (JavaScript)

Clock, 1326-1329
Hello World!, 1303
HTML markup, 1302-1303
testing, 316
wrapper scripts, 316
see also applets; applications

SCROLL_ABSOLUTE constant,
394

SCROLL_EVENT constant, 394
SCROLL_LINE_DOWN

constant, 394

SCROLL_LINE_DOWN constant

1404

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

SCROLL_LINE_UP constant,
394

SCROLL_PAGE_DOWN
constant, 394

SCROLL_PAGE_UP constant,
394

scrollbars, 352
creating, 352-353
event handling, 354
line increments, 353
minimum/maximum position

values, 353
page increment, 353
see also sliders

ScrollPanes, 407
adding components to, 420
listening for events, 421

search() method, 1063
searching

stacks, 1063
strings, 1095
vectors, 1057-1058
the Web (AltaVistaList

application)
constructors, 695-696
designing, 691
displaying results, 697
main() method, 695
parsing hits, 696-697
queries, 696
retrieving pages, 696
running, 697
source code, 691-695

security, 24-25, 770-774,
780-782

applets, 777-780
application-to-applet

conversions, 311-312
attack scenarios, 26
bytecode verifier, 773
ClassLoader, 773-774
compiled code, 29
compiler, 772
cryptography

private-key, 783-784
public-key, 784-786

denial-of-service attacks,
782-783

digital signatures
certificates, 792
certification authorities,

786-787
identities, 791-792
IdentityScope class, 792-793
.jar files, 789
key classes, 790
key management, 788-789
sample program, 793

Signature class, 790-791
signers, 792

executable code
applets, 32
external code access, 31
file system access, 31
system information access,

31-32
.jar files, 275, 279-280

certificates, 281
directive files, 285
jarsigner utility, 282-284
keytool utility, 282
manifest files, 280-281
public/private keys, 281

Java language design
arrays, 772
encapsulation, 772
final classes/methods, 28,

772
multithreading, 28
object handles, 29
object-orientation, 28
pointers, 28
references, 772
safe typecasting
threads, 772
typecasting, 28, 772

JavaScript, 1294-1295
JDBC (Java Database

Connectivity), 876
limitations, 33-34
policies, 774, 789-790
potential targets, 26
Reflection, 1130
runtime

ClassLoader, 29-30
memory mangement, 30
SecurityManager class, 30

sandbox model, 280, 290-291
Security API, 38

certificates, 792
identities, 791-793
key classes, 790
Signature class, 790-791
signers, 792
SignFile program, 793

Security Manager, 776-777,
1126

solution strategy, 25
executable content, 28
extensible security, 28
security architecture, 27
targets, anticipating, 26-27

trust relationships, 787
Security API (application

programming interface), 38
certificates, 792
identities

Identity class, 791-792
IdentityScope class, 792-793

key classes, 790
Signature class, 790-791
signers, 792
SignFile program, 793
see also cryptographic systems

Security Manager, 30,
776-777, 1126

SecurityException, 369
@see class tag (javadoc), 63
@see class#method tag

(javadoc), 63
seek() method, 613
select event (JavaScript), 1304
select property (Form object),

1322
SELECT statement, 881-882
Selectable interface, 834-835
selectAll() method, 348
self joins, 861
self property (window object),

1320
self-validating fields (AVM)

date field, 850
double field, 849-850
integer field, 849

semicolon (;), 130, 1305
send() method, 763
sending datagrams, 722, 763
SequenceInputStream class,

599, 632
sequences (IDL), 947
Serializable interface, 1084
serialization, 798-799,

1084-1085
applets, 803-804
browser support, 799
errors, 801
JDK (Java Developer’s Kit),

1.02, 801
JDK (Java Developer’s Kit),

1.1, 801
objects

reading, 801-802
references, 799
writing to file, 799-800

output streams, 800
SerializeObject example,

804-805
ObjRead class, 805
ObjWrite class, 805
SerializeObject class, 804

SerializeObject application
ObjRead class, 805
ObjWrite class, 805
SerializeObject class, 804

SCROLL_LINE_UP constant

1405

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

serveQuotes() method, 717
Server API (application

programming interface), 37
server sockets

addresses, 757
closing, 757
customizing, 821
incoming connections,

accepting, 757
ServerConn application, 757-759
SimpleServer application,

759-760
servers

CORBA (Common Object
Request Broker Architecture)

banking server example, 957
initializing, 956

datagram server application,
765-766

Enterprise JavaBeans
components, 937

Managed Object Server, 830
RMI (Remote Method

Invocation) remote servers,
814

TCP (Transmission Control
Protocol) StockQuoteServer

main() method, 717
program listing, 712-717
responding to clients, 717

UDP (User Datagram Protocol)
application source code,

723-725
byte arrays, 726
request handling, 726
running, 726
starting, 726

ServerSocket class, 704-705
service cassettes (JCC), 1017

example, 1035-1047
ServiceUI interface, 1034-1035
WalletUI interface, 1037-1038

services (CORBA)
Event, 941
Lifecycle, 941
Naming, 941
Object Querying, 942
Persistence, 941
Properties, 942
Transaction, 941-942

ServiceUI interface, 1034-1035
Session layer (OSI model), 683
setAccelerator() method, 511
setActionCommand() method,

483
setAlignment() method, 332

setAllowUserInteraction()
method, 745

setAutoCommit() method, 884
setBackground() method, 356
setBlockIncrement() method,

353
setBorder() method, 480
setBounds() method, 456
setBreakpointLine() method,

1201
setBreakpointMethod()

method, 1201
setCallback() method, 960
setChanged() method, 1071
setCharAt() method, 653,

1098
setClip() method, 461
setColor() method, 458
setColorModel() method, 538
setCommerceContext()

method, 1029, 1034, 1038
setCurrentFrameIndex()

method, 1212
setCursor method, 410
setDaemon() method, 226,

1102
setDate() method (JavaScript),

1326
setEchoChar() method, 349
setEditable() method, 348
setElementAt() method, 1055
setField() functions, 1154
setFollowRedirects() method,

746
setFont() method, 255, 357,

657, 660
setForeground() method, 356
setHelpMenu method, 413
setHints() method, 538
setHorizontalTextPosition()

method, 484
setHours() method

(JavaScript), 1326
setIcon() method, 473
setIconImage() method, 411
setID() method, 1034
setInterface() method, 768
setLabel() method, 327
setLastModified() method, 609

setLayout() method, 254
setLength() method, 1098
setLevel() method, 998
setLineNumber() method, 631
setLocation() method, 357
setMajorTickSpacing() method,

490
setMaxPriority() method, 1104
setMediaTime() method, 996
setMenuBar() method, 412
setMinorTickSpacing() method,

490
setMinutes() method

(JavaScript), 1326
setMnemonic() method, 475
setMonth() method

(JavaScript), 1326
setMultipleSelections()

method, 343
setName() method, 223
setObject() method, 1022
setPage() method, 527
setPaint() method, 572
setPixels() method, 538
setPriority() method, 215-217,

1102
setProperties() method, 1108
setProtocolJCM() method,

1029
setPublicKey() method, 791
setRate() method, 996
setReadOnly() method, 609
setReceiveBufferSize() method,

705
setResizable() method, 411
setRGB() method, 581
setRootVisible() method, 521
setScrollPosition() method,

420
setSeconds() method

(JavaScript), 1326
setSeed() method, 1070
setSendBufferSize() method,

705
setSize() method, 456, 1059
setSocketFactory() method,

823
setSoLinger() method, 705,

751

setSoLinger() method

1406

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

setSoTimeout() method, 705,
751

setSourcePath() method, 1194
setState() method, 333
setStroke() method, 571
setTcpNoDelay() method, 706,

751
setText() method, 332
setTime() method

Java, 1066
JavaScript, 1326

setTimeout() method
(JavaScript), 1320

setTransform() method, 576
setUnitIncrement() method,

353
setValue() method, 353
setValues() method, 353
setVerticalTextPosition()

method, 484
setWalletGate() method, 1029,

1034
setYear() method (JavaScript),

1326
ShapeManipulator applet, 462
shapes, 575

drawing, 564-571
3D rectangles, 435-436
circles, 437-438
Graphics2D object, 564
lines, 433-434
polygons, 438-439
rectangles, 434
rounded rectangles, 436-437
XOR mode, 447-449

fills, 565, 571-574
graphics utility classes

Dimension, 455
Point, 454-455
Rectangle, 455-457

shared libraries, 1150
shear() method, 575
shift operators, 138-139
shiftDown() method, 395
Shopping Applet (Eastland Data

System), 11
short data type

maximum values, 102
values, 98

show() method, 357, 410
ShowClickCount applet,

268-269

ShowDocument applet,
269-270

showDocument() method, 269
showStatus() method, 268
shutdown() method, 1020
-sigfile option (jarsigner

command), 284
sign() method, 791
signaling objects

notify signals, 1085-1088
wait signals, 1086-1088

Signature class, 790-791
Signature field (.class Method

Information structure), 1246
signature.file field (.jar directive

files), 285
signatures (digital)

certificates, 792
certification authorities, 786-787
identities

Identity class, 791
IdentityScope class, 792-793

.jar files, 789
certificates, 281
directive files, 285
jarsigner utility, 282-284
keystore databases, 282

key classes, 790
key management, 788-789
policies, 789
sample program, 793
Signature class, 790-791
signers, 792

-signedjar option (jarsigner
command), 284

Signer class, 792
signer field (.jar directive files),

285
SimpleContentManager applet,

835-838
sin() method, 1112
sines, calculating, 1112
single precision floating-point

literals, 115
single-value properties

(JavaBeans), 922-924
sipush bytecode instruction

(JVM), 1263
sites (Web), see Web sites
SIZE attribute (text), 579
size() method, 1056, 1059

sizing
arrays, 108
AWT (Abstract Window

Toolkit) components, 357-359
clipping regions, 460
fonts, 442
frames, 410
media player, 998
vectors, 1058-1059

skip() method, 600-601
skipBytes() method, 613
slashStarComments() method,

635
sleep() method, 221-222,

1100-1101
sliders

constructors, 489
event handling, 490
example, 488-489
tick marks, 490
see also scrollbars

small() method (JavaScript),
1324

Smalltalk, 1070
see also observables

Socket class
constructors, 702
InetAddress objects, 702-703
methods, 704

getInputStream(), 703
getOutputStream(), 703
setSoLinger(), 705
setSoTimeout(), 705
setTcpNoDelay(), 706

sockets (TCP), 720, 700-701,
749

clients, 754-756
closing, 711
connections

accepting, 757
backlog, 756
closing, 752
creating, 749-750

customizing, 705-706
RMISocketFactory, 822-823
server sockets, 821
socket classes, 820-821
streams, 818-820

datagram sockets, 762-764
defined, 700
incoming data, waiting for,

752-754
linger time, 751
multicasting, 767-768
opening, 711
returning information about,

750-751

setSoTimeout() method

1407

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

RFC 793 specification, 700
RMI (Remote Method

Invocation) application,
823-825

RemoteClient.java, 824-825
RemoteObject.java, 824

ServerSocket class, 704
server sockets

addresses, 757
closing, 757
ServerConn application,

757-759
SimpleServer application,

759-760
Socket class, 702-704
streams, 750
timeouts, 751
UDP (User Datagram Protocol)

characteristics, 720-721
creating, 722

software
eSuite, 11
Java Plug-in, 234

configuring, 236-237
in Netscape, 235-236
Internet Explorer, 235

Solaris systems, JDK (Java
Developer’s Kit) installation

CD-ROM, 43-44
downloaded files, 45-46

Solstice Workshop, 429-430
sound

adding to applets, 266-267
loading files, 266
media player, 997-998

source code listings, see
listings

source files
inclusion, 1166
naming, 1167

SourceFile attribute (.class file),
1251

-sourcepath dirs option
(javadoc command), 62

SPARC Solaris, JDK (Java
Developer’s Kit) installation

CD-ROM, 43-44
downloaded files, 45-46

specifiers, see modifiers
SQL (Structured Query

Language), 858-859
DELETE statement, 872
exceptions, 893
UPDATE statement, 872
warnings, 893-894

SQLExceptions class, 893
SQLWarnings class, 893-894
sqrt() method, 1111
square roots, calculating, 1111
SRC attribute (<SCRIPT> tag),

1298, 1302
-ss val option (java command),

59
stability

Java, 1297
JavaScript, 1297-1298

stack, 23
creating, 1063
empty, testing for, 1063
example, 1064
frames, counting, 1102
management

RemoteStackFrame class,
1206-1207

RemoteStackVariable class,
1207

StackFrame class, 1205
objects, adding/removing, 1063
searching, 1063

Stack class, 1063-1064
stack trace, printing, 1102,

1105
StackFrame class, 1205
StackOverflowException, 369
StarPainter applet

HTML (Hypertext Markup
Language) file, 261

source code, 260-261
getSize() method, 262-263
imported classes, 262
init() method, 262
paint() method, 262
random() method, 263

Start command (Applet menu),
56

start() method, 94, 239, 1099
Animator applet, 248
media player, 985
starting threads, 221

started state (media player),
993

starting
applets, 94
media player, 988, 996
threads, 221, 1099-1100

startServing() method, 726
startsWith() method, 641,

1094

startup Web pages (JMAPI),
831

state
check boxes

checking, 333, 338
setting, 333

defined, 158
JavaBeans, 917
media player, 992-993
radio buttons, checking, 336

Statement objects, 896
accessing databases with,

898-899
creating, 897
methods, 897-898

statements
blocks

defined, 128
example, 128-129
scope, 129-130

break, 155-156, 1313-1314
continue, 156, 1313-1314
DELETE, 872
do, 153-154
for, 154
if, 151, 1310
if-else, 151-152, 1310-1311
importlib, 969
JDBC (Java Database

Connectivity) support, 896-897
CallableStatement object,

902-904
PreparedStatement object,

899-902
Statement object, 897-899

labels, 129
package, 185-186
return, 126, 156
SELECT, 881-882
switch, 154-156
synchronized, 1181
UPDATE, 872
while, 153
see also commands; keywords

static binding, 1294
static cursors, 871
static fields, accessing,

1156-1157
static joins, 859
static keyword, 122-125, 177
static methods, 122-125, 1158
status messages, changing,

268-269
status property (window object),

1320

status property (window object)

1408

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

statusAll() method, 452
statusID() method, 452
step command (JDB), 1228
step() method, 1211
StockQuoteClient application

class constructor, 711
main() method, 711
socket connection, 711
source code listing, 707-711
stock data

displaying, 712
obtaining, 711

StockQuoteServer application
clients, responding to, 717
main() method, 717
source code listing, 712-717
stock data, reading, 717

Stop command (Applet
menu), 56

stop command (JDB), 1227
stop() method, 239, 1099,

1210
Animator applet, 249
media player, 988
stopping threads, 221

stopping
media player, 988-989
threads, 221, 1099-1100

-storepass option (jarsigner
command), 283

storing
JCC (Java Commerce Client)

instruments, 1021
objects

maps, 1052
vectors, 1055

system properties, 1061
streams, 598-599, 750,

1105-1106
buffered streams, 624
byte array streams, 626-627
char array streams, 627
closing, 601
customizing, 818-820
data streams, 624

DataInput interface, 625
DataInputStream class, 626
DataOutput interface, 626
DataOutputStream class,

626
defined, 598
file streams

FileInputStream class,
605-606

FileOutputStream class,
606-607

filtered, 623-624

flushing, 602
InputStream class, 600
LineNumberReader class,

631-632
marking, 601
media streams, 1006
object streams

ObjectInput interface, 628
ObjectOutput interface, 628
reading, 630-631
writing to, 629-630

OutputStream class, 602
PipeInputStream class, 615
PushbackInputStream class,

633
reading, 497-498, 600-601
SequenceInputStream class,

632
StringBufferInputStream class,

628
System.in object, 603
System.out object, 603
tokenizers, 633-636
writing to, 602

StreamTokenizer class, 599,
633-636

strike() method (JavaScript),
1324

STRIKETHROUGH attribute
(text), 579

String class, 638, 1091-1096
charAt() method, 1095
compareTo() method, 1094
concat() method, 1096
constructors, 640
endsWith() method, 1094
indexOf() method, 1095
lastIndexOf() method, 1095
length() method, 1093
regionMatches() method, 1094
replace() method, 1096
startsWith() method, 1094
String() method, 1092-1093
toCharArray() method, 1095
toLowerCase() method, 1096
toUpperCase() method, 1096
trim() method, 1096
valueOf() method, 1093

String object (JavaScript),
1323-1324

String reference constant
(Constant Pool), 1238

String() method, 1092-1093
StringBuffer class, 638
StringBufferInputStream class,

598, 628

StringBuffers, 651, 1096
capacity, 652, 1098
characters, adding, 1097
creating, 651-652, 1096
length, 652, 1098
manipulating, 653

StringIndexOutOfBoundsException,
369

strings, 115-116
buffers, 651, 1096

capacity, 652, 1098
characters, adding, 1097
creating, 651-652, 1096
length, 652, 1098
manipulating, 653

C/C++ versus Java, 1174
case, converting, 651, 1096
characters

adding, 653
replacing, 650, 1096

comparing, 1093-1094
compareTo() method, 644
equal() method, 644
example, 645-647
regionMatches() method,

645
concatenating, 116, 141-142,

650, 1096
converting

to byte data types, 1117
to double data types, 1119
to integers, 1115-1116
to long data types, 1116

creating, 638-640, 1092-1093
defined, 638
extraction, 652, 1095

example, 648-650
getBytes() method, 648
getChars() method, 647
substring() method, 648

hash codes, 641
JavaScript, 1308
leading/trailing spaces,

deleting, 651, 1096
length, determining, 640, 1093
null, 640
reading, 796-797
representing objects as, 1082
returning information about,

641-642
searching, 1095
String class, 638
StringBuffer class, 638
substrings, 642-643
tokenizers, 1068-1069
tokenizing, 654-655
URL (Uniform Resource

Locator) encoding, 747
Strings data type (JavaScript),

1307

statusAll() method

1409

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

StringTokenizer class,
1068-1069

stringWidth() method, 446,
659

strokes
BasicStroke class, 569
corners, 570
dashed lines, 570
setStroke() method, 571
width, 569

strong typing, 1293
struct construct (C/C++), 1164
structured development, 73
Structured Query Language,

see SQL
structures, 945-946
stubs, 814-815
-stubs option (javah command),

62
styled strings, 576-577
StyledString object, 576
sub() method (JavaScript),

1324
subclasses, 159
subdirectories, copying, 315
submenus, creating, 413
submit event (JavaScript),

1304
submit property (Form object),

1322
submit() method (JavaScript),

1322
substring() method

Java, 577, 648, 1095
JavaScript, 1324

substrings
extracting, 649-650
searching for, 642-643

subtract and assign operator
(-=), 105

subtract joins, 861
Sun Web site, 1336
sun.java.swing package, see

Swing
sun.tools.debug package, see

JBD (Java Debugger)
sup() method (JavaScript),

1324
super keyword, 171-172, 1179
Superclass Name field (.class

File structure), 1242

superclasses
defined, 159
extending, 164-165

SUPERSUBSCRIPT attribute
(text), 579

suspend command (JDB),
1229

suspend() method, 222, 1210
suspending threads, 222,

1100-1101
swap bytecode instruction

(JVM), 1269
SWAP_COLORS attribute (text),

579
Swing Connection Web site,

1337
Swing

combo boxes, 511-514
KeyAccelerators, 511
lists, 511-514
look-and-feel drivers, 505-506
menu bars

check box items, 510-511
creating, 510

tables
cell editors, 517-519
example, 514-515
table models, 516-517

toolbars, 507-509
trees

creating nodes, 521
example, 519-521
models, 521-524
removing nodes, 524
text field values, 524-525

see also AWT (Abstract Window
Toolkit); GUIs (graphical user
interfaces); JFC (Java
Foundation Classes)

swing_home variable, 468
switch statements, 154

break statements, 155
example, 155-156
syntax, 155

symmetric cryptography,
783-784

synchronized keyword, 126,
220, 1181

synchronizing
inner classes, 184
threads, 219-221

syncStart() method, 996
System class, 1105-1108
system properties

displaying, 1063
printing, 1107-1108

querying, 1062
saving, 1062
storing, 1061

System.in object, 603
System.out object, 603

T
tabbed panes

addTab() method, 487
example, 486-487
insertTab() method, 488

tables
defined, 857
hashtables

buckets, 1059
capacity, 1059
creating, 1059-1060
keys, 1059
objects, adding/removing,

1060-1061
values, 1059

joins
dynamic joins, 859
equi-joins, 862
inner joins, 860
outer joins, 860-861
self joins, 861
SQL (Standard Query

Language) statements, 862
static joins, 859
subtract joins, 861

relationships, 857
Swing

cell editors, 517-519
example, 514-515
table models, 516-517

vtables, 969
tableswitch bytecode instruction

(JVM), 1277
Tag command (Applet menu),

56, 66
tags

Constant Pool, 1235-1236
HTML, 1290

<APPLET>, 10, 229-233,
1291

<PARAM>, 231-232, 260
<SCRIPT>, 1290, 1298, 1302

javadoc, 63
tainting (JavaScript), 1294
tan() method, 1112
tangents, calculating, 1112
target data member (Event

class), 395

target data member (Event class)

1410

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

target property (Form object),
1322

task pages (AVM), 841-843
example, 842-843
TaskSession objects, 841-842

task swapping, 214-215
TaskSection class, 841
TCP (Transmission Control

Protocol), 686-687
binding, 701
client/server application, 706

client code, 707-711
displaying stock data, 712
implementing, 718
obtaining stock data, 711
protocol design, 706-707
reading stock data, 717
responding to clients, 717
running, 718
server code, 712-717
socket connection, 711

Nagle algorithm, 706
ports, 687, 701
RFC 793 specification, 700
sockets, 700-701

closing, 711
customizing behavior,

705-706
defined, 700
opening, 711
ServerSocket class, 704
Socket class, 702-704

TCP/IP (Transmission Control
Pro/Internet Protocol)
network model, 682-685

-td option (javah command), 62
Team Java Web site, 1337
tear-off menus, 412
temporary files

creating, 611
deleting on exit, 611-612

testing
ADK (Applet Developer’s Kit)

installation, 52-53
applications, 303
batch files, 318
Class Loader application,

1125-1126
JDK (Java Developer’s Kit)

Macintosh, 50
test project, 49
Windows NT, 49-50

object equality, 1081-1082
scripts, 316

text
boundaries, 677
character attributes, 578-579

clipping regions, 592-594
collating, 676
drawing, 576

drawBytes() method, 442
drawChars() method, 442
drawString() method,

440-442, 576
styled strings, 576-577

fonts
ascent/descent, 441, 659
attributes, 656-658
choosing, 442
creating, 443, 659-660
displaying, 660-662
example, 444-445
fixed, 441
font metrics, 445-446
leading, 441, 659
listing available, 444
metrics, 658-659
point size, 442, 660
proportional fonts, 441
styles, 442

internationalization, 676
layouts, 577-578
see also strings

text areas
creating, 347
event handling, 349-352
read-only, 348
text

inserting, 348-349
replacing, 349
selecting, 348

text fields
creating, 347
echo characters, 348-349
event handling, 349-352
read-only, 348
Swing, 528
text, inserting, 348

text property (Form object),
1322

textarea property (Form object),
1322

TextAttributeSet object, 578
TextDisplayer bean, 920-921
TextLayout class, 577
TextReader bean, 921
textured fills, 572-574
TexturePaint object, 572-574
this keyword, 170-171, 1318
Thread class, 1099

extending, 209
methods

activeCount(), 1103
countStackFrames(), 1102

currentThread(), 1102
dumpStack(), 1102
enumerate(), 1103
isDaemon(), 1102
join(), 1100
setPriority(), 1102
sleep(), 1100-1101
start(), 1099-1100
stop(), 1099-1100
yield(), 1101

thread command (JDB), 1222
ThreadDeath objects, 221
threadDeathEvent() method,

1190
Threader.java (thread example)

code listing, 211-212
run() method, 213-214

ThreadGroup class, 1103-1104
threadgroup command (JDB),

1222
threadgroups command (JDB),

1225
threads

active threads
counting, 222-223
returning list of, 223-224

advantages, 208
creating, 1099
daemons, 225-226, 1101-1102
debugging, 1207-1208

RemoteThread class,
1209-1212

RemoteThreadGroup class,
1208-1209

destroying, 222
finding current, 1102
GreatRace example

init() method, 212
run() method, 223-224
running, 215
source code listing, 209-211
start() method, 213

groups, 1103-1104
implementation, 209
JDB (Java Debugger) thread

commands
down, 1230
kill, 1230
resume, 1229
suspend, 1229
up, 1230

multithreading, 208
pipe application, 623
priority, 1102

changing, 215-217
finding, 215
platform differences, 217-219

target property (Form object)

1411

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

processing, 214-215
progress bars, 493-494
progress monitors, 496
putting to sleep, 221-222
security, 28, 772
signaling

notify signals, 1085-1088
wait signals, 1086-1088

stack frames, counting, 1102
stack trace, printing, 1102
starting, 221, 1099-1100
stopping, 221, 1099-1100
suspending, 222, 1100-1101
synchronizing

limitations, 220-221
synchronized keyword,

219-220
Threader example

run() method, 213-214
source code listing, 211-212

waiting for completion, 1100
yielding, 222, 1101

threads command (JDB),
1225-1226

three-tier systems, 868
ThresholdOp filter, 587
Throw() method, 1158
Throwable class, 1104-1105
throwing exceptions, 204-205,

366-367
defined, 364
finally blocks, 377
try-catch blocks, 364

throws clause, 367-368
ThrowNew() method, 1159
tiers (client/server systems),

867-868
Time class, 907
time to live (TTL) values, 734,

768
time/date methods

currentTimeMillis() method,
1106

JavaScript, 1325-1326
TimeCompare sample

application (UDP client)
getTimes() method, 731-732
printTimes() method, 732
running, 732
source code, 727-731
starting, 731

timeouts (sockets), 751
Timestamp class, 908

TimeZone class, 671
title property (Document

object), 1321
titling frames, 410
toCharArray() method, 1095
toGMTString() method, 1066
toGMTString() method

(JavaScript), 1326
toHex() method, 1195
tokenizers

streams, 633-636
strings, 654-655, 1068-1069

toLocaleString() method, 1066
toLocaleString() method

(JavaScript), 1326
toLowerCase() method

Java, 651, 1096
JavaScript, 1324

toolbars, 507-509
tools, see utilities
tooltips, 475-476
top property (window object),

1320
toString() method, 369, 395,

609, 657-659, 1066, 1082,
1116, 1196, 1200

total variable, 175
TotalMemory() method, 1194
totalMemory() method, 1109
toUpperCase() method

Java, 651, 1096
JavaScript, 1324

toURL() method, 609
trace command (JDB),

1220-1221
-trace option (javah command),

62
trace() method, 1193
tracking images

example, 453-454
ID numbers, 451

trailing spaces, deleting, 651,
1096

Transact-SQL, 859
Transaction service (CORBA),

941-942
TransactionIsolation constants,

884

transactions, 868
ACID (atomicity, consistency,

isolation, durability)
properties, 869, 941-942

DTC (Distributed Transaction
Coordinator), 869-870

TRANSFORM attribute (text),
579

transformations, 575-576
translate() method, 395, 575
Transmission Control Protocol/

Internet Protocol, see TCP/IP
Transmission Control Protocol,

see TCP
transparency, 590-592
Transport layer

OSI (Open Systems
Interconnect), 683

TCP/IP (Transmission Control
Protocol/Internet Protocol)
network model, 685

trees (Swing)
example, 519-521
models, 521-524
nodes

creating, 521
removing, 524
text field values, 524-525

trig functions, 1112
trim() method, 651, 1096
trimToSize() method, 1058
troubleshooting, see errors;

exceptions
true/false operators, 144-145
trust relationships (applets),

787
truth tables (bitwise operators),

137-138
try blocks, 364
TTL (time to live) values, 734,

768
-tvf option (jar command), 277
two-phase commit, 869-870
two-tier systems, 868
Type field (.class File

Information. structure), 1244
Type reference constant

(Constant Pool), 1238
typecasting, 28
typefaces, see fonts
typeName() method, 1195,

1200

typeName() method

1412

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

Types class, 908-909
types, see data types
typing, 1293
typography, see fonts

U
UCSD p-System, 1254
UDP (User Datagram Protocol),

687, 720
clients

application source code,
727-731

getTimes() method,
731-732

printTimes() method, 732
running, 732
starting, 731

datagrams
creating, 721
maximum size of, 721
receiving, 721-722
sending, 722

multicasting
IP (Internet Protocol), 732-

734
Java classes, 734-735
sample applications, 735-740

servers
application source code,

723-725
byte arrays, 726
request handling, 726
running, 726
starting, 726

sockets
characteristics, 720-721
creating, 722

unary logical operators, 149
unary operators, 105-106
UNDERLINE attribute (text),

579
unescape() function

(JavaScript), 1318
unicast events, 928
unicasting, 732
Unicode character set, 1168
Unicode string constant

(Constant Pool), 1236-1237
Uniform Resource Locators, see

URLs
uninstall() method, 1019
union() method, 457

unions
C/C++, 1164
IDL (Interface Definition

Language), 946-947
declaring, 946
discriminators, 946
holder structures, 947

Universally Unique Identifiers
(UUIDs), 967

UNIX
filenames, 48
Java applications, installing,

315-316
JDK (Java Developer’s Kit),

testing, 49-50
UnknownServiceException

exception, 743
unload event (JavaScript),

1304
unpacking JDK (Java

Developer’s Kit) files, 43
unrealized state (media player),

992
up command (JDB), 1230
UPDATE statement, 872
update() method, 244, 360,

432
updateUI() method, 507
uppercase strings, converting to

lowercase, 1096
URLConnection class, 744-746
URLConnection objects, 690
URLDecoder class, 747
URLEncoder class, 747
URLs (Uniform Resource

Locators), 687, 742
connecting to, 689
creating, 689, 742-743
decoding, 747
encoding, 747
format, 688
HTTPURLConnection class,

746-747
parsing, 747-748
reading, 690
retrieving contents, 742-744
returning, 265
syntax, 688

URLStreamHandler class,
747-748

use command (JDB), 1222
Usenet newsgroups, 1337-

1338

User Datagram Protocol, see
UDP

user interface cassettes (JCC),
1017

user interfaces, see GUIs
(graphical user interfaces)

userAgent property (Navigator
object), 1323

UTC() method (JavaScript),
1326

Utf8 string constant (Constant
Pool), 1236

utilities
AppletViewer, 91

Applet menu commands,
56-57

Macintosh version, 65-66
opening, 56

ClassFileDump, 1251-1252
GUIDGEN, 970
jar utility

command-line options,
276-277

creating archives, 276-277
extracting archives, 277
listing archive contents, 277

jarsigner utility, 282-283
-ids option, 284
-keypass option, 284
-keystore option, 283
-sigfile option, 284
-signedjar option, 284
-storepass option, 283
-verbose option, 284
-verify option, 284

java, 57-59
Java Debugger, see JDB
Java Runner utility, 66-67
java utility, 57-59
javac utility, 22, 59-60
javadoc utility

command-line options, 62-63
comment notation, 111, 1163
tags, 63

javah utility, 61-62
JavaH utility (Macintosh), 67
javakey utility, 284-285
javap utility, 60-61
JAVAREG tool, 972
javatlb, 971
JBD (Java Debugger), 1188

architecture, 1214-1215
client/server management,

1189-1194
command processing

organization, 1213
command-line, 63-64,

1215-1216

Types class

1413

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

commands, 1221-1230
debugging strategies,

1230-1231
input files, 1216-1217
native types, 1204-1205
sample application,

1217-1219
special types, 1194-1203
stack mangement, 1205-1207
thread mangement,

1207-1212
keytool, 282, 788
MKTYPLIB, 970
policytool, 790

utility classes (AWT)
Dimension, 455
Point, 454-455
Rectangle, 455-457

uuid keyword, 969
UUIDs (Universally Unique

Identifiers), 967

V
-v option

java command, 58
javah command, 62

validate() method, 360
VALUE attribute (<PARAM>

tag), 232
value variable, 175
valueOf() method, 651, 1093
var keyword, 1306
variables

access
direct access, 172-173
methods, 173-174
modifiers, 177-178

arrays, 108-109
Boolean, 99-101
characters, 106
declaring, 99

in interfaces, 198
loose typing, 1293
strong typing, 1293

environmental
CLASSPATH, 64
JDK installation, 43
swing_home, 468

floating-point
maximum values, 106
operations, 107
states, 107

identifiers, 100-101
instance variables, 123

integers
converting to characters, 89
declaring, 102-103
operations, 103

JavaScript
declaring, 1306
initializing, 1306
naming, 1307
scope, 1307

referencing, 201
scope, 129-130, 174-176
super, 171-172
this, 170-171

Variant object, 978
vars register, 23
Vector class, 1054
Vector() method, 1054
vectors, 1054

C/C++ versus Java, 1176
capacity

checking, 1058
increasing, 1058
increments, 1055
reducing, 1058

creating, 1054-1055
empty, testing for, 1056
objects

accessing, 1055-1056
adding, 1055
copy to arrays, 1056
counting, 1056
enumerating, 1056-1057
removing, 1058

primitive data types, adding,
1171

searching, 1057-1058
sizing, 1059
see also arrays

-verbose option
jarsigner command, 284
java command, 58
javac command, 60
javadoc command, 62
javap command, 61

-verbosegc option (java
command), 59

-verify option
jarsigner command, 284
java command, 59
javap command, 61

verifying
bytecode, 29, 1260

benefits, 1261
runtime, 1262
security, 773
semantic check phase, 1261
syntax check phase, 1261

digital signatures, 788

-verifyremote option (java
command), 59

-version option
java command, 58
javah command, 61
javap command, 61

@version ver tag (javadoc), 63
vetoableChange() method, 926
VetoableChangeListener

interface, 925
virtual machine, see JVM (Java

Virtual Machine)
Visual Basic, calling objects

from, 974
vlinkColor property (Document

object), 1321
volume (media player),

997-998
VSPACE attribute (<APPLET>

tag), 233
vtables, 969

W
wait() method, 1085-1088
waitFor() method, 1109
waitForAll() method, 452
waitForID() method, 451
WalletUI interface, 1037-1038
WarningDialog class, 844
warnings

AVM (Admin View Module),
844

SQL (Standard Query
Language), 893-894

wash effects (images), 585-586
Web (World Wide Web)

URLs (Uniform Resource
Locators), 687

connecting to, 689-690
creating, 742-743
decoding, 747
encoding, 747
HTTPURLConnection class,

746-747
parsing, 747-748
retrieving contents, 742-744
syntax, 688
URLConnection class,

744-746
sites

ADK (Applet Developer’s
Kit), 51

AltaVista, 691

Web (World Wide Web)

1414

P2/VB/mp12 SEU Java 1.2 #1529-5 8.12.98 ala Index LP#3

DEC Alpha porting issues,
1339

Digitas Course Decision
Assistant, 13

Gamelan, 1334
Inside Java, 1334
JARS (Java Applet Rating

Service), 1335
Java Boutique, 1335
Java Developer’s Journal,

1335
Java Developers

Connection, 1335
Java Guide, 1334
Java Lobby, 1335
Java Resources from

Netscape, 1336
Java World, 1336
JavaBeans, 1336
JFC (Java Foundation

Classes), 468
Javology, 1336
JDBC (Java Database

Connectivity), 874
JDK (Java Developer’s Kit)

download site, 44
JMAPI (Java Management

API), 430
Linux porting issues, 1339
Metromix, 13
Microsoft, 1336
NetProphet, 10
Palle Pedalpost, 11
Rubik’s Cube applet, 11
Shopping Applet, 11
Sun Microsystems, 133
Swing Connection, 1337
Team Java, 1337

WEIGHT attribute (text), 579
weightx variable

(GridBagConstraints class),
426

weighty variable
(GridBagConstraints class),
426

whatHappened() method, 960
when data member (Event

class), 395
where command (JDB), 1226
whichAction parameter

(action() method), 337
while loops

Java, 153
JavaScript, 1312-1313

whitespace, 109-110
whitespaceChars() method,

634

wide bytecode instruction
(JVM), 1282

WIDTH attribute (<APPLET>
tag), 230, 233

window object (JavaScript),
1319-1321

WINDOW_DEICONIFY
constant, 394

WINDOW_DESTROY constant,
394

WINDOW_EVENT constant,
394

WINDOW_EXPOSE constant,
394

WINDOW_ICONIFY constant,
394

WINDOW_MOVED constant,
394

Window 3.1, ADK (Applet
Developer’s Kit) installation

configuring, 52
downloading, 51
files, 52
testing, 52-53

Windows 95
Java applications, installing,

317-320
JDK (Java Developer’s Kit)

installation
downloaded files, 47-48
environment variables, 43
removing previous versions,

42
testing, 49-50
unpacking files, 43

Windows look-and-feel driver,
506

Windows NT
Java applications, installing,

317-320
JDK (Java Developer’s Kit)

installation
downloaded files, 47-48
environment variables, 43
removing previous versions,

42
testing, 49-50
unpacking files, 43

wing10.exe program, 51
wordChars() method, 634
wrapper classes

Boolean, 1114-1115
Byte, 1117
Character, 1113-1114
creating, 971
Double, 1119
Float, 1118

Integer, 1115-1116
Long, 1116
Number, 1115
overview, 1171
Short, 1117
Void, 1119

wrapper scripts, 316
wrapping CORBA around

objects, 960-961
write() method, 602
writeBoolean() method, 613
writeByte() method, 613
writeBytes() method, 613
writeChar() method, 614
writeChars() method, 614
writeDouble() method, 614
writeFloat() method, 614
writeInt() method, 614
writeLong() method, 614
Writer class, 674-676
writeShort() method, 614
writeUTF() method, 614
writing

to files, 606-607, 799-800
native methods, 1148
to screen

HelloWorld example, 86
multiple strings, 87-88
print(), 87
println(), 86

to streams, 602, 629-630

X-Y-Z
x data member (Event class),

395
x86 machines, JDK (Java

Developer’s Kit) installation,
43-45

XOR drawing mode, 447-449
XOR operator, 145, 1067
xvf option (jar command), 277
y data member (Event class),

395
yield() method, 222, 1101
YThread class, 623
ZipEntry class, 286
ZipFile class, 286
ZipInputStream class, 286
ZipOutputStream class, 286
ZLIB files, 288

Web (World Wide Web)

iContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Joseph Weber

Java 1.2

U
sin

g
S

p
e

c
ia

l E
d

itio
nUsing

Fourth Edition

™

Untitled-1 9/22/98, 9:45 AM1

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

ii Special Edition Using Java 1.2, Fourth Edition

Special Edition Using Java 1.2, Fourth Edition
Copyright © 1998 by Que

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Neither is any liability assumed for damages resulting from
the use of the information contained herein.

International Standard Book Number: 0-7897-1529-5

Library of Congress Catalog Card Number: 97-80766

Printed in the United States of America

First Printing: August 1998

00 99 98 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Que
Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark. Java is a trademark of Sun
Microsystems, Inc.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The authors and the
publisher shall have neither liability or responsibility to any person
or entity with respect to any loss or damages arising from the infor-
mation contained in this book or from the use of the CD or pro-
grams accompanying it.

Untitled-1 9/22/98, 9:45 AM2

iiiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Contents at a Glance

Introduction 1

I Introduction to Java

1 What Java Can Do for You 7
2 Java Design 19
3 Installing the JDK and Getting Started 39
4 JDK Tools 55

II The Java Language

5 Obejct-Oriented Programming 71
6 HelloWorld!: Your First Java Program 83
7 Data Types and Other Tokens 97
8 Methods 119
9 Using Expressions 131

10 Control Flow 143
11 Classes 157
12 Interfaces 191
13 Threads 207
14 Writing an Applet 227
15 Advanced Applet Code 259
16 JAR Archive Files 273
17 Applets Versus Applications 289
18 Managing Applications 313

III User Interface

19 java.awt: Components 325
20 Exceptions and Events in Depth 363
21 Containers and Layout Managers 405
22 Graphics 431
23 JFC—Java Foundation Classes 465
24 Advanced JFC 499
25 Images 533
26 Java 2D Graphics 563

Untitled-1 9/22/98, 9:45 AM3

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

iv Special Edition Using Java 1.2, Fourth Edition

IV IO

27 Files, Streams, and Java 597
28 Using Strings and Text 637
29 Using Internationalization 663
30 Communications and Networking 681
31 TCP Sockets 699
32 UDP Sockets 719
33 java.net 741
34 Java Security in Depth 769
35 Object Serialization 795
36 Remote Method Invocation 809
37 Management API 829

V Databases

38 Databases Introduced 855
39 JDBC: The Java Database Connectivity 873
40 JDBC Explored 895

VI Component-Based Development

41 JavaBeans 915
42 JavaIDL: A Java Interface to CORBA 939
43 Java—COM Integration 965

VII Advanced Java

44 Java Media Framework 983
45 Commerce and Java Wallet 1015
46 Data Structures and Java Utilities 1049
47 java.lang 1079
48 Reflection 1129
49 Extending Java with Other Languages 1145
50 Java Versus C(++) 1161

VIII Debugging Java

51 Debugging Java Code 1187
52 Understanding the .class File 1233
53 Inside the Java Virtual Machine 1253

Untitled-1 9/22/98, 9:45 AM4

vContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

IX JavaScript

54 Java Versus JavaScript 1287
55 Starting with JavaScript 1301

X Java Resources

56 Java Resources 1333

XI Appendix

A What’s on the CD-ROM 1343

Index 1345

Untitled-1 9/22/98, 9:45 AM5

Untitled-1 9/22/98, 9:45 AM6

Table of Contents

Introduction 1

This Book Is for You 2

How This Book Is Organized 2

Conventions Used in This Book 4

I Introduction to Java

1 What Java Can Do for You 7

The Many Types of Java Applications 8

Learning About the Java Language 9

The Java Development Kit 9

Java Applets 10
Real-World Examples of Java Applets on
the Web 10

Java GUI Applications 15

Java Command Line Applications 16

Java Is Client/Server 17

How to Stay Current 17

2 Java Design 19

Java Is Interpreted 20

Java Is Object Oriented 21

The Java Virtual Machine 22
Java Source Code 22
The Java Stack 23
Java Registers 23
Garbage-Collection Heap 24
The Java Method Area 24

Security and the JVM 24
Executable Content and Security 24
Java Approach to Security 26

Security at the Java Language Level 28
Security in Compiled Java Code 29
Java Runtime System Security 29
Security of Executable Code 31
Open Issues 33

The Java API 34
Java Core API 34
JavaBean API 36
New to JDK 1.2 37
Java Embedded API 38

3 Installing the JDK and Getting
Started 39

Why You Need Sun’s Java Development Kit
to Write Java 40

More on How Java Is Both Compiled and
Interpreted 40

Getting and Installing Sun’s JDK 41
Installing the JDK Off the CD-ROM for
Windows 95 and NT 42
Installing the JDK Off the CD-ROM for
x86 and SPARC Solaris 43
Downloading the JDK 44

Installing a Downloaded JDK 45
Solaris x86 and SPARC Platforms 45
Windows Installation 47
Macintosh Installation 48

Testing the Java Compiler and JVM 49
Creating a New Java Project 49
Running a Java Application for UNIX or
Windows 49
Running a Java Application for the
Macintosh 50

Installing IBM’s Applet Developer’s Kit for
Windows 3.1 51

Downloading the ADK 51

Untitled-1 9/22/98, 9:45 AM7

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

viii Special Edition Using Java 1.2, Fourth Edition

4 JDK Tools 55

JDK Tools Reference 56

AppletViewer 56

java, The Java Interpreter 57

javac, The Java Compiler 59

javap, The Java Disassembler 60

javah C-Header and Stub File Creation 61

The javadoc Tool (Documentation
Generator) 62

jdb, The Java Debugger 63

The CLASSPATH Environment
Variable 64

Macintosh Issues 64
AppletViewer for the Macintosh 65
Java Runner, The Mac Java
Interpreter 66

The Java Compiler 67

JavaH: C-Header File Generator 67

II The Java Language

5 Obejct-Oriented Programming 71

Object-Oriented Programming: A New Way
of Thinking 72

A Short History of Programming 72
Procedural Languages 73
Structured Development 73
Ahh…Object-Oriented
Programming 74

A Lesson in Objects 74
Traditional Program Design 75
The OOP Way 75
Extending Objects Through
Inheritance 76

Objects as Multiple Entities 78

Organizing Code 78

Objects and How They Relate to Java
Classes 78

Building a Hierarchy: A Recipe for OOP
Design 79

Break Down Code to Its Smallest
Entities 79
Look for Commonality Between the
Entities 79
Look for Differences Between Enti-
ties 80
Find the Largest Commonality Between
All Entities 80
Put Remaining Common Objects
Together and Repeat 80
Using Objects to Add As Many As
Desired 81

Java Isn’t a Magic OOP Bullet 81

6 HelloWorld!: Your First Java
Program 83

HelloWorld Application 84
Create the File 84
Compile the Code 84
Run the Program 85

Understanding HelloWorld 85
Declaring a Class 85
main Method 86
Writing to the Screen 86
System.out and System.in 86

HelloWorld as an Applet—Running in
Netscape 90

The New Source Code—Compiling
It 90
Creating an HTML File 90
Running the Program in
AppletViewer 91
Running HelloWorld in Netscape 92
Understanding the Source Code 92
The Brief Life of an Applet 93

Keywords 94

API 95

Untitled-1 9/22/98, 9:45 AM8

ixContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

7 Data Types and Other Tokens 97

Java Has Two Data Types 98

Learning About boolean Variables 99
Declaring a Variable 99
Identifiers: The Naming of a
Variable 100
Changing Boolean Variables 101

The Various Flavors of Integer 101
Limits on Integer Values 102
Creating Integer Variables 102
Operations on Integers 103

Operators 103
Arithmetic Operators 104
Assignment Operators 104
Increment/Decrement Operators 105

Character Variables 106

Floating-Point Variables 106

Arrays 107

Whitespace 109

Comments 110
Traditional Comments 110
C++ Style Comments 111
javadoc Comments 111

Literals: Assigning Values 112
Integer Literals 112
Character Literals 113
Floating-Point Literals 114
String Literals 115

Creating and Destroying Objects 116
Creating Objects with the new
Operator 116

8 Methods 119

Parts of a Method 120
Declaration 120

Blocks and Statements 128
Labeled Statements 129
Scope 129

Separators 130

9 Using Expressions 131

What Is an Expression? 132

How Expressions Are Evaluated 132
Operator Associativity 133
Precedence of Java Operators 133
Summary—The Operator Table 134
Order of Evaluation 135

Of Special Interest to C Programmers 136

Bitwise Operators 136

The Shift Operators 138

Type Conversions 139
Implicit Type Conversions 139
Cast Operator 140
Casting and Converting Integers 141
Casting and Converting
Characters 141
Casting and Converting Booleans 141

Addition of Strings 141

10 Control Flow 143

Controlling the Execution 144

true and false Operators on Booleans 144
The Relational Operators 145
The Equality Operators 146

Logical Expressions 148
Conditional-AND and Conditional-OR
Operators 148
The Unary Logical Operators 149

The Conditional Operator 150

Booleans in Control Flow Statements 150

Control Flow Functions 151
if Statements 151
if-else Statements 151

Iteration Statements 152
while Statements 153
do Statements 153
for Statements 154
switch Statements 154

Untitled-1 9/22/98, 9:45 AM9

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

x Special Edition Using Java 1.2, Fourth Edition

Jump Statements 156
break Statements 156
continue Statements 156
return Statements 156

11 Classes 157

What Are Classes? 158

Why Use Classes? 158

Classes in Java 160

Declaring a Class 162
Access Specifiers 162
Class Name 164
Super Classes—Extending Another
Class 164

Constructors 165
Overriding Methods 166

Creating an Instance of a Class 167

Referring to Parts of Classes 169

Variables 172
Modifiers 177
Using Methods to Provide Guarded
Access 178
Using the finalize() Method 179

Inner Classes 181
What Are Inner Classes? 181
Creating a Program with Inner
Classes 182
Synchronization with Inner Classes

184
So How Do Inner Classes Work? 184
Why Use Inner Classes? 185

Packages 185

Importing Classes in Packages 186

Importing Entire Packages 186

Using a Class Without Importing It 187

Using Packages to Organize Your
Code 189

Implicit Import of All java.lang
Classes 190

12 Interfaces 191

What Are Interfaces? 192

Creating an Interface 193
The Declaration 194
The Interface Body 196

Implementing Interfaces 198
Overriding Methods 199
Modifiers 199
Parameter List 199
Body 200

Using Interfaces from Other Classes 201
Using an Interface’s Fields 201
Using Interfaces as Types 201

Exceptions 204

13 Threads 207

What Are Threads? 208

Why Use Threads? 208

How to Make Your Classes
Threadable 209

Extend Thread 209
Implement Runnable 209

The Great Thread Race 209

Understanding the GreatRace 212

Thread Processing 214

Try Out the Great Thread Race 215

Changing the Priority 215

A Word About Thread Priority, Netscape,
and Windows 217

Synchronization 219

Speaking with a Forked Tongue 220

Changing the Running State of the
Threads 221

Obtaining the Number of Threads That Are
Running 222

Untitled-1 9/22/98, 9:45 AM10

xiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Finding All the Threads That Are
Running 223

The Daemon Property 225

14 Writing an Applet 227

Java’s Children 228

Applets and HTML 228

Including a Java Applet in an HTML
Page 228

Including Alternative Information 230
Additional <APPLET> Attributes 232

Using Java Plug-in 234
Using Java Plug-in in Internet
Explorer 235
Using Java Plug-in in Netscape 235
Setting Up the HTML for All
Browsers 236

Begin Developing Java Applets 237
Understanding Hello World—Building
Applets 238

Exploring the Life Cycle of an Applet 239
Compiling the InitStartStop Applet 241
Understanding the InitStartStop
Applet 242
Java Animator Applet 245

An Applet That Uses Controls 249
Understanding the InternetApplet
Applet 254
Exploring the init() Method 254
ActionCommand and
ActionListeners 255
The actionPeformed() Method 255
Exploring the paint() Method 256

15 Advanced Applet Code 259

Using the <PARAM> Tag 260
Understanding the StarPainter Source
Code 262
Using the getSize() Method 262

Adding Images to an Applet 264

Adding Sound to an Applet 266

Using the Applet to Control the
Browser 268

Changing the Status Message 268
Changing the Page the Browser
Displays 269

Putting It All Together 270

16 JAR Archive Files 273

Why JAR? 274
Bundling 274
Compression 274
Backward Compatibility 274
Portability 274
Security 275

When to Use JAR Archives 275
The jar Tool 276
The APPLET Tag 278
Compatible Browsers 279

JAR Archives and Security 279
The Manifest File 280
Private Keys, Public Keys, and
Certificates 281
keytool 282
jarsigner 282

The java.util.zip Package 285
Classes 286
Reading a JAR File
Programmatically 287

JAR File Format 288

17 Applets Versus Applications 289

Applications Explored 290

Advantages of Applications 290
The Sandbox 290

Developing Java Applications 291
HelloWorld—The Application 291
Passing Parameters to an
Application 292
Preventing Null Pointer
Exceptions 293
Limitations Imposed Due to the Static
Nature of main() 294

Untitled-1 9/22/98, 9:45 AM11

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xii Special Edition Using Java 1.2, Fourth Edition

Converting an Applet to an
Application 296

Why Convert an Applet to an
Application? 296
Changing the Applet Code to an
Application 297
Accounting for Other Applet
Peculiarities 301
Recompiling the Application 302
Testing the Application 303
Making the Window Close Work 305
Checking All the Applet Methods 308

Packaging Your Applications in Zip
Format 310

Converting an Application to an
Applet 310

The Simplest Conversion 310
Handling Command-Line
Parameters 311
Maintaining a Single Instance of the
Application 311
The More Difficult Problems for
Application-to-Applet Conversion 311

18 Managing Applications 313

Installing Applications 314
Installing Applications from .class
Files 314
Finishing the Installation 315
Finishing Installing Applications for
UNIX 315
Finishing Installing an Application for
Windows 317
Installing Applications from a .jar
File 320

Maintaining Multiple Applications on the
Same System 321

III User Interface

19 java.awt: Components 325

Building GUI with java.awt 326

Buttons 326
Creating Buttons 327
Using Buttons 328

Using Buttons with the 1.1 Event
Model 330

Labels 331

Check Boxes and Radio Buttons 332
Creating Check Boxes 332
Checking and Setting the State of a
Check Box 333
Listening to Changes in the Check
Box 333
Creating Radio Buttons 335
Using Radio Buttons 336

Choices 338
Creating Choices 339
Using Choices 340

Lists 340
Creating Lists 341
List Features 341
Using Lists 343

Text Fields and Text Areas 347
Creating Text Fields 347
Creating Text Areas 347
Common Text Component
Features 348
Text Field Features 348
Text Area Features 349
Using Text Fields and Text Areas 349

Scrollbars 352
Creating Scrollbars 352
Scrollbar Features 353
Using Scrollbars 354

Canvases 354

Common Component Methods 356
Component Display Methods 356
Component Positioning and Sizing 357

Untitled-1 9/22/98, 9:45 AM12

xiiiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Component Layout and Rendering
Methods 360
Component Input Events 361

20 Exceptions and Events in
Depth 363

Java’s Exceptions 364
Throwing an Exception 366
A Combined Approach 367
Types of Exceptions 368
Determining the Exceptions to
Handle 371
Catching a Runtime Exception 374
Handling Multiple Exceptions 375
Creating Your Own Exception
Classes 377

Java’s Error Classes 380

Java’s Events 381

Event-Handling Techniques 381
Event Listeners 382

Keyboard and Mouse Events 387
Keyboard Events 387
Modifier Keys in Java 1.2 390
Mouse Events in Java 1.2 391

The 1.0 Event Model 392
The Event Class 392
An Event’s Genesis 396
The Keyboard 398
Handling Events Directly 399
Overriding the handleEvent()
Method 399
Sending Your Own Events 401

21 Containers and Layout
Managers 405

Organizing Components 406

Containers 406

Layout Managers 406

Containers 407

Container Basics 407

Panels 408

Frames 409
Creating Frames 409
Frame Features 410
Using Frames to Make Your Applet Run
Standalone 411
Adding Menus to Frames 412
Using Menus 413
Pop-Up Menus 415

Dialogs 416
Creating Dialogs 416
Dialog Features 417
A Reusable OK Dialog Box 417

ScrollPanes 420

Layout Managers 421
Flow Layouts 422
Grid Layouts 422
Border Layouts 423
Grid Bag Layouts 425

Insets 428

The Null Layout Manager 429

Future Extensions from Sun 429

22 Graphics 431

Java Graphics 432

paint, Update, and repaint 432

The Graphics Class 433
The Coordinate System 433
Drawing Lines 433
Drawing Rectangles 434
Drawing 3D Rectangles 435
Drawing Rounded Rectangles 436
Drawing Circles and Ellipses 437
Drawing Polygons 438

The Polygon Class 439

Drawing Text 440
The Font Class 442
The FontMetrics Class 445

Drawing Modes 447

Drawing Images 449

The MediaTracker Class 451

Untitled-1 9/22/98, 9:45 AM13

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xiv Special Edition Using Java 1.2, Fourth Edition

Graphics Utility Classes 454
The Point Class 454
The Dimension Class 455
The Rectangle Class 455

The Color Class 457

Clipping 459

Animation Techniques 461

Printing 462

23 JFC—Java Foundation Classes 465

Java Foundation Classes 466

JFC: A First Look 468
Setting Up for JFC 468

HelloWorld 468
Compiling HelloWorldJFC 469
Running HelloWorldJFC 469
Understanding HelloWorldJFC 470
Pane Layering 470

Improving HelloWorld 471
JLabel 472
Adding Icons 472
Closing the Window 473

Adding Buttons with JFC 473
Understanding ButtonExample 474
Setting a Shortcut Key or
Mnemonic 475
Listening for Actions from the
Button 475

Adding ToolTips and Icons 475

Using Pop-Up Menus 476
Understanding PopupExample 478

Borders 479
Understanding BorderedButtons 480
More Borders 480

Check Boxes and Radio Buttons 481
Understanding CheckBoxPanel 483
Using ActionListeners and Setting
Action Events 483
Using the BoxLayout and Boxes 483

Applying CheckBoxPanel to Change Text
Alignment 484

Understanding CheckBoxPanel 485
Changing the Alignment 486

Tabbed Panes 486
Understanding JTabbedPane 487
Other JTabbedPane Abilities 488

Sliders 488
Understanding SliderExample 489
Configuring the Tick Marks 490
Capturing Changes in the Slider 490

Progress Bars 490
Understanding
ProgressBarExample 493
Creating and Controlling the Progress
Bar 493
ProgressThread 493
ProgressMonitor 494
ProgressMonitorInputStream 497

24 Advanced JFC 499

Model-View-Control—JFC’s Design 500
Comparing MVC to AWT’s Design 501
So Where Is the Component in This
Model? 501
Digging a Bit Deeper, How Does an
MVC Component Actually Work? 501
Why Understand MVC? 503
Using JFC’s Pluggable Look-and-
Feel 504
Changing the Look-and-Feel 505

Menus and Toolbars 507
Understanding the MenuBar
Example 510
KeyAccelerators with KeyStroke 511

Lists and Combo Boxes 511
Understanding ListComboExample 513
List View Models 513

Using Tables 514
Understanding TableExample 515
Table Models 516
Cell Editors 517

Trees 519

Untitled-1 9/22/98, 9:45 AM14

xvContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Tree Nodes 519
Tree Models 521
Understanding new TreeExample 524
removeSelectedNode() 524
addTextFieldValue() 524

Displaying HTML with JEditor 525
Understanding HTMLView 526
Listening for Hyperlink Events 527
Setting a New Page 527
JTextField 528

Creating Icons 528

JFC Applets 530

25 Images 533

Drawing Images to the Screen 534

Producers, Consumers, and
Observers 537

Image Filters 540

Copying Memory to an Image 541

Copying Images to Memory 543

Color Models 551
The DirectColorModel Class 552
The IndexColorModel Class 552
RGBImageFilter Class 553
Animation by Color Cycling 557

26 Java 2D Graphics 563

The Graphics2D Object 564

Coordinates in Java 2D 564

Drawing Figures 565
Drawing a Line 566
Drawing a Rectangle 566
Drawing a Rounded Rectangle 566
Drawing Ellipses and Circles 567
Drawing Arcs 567
Drawing Curves 567
Drawing Arbitrary Shapes 569

Different Strokes 569

Custom Fills 571

Transformations 575

Drawing Text 576
Styled Strings 576
Text Layouts 577
Character Attributes 578

Drawing Images 580
Buffered Images 580
Copying an Image into a
BufferedImage 581
Filtering Buffered Images 581
Manipulating Buffered Images 587

Transparency 590

Clipping 592

IV IO

27 Files, Streams, and Java 597

Streams: What Are They? 598

The Basic Input and Output Classes 599
The InputStream Class 599
The OutputStream Class 602
System.in and System.out Objects 603
PrintWriter Class 604

Handling Files 605
File Security 605
FileInputStream Class 605
Using the FileOutputStream Class 606
Using the File Class 608
RandomAccessFile Class 612

Using Pipes 615
Introducing the PipedInputStream and
PipedOutputStream Classes 615
The PipeApp Application 616
Exploring the main() Method 619
Exploring the changeToY()
Method 620
Exploring the changeToZ()
Method 621
Exploring the YThread Class 623
Filtered Streams 623

Buffered Streams 624

Untitled-1 9/22/98, 9:45 AM15

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xvi Special Edition Using Java 1.2, Fourth Edition

Data Streams 624
The DataInput Interface 625
The DataOutput Interface 626
The DataInputStream and
DataOutputStream Classes 626

Byte Array Streams 626

Char Array Streams 627

Conversion Between Bytes and
Characters 627

The StringBufferInputStream 628

Object Streams 628

Other Streams 631
The LineNumberReader Class 631
The SequenceInputStream Class 632
The PushbackInputStream Class 633

The StreamTokenizer Class 633

28 Using Strings and Text 637

Introducing Strings 638

Using the String Class 638
Getting Information About a String
Object 640
Comparing Strings 644
String Extraction 647
String Manipulation 650

Using the StringBuffer Class 651
Creating a StringBuffer Object 651
Getting Information About a
StringBuffer Object 652
StringBuffer Object 652
Manipulating a StringBuffer
Object 652

Using the StringTokenizer Class 654

Dealing with Fonts 656
Getting Font Attributes 656
Getting Font Metrics 658
Creating Fonts 659
Using the Font 660

29 Using Internationalization 663

Internationalization Scenario 664

What Is Internationalization? 664

Java Support for Internationalization 664
The Locale class 665
Packaging Locale-Sensitive Data 668
Other Internationalization Pieces in
java.util 671

Input-Output (I/O) for
Internationalization 672

Character Set Converters 672
Readers and Writers 674

The New Package java.text 676

An Example: InternationalTest 677

30 Communications and
Networking 681

Overview of TCP/IP 682
OSI Reference Model 682
TCP/IP Network Model 683

TCP/IP Protocols 685
Internet Protocol (IP) 686
Transmission Control Protocol
(TCP) 686
User Datagram Protocol (UDP) 687

Uniform Resource Locator (URL) 687
URL Syntax 688
General URL Format 688

Java and URLs 688
The URL Class 689
Connecting to an URL 689
HTTP-Centric Classes 690
An Example: Customized AltaVista
Searching 691

31 TCP Sockets 699

TCP Socket Basics 700
What Is a Socket? 700
Java TCP Socket Classes 701
Customizing Socket Behavior 705

Untitled-1 9/22/98, 9:45 AM16

xviiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Creating a TCP Client/Server
Application 706

Designing an Application Protocol 706
Developing the Stock Client 707
Developing the Stock Quote
Server 712
Running the Client and Server 718

32 UDP Sockets 719

Overview of UDP Messaging 720
UDP Socket Characteristics 720
Java UDP Classes 721

Creating a UDP Server 723
Starting the Server 726
The startServing() Method Handling
Requests 726
The getTimeBuffer() Method Creating
the Byte Array 726
Running the Daytime Server 726

Creating a UDP Client 727
Starting TimeCompare 731
The getTimes() Method TimeCompare’s
Execution Path 731
The printTimes() Method Showing the
Comparison 732
Running the Application 732

Using IP Multicasting 732
Java Multicasting 734
Multicast Applications 735

33 java.net 741

The URL Class 742
Getting URL Contents 743
Getting URL Information 743

The URLConnection Class 744

The HTTPURLConnection Class 746

The URLEncoder Class 747

The URLDecoder Class 747

The URLStreamHandler Class 747

The ContentHandler Class 748

The Socket Class 749

Sending and Receiving Socket
Data 750
Getting Socket Information 750
Setting Socket Options 751
Closing the Socket Connection 752
Waiting for Incoming Data 752
A Simple Socket Client 754

The ServerSocket Class 756
Accepting Incoming Socket
Connections 757
Getting the Server Socket Address 757
Writing a Server Program 757

The InetAddress Class 760
Converting a Name to an Address 761
Examining the InetAddress 762
Getting an Applet’s Originating
Address 762

The DatagramSocket Class 762

The DatagramPacket Class 764
Broadcasting Datagrams 764
A Simple Datagram Server 765

Multicast Sockets 767

34 Java Security in Depth 769

What Necessitates Java Security? 770

The Java Security Framework 771
Part One: The Safety Provided by the
Language 772
Part Two: The Java Compiler 772
Part Three: The Verifier 773
Part Four: The ClassLoader 773
Part Five: Establishing a Security
Policy 774
Putting It All Together 774

Applet Restrictions 774
Applets Versus Applications 775
The SecurityManager Class 776
The Security Policy of Java
Browsers 777

Java Security Problems 780
Known Flaws 781
Denial-of-Service Attacks 782

Untitled-1 9/22/98, 9:45 AM17

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xviii Special Edition Using Java 1.2, Fourth Edition

The Java Security API: Expanding the
Boundaries for Applets 783

Symmetric Cryptography 783
Public Key Cryptography 784
Certification Authorities 786
What Is Accomplished 787
Key Management 788
Digitally Signing a JAR File 789
Defining a Policy 789
Running the Applet 790

The Security API 790
Public and Private Key Classes 790
The Signature Class 790
Identities and Signers 791
Certificates 792
The IdentityScope Class 792

35 Object Serialization 795

What Is Object Serialization? 796
How Object Serialization Works 798
Dealing with Objects with Object
References 799

Object Serialization Example 799
An Application to Write a Date
Class 799
Running DateWrite Under JDK
1.02 801
Compiling and Running DateWrite 801
A Simple Application to Read in the
Date 801
Compiling and Running DateRead 802
Reading In the Date with an
Applet 803

Writing and Reading Your Own
Objects 804

Customizing Object Serialization 806

36 Remote Method Invocation 809

What Is Remote Method Invocation? 810
Creating a Remote Object 810
A Sample RMI Application 811
Creating a Remote Interface 811
Creating an Implementing Class 811
Compiling the RemoteSever 814

Creating the Stubs 814
Creating a Client 815
Starting the Registry and Running the
Code 816
Binding RemoteObject into the
Registry 816
Running the Client Program 817

Creating an Applet Client 817

Creating a Custom Socket 818
Creating a Custom Socket 818
Creating a Custom
RMISocketFactory 822
Specifying the Socket Factory in Your
Applications 823

Using the Activation Model 825
Building an Activatable Object 825

37 Management API 829

JMAPI Components 830

JMAPI Applets 830
JmapiHome.html 831
MOContentManagerApplet.html 831
MOPropertyBookApplet.html 831
Accessing Managed Objects 831

Creating a Managed Object 832
Defining Properties Within Managed
Objects 832
Defining Methods Within Managed
Objects 833
Compiling a Managed Object 833
Importing Managed Objects 834

The Admin View Module 834
Content Managers and Selectable
Objects 834
Icons 838
The Property Book 840
Task Pages 841
Dialogs 843
Self-Validating Fields 849
New Layout Managers 850

Untitled-1 9/22/98, 9:45 AM18

xixContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

V Databases

38 Databases Introduced 855

ODBC and JDBC 856

Relational Database Concepts 856
SQL 858
Joins 859

An ODBC Technical Overview 862
ODBC Conformance Levels 864
ODBC Functions and Command
Set 865

Advanced Client/Server Concepts 867
Client/Server System Tiers 867
Transactions 868
Cursors 870
Replication 872

39 JDBC: The Java Database
Connectivity 873

JDBC Overview 874
How Does JDBC Work? 874
Security Model 876
JDBC-ODBC Bridge 876

JDBC Implementation 877
JDBC Classes—Overview 877
Anatomy of a JDBC Application 879
JDBC Examples 880

The Connection Class 883

Metadata Functions 885
DatabaseMetaData 885
ResultSetMetaData 891

The SQLException Class 893

The SQLWarnings Class 893

40 JDBC Explored 895

Statements 896
Statement 897
PreparedStatement 899
CallableStatement 902

ResultSet Processing Retrieving
Results 904

Other JDBC Classes 906
java.sql.Date 906
java.sql.Time 907
java.sql.Timestamp 908
java.sql.Types 908
java.sql.DataTruncation 909

JDBC in Perspective 910

VI Component-Based
Development

41 JavaBeans 915

Self-Contained Components 916

Important Concepts in Component
Models 916

Component Fields or Properties 916
Component Methods or Functions 917
Events and Intercommunication 917
State Persistence and Storage 917

The Basics of Designing a JavaBean 918
Specifying the Bean’s Properties 918
Specifying the Events the Bean
Generates or Responds To 919
Properties, Methods, and Event
Exposure 919
Initial Property Values and Bean
Customizers 919

Creating and Using Properties 922
Single-Value Properties 922
Indexed Properties 924
Bound Properties 924
Constrained Properties 925

Using Events to Communicate with Other
Components 927

Multicast Events 927
Unicast Events 928
Event Adapters 928

Introspection: Creating and Using BeanInfo
Classes 930

Untitled-1 9/22/98, 9:45 AM19

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xx Special Edition Using Java 1.2, Fourth Edition

Customization: Providing Custom
PropertyEditors and GUI Interfaces 932

PropertyEditors and the
PropertyEditorManager 933
Customization Editor 933
Providing Alternative Behavior in
Non-GUI Environments 936

Enterprise JavaBeans 937
Server Components 937
Adding Component “Run
Anywhere” 937
Partitioning Your Applications 937
Reusability and Integration 938
Nonvisual Components 938
Naming 938

42 JavaIDL: A Java Interface to
CORBA 939

What Is CORBA? 940

Sun’s IDL to Java Mapping 942
IDL Modules 942
IDL Constants 943
IDL Data Types 943
Enumerated Types 944
Structures 945
Unions 946
Sequences and Arrays 947
Exceptions 947
Interfaces 948
Attributes 948

Methods 949

Creating a Basic CORBA Server 949
Compiling the IDL Definitions 950
Using Classes Defined by IDL
structs 951
JavaIDL Skeletons 952
Server Initialization 956

Creating CORBA Clients with
JavaIDL 957

Creating Callbacks in CORBA 959

Wrapping CORBA Around an Existing
Object 960

Mapping to and from CORBA-Defined
Types 961

Creating Remote Method
Wrappers 962

Using CORBA in Applets 962
Choosing Between CORBA and
RMI 963

43 Java—COM Integration 965

A Significant Extension 966

A Brief Overview of COM 966

Defining COM Interfaces 967

Compiling an ODL File 970

Generating a GUID 970

Creating COM Objects in Java 971

Calling Java COM Objects from
Visual Basic 974

Calling Java Objects from Excel 974

Calling COM Objects from Java 976

VII Advanced Java

44 Java Media Framework 983

What Is the Java Media Framework? 984

Creating a Media Player 984
Prefetching the Media 985
Adding the Player to Your
Application 986
Registering the Applet as a
Listener 987
Starting the Player 988
Cleaning Up and Stopping the
Player 988
Putting It All Together 989
Compiling the BasicPlayer 991
Running BasicPlayer 991

The States of the Player 992

Adding Controls to the Player 993

Controlling the Player
Programmatically 996

Untitled-1 9/22/98, 9:45 AM20

xxiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Starting the Player 996
Setting the Media Time 996
Changing the Rate of Play 996
Changing the Sound Volume 997
Resizing a Media Player 998
Adding a Progress Bar 999

Linking Multiple Players 1002

Creating Your Own Media Stream 1006
Pull Media Streams 1006
Push Media Streams 1006

A Larger Application 1006

45 Commerce and Java Wallet 1015

Security Support with the JCC 1016

Commerce Messages 1016

Creating Cassettes 1017
The CassetteControl Class 1017
The Instrument Cassette Class 1020
The Protocol Cassette 1028
The Operation Cassette 1034
The Service Cassette 1034
The User Interface Cassette 1037

46 Data Structures and Java
Utilities 1049

What Are Data Structures? 1050

Collections 1050
Collection Interface 1050
List Interface 1051
Map Interface 1052
Iterator Interface 1053
ListIterator Interface 1053

The Vector Class 1054
Creating a Vector 1054
Adding Objects to a Vector 1055
Accessing Objects in a Vector 1055
The Enumeration Interface 1056
Searching for Objects in a Vector 1057
Removing Objects from a Vector 1058
Changing the Size of a Vector 1058

The Hashtable Class 1059
Storing Objects in a Hashtable 1060
Retrieving Objects from a
Hashtable 1060
Removing Objects from a
Hashtable 1060

The Properties Class 1061
Setting Properties 1061
Querying Properties 1062
Saving and Retrieving Properties 1062

The Stack Class 1063

The Date Class 1064
Comparing Dates 1065
Converting Dates to Strings 1066
Changing Date Attributes 1066

The BitSet Class 1067

The StringTokenizer Class 1068

The Random Class 1069

The Observable Class 1070

47 java.lang 1079

The java.lang Packages 1080

The Object Class 1081
Testing Object Equality 1081
String Representations of Objects 1082
Cloning Objects 1082
Finalization 1084
Serializing Objects 1084
Hash Codes 1085
wait() and notify() 1085
Getting an Object’s Class 1088

The Class Class 1089
Dynamic Loading 1089
Getting Information About a
Class 1090

The Package Class 1091

The String Class 1091
Creating Strings 1092
String Length 1093
Comparing Strings 1093
Searching Strings 1095

Untitled-1 9/22/98, 9:45 AM21

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xxii Special Edition Using Java 1.2, Fourth Edition

Extracting Portions of a String 1095
Changing Strings 1096

The StringBuffer Class 1096
Creating a StringBuffer 1096
Adding Characters to a
StringBuffer 1097
StringBuffer Length 1097
Getting and Setting Characters in a
StringBuffer 1098
Creating a String from a
StringBuffer 1098

The Thread Class 1099
Creating a Thread 1099
Starting and Stopping Threads 1099
Waiting for Thread Completion 1100
Sleeping and Yielding 1100
Daemon Threads 1101
Thread Priority 1102
Getting Thread Information 1102

The ThreadGroup Class 1103

The Throwable Class 1104

The System Class 1105
System Input and Output
Streams 1105
Getting the Current Time 1106
Exiting the Virtual Machine 1107
Getting System Properties 1107
Forcing Garbage Collection 1108
Loading Dynamic Libraries 1108

The Runtime and Process Classes 1108
Querying Available Memory 1109
Running External Programs 1109

The Math Class 1110
min and max 1110
Absolute Value 1110
Random Numbers 1110
Rounding 1111
Powers and Logarithms 1111
Trig Functions 1112
Mathematical Constants 1113

The Object Wrapper Classes 1113

The Character Class 1113

The Boolean Class 1114

The Number Class 1115

The Integer Class 1115

The Long Class 1116

The Byte Class 1117

The Short Class 1117

The Float Class 1118

The Double Class 1119

The Void Class 1119

The java.math.BigInteger Class 1119
Creating a BigInteger 1120

The java.math.BigDecimal Class 1121

Creating a BigDecimal 1121

The ClassLoader Class 1123

The SecurityManager Class 1126

The Compiler Class 1127

48 Reflection 1129

What Is Reflection? 1130

Creating a Class Knowing Only the List of
Constructors 1131

Inspecting a Class for Its Methods 1135
Obtaining a List of Methods 1135

Using getDeclaredMethod() to Invoke a
Method 1138

Invoking Methods That Use Native Types
as Parameters 1141

Getting the Declared Fields of a
Class 1142

49 Extending Java with Other
Languages 1145

Native Methods, a Final Frontier for
Java 1146

The Case for “Going Native” 1146

JNI Highlights 1147

Untitled-1 9/22/98, 9:45 AM22

xxiiiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Writing Native Methods 1148
Step One—Write the Java Code 1148
Step Two—Compile the Java Code to a
Class File 1148
Step Three—Generate the JNI-Style
Header File 1149
Step Four—Implement the Native
Method 1149
Step Five—Create the Shared
Library 1150
Step Six—Run the Java Program 1150

Accessing Object Fields from Native
Methods 1150

Accessing Java Methods from Native
Methods 1155

Accessing Static Fields 1156

Accessing Static Methods 1158

Exception Handling Within Native
Methods 1158

50 Java Versus C(++) 1161

Common Ancestry 1162

Basic Java Syntax 1162
Lexical Structure 1162
Comments 1163
What’s Missing 1163
The Runtime Library 1164

The Structure of Java Programs 1164
The Big Picture 1165
Methods Yes, Functions No 1165
No Pre-Processor 1165
Source Filenames 1167

Java Data Types 1167
Integral Data Types 1167
Unicode Characters 1168
The boolean Data Type 1168
Floating-Point Types 1168
Aggregate Data Types 1169
Type Conversion and Casting 1169

Objects and Classes 1169
Declaring Reference Types 1169
Manipulating References 1170

Method Invocation Call-by-Value and
Call-by-Reference 1171
Primitive Types and java.lang Wrapper
Classes 1171
The Object Life Cycle 1172
Java References Versus C++
Pointers 1173

Aggregates: Strings, Arrays, and
Vectors 1174

Strings 1174
Arrays 1174
Vectors 1176

Class Hierarchies and Inheritance 1177
The Syntax of Inheritance 1177
The instanceof Operator 1177
Inheritance and Polymorphism 1178
Interfaces Versus Multiple
Inheritance 1178
The super Reference 1179
No Scope Resolution Operator 1179

Statements 1180
Loops 1180
Conditionals 1181
Synchronized Statements 1181
Operators and Expressions 1181

Name Spaces 1182

VIII Debugging Java

51 Debugging Java Code 1187

The Architecture of the sun.tools.debug
Package 1188

Client/Server Debugger Management
1189

Special Types 1194
Native Types 1204
Stack Management 1205
Thread Management 1207
Putting It All Together 1212

The JDB in Depth 1214
Basic Architecture 1214
The JDB Command Line 1215
JDB Input Files 1216
The JDB Command Set 1217

Untitled-1 9/22/98, 9:45 AM23

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xxiv Special Edition Using Java 1.2, Fourth Edition

General Commands 1219
Context Commands 1221
Information Commands 1223
Breakpoint Commands 1226
Exception Commands 1228
Thread Commands 1229
JDB Wrap-Up 1230

52 Understanding the .class
File 1233

A Fundamental Measurement 1234

Elements of the .class File 1234

Definitions 1235
The Constant Pool 1235
Type Information 1239
Attributes 1240

The .class File Structure 1242
The Class Flags Field 1243
The Field Information Structure 1244
The ConstantValue Attribute 1245
The Method Information
Structure 1246
The SourceFile Attribute 1251

So Now What Can I Do? 1251

53 Inside the Java Virtual
Machine 1253

Elements of the JVM 1254
The Architecture of a Virtual
Machine 1255
Memory Management and Garbage
Collection 1257
Class File Verification 1260
The JVM Bytecodes 1262

IX JavaScript

54 Java Versus JavaScript 1287

Java and JavaScript 1288

JavaScript Is Not Java 1289

Interpreted Versus Compiled 1290

Object Based Versus Object
Oriented 1292

Strong Typing Versus Loose Typing 1293

Dynamic Versus Static Binding 1293

Restricted Disk Access 1294

Different Functionality (Scope Limitations)
and Code Integration with HTML 1295

Rapid Evolution Versus Relative
Stability 1297

Libraries 1298

JavaScript and Java Integration 1299

55 Starting with JavaScript 1301

The Basics 1302

Your First Script 1303

Events 1304

Using Event Handlers 1304

Variables 1306

Variable Names 1307

Variable Scope 1307

Literals 1307

Expressions and Operators 1308

Control Statements 1310
Conditional Statements 1310
Loop Statements 1312
break and continue 1313
Comments 1314

Functions in JavaScript 1315

Arrays 1317

Built-In Functions 1318

Objects 1319
Dot Notation 1319
Methods and Properties 1319
The Window Object 1319
The Document Object 1321
The Form Object 1322

Untitled-1 9/22/98, 9:45 AM24

xxvContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

The Navigator Object 1322
The String Object 1323
The Math Object 1324
The Date Object 1325

A Final Example 1326

X Java Resources

56 Java Resources 1333

Web Sites 1334
Earthweb’s developer.com 1334
Focus on Java 1334
Inside Java 1334
Java Applet Rating Service
(JARS) 1335
The Java Boutique 1335
Java Developer’s Journal 1335
Java Developers Connection 1335
Java Lobby 1335
Java Resources from Netscape 1336
Java World 1336
JavaBeans Site 1336
Sun’s Home Page 1336
Javology—The Online Ezine of Java
News and Opinion 1336
Microsoft’s Java Home Page 1336
Swing Connection 1337
Team Java 1337

Newsgroups 1337

Mailing Lists 1338

Support for Porting Issues 1338
Amiga Porting Issues 1338
DEC Alpha OSF/1 Port 1339
Linux Porting Issues 1339
NEXTSTEP Porting Issues 1339

XI Appendix

A What’s on the CD-ROM 1343

Example Code from the Book 1344

Third-Party Software 1344

Bonus Software 1344

Index 1345

Untitled-1 9/22/98, 9:45 AM25

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xxvi Special Edition Using Java 1.2, Fourth Edition

Untitled-1 9/22/98, 9:45 AM26

xxviiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Credits
EXECUTIVE EDITOR
Tim Ryan

ACQUISITIONS EDITOR
Jeffrey W. Taylor

DEVELOPMENT EDITOR
Benjamin Milstead

MANAGING EDITOR
Patrick Kanouse

PROJECT EDITOR
Andrew Cupp

COPY EDITORS
Geniel Breeze
Kelli Brooks
Michael Brumitt
Cheri Clark
Keith Cline
Dana Lesh
Theresa Mathias
San Dee Phillips
Heather Urschel

INDEXER
Erika Millen

TECHNICAL EDITORS
Joe Carpenter
Jodi Cornelius

SOFTWARE DEVELOPMENT SPECIALIST
Dan Scherf

PRODUCTION
Carol Bowers
Mona Brown
Michael Dietsch
Ayanna Lacey
Gene Redding

Untitled-1 9/22/98, 9:45 AM27

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xxviii Special Edition Using Java 1.2, Fourth Edition

Dedication

To my parents, Emmet and Ruth, who taught me faith and dedication.
I love them dearly.

Untitled-1 9/22/98, 9:45 AM28

xxixContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

About the Authors
Joe Weber is a frequent contributor to a variety of Java books, magazines, and other re-
sources. He has been working with Java full-time since its early alpha stages and has helped
advise a number of Fortune 500 companies on the goals of Java. He has also helped to generate
adoption in those organizations. Mr. Weber is a V.P. of MagnaStar Inc., a Java consulting firm;
serves as the senior technical advisor to Soren Technologies, a medial software company
whose systems are written in Java; and currently is the director of the DocuLink product divi-
sion for XLink Corporation. Joe has also served on advisory committees for and taught classes
at universities in the Midwest. He continues to be a strong advocate for Java in the educational
environment. Mr. Weber is a cofounder of the Java™ology Magazine and has contributed ar-
ticles to several other Java magazines. Mr. Weber loves to hear from his readers and can be
reached via e-mail at weber@inc.net.

Mark Wutka is a senior systems architect who refuses to give up his programming hat. For
the past three years he has worked as the chief architect on a large, object-oriented distributed
system providing automation for the flight operations division of a major airline. Over the past
nine years, he has designed and implemented numerous systems in Java, C, C++, and
Smalltalk for that same airline. He is currently Vice President of Research and Development
for Pioneer Technologies, a consulting firm specializing in distributed systems and legacy
system migration. He can be reached via email at wutka@netcom.com. He also claims
responsibility for the random bits of humor at www.webcom.com/wutka.

Untitled-1 9/22/98, 9:46 AM29

http://www.webcom.com/wutka
mailto:wutka@netcom.com
mailto:weber@inc.net

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

xxx Special Edition Using Java 1.2, Fourth Edition

Acknowledgments
I would like to thank and acknowledge the huge numbers of individuals who have worked on
this book. A volume like the one that you hold in your hands right now is not the work of a
single individual, but is a collaboration of the efforts of the writers, editors, and the developer.
So many people contribute to a work like this behind the scenes, and unfortunately I don’t even
know all of their names, but their efforts are greatly appreciated.

In particular I would like to thank Ben Milstead, who has developed this work and, along with
Joe Carpenter and Jodi Cornelius, helped to insure that what you read is accurate. It would be
impossible for this book to have the degree of accuracy that it has with out these people’s
efforts.

I would like to thank Jeff Taylor, who was the last in a string of acquisition editors on this book,
and who has stuck through it and made life so much easier.

I would be remiss if I did not single out the efforts of Mark Wutka. Mark has helped to write
portions of this book since its first edition and his skills and work have helped to add volume
and understanding to this book. Mark deserves my immense gratitude and thanks for his
contributions.

I would also like to acknowledge

Stephanie Gould, my first Acquistions Editor, who convinced me to work on my first book and
showed me that I like writing.

Mark Arend and Gene deGroot who, when I was not so much younger, each taught me perse-
verance and creativity.

Shawn Gubine, my oldest and dearest friend, for reasons not even he probably knows.

Scott Morris, who taught me that the correct answer to why most software works the way it
does is, “because they didn’t ask me,” and that confidence is 99 percent of success.

David and Dorothy, my siblings, who have added humanity.

Finally, last, but most importantly, I would like to thank my wife, Kim, whose patience, under-
standing, and love have allowed this book to come into existence. Kim deserves as much credit
as I for making this book happen.

Untitled-1 9/22/98, 9:46 AM30

xxxiContents

P2/VB/mp12 SE Using Java 1.2 #1529-5 8.10.98 Ayanna FM LP#4

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As the Executive Editor for the Java team at Macmillan Computer Publishing, I welcome your
comments. You can fax, email, or write me directly to let me know what you did or didn’t like
about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
phone or fax number. I will carefully review your comments and share them with the author
and editors who worked on the book.

Fax: 317-817-7070

E-mail: java@mcp.com

Mail: Tim Ryan, Executive Editor
Java Team
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Untitled-1 9/22/98, 9:46 AM31

mailto:java@mcp.com

	SE Using Java 1.2, 4E
	Copyright © 1998 by Que

	Contents at a Glance
	Table of Contents

	Credits
	Dedication
	About the Authors
	Acknowledgments
	Tell Us What You Think!
	Introduction
	Part I Introduction to Java
	Ch 01 What Java Can Do for You
	Ch 02 Java Design
	Ch 03 Installing The JDK and Getting Started
	Ch 04 JDK Tools

	Part II The Java Language
	Ch 05 Obejct-Oriented Programming
	Ch 06 HelloWorld!: Your First Java Program
	Ch 07 Data Types and Other Tokens
	Ch 08 Methods
	Ch 09 Using Expressions
	Ch 10 Control Flow
	Ch 11 Classes
	Ch 12 Interfaces
	Ch 13 Threads
	Ch 14 Writing an Applet
	Ch 15 Advanced Applet Code
	Ch 16 JAR Archive Files
	Ch 17 Applets Versus Applications
	Ch 18 Managing Applications

	Part III User Interface
	Ch 19 java.awt: Components
	Ch 20 Exceptions and Events in Depth
	Ch 21 Containers and Layout Managers
	Ch 22 Graphics
	Ch 23 JFC—Java Foundation Classes
	Ch 24 Advanced JFC
	Ch 25 Images
	Ch 26 Java 2D Graphics

	Part IV IO
	Ch 27 Files, Streams, and Java
	Ch 28 Using Strings and Text
	Ch 29 Using Internationalization
	Ch 30 Communications and Networking
	Ch 31 TCP Sockets
	Ch 32 UDP Sockets
	Ch 33 java.net
	Ch 34 Java Security in Depth
	Ch 35 Object Serialization
	Ch 36 Remote Method Invocation
	Ch 37 Management API

	Part V Databases
	Ch 38 Databases Introduced
	Ch 39 JDBC: The Java Database Connectivity
	Ch 40 JDBC Explored

	Part VI Component-Based Development
	Ch 41 JavaBeans
	Ch 42 JavaIDL: A Java Interface to CORBA
	Ch 43 Java—COM Integration

	Part VII Advanced Java
	Ch 44 Java Media Framework
	Ch 45 Commerce and Java Wallet
	Ch 46 Data Structures and Java Utilities
	Ch 47 java.lang
	Ch 48 Reflection
	Ch 49 Extending Java with Other Languages
	Ch 50 Java Versus C(++)

	Part VIII Debugging Java
	Ch 51 Debugging Java Code
	Ch 52 Understanding the .class File
	Ch 53 Inside the Java Virtual Machine

	Part IX JavaScript
	Ch 54 Java Versus JavaScript
	Ch 55 Starting with JavaScript

	Part X Java Resources
	Ch 56 Java Resources

	Part XI Appendix
	Appendix A What’s on the CD-ROM

	Index

	page one:

