I NTRODUCTI ON

Introduction

|n this chapter

This Book Is for You 2
How This Book Is Organized 2
Conventions Used in This Book 4

2 I Introduction

This

Welcome to the amazing and dynamic world of Java! If you are brand new to Java, you're in for
a treat. Java is an extremely rich language that is simple and easy to learn. Java gives the pro-
grammer unprecedented access to even the most complex of tasks.

What is Java? Java is a revolutionary programming language that was introduced by Sun
Microsystems in June 1995. Since then, hundreds of thousands of programmers have picked
up books just like the one you hold in your hands now and have realized just how powerful the
language is.

Java is an object-oriented programming language, which means that people programming in
Java can develop complex programs with great ease. In addition, Java has built-in support for
threads, networking, and a vast variety of other tools.

Book Is for You

If you’re new to Java, this book is for you. Don’t be intimidated by the size of this book. It con-
tains a vast amount of rich information about every facet of the Java programming language,
along with easy-to-follow chapters that are designed to get you started.

If you're already a Java expert, this book will become a treasured item on your shelf. Actually, it
may never leave your desk. This book puts into one source the most complete reference and
set of examples on every aspect of the Java programming language ever compiled. No cur-
rently available API has gone unexplored; no programming method has gone undocumented.
Between the covers of this book, you find examples and explanations that will make your life as
a programmer immensely easier.

How This Book Is Organized

This book is organized into 11 parts. Each part covers a large chunk of information about how
the Java programming language is organized.

Part I, “Introduction to Java,” introduces you to the design of the Java language and the Virtual
Machine. It shows you what Java can do for you, and how it’s being implemented in some pro-
grams today. Clear instructions have been included to help you get started by downloading the
Java Development Kit and installing it. Finally, this part teaches you how each of the free tools
included in the Java Development Kit (JDK) work.

Part II, “The Java Language,” shows how Java’s syntax is developed. The fundamental aspects
of Java are found in its language syntax. Every program is built using the fundamentals of the
language, and this part walks you through each segment. The second half of this part talks
about building specific Java programs, such as applets and applications. For the beginner, each
of the chapters has been structured to help you become familiar with Java programming. For
the expert, the individual aspects of the language are explored in great detail, making Part II a
great reference as well as a learning tool.

How This Book Is Organized I 3

Part III, “User Interface,” teaches you the details of building a graphical user interface in Java.
It shows you how to do this using the traditional AWT interfaces, and then demonstrates the
new features of Java 1.2 with the Java Foundation Classes (also know as Swing). In addition,
this part explores how to build and manipulate images, and then discusses Java 1.2’s 2D graph-
ics system.

Part IV, “I0,” walks you through reading and writing data into your Java application. The part
begins by teaching you the fundamental components and techniques of streaming and reading
files. Then you learn how to build networked applications. You'll find priceless information
about the internet’s TCP/IP protocol. The part finishes by teaching you about the more ad-
vanced features, such as making sure your data transfers are secure. It covers using Java’s
serialization for sending and retrieving whole Java objects, and using Remote Method Invoca-
tion to run entire Java programs on remote machines. Finally, the part wraps up by discussing
the new management API in Java 1.2 that allows you to talk to advanced devices, such as
routers.

PartV, “Databases,” walks you through the details of one of the most important aspects of
building modern business applications. Databases are the core to almost all business
applications, and Java’s JDBC (Java DataBase Connectivity) eases the burden of
communicating between your Java applications and the database. In this part, you are
introduced to how databases work, given a bit of history, and then you learn the terminology
required to go on. Next, you explore Java’s JDBC interface, which allows you to connect, send,
and store data to any JDBC-compliant database. Welcome to the world of platform-independent
and DBMS-independent systems!

Part VI, “Component-Based Development,” will be fascinating to anyone interested in learning
how to make the development cycle faster and easier. Component-based development has been
around for many years now, but it has never been as easy to do as with Java. In this part, you
will learn how to use three different component models: Java’s own JavaBeans specification,
CORBA (which is rapidly becoming an industry standard, and maps very nicely to JavaBeans),
and COM (Microsoft’s interface for talking to Windows).

Part VII, “Advanced Java,” teaches you about some very complex technologies surrounding
Java when you're ready to take the next step. Part VII shows you advanced techniques. You
learn how to take advantage of the server-side capabilities of Java and how to use the Java
Wallet for building commerce applications. You also learn about Java’s built-in data structures
and utilities, and how to build native applications. This part finishes with a comparison of Java
to C++.

Part VIII, “Debugging Java,” teaches you all the tricks of the trade. This part will quickly be-
come invaluable as you learn how important good debugging technique is when developing

applications. You will find great references on every aspect of the sun.tools.debug package,
as well as on the op-codes for Java’s Virtual Machine.

Part IX, “JavaScript,” talks about the distant cousin to Java, JavaScript, which can help you do
tasks with great ease. Because it can control the browser, it can even do some things Java can’t.
This part teaches you JavaScript programming, so you’ll be multilingual.

4 I Introduction

Part X, “Java Resources,” is a perfect source for additional material beyond this book. You'll
find some terrific Web sites and other material to help you stay up to date and on top of the
Java community.

Part XI, “Appendix,” gives you an overview of all of the resources on the CD-ROM included
with this book.

Conventions Used in This Book

This book uses various stylistic and typographic conventions to make it easier to use.

N O T E When you see a note in this book, it indicates additional information that may help you
avoid problems or that should be considered in using the described features.

@ Tip paragraphs suggest easier or alternative methods of executing a procedure. Tips can help you see
that little extra concept or idea that can make your life so much easier.

CAUTION

Cautions warn you of hazardous procedures (for example, activities that delete files).

Special Edition Using Java 1.2, Fourth Edition, uses cross-references to help you access related
information in other parts of the book.

See “The Object Class,” p. 1081

| Introduction to Java

What Java Can Do for You 7

Java Design 19

Installing the JDK and Getting Started 39
JDKTools 55

What Java Can Do for You

|n this chapter

The Many Types of Java Applications 8
Learning About the Java Language 9
The Java Development Kit 9

Java Applets 10

Java GUI Applications 15

Java Command Line Applications 16
Java Is Client/Server 17

How to Stay Current 17

CHAPTER

8 I Chapter 1 What Java Can Do for You

The Many Types of Java Applications

By now you have probably heard enough hype about Java to go out and buy this book. The
good news is that the hype is well-justified. Java is probably everything you have heard that it is
and more.

In this chapter, you examine the various possibilities provided by the Java language by taking a
look at the different types of applications you can develop with it. To drive the point home, you
then take a look at several examples of Java applets that are currently on the Web. You also
examine examples of a Java Graphical User Interface (GUI) application and a Java command
line application. By the end of this chapter, you should have a fairly good idea of what you can
accomplish with Java and be excited about this language, the incredible new enhancements
with JDK 1.2, and how Java is changing the computing world.

Java is not used only to create applets or servlets. The amazing thing about Java is that it can
be used to create a huge variety of applications. The following are a few of the types of applica-
tions you can build in Java:

Applets (mini applications)

GUI applications

Command line applications

Servlets (server side applications)

Packages (libraries)

Embedded applications (such as oscilloscopes and other embedded computers)

Pen-based programs

Applets are essentially applications that run inside a Java-enabled browser, such as Netscape
Navigator, Microsoft Internet Explorer, or HotJava.

GUI applications developed in Java have graphical interfaces and stand on their own. They
operate like any other GUI application, for instance the Windows Notepad application, which
does not require a Web browser to execute it.

Command line applications can be run from an MS-DOS command prompt or a UNIX shell
prompt, just like the xcopy command in MS-DOS or the 1s command in UNIX.

Packages are not applications per se. Rather, packages are more like a collection of classes
(portable Java-bytecode files) that belong to one package (similar to a C++ class library). There
is no custom format for packages like those used with static and dynamic libraries on the vari-
ous operating systems. The implementation in Java is much simpler and more portable.

Basically, all classes belonging to a package are placed in one directory. For example, all
classes belonging to Java’s Abstract Window Toolkit (AWT) package, java.awt, are placed in a
directory called AWT under the C:\jdk1.2\src directory. This is a directory tree of various
packages provided with the Java Development Kit:

The Java Development Kit I 9

\java\classes
___applet
awt
|__ Button.class

? Part
1

T

1 i Color.class Ch
i i

I

| [pe—

I

| [pE—

1

| QS

I

| [pE—

__ Event.class
io
lang
net
util
A few examples of class files under the AWT directory are also shown to illustrate the point here
(in actuality, there are several dozen class files under the AWT directory).

Learning About the Java Language

When Java was first created, Sun Microsystems released a white paper that described Java with
a series of buzzwords to make your head spin:

Java is a simple, object-oriented, robust, secure, portable, high-performance, architectur-
ally neutral, interpreted, multithreaded, dynamic language.

Phew! Try saying all that in one breath. Anyway, the language itself is discussed in more
detail in the remainder of this book, but the one buzzword you need to learn for this chapter
is interpreted.

Java source code compiles into portable bytecodes that require an interpreter to execute them.
For applets, this task is handled by the browser. For GUI and command line applications, the
Java interpreter program is required to execute the application. The examples shown in the
section “Java Command Line Applications” later in this chapter illustrate both methods.

The Java Development Kit

The reason Java is so popular is not simply because of the benefits of the language itself. The
rich sets of packages (or class libraries to you C++ programmers) that come bundled with the
Java Development Kit (JDK) from Sun Microsystems also contribute to its popularity. These
prewritten objects get you up and running with Java quickly, for two main reasons:

You do not need to develop the functionality they provide.

The source code is available for all.

Here is a brief description of some of the more significant packages provided with Java:

Package Description
java.applet Classes for developing applets.
java.awt Abstract Window Toolkit (AWT) classes for the GUI interface,

such as windows, dialog boxes, buttons, text fields, and more.

10 I Chapter 1 What Java Can Do for You

Package Description

java.net Classes for networking, URLs, client/server sockets.

java.io Classes for various types of input and output.

java.lang Classes for various data types, running processes, strings,
threads, and much more.

java.util Utility classes for dates, vectors, and more.

java.awt.image Classes for managing and manipulating images.

Java Applets

As mentioned previously, Java applets run within a Java-enabled Web browser. Because Web
browsers were primarily developed for displaying HTML documents, incorporating Java
applets inside a Web browser requires an HTML tag to invoke an applet. This HTML tag is the
<APPLET> tag, as shown in the following example:

<applet code=TextEdit.class width=575 height=350></applet>

You will explore all the details of Applets in Chapters 14 and 15.

Real-World Examples of Java Applets on the Web

Because pictures truly say more than a thousand words, you will enjoy taking a look at some
examples of real-world Java applets on the Web today. Figures 1.2 through 1.11 are examples of
these applets.

Figure 1.1 shows a Java application called NetProphet. NetProphet is a wonderful utility that
allows you to chart and graph all of your stocks. It is a wonderful example of how having a Java
client interacting with a server (client/server) can be used to create dynamic information.
Netprofit is available from Neural Applications at http: //www.neural.com/NetProphet/
NetProphet.html.

FIG. 1.1 [NetPiophet &
. File Spmbol Yiew Help

NetProphet is a :

wonderful example of

client/server Java.

O verage 5-day
(5 Average 10-day

YOU CAN PICK STOCKS BE ﬁ Click Here

" S F - & @ tofindout
IVIONKEYFOTE <. o FINAL BELL

Java Applets I 11

Figure 1.2 shows how Eastland Data Systems’s Internet Shopping Applet (http://
www. eastland.com/shoptech.html) has been applied by Blossom Flowers (http://
www.blossomflowers.com/shopping_frame.html).

FIG 1 2 3 Blossom Flowers and Gifts ... Free Floral Delivery - Microsoft Internet Explorer
P =

Internet shopping by
Eastland.

Blossom Flowers & Gifts

Click Here To Eeview Our Shopping Instructions
R ot ST T e e B o STt

2) B [l S)

This applet is unique because it implements drag-and-drop features on the Internet.

Java has been shown to be a great language to write Internet games in. Figure 1.3 shows the
famous Rubik’s Cube that amused everyone a few years ago. This is a fully functional Rubik’s
cube developed in Java. You can play with it live on the Internet at http://www.tdb.uu.se/
~karl/java/rubik.html.

Figure 1.4 below shows another game that uses 3D graphics. Palle Pedalpost (http://
www . zapper.kd/postpil/postgame.html) performs with smooth animation, and is definitely
worth a look.

Lotus has been very innovative in its use of the Java language with the eSuite program. eSuite
is a collection of tools for building groupware applications, and is shown in Figure 1.5.

12 I Chapter 1 What Java Can Do for You

FIG. 1.3 L Netscape - [Rubik Unbound]
e File Edt View Go Bockmarks Opfions Diectoy Window Help

Rubik’s Cube.] Locaton: [t /7w b uusser~arlivadubic il =

Rubik Unbound

By Karl Homell, WMarch 11, 1996
Last modified April 17, 1996,

This is yet another Java implementation of the classical Rubils's Cube. I tried to
make the user interface as simple and obvious as possible. You should be able to
figure out how it works. Twist or rotate by pointing and dragging in "nat
directions

Press s to scramble and r to restore (while positioning the mouse cursor
somewhere in the applet region]).

The source code can be found here, but I have hardly documented it at all, so it looks rather cryptic

(&n optional parameter, "bgcolor”, has been added. If used, it takes as input a background color asa
hexadecimal RGB value, e.g. "25003f" for deep purple. Default iz ordinary light gray.)

What's Cool ﬁ Featured Applet ﬁ
b GAMELAN - GAMELAN _!

=l [Applet nibik rurring e =

3 Palle Pedalpost - Microsoft Intemet Explorer

FIG' 1'4 Fie Edt View Go Favoites Help
Pelle Pedal pOSt. Address [£] hitp:/wew zpper dkspostspifpostgame. him =l

> .0 [& @A 6 B

o © I
‘ Back Fonier Stop Refresh Home Search Favortes History Channels | Fulscree

002y

[[@& tntemet zone
S Netscape.. | &)htpe/ . | |l@&sxw

AR start| 5-005 Pr.| [f] Master Ot | SEvecPC [[EPalle Pe... | B Netscape- l& esarM

One of the wonderful enhancements with JDK 1.2 is the capability to have applications display
multimedia. Figure 1.6 shows an MPG movie playing within a Java program.

FIG. 1.5
Lotus eSuite.

FIG. 1.6

This MPG movie is
playing in a Java
program.

Java Applets I 13

/3 Sheet/Chart Demo Page - Miciosoft Intemnet Explorer

Hstan| | e my| E3K|[E7s @8] ¢ Fie | @29 |[mi&e rsrm

=4 Applet Viewer: TypicalPlayerappletclass [H[E]
Applet

Applet started

The Chicago Tribune has used Java Servlets to create a wonderful site called Metromix.
Metromix, shown in Figure 1.7, is a source of entertainment in the Chicago area.

A group of students from Harvard has created a truly innovative system for scheduling classes.

This system, shown in Figure 1.8, can be viewed from http://www.digitas.harvard.edu.

Fle Edt Yiew Go Favoites Help | a Part
P o
Address IE‘ http://esuite lotus. com/demos/millennia/demos/millernia/210a. himl j - = S @ @ @
Back Fomard| Stop Refresh Home Search
North South East West Total c h
48800 3982.0 4783.0 48340 4673.0] $23162.0
onsulting 78320 2886.0 0.0 14530 6928.0] $19099.0
Total Services BRI brprA] $6868.0 $4783.045 $6287.0 $11601.0 " $42261
27450 1428.0 2987.0 a8e.0 2189.0] $10337.0
31630 “1755.0 2754.0 14840 3166.0] $12322.0
Total Products $5908.0 $3183.0 $65741.0 $2472.0 $5356.0) $22659.0
Total Revenue ($M) $18630.0 $10051.0 $10524.0 $8759.0 $16956.0 $64920
TotakServices
M Brokerage Fees
M Financial Constlting
M Mutual Funds
B Stocks & Bonds
-~ Central
Noth' South pagy West | |
<lInstructions _.DemoHorme |
&) | | ’7’7 @ Intemet zone

14 I Chapter 1 What Java Can Do for You

FIG. 1.7

it) orites

Metromix Web site.

Address [£] htp: /v metromis. com/

©

Stop

=

Jé_»

Back okl Refresh Home

Seaich Favortes Histop Char

=

chicago

CHANNELS

Home

fromix

an essential guide

quick search

traftic
weather

(best bets

[[
5005 Prompt || 2] Metiomin Arts .| S3ExecPC
=

’7’7 @ Intemet zone

|[[[@e @ |fada supm |

FIG. 1.8

icrosoft Internet Explorer

EREEIES

J Ele Edt Yiew Go Favaoites Help

Digitas Course Decision

B s TR Al e e R EilE = e

Assistant.

| Address [hitp:/ /v digitas harvard edu/~cda/

y HARVARD welcome
preiras what we do

who we are

you and us

honday Tuesday Wednesday Thursday Friday Scheduie Statistics
what we do o0
8 0] Courses: oo
. —ml [w/CUE ratings] 0.0
(,ou!s_e q 00|
Decision 30| Class Haurs: 00
i 0o
AR 03 Awg CUE Oversl: 0.0
fr— ng 1
Gyl — Avg. CUE Difficuly: 0.0
Engine 125
1 00| Avag. CUE Workload: 0.0
Harvard Links 30
{ili]
)
itas Guide —=
3 [
o ia 45:00) Fall View
Harvard —= " Spring View
400 IS
Digicast _:30]
igicast (il
5 = Browse Search
0o
ST 635 Load Save
0o
account 7 Tl Quick Add |

services

Ig__'] Applet started

[’_,_@ Intemet zone

Java GUI Applications I 15

Java GUI Applications part

While Java applets have stolen most of Java’s thunder, Java goes a lot further than applets. Java
can be used to develop portable GUI applications across all supported platforms. In fact, the Ch
same Java source code can be used for both an applet and an application.

To illustrate this, look at an application called Text Editor that was developed for demonstration
purposes. As the name implies, this application is used for editing text files, similar to the Win-
dows Notepad application. Figure 1.9 shows the applet version of the Text Editor, Figure 1.10
shows the application version on Windows 95, and Figure 1.11 shows the application version
under Solaris.

All three versions of the Text Editor were generated using the same Java source files. In fact,
all three versions are executed using the same bytecode files that were compiled only once
under Windows 95 and copied to Solaris without requiring a recompilation.

Notice how the Java interpreter is used on the MS-DOS prompt to execute the application.

Notice the File dialog box in Figures 1.10 and 1.11. If you are a Windows 95 or Solaris user, you
know they are the standard File dialog boxes used on these operating systems. As a developer,
you do not need to custom code anything to get the native look and feel. All you have to do is
ensure that the class (bytecode) files are available from where the applet or application needs
to be invoked. The rest (the native look and feel, system-specific features, and so on) is
handled by Java’s dynamic link libraries.

FIG_ 1.9 i Netscape - [Text Editor]
The Text Editor File Edit View Go Bookmarks Options Directory Window Help
application running Go tn:Ihttp:.-"a"www.Datriot.net.-"users.-"anil.-"iava.-"TextEditor.-" LI N
as an applet. =
URL: [itp:ivrvrw.patriot netfusers/arilfsva/TextEditorindex html ﬁé
New | Open... | Save Save As.. |Rzud frnm'\U'RLI Write tnU'RLl Show URL |
kg
|Helvetica 'I 14 =| ¥ Bold [Falic
<title>Text Editor</title> =
<applet code=TextEdit.class width=575 height=350>
<hr>
<i>Sorry, you are not running a Java enabled browser.</i>
<hr>
</applet-
<hr>
README, Source

Send me an E-Mail<BR _
<A HREF="http://ourworld.compuserve.com/homepages/ahemrajanijavaapps. =
4 | »
=
o) |Applet TewtEdit running =

16 I Chapter 1 What Java Can Do for You

FIG. 1.10
The Text Editor
application on Windows
95 runs using the Java
interpreter.
URL: | hitpfhwvww patnot netfusersiald
Wew | Opn. | swe | swess. |RemifomURL| WitewoURL | Eat |
TimesRoman ¥ | [14 x| ¥ Bold [Iiakic
Save Fils As
:%: Savein: Ia TextEdit j ﬂ
<TITLE=Anil Hemrajani's Hol OnThelntemet] Readme] TextFrame.class
</HEAD> Wiitellp] tetedit su 3] testtrame html
8] DoFileDiclog.class [#] TestEdi.class (o8] WiriteFile. class
<FRAMESET ROWS-"13%, § | Loadimag.class |E testedit gif
<FRAME NAME="Header" £ |2|loadmagjava @] textedit html
<FRAME NAME="Document'| |i#]ReadFile.class 2] TextEditjava
]
File name: [index html
Save as ype: | =l
FIG. 1.11 Text Editor
The Text Editor File
application on Solaris.
v @
New | Open.. | Save | SaveAs.. |ReadfromURL POSTt URL | Exit
Courier — | 12 | \Bold i
4 1l Open a File
Filter

I ffmac/usersfwidadh/|/TextEdit/

Directories Files

’3 DoFileDialog.class ’g

| _

i A
=r JE—]

I fmac/users vidadh/l TextEdit/index.html

] =
ﬁs ! Open * Filter Cancel

Selection

Java Command Line Applications

Even in today’s world, where GUI applications have become a standard on practically every
type of computer, there are times when you might need to drop down to the command line to
perform some tasks. For these times, Java provides the capability to develop command line
applications.

The only difference between command line and GUI applications is that command line applica-
tions do not use any of the GUI features provided in Java. In other words, command line appli-
cations do not use the java.awt package.

How to Stay Current I 17

Figure 1.12 shows an example of a command line application, copyURL, which essentially is a Part
copy utility for copying files from the Internet to a local disk. This application uses the

java.net package to obtain information about a resource (file) on the Internet. Then copyURL

uses the java.io package to read the bytes of data from the file on the Internet and write them Ch
to a local file.

FIG. 1.12
copyURL.class is an
Internet command line
copy utility.

Java Is Client/Server

In today’s computing world, client/server technology has found a place in most corporations.
The biggest benefit of this technology is that the processing load is shared between the client
and the server. A client can be any program (GUI application, Telnet, and so on) that requests
services from a server application. Examples of server applications include database servers,
application servers, communication (FTP, Telnet, Web) servers, and more.

In this chapter, you have seen several examples of Java client-side applets and applications.
However, Java provides classes for server-side processing as well. Java applications can be
used as clients or servers, whereas applets can only be used for client-side processing.

The java.net package provides classes necessary for developing client/server applications.
Figure 1.13 shows a Java applet, javasaL, that sends free-form SQL queries typed in by the
user to a server application, javaSQaLd. javasQLd in turn queries a database and returns the
query results to the javasaL applet.

Figure 1.14 illustrates the relationship between javasaL and javaSaLd. Imagine querying a
database at work from home via a Java-enabled browser. With Java, the possibilities are end-
less!

How to Stay Current

Web-related technology is progressing so rapidly that it is difficult to stay on top of new events.
The pace of innovation on the Internet is extremely rapid, and Java has been growing at a rate
at least as astounding as the rest of the technology.

18 I Chapter 1 What Java Can Do for You

FIG. 1.13 Lt Netscape - [javaSaL]

. File Edt View Go Bookmarks Options Directoy Window Help
javaSQL client applet.

Go to |hltp:ﬂ‘.fwwwpamolnel/usels/anﬂﬂavaf\avasGLI ;I N
T soL and click on B ﬁ-ﬁ?'#
o query, enter SQL statement and click on Execute
=
Exscute Daia Source Information JavaSQLd Server Information

h User: | anil Password: | R Host:l patriot net
DataServer: | sybservl Database: | customer Port: | 4444

SOL Statement;

SELECT Wame. Revenue FROM Customers
go

]

Hame Revenue

John Doe 5000.00
Jane Doe 48003 .02

]

=gl |AppletjavaSQL mnning

g5]t ol
|

FIG. 1.14

javasaL and JavaSQL |\, JavaSQLd s —

javaSQLd. Al‘fg;!;‘r:?gf]éﬁgrt;;n sc:r:g:-nts {Se?ipélui?;;uits) stl:I'i::'llz’tgut Database
CLENT SOCKET — SERVER SOCKET T

About the only way to stay current is to visit certain Web sites that post the latest news and
Java examples. While there are dozens of Java-related Web sites that provide timely informa-
tion, you will find a list of some of those that have a history of providing great information in
Chapter 56, “Java Resources.” e

Java Design

In this chapter

Java Is Interpreted 20

Java Is Object Oriented 21
The Java Virtual Machine 22
Security and the JVM 24
The Java API 24

CHAPTER

20 I Chapter 2 Java Design

Java Is Interpreted

Before you write any applets or programs with Java, it is important to understand how Java
works. This chapter introduces you to the actual language, the limitations of the language
(intentional and unintentional), and how code can be made reusable.

Strictly speaking, Java is interpreted, although in reality Java is both interpreted and compiled.
In fact, only about 20 percent of the Java code is interpreted by the browser, but this is a crucial
20 percent. Both Java’s security and its ability to run on multiple platforms stem from the fact
that the final steps of compilation are handled locally.

A programmer first compiles Java source into bytecode using the Java compiler. These
bytecodes are binary and architecturally neutral (or platform-independent—both work equally
well). The bytecode isn’t complete, however, until it’s put together with a Java runtime environ-
ment, usually a browser. Because each Java runtime environment is for a specific platform, the
bytecodes can be interpreted for the specific platform and the final product will work on that
specific platform.

This platform-specific feature of Java is good news for developers. It means that Java code is
Java code is Java code, no matter what platform you're developing for or on. You could write
and compile a Java applet on your UNIX system and embed the applet into your Web page.
Three different people on three different machines, each with different environments, can take
a peek at your new applet. Provided that each of those people runs a Java-capable browser, it
won’t matter whether he or she is on an IBM, HP, or Macintosh. Using Java means that only
one source of Java code needs to be maintained for the bytecode to run on a variety of plat-
forms. One pass through a compiler for multiple platforms is good news for programmers.

The one drawback that comes with interpretation, however, is that there is a performance hit.
This is caused by the fact that the browser has to do some work with the class files (interpret
them) before they can be run. Under traditional programming, such as with C++, the code that
is generated can be run directly by the computer. The performance hit that interpretation
causes means that Java programs tend to run about 1/2 to 1/6 the speed of their native coun-
terparts.

This deficiency is largely overcome using a tool called a just-in-time (JIT) compiler. A just-in-
time compiler compiles Java methods to native code for the platform you're using. It is embed-
ded with the Java environment for a particular platform (such as Netscape). Without the JIT
compiler, methods are not translated to native code but remain in the original machine-
independent bytecode. This bytecode is interpreted on any platform by the Java Virtual
Machine. A Java application is portable, but the just-in-time compiler itself cannot be portable
because it generates native code specific to a platform, exactly as you need a different version
of the virtual machine for each new platform. Generally, you don’t even need to concern
yourself with JITs. Both the Netscape Navigator and Microsoft’s Internet Explorer browsers
have JIT compilers in them.

Why is this combination of compilation and interpretation a positive feature?

Java

Java Is Object Oriented I 21

It facilitates security and stability. The Java environment contains an element called the
linker, which checks data coming into your machine to make sure it doesn’t contain
deliberately harmful files (security) or files that could disrupt the functioning of your
computer (robustness).

More importantly, this combination of compilation and interpretation alleviates concern
about version mismatches.

The fact that the final portion of compilation is being accomplished by a platform-specific de- T

vice, which is maintained by the end user, relieves you of the responsibility of maintaining
multiple sources for multiple platforms. Interpretation also enables data to be incorporated at ch
runtime, which is the foundation of Java’s dynamic behavior.

Is Object Oriented

Java is an object-oriented language. Therefore, it’s part of a family of languages that focuses on
defining data as objects and the methods that may be applied to those objects. As explained,
Java and C++ share many of the same underlying principles; they just differ in style and struc-
ture. Simply put, object-oriented programming languages (OOP, for short) describe interac-
tions among data objects.

See Chapter 50, “Java Versus C(++),” to learn more about the similarities of Java with C++,
p. 1161

Many OOP languages support multiple inheritance, which can sometimes lead to confusion or
unnecessary complications. Java doesn’t. As part of its less-is-more philosophy, Java supports
only single inheritance, which means each class can inherit from only one other class at any
given time. This type of inheritance avoids the problem of a class inheriting classes whose
behaviors are contradictory or mutually exclusive. Java enables you to create totally abstract
classes, known as interfaces. Interfaces allow you to define methods you can share with several
classes, without regard for how the other classes are handling the methods.

See Chapter 5, “Object-Oriented Programming,” to learn more, p. 71

N O T E Although Java does not support multiple inheritance, Java does allow a class to implement
more than one interface.

Each class, abstract or not, defines the behavior of an object through a set of methods. All the code
used for Java is divided into classes. Methods can be inherited from one class to the next, and at the
head of the class hierarchy is the class called Object. The Object class belongs to the java.lang
package of the Java Core API.You are introduced in the last section of this chapter to the Java Core
API.

See Chapter 11, “Classes,” to learn more about classes and objects, p. 157
Objects can also implement any number of interfaces (or abstract classes). The Java interfaces

are a lot like the Interface Definition Language (IDL) interfaces. This similarity means it’s easy
to build a compiler from IDL to Java.

22 I Chapter 2 Java Design

That compiler could be used in the Common Object Request Broker Architecture (CORBA)
system of objects to build distributed object systems. Is this good? Yes. Both IDL interfaces
and the CORBA system are used in a wide variety of computer systems and this variety facili-
tates Java’s platform independence.

See Chapter 42, “JavalDL: A Java Interface to CORBA,” to learn more about CORBA, p. 939

As part of the effort to keep Java simple, not everything in this object-oriented language is an
object. Booleans, numbers, and other simple types are not objects, but Java does have wrapper
objects for all simple types. Wrapper objects enable all simple types to be implemented as
though they are classes.

It is important to remember that Java is unforgivingly object oriented; it simply does not allow
you to declare anything that is not encapsulated in an object. Even though C++ is considered an
OOP language, it enables you to develop bad habits and not encapsulate types.

See Chapter 7, “Data Types and Other Tokens,” to learn more about types, p. 97

Object-oriented design is also the mechanism that allows modules to “plug and play.” The
object-oriented facilities of Java are essentially those of C++, with extensions from Objective C
for more dynamic method resolution.

The Java Virtual Machine

The heart of Java is the Java Virtual Machine, or JVM. The JVM is a virtual computer that
resides in memory only. The JVM enables Java programs to be executed on a variety of plat-
forms as opposed to only the one platform for which the code is compiled. The fact that Java
programs are compiled for the JVM is what makes the language so unique, but in order for
Java programs to run on a particular platform, the JVM must be implemented for that platform.

See Chapter 53, “Inside the Java Virtual Machine,” to learn more about the JVM, p. 1253

The JVM is the very reason that Java is portable. It provides a layer of abstraction between the
compiled Java program and the underlying hardware platform and operating system.

The JVM is actually very small when implemented in RAM. It is purposely designed to be small
so that it can be used in a variety of consumer electronics. In fact, the whole Java language was
originally developed with household electronics in mind. Gadgets such as phones, PCs, appli-
ances, television sets, and so on will soon have the JVM in their firmware and allow Java pro-
grams to run. Cool, huh?

Java Source Code

Java source code is compiled to the bytecode level, as opposed to the bitcode level. The JVM
executes the Java bytecode. The javac program, which is the Java compiler, reads files with the
.Jjava extension, converts the source code in the .java file into bytecodes, and saves the result-
ing bytecodes in a file with a .class extension.

The JVM reads the stream of bytecode from the .class file as a sequence of instructions. Each
instruction consists of a one-byte opcode, which is a specific and recognizable command, and

The Java Virtual Machine I 23

zero or more operands (the data needed to complete the opcode). The opcode tells the JVM
what to do. If the JVM needs more than just the opcode to perform an action, then an operand
immediately follows the opcode.

See Chapter 52, “Understanding the .class File,” to learn about opcodes, p. 1233
There are four parts to the JVM:
Stack

Registers

Part

Garbage-collection heap
Method area

The Java Stack

The size of an address in the JVM is 32 bits. Therefore, it can address up to 4G of memory,
with each memory location containing one byte. Each register in the JVM stores one 32-bit
address. The stack, the garbage-collection heap, and the method area reside somewhere within
the 4G of addressable memory. This 4G of addressable memory limit isn’t really a limitation
now, because most PCs don’t have more than 32M of RAM. Java methods are limited to 32K in
size for each single method.

Ch

Java Registers

All processors use registers. The JVM uses the following to manage the system stack:

Program counter Keeps track of where exactly the program is in execution.
Optop Points to the top of the operand stack.
Frame Points to the current execution environment.
Vars Points to the first local variable of the current execution environment.
The Java development team decided that Java would only use four registers because if Java had

more registers than the processor it was being ported to, that processor would take a serious
reduction in performance.

The stack is where parameters are stored in the JVM. The JVM is passed to the bytecode from
the Java program and creates a stack frame for each method. Each frame holds three kinds of
information:

Local variables An array of 32-bit variables that is pointed to by the vars register.

Execution environment Where the method is executed and is pointed to by the frame
register.

Operand stack Acts on the first-in, first-out principle, or FIFO. It is 32 bits wide and

holds the arguments necessary for the opcodes. The top of this stack is indexed by the
optop register.

24 I Chapter 2 Java Design

Garbage-Collection Heap

The heap is the collection of memory from which class instances are allocated. Any time you
allocate memory with the new operator, that memory comes from the heap. You can call the
garbage collector directly, but it is not necessary or recommended under most circumstances.
The runtime environment keeps track of the references to each object on the heap and auto-
matically frees the memory occupied by objects that are no longer referenced. Garbage collec-
tions run as a thread in the background and clean up during CPU inactivity.

The Java Method Area

The JVM has two other memory areas:

Method
Constant pool
There are no limitations as to where these memory areas must actually exist, making the JVM

more portable and secure. The fact that memory areas can exist anywhere makes the JVM
more secure in the fact that a hacker couldn’t forge a memory pointer.

The JVM handles the following primitive data types:
byte (8 bits)
float (32 bits)
int (32 bits)
short (16 bits)
double (64 bits)
char (16 bits)
long (64 bits)

Security and the JVM

This section is organized into six parts. You will explore the issue of security of networked
computing in general and define the security problem associated with executable content. I
propose a six-step approach to constructing a viable and flexible security mechanism. How the
architecture of the Java language implements security mechanisms will also be covered. As
with any new technology, there are several open questions related to Java security, which are
still being debated on the Net and in other forums.

Executable Content and Security

In this section, you will analyze the concept of security in the general context of interactivity on
the Web and security implementation via executable content.

Let’s examine the duality of security versus interactivity on the Web and examine the evolution
of the Web as a medium in the context of this duality. To do this, let’s create a definition of the
security problem in the context of executable content.

Security and the JVM I 25

The Security Problem Defined A program arriving from outside the computer via the net-
work has to be greeted by the user with a certain degree of trust and allowed a corresponding
degree of access to the computer’s resources to serve any useful purpose. The program is
written by someone else, however, under no contractual or transactional obligation to the user.
If this someone is a hacker, the executable content coming in could be a malicious program
with the same degree of freedom as a local program.

See Chapter 34, “Java Security in Depth,” to learn more about Java Security, p. 769 Part
Does the user have to restrict completely the outside program from accessing any resource
whatsoever on the computer? Of course not. This would cripple the ability of executable con-
tent to do anything useful at all. A more complete and viable security solution strategy would
be a six-step approach:

1. Anticipate all potential malicious behavior and attack scenarios.
2. Reduce all such malicious behavior to a minimal orthogonal basis set.

3. Construct a programming environment/computer language that implicitly disallows the
basis set of malicious behavior and, hence, by implication, all potential malicious
behavior.

4. Logically or, if possible, axiomatically prove that the language/environment is indeed
secure against the intended attack scenarios.

5. Implement and allow executable content using only this proven secure language.

6. Design the language such that any new attack scenarios arising in the future can be dealt
with by a corresponding set of countermeasures that can be retrofitted into the basic
security mechanism.

Working backwards from the previous solution strategy, the security problem associated with
executable content can be stated as consisting of the following six subproblems:
What are the potential target resources and corresponding attack scenarios?

What is the basic, minimal set of behavioral components that can account for the
previous scenarios?

How should a computer language/programming environment that implicitly forbids the
basis set of malicious behavior be designed?

How can you prove that such a language/environment is, indeed, secure as claimed?

How can you make sure that incoming executable content has, indeed, been imple-
mented in and originated from the trusted language?

How can you make the language future proof (extensible) to co-opt security strategies to
counter new threats arising in the future?

As you will learn, Java has been designed from the ground up to address most (but probably
not all) of the security problems as defined here. Before you move on to Java security architec-
ture itself, the attack targets and scenarios are identified next.

26 I Chapter 2 Java Design

Potential Vulnerability In this subsection, I list the various possible attack scenarios and
resources on a user’s computer that are likely to be targeted by a potentially malicious, exter-
nal, executable content module.

Attack scenarios could belong to one of the following categories and have one of the following
goals (this is not an exhaustive list):

Damage or modify integrity of data and/or the execution state of programs.

Collect and smuggle out confidential data.

Lock up resources, making them unavailable for legitimate users and programs.

Steal resources for use by an external, unauthorized party.

Cause nonfatal but low-intensity unwelcome effects, especially on output devices.

Usurp identity and impersonate the user or the user’s computer to attack other targets

on the network.

Table 2.1 lists the resources that could be potentially targeted and the type of attack they could
be subject to. A good security strategy assigns security/risk weights to each resource and
designs an appropriate access policy for external executable content.

Table 2.1 Potential Targets and Attack Scenarios

Targets Damage Smuggle Lock Up/ Steal Nonfatal Imper-
Integrity Information Deny Usage Resource Distraction sonate

File system X X X X X

Confidential X X X X X

data

Network X X X X X

CPU X X X

Memory X X X X

Output devices X X X X

Input devices X X X

OS, program X X X X

state

Java Approach to Security

This following discussion is in reference to the six-step approach outlined in the previous sec-
tion.

Step 1: Visualize All Attack Scenarios Instead of coming up with every conceivable attack
scenario, the Java security architecture posits potential targets of a basic set of attack catego-
ries very similar to the previous attack scenario matrix.

Security and the JVM I 27

Specifically, the Java security model covers the following potential targets:

Memory
OS/program state
Client file system

Network

against the following attack types listed in Table 2.1: T

Damage integrity of software resources on the client machine. Achieved by what is
usually called a virus. A virus is usually written to hide itself in memory and corrupt Ch
specific files when a particular event occurs or on a certain date.

Lock up/deny usage of resource on the client machine. Usually achieved by a virus.

Smuggle information out of the client machine. Can be done easily with UNIX
SENDMAIL, for example.

Impersonate the client machine. Can be done through IP spoofing. This style of attack
was brought to the attention of the world by Kevin Mitnick when he hacked into one of
computer security guru Tsutumo Shimura’s personal machines. The whole incident is
well-documented in the New York Times best-selling book Takedown by Tsutumo
Shimura.

Step 2: Construct a Basic Set of Malicious Behavior Instead of arriving at a basic set of
malicious behavior, Java anticipates a basic set of security hotspots and implements a mecha-
nism to secure each of these:

Java language mechanism and compiler.

Java-compiled class file.

Java bytecode verifier and interpreter.

Java runtime system, including class loader, memory manager, and thread manager.
Java external environment, such as Java Web browsers and their interface mechanisms.
Java applets and the degrees of freedom allowed for applets (which constitute executable

content).

Step 3: Design Security Architecture Against Previous Behavior Set Construct a program-
ming environment/computer language that implicitly disallows the basic set of malicious be-
havior and hence, by implication, all potential malicious behavior. You guessed it—this lan-
guage is Java!

Step 4: Prove the Security of Architecture This step involves logically or, if possible, axiom-
atically proving that the language/environment is indeed secure against the intended attack
scenarios.

Security mechanisms built into Java have not (yet) been axiomatically or even logically proven
to be secure. Instead, Java encapsulates all its security mechanism into distinct and well-
defined layers. Each of these security loci can be observed to be secure by inspection in

28 I Chapter 2 Java Design

relation to the language design framework and target execution environment of Java language
programs and applets.

Step 5: Restrict Executable Content to Proven Secure Architecture The Java class file
checker and bytecode verifier achieve this objective.

Step 6: Make Security Architecture Extensible This step requires that the language be
designed. Design the language such that any new attack scenarios arising in the future can be
dealt with by a corresponding set of counter-measures, which can be retrofitted into the basic
security mechanism.

The encapsulation of security mechanisms into distinct and well-defined loci, combined with
the provision of a Java SecurityManager class, provides a generic mechanism for incremental
enhancement of security.

Security at the Java Language Level

The first tier of security in Java is the language design itself—the syntactical and semantic
constructs allowed by the language. The following is an examination of Java language design
constructs with a bearing on security.

Strictly Object Oriented Java is fully object oriented, with every single primitive data struc-
ture (and, hence, derived data structure) being a first-class, full-fledged object. Having wrap-
pers around each primitive data structure ensures that all the theoretical security advantages of
OOP permeate the entire syntax and semantics of programs written in Java:

Encapsulation and hiding of data behind private declarations.
Controlled access to data structures via public methods only.
Incremental and hierarchical complexity of program structure.

No operator overloading.

Final Classes and Methods Classes and methods can be declared as final, which disallows
further subclassing and method overriding. This declaration prevents malicious modification of
trusted and verified code.

Strong Typing and Safe Typecasting Typecasting is security checked both statically and
dynamically, which ensures that a declared compile-time type of an object is strictly compatible
with eventual runtime type, even if the object transitions through typecasts and coercions.
Typecasting prevents malicious type camouflaging.

No Pointers This is possibly the strongest guarantor of security that is built right into the
Java language. Banishment of pointers ensures that no portion of a Java program is ever anony-
mous. Every single data structure and code fragment has a handle that makes it fully traceable.

Language Syntax for Thread-Safe Data Structures Java is multithreaded. Java language
enforces thread-safe access to data structures and objects. Chapter 13, “Threads,” examines
Java threads in detail, with examples and application code.

Security and the JVM I 29

Unique Object Handles Every single Java object has a unique hash code that is associated
with it. This means that the state of a Java program can be fully inventoried at any time.

Security in Compiled Java Code

At compile time, all the security mechanisms implied by the Java language syntax and seman-
tics are checked, including conformance to private and public declarations, typesafeness, and
the initialization of all variables to a guaranteed known value. Part

Class Version and Class File Format Verification Each compiled class file is verified to con-

form to the currently published official class file format. The class file is checked for both Ch
structure and consistency of information within each component of the class file format. Cross-
references between classes (via method calls or variable assignments) are verified for conform-

ance to public and private declarations.

Each Java class is also assigned a major and minor version number. Version mismatches be-
tween classes within the same program are checked.

Bytecode Verification Java source classes are compiled into bytecodes. The bytecode verifier
subjects the compiled code to a variety of consistency and security checks. The verification
steps applied to bytecode include:

Checking for stack underflows and overflows.
Validating of register accesses.
Checking for correctness of bytecode parameters.

Analyzing dataflow of bytecode generated by methods to ensure integrity of a stack,
objects passed into and returned by a method.

Namespace Encapsulation Java classes are defined within packages. Package names qualify
Java class names. Packages ensure that code which comes from the network is distinguished
from local code. An incoming class library cannot maliciously shadow and impersonate local
trusted class libraries, even if both have the same name. This also ensures unverified, acciden-
tal interaction between local and incoming classes.

Very Late Linking and Binding Late linking and binding ensures that the exact layout of
runtime resources, such as stack and heap, is delayed as much as possible. Late linking and
binding constitutes a road block to security attacks by using specific assumptions about the
allocation of these resources.

Java Runtime System Security

The default mechanism of runtime loading of Java classes is to fetch the referred class from a
file on the local host machine. Any other way of loading a class—including from across the
network—requires an associated ClassLoader. A ClassLoader is a subtype of the standard Java
ClassLoader class, which has methods that implement all the consistency and security mecha-
nisms and applies them to every class that is newly loaded.

30 I Chapter 2 Java Design

For security reasons, the ClassLoader cannot make any assumptions about the bytecode,
which could have been created from a Java program compiled with the Java compiler. The
bytecode could also have been created by a C++ compiler modified to generate Java bytecode.
This means the ClassLoader kicks in only after the incoming bytecode has been verified.

ClassLoader has the responsibility of creating a namespace for downloaded code and resolving
the names of classes referenced by the downloaded code. The ClassLoader enforces package-
delimited namespaces.

Automatic Garbage Collection and Implicit Memory Management In C and C++, the pro-
grammer has the explicit responsibility to allocate memory, deallocate memory, and keep track
of all the pointers to allocated memory. This often is a maintenance nightmare and a major
source of bugs that result from memory leaks, dangling pointers, null pointers, and mis-
matched allocation and deallocation operations.

Java eliminates pointers and, with it, the programmer’s obligation to manage memory explic-
itly. Memory allocation and deallocation are automatic, strictly structured, and fully typesafe.
Java uses garbage collection to free unused memory instead of explicit programmer-mediated
deallocation. Garbage collection eliminates memory-related bugs as well as potential security
holes. Manual allocation and deallocation allows unauthorized replication, cloning, and imper-
sonation of trusted objects, as well as attacks on data consistency.

SecurityManager Class SecurityManager is a generic and extensible locus for implementing
security policies and providing security wrappers around other parts of Java, including class
libraries and external environments (such as Java-enabled browsers and native methods). The
SecurityManager class itself is not intended to be used directly (each of the checks defaults to
throwing a security exception). It is a shell class that is intended to be fleshed out via
subclassing to implement a specific set of security policies.

Among other features, SecurityManager has methods to determine whether a security check is
in progress and also checks the following:

To prevent the installation of additional ClassLoaders.

If dynamic libraries can be linked (used for native code).

If a class file can be read from.

If a file can be written to.

If a network connection can be created.

If a certain network port can be listened to for connections.

If a network connection can be accepted.

If a certain package can be accessed.

If a new class can be added to a package.

The security of a native OS system call.

Security and the JVM I 31

Security of Executable Code

The major source of security threats from and to Java programs is Java code that comes in
across the network and executes on the client machine. This class of transportable Java pro-
grams is called the Java applet class. A Java applet has a very distinct set of capabilities and
restrictions within the language framework, especially from the security standpoint.

File System and Network Access Restrictions Applets loaded over the network have the
following restrictions imposed on them:

Part

They cannot read or write files on the local file system. o

They cannot create, rename, or copy files and directories on the local file system.

They cannot make arbitrary network connections, except to the host machine they
originally came from. The host machine would be the host domain name specified in the
URL of the HTML page that contains the <APPLET> tag for the applet, or the host name
specified in the CODEBASE parameter of the <APPLET> tag. The numeric IP address of the
host does not work.

The previous strict set of restrictions on access to a local file system applies to applets running
under Netscape Navigator. The JDK AppletViewer slightly relaxes the restrictions by letting
the user define a specific, explicit list of files that can be accessed by applets.

Now, as you will learn in Chapter 16, “JAR,” it is possible to overcome the limitations on applets
in 1.1-compliant browsers by “signing” the files. This enables applets that need to perform one
of these functions this capability while maintaining a security framework.

External Code Access Restrictions Applets cannot do the following:

Call external programs via such system calls as fork or exec.

Manipulate any Java thread groups except their own thread group that is rooted in the
main applet thread.

System Information Access Applets can read some system properties by invoking
System.getProperty (String key). Applets under Netscape have unrestricted access to these
properties. Sun’s JDK AppletViewer enables individual control over access to each property.
Table 2.2 lists the type of information returned for various values of key.

Table 2.2 System Variable Availability

Key Information Returned
java.version Java version number
java.vendor Java vendor-specific string
java.vendor.url Java vendor URL
java.class.version Java class version number
os.name Operating system name

continues

32 I Chapter 2 Java Design

Table 2.2 Continued

Key Information Returned

os.arch Operating system architecture
file.separator File separator (such as /)
path.separator Path separator (such as :)
line.separator Line separator

Inaccessible System Information The information provided in Table 2.3 is not accessible to
applets under Netscape. AppletViewer and the HotJava browser enable user-controllable ac-
cess to one or more of these resources.

Table 2.3 System Variables Restricted from Applets

Key Information Returned
java.home Java installation directory
java.class.path Java classpath

user.name User’s account name

user.home User’s home directory

user.dir User’s current working directory

Applets Loaded from the Local Client There are two different ways that applets are loaded
by a Java system (note: this applies only to AppletViewer). An applet can arrive over the net-
work or be loaded from the local file system. The way an applet is loaded determines its degree
of freedom.

If an applet arrives over the network, it is loaded by the ClassLoader and is subject to security
checks imposed by the ClassLoader and SecurityManager classes. If an applet resides on the
client’s local file system in a directory listed in the user’s CLASSPATH environment variable, then
it is loaded by the file system loader.

From a security standpoint, locally loaded applets can:

Read and write the local file system.

Load libraries on the client.

Execute external processes on the local machine.
Exit the JVM.

Skip being checked by the bytecode verifier.

Security and the JVM I 33

Open Issues
Having examined the issue of security of executable content both in general and specifically in
the framework of Java, you now examine some aspects of security that are not fully addressed
by the current version of the Java architecture. You also learn if, for some types of threats, 100
percent security can be achieved.

The following components of the Java architecture are the loci of security mechanisms: Part

Language syntax and semantics.

Compiler and compiled class file format and version checker. ch
Bytecode verifier and interpreter.

Java runtime system, including ClassLoader, SecurityManager, memory, and thread
management.

Java external environment, such as Java Web browsers and their interface mechanisms.

Java applets and the degrees of freedom allowed for applets (which constitute executable
content).

Security provided by each of these layers, however, can be diluted or defeated in some ways
with varying degrees of difficulty:

Data layout in the source code can be haphazard and exposed despite hiding and control
mechanisms provided by Java syntax. This situation can lead to security breaches if, for
instance, access and assignment to objects are not thread safe or data structures that
ought to be declared private are instead exposed as public resources.

The runtime system is currently implemented in a platform-dependent, non-Java
language, such as C. The only way to ensure the system is not compromised is by
licensing it from Sun or comparing it with a reference implementation.

Using runtime systems written in non-Java languages can lead to a security compromise
if, instead of using Sun’s own runtime system or a verified clone, someone uses a home-
brew or no-name version of the runtime that has diluted versions of the class loader or
bytecode verifier.

The interface between Java and external non-Java environments, such as Web browsers,
may be compromised.

Security issues that cannot easily be addressed within Java (or any other mechanism of execut-
able content, for that matter) include:

CPU resources on the client side can be stolen. A user can send an applet to your
computer that uses your CPU to perform some computation and returns the results back
to the user.

Applets can contain nasty or annoying content (images, audio, or text). If this happens
often, users have to block applets on a per-site basis. User-definable content filtering
should be integrated into the standard Java class library.

An applet can allocate an arbitrary amount of memory.

34 I Chapter 2 Java Design

An applet can start up an arbitrary number of threads.

Security compromises can arise out of inherent weaknesses in Internet protocols,
especially those that were implemented before Java and executable content burst on the
scene.

One generic way to deal with security problems is for Java applet classes to be sent encrypted
and digitally signed. The ClassLoader, SecurityManager, and even the bytecode verifier can
include built-in decryption and signature verification methods.

N O T E These and other open issues related to Java security are topics of ongoing debate and

exploration of specific and involved security breach scenarios, especially on online forums.
The next and final section of this chapter points to references and sources of further information on
this topic.

The Java API

The Java Application Programming Interface, or API, is a set of classes developed by Sun for
use with the Java language. It is designed to assist you in developing your own classes, applets,
and applications. With these sets of classes already written for you, you can write an application
in Java that is only a few lines long, as opposed to an application that would be hundreds of
lines long if it were written in C. Which would you rather debug?

The classes in the Java API are grouped into packages, each of which may have several classes
and interfaces. Furthermore, each of these items may also have several properties, such as
fields and/or methods.

Although it is possible to program in Java without knowing too much about the API, every
class that you develop will be dependent on at least one class within the API, with the exception
of java.lang.Object, which is the superclass of all other objects. Consequently, when you begin
to develop more complex programs that deal with strings, sockets, and graphical interfaces, it
is extremely helpful for you to know the objects provided to you by Sun, as well as the proper-
ties of these objects.

| suggest downloading the Core APl in HTML format from JavaSoft and reading through it to really get a
good feel of how the language works. As you go through each package, you will begin to understand
how easy to use and powerful an object-oriented language like Java can be.

Java Core API

The Core API is the API that is currently shipped with Java 1.1. These packages make up the
objects that are guaranteed to be available, regardless of the Java implementation, so long as
the implementation supports at least version 1.1:

java.lang

java.lang.reflect

The Java API I 35

java.bean
java.rmi, java.rmi.registry, and java.rmi.server

java.security, java.security.acl, and java.security.interfaces

java.io

java.util

java.util.zip Part
java.net

java.awt ch

java.awt.image
java.awt.peer
java.awt.datatransfer
java.awt.event
java.applet

java.sql

java.text

N O T E Those packages that were added under 1.1 are only guaranteed to be available on
machines supporting the 1.1 API.

java.lang The java.lang package consists of classes that are the core of the Java language. It
provides you not only with the basic data types, such as Character and Integer, but also the
means of handling errors through the Throwable and Error classes. Furthermore, the
SecurityManager and System classes supply you with some degree of control over the Java
Runtime System.

See Chapter 47, “java.lang,” to learn more about java.lang, p. 1079

java.io The java.io package serves as the standard input/output library for the Java language.
This package provides you with the ability to create and handle streams of data in several ways.
It provides you with types as simple as a String and as complex as a StreamTokenizer.

java.util The java.util package is composed essentially of a variety of useful classes that do
not truly fit in any of the other packages. Among these handy classes are:

Date class, designed to manage and handle operations with dates.

Hashtable class.

Classes to develop ADTs, such as Stack and Vector.
See Chapter 46, “Data Structures and Java Utilities,” to learn more about the java.util package,
p. 1049

java.net The java.net package is the package that makes Java a networked-based language.
It provides you with the capability to communicate with remote sources by creating or
connecting to sockets or using URLs. You can write your own Telnet, Chat, or FTP clients and/
or servers, for example, by using this package.

36 I Chapter 2 Java Design

java.awt The java.awt package is also known as the Java Abstract Window Toolkit (AWT). It
consists of resources that enable you to create rich, attractive, and useful interfaces in your
applets and standalone applications. The AWT not only contains managerial classes, such as
GridBagLayout, but it also has several concrete interactive tools, such as Button and TextField.
More importantly, however, is the Graphics class that provides you with a wealth of graphical
abilities, including the ability to draw shapes and display images.

java.awt.image The java.awt.image package is closely related to the java.awt package. This
package consists of tools that are designed to handle and manipulate images coming across a
network.

java.awt.peer java.awt.peer is a package of interfaces that serve as intermediaries between
your code and the computer on which your code is running. You probably won’t need to work
directly with this package.

java.applet The java.applet package is the smallest package in the API, but it is also the most
notable as a result of the Applet class. This class is full of useful methods, as it lays the founda-
tion for all applets and is also able to provide you with information regarding the applet’s sur-
roundings via the AppletContext interface.

1.1 Packages The following packages were added to Java during the 1.1 upgrade:

java.awt.datatransfer java.awt.datatransfer provides classes for dealing with the transfer of
data. This includes new classes for clipboards and the capability to send Java strings.

java.awt.event Under JDK 1.0, all events used a single class called java.awt.event. This
mechanism proved to be fairly clumsy and difficult to extend. To combat this, the
java.awt.event package provides you the ability to use events any way you want.

JavaBean API

The JavaBean API defines a portable, platform-neutral set of APIs for software components.
JavaBean components are also able to plug into existing component architectures, such as
Microsoft’s OLE/COM/ActiveX architecture, OpenDoc, and Netscape’s LiveConnect. The
advantage of JavaBean is that end users are able to join JavaBean components using application
builders, such as the BeanBox. A button component could trigger a bar chart to be drawn in
another component, for example, or a live data feed component could be represented as a chart
in another component.

java.rmi, java.rmi.registry, and java.rmi.server The java.rmi, java.rmi.registry, and
java.rmi.server packages provide all the tools you need to perform Remote Method Invocation
(RMI). Using RMI you can create objects on a remote computer (server) and use them on a
local computer (client) seamlessly.

See Chapter 36, “Remote Method Invocation,” to learn more about RMI, p. 809
java.lang.reflect The java.lang.reflect package provides the tools you need to reflect objects.

Reflection enables you to inspect a runtime object to determine what its constructors, methods,
and fields are.

See Chapter 48, “Reflection,” to learn more, p. 1129

The Java API I 37

java.security, java.security.acl, and java.security.interfaces The java.security packages
provide the tools necessary for you to use encryption in your Java programs. By using the
java.security packages, you can securely transfer data back and forth from a client to a server.

See Chapter 34, “Java Security in Depth,” to learn more about the java.security packages, p. 769

java.sql The java.sql package encompasses what is known as JDBC, or the Java DataBase
Connectivity. JDBC enables you to access relation databases, such as Microsoft SQL Server or
Sybase SQL Anywhere. Part

See Chapters 38 to 40 to learn more about JDBC, p. 855
Ch
N O TE Pprinted documentation for all the APIs is available from the JavaSoft Web site at http://
www.javasoft.com.

New to JDK 1.2

The following packages were added during the upgrade to 1.2:

Java Enterprise APl The Java Enterprise API supports connectivity to enterprise databases
and legacy applications. With these APIs, corporate developers are building distributed client/
server applets and applications in Java that run on any OS or hardware platform in the enter-
prise.

Java Database Connectivity, or JDBC, is a standard SQL database access interface that provides
uniform access to a wide range of relational databases. You have probably heard of ODBC. Sun
has left no stone unturned in making Java applicable to every standard in the computing indus-
try today.

Java IDL is developed to the OMG Interface Definition Language specification as a language-
neutral way to specify an interface between an object and its client on a different platform.

Java RMI is a remote-method invocation between peers or the client and server when applica-
tions at both ends of the invocation are written in Java.

Java Commerce APl The JavaCommerce API brings secure purchasing and financial manage-
ment to the Web. JavaWallet is the initial component, which defines and implements a client-
side framework for credit card, debit card, and electronic cash transactions. Just imagine—
surfing the Internet will take up all of your spare time...and money!

Java Server APl Java Server API is an extensible framework that enables and eases the devel-
opment of a whole spectrum of Java-powered Internet and intranet servers. The Java Server
API provides uniform and consistent access to the server and administrative system resources.
This API is required for developers to quickly develop their own Java servlets—executable
programs that users upload to run on networks or servers.

Java Media APl The Java Media API easily and flexibly allows developers and users to take
advantage of a wide range of rich, interactive media on the Web. The Media Framework has
clocks for synchronizing and media players for playing audio, video, and MIDI. Two-D and 3D
provide advanced imaging models. Animation provides for motion and transformations of 2D

38 I Chapter 2 Java Design

objects. Java Share provides for sharing of applications among multiple users, such as a shared
white board. Finally, Telephony integrates the telephone with the computer. This API is prob-
ably the most fun of all to explore.

Java Security APl The Java Security API is a framework for developers to include security
functionality easily and securely in their applets and applications. This functionality includes
cryptography with digital signatures, encryption, and authentication.

Java Management APl Java Management API provides a rich set of extensible Java objects
and methods for building applets that can manage an enterprise network over the Internet and
intranets. It has been developed in collaboration with SunSoft and a broad range of industry
leaders including AutoTrol, Bay Networks, BGS, BMC, Central Design Systems, Cisco Sys-
tems, Computer Associates, CompuWare, LandMark Technologies, Legato Systems, Novell,
OpenVision, Platinum Technologies, Tivoli Systems, and 3Com.

Java Embedded API

The Java Embedded API specifies how the Java API may be subsetted for embedded devices
that are incapable of supporting the full Java Core API. It includes a minimal embedded API
based on java.lang, java.util, and parts of java.io. It then defines a series of extensions for par-
ticular areas, such as networking and GUIs. e

CHAPTER

Installing The JDK and Getting

In this chapter

Why You Need Sun’s Java Development Kit to Write Java 40
More on How Java Is Both Compiled and Interpreted 40
Getting and Installing Sun’s JDK 41

Installing a Downloaded JDK 45

Testing the Java Compiler and JVM 49

Installing IBM’s Applet Developer’s Kit for Windows 3.1 51

40 I Chapter 3 Installing The JDK and Getting Started

Why You Need Sun’s Java Development Kit to Write
Java

This chapter intends to help you install Java, give you a basic introduction to the Java Develop-
ment Kit, and give you several Java-enabled browsers. By the end of the chapter, you will have
installed what you need to get going and you’ll have compiled and run your first Java applica-
tion.

The Java Development Kit (JDK) is a software package that Sun has made available to the
public for free. This package gives you all the tools you need to start writing and running Java
programs. It includes all the basic components that make up the Java environment, including
the Java compiler, the Java interpreter, an applet viewer that lets you see applets without open-
ing a Java-compatible Web browser, as well as a number of other programs useful in creating
Java programs. The JDK represents the bare minimum of what you need to work with Java.

If there’s no such thing as a free lunch, then JDK is more of a free light snack. Although it does
contain all the tools you really need to work with Java, it isn’t the integrated development envi-
ronment many programmers are used to working with. The tools that come with the JDK are
command-line driven and they don’t have a nice graphical user interface like those of Visual
C++ or Borland C++. The tools are intended to be executed from the command prompt (the
DOS prompt, for Windows 95 and NT systems). The files that contain your source code are
plain ASCII text files you create with a text editor (which you need to supply), such as the
NotePad (for Win32 systems), vi (on UNIX), or BBEdit (on the Macintosh).

N O T E A growing number of integrated development environments (IDEs) are available from

various third-party companies, each with various features that make life easier on the
programmer. If you decide to do your Java development with an IDE, you will probably get a code editor
that can colorize Java code, a project file manager, and a faster compiler. Most of the major develop-
ment companies have IDEs for Java. Microsoft (Visual J++), Borland (JBuilder), Symantec (Cafe), IBM
(Visual Age for Java), Metroworks (CodeWarrior), and Aysmetrix (SuperCede) are just a few of the
commercial Java development environments available. Each has strengths and weaknesses. If you plan
on doing serious Java development, check them out and see which fits your programming needs the
best. Even if you plan to use an integrated development environment (IDE) like Visual J++, Visual Café
or Visual Age for Java, you will want to learn about the JDK because it's the reference by which all
others are compared.

More on How Java Is Both Compiled and Interpreted

A C++ compiler takes high-level C++ code and compiles it into instructions a computer’s micro-
processor can understand (Machine Code). This means that every different type of computer
platform will need a separate compiling of a given C++ program in order to be able to run it.
Taking a C++ program and compiling it on different types of computers is not an easy task.
Because different computers do things in different ways, the C++ program has to be able to

Getting and Installing Sun’s JDK I 41

handle those differences. This is a significant problem when dealing with the wide variety of
computer platforms available today.

The Java environment overcomes this problem by putting a middleman between the compiler
and the computer called the Java Virtual Machine (JVM). Instead of compiling directly for one
type of computer, the Java compiler, javac, takes the high-level, human-readable Java source
code in a text file and compiles it into lower-level Java bytecodes that the JVM understands.
The JVM then takes that bytecode and interprets it so that the Java program runs on the com-
puter the JVM is running on. The only platform-specific program is the JVM itself. Similarly,
Web browsers that support Java applets all have JVMs built into them.

The JVM concept provides a number of advantages, the main one being cross-platform compat-
ibility. Java programmers don’t need to worry about how a computer platform handles specific
tasks and they don’t need to worry about how to compile different versions of their program to

Part
run on different platforms. The only platform that programmers need to worry about is the
JVM. Programmers can be reasonably confident that their program will run on whatever plat-
forms have JVMs, such as Windows 95, Solaris, and Macintosh. Ch

CAUTION

Even with Java, there are slight differences between platforms. When working with Java, it’s a good idea to
test a program on as many different types of computers as possible.

On the other hand, languages like Basic are not compiled. In order to run the program, you
need a basic interpreter, which reads each line of code, parses out what you’ve written, and
figures out all the machine-code necessary to run the program. The major disadvantage of this
type of interpreter is that it requires a lot of processing power, so inevitably it is very slow.

Because Java is compiled, it meets you halfway. The amount of interpretation is therefore
greatly reduced. The main disadvantage of this system is that interpreting code is still slower
than running a program that is native to the host computer. For each instruction in the Java
bytecode, the JVM must figure out what the equivalent is for the system it is running on. This
creates a slowdown in processing a Java program.

To overcome the speed limitation of Java, a number of Just-In-Time compilers (JITs) are avail-
able. JITs make the Java system even more confusing, but they make it run much faster by
taking the already compiled Java bytecode and compiling it into instructions that are native to a
given computer. It’s all done transparently to the user from within the JVM. The JIT, because
it’s part of the JVM, is also platform-specific but runs any Java bytecode, regardless of what
type of machine it comes from. Using a JIT, a Java program can achieve speeds close to that of
a native C++ program.

Getting and Installing Sun’s JDK

Now that you know a little bit more about what Java and the JDK are, you’re now ready to get
going on actually installing and using it.

42 I Chapter 3 Installing The JDK and Getting Started

If you haven’t done so already, sit down at your computer, turn it on, and load the CD-ROM
from the back of the book. On the CD-ROM is a directory called JDK. Inside the directory
“IDK” are three subdirectories: MACINTOSH, SOLARIS, and WINDOWS. Each of these subdirectories
contains the complete installation of Sun’s Java Developer’s Kit for each of those three plat-
forms. Table 3.1 shows what those refer to.

Table 3.1 Contents of the JDK Folder on the CD-ROM

Directory Contents

MACINTOSH Contains the JDK for the Macintosh platform, both
68k and PowerPC.

SOLARIS Contains two subdirectories, one for the SPARC Solaris JDK
and one for the x86 Solaris JDK.

WINDOWS Contains the JDK for x86 32-bit Windows systems, namely

Windows 95 and Windows NT.

N O T E Alternately, you can use a Web browser and a connection to the Internet to receive the JDK.
If you are going to download it, see the section “Downloading the JDK” later in this chapter.

What if you're not using one of those three platforms? You may or may not be in luck. A number

of other JDKs exist for other platforms, but you may need to look around the Internet for them. The
three previous ones are supported by Sun; any other platforms are not. There are ports for systems
such as Linux, DEC Alpha, Amiga, 0S/2 and many others. The best place to look for information on
those releases is the list of third party ports on Sun’s list: http://www.javasoft.com/products/
jdk/1.2/.

Now you'll look at how to install the JDK onto 32-bit Windows systems from the CD-ROM. The
setup is fairly easy, but you should be familiar with the Windows and DOS environments before
attempting to install the JDK.

Installing the JDK Off the CD-ROM for Windows 95 and NT

Step 1: Remove Previous Versions of the JDK There should not be any copies of previous
versions of the Java Developers Kit on your computer. If you have stored any additional Java
source code files (files you have written or files you have received from someone else) in a
directory under the main JDK Java directory, you should move those files to a new directory
before deleting previous versions of the JDK. You can delete the entire Java directory tree
using Windows Explorer or the File Manager.

Getting and Installing Sun’s JDK I 43

Step 2: Unpacking the JDK After removing the previous version of the JDK, execute the self-
extracting archive to unpack the JDK files. You should unpack the file in the root directory of
the C drive to create C\ JDK1.2. If you want the JDK in some other directory, unpack the
archive file in that directory. Unpacking the archive creates a Java parent directory and all the
necessary subdirectories for this release.

If you look through the files that are installed with the JDK you will find a several files in the lib
and jre\lib files with the extension . jar. The . jar files contain the runtime API classes neces-
sary for the Java VM to operate successfully. Note: prior to JDK 1.2 the setup program created
a file called lib/classes.zip instead of the various . jar files. DO NOT UNZIP THE CLASSES.ZIP
FILE.

Step 3: Update Environment Variables After unpacking, you should add the JAVA\BIN direc-
tory onto the path. The easiest way to accomplish this is to edit the AUTOEXEC.BAT file and make
the change to the path statement there.

Part

If you have set the CLASSPATH environment variable, you may need to update it. For instance,
you may have to make a CLASSPATH entry that points to the jdk1.2\jre\lib\rt.jar file.
Again, the easiest way to accomplish this is to edit the AUTOEXEC.BAT file and make the change
to the CLASSPATH environment variable there, or you can let the setup program make the
changes for you.

Ch

After completing these changes to AUTOEXEC.BAT, save the file and reboot so the changes take
effect.

The next section covers the installation of the JDK for x86 and SPARC Solaris UNIX Systems.
This installation procedure is similar to some of the other UNIX operating system installations.
For more information about getting ports of the JDK for other UNIX systems (such as Linux)
see Chapter 49, “Java Resources.”

Installing the JDK Off the CD-ROM for x86 and SPARC Solaris

The setup for installing the JDK onto a 32-bit Windows system is fairly easy, but you should be
familiar with the Windows and DOS environments before attempting to install the JDK.

Step 1: Copy the Directory to Your Hard Drive Copy the appropriate directory (either the
x86 or Sparc Solaris release directory) onto your hard drive. Depending on how your file sys-
tem is configured and the privileges on your system, you might want to either copy the direc-
tory into a public area, such as /usr/local/ or into your home directory. The command to
copy the Sparc release from the Solaris directory on the CD-ROM to your home directory is

>cp -r sparc -/

Step 2: Set Your Environment Variables The CLASSPATH variable is an environment variable
that defines a path to the rt. jar file. Most of the tools that come with the JDK use the
CLASSPATH variable to find that file, so having it set correctly is fairly important. You can set the
CLASSPATH variable at the command prompt by entering the following:

% setenv CLASSPATH .:/usr/local/jdk1.2/jre/lib/rt.jar

44 I Chapter 3 Installing The JDK and Getting Started

Or you can put this line of text in your .1login or .profile files, so it’s called every time you
log in:

setenv CLASSPATH .:/usr/local/jdk1.2/jre/lib/rt.jar

N O T E Ifyou are using a version of Java prior to JDK 1.2, you will need to substitute jre/1ib/
rt.jar with 1ib/classes.zip in all of the examples through out this book.

Downloading the JDK

You can download the JDK off the Internet instead of getting it from the CD-ROM in the back
of the book. When you download the JDK off the Internet, you can be fairly certain that you’re
getting the latest version of it.

What You Need to Download the JDK The first item you need to download the JDK is a com-
puter with a connection to the Internet that can use a Web browser. The particular browser
doesn’t really matter all that much, but the Netscape Navigator browser is used for these ex-
amples.

The second item you need is some (well, actually, quite a bit) of free hard disk space on the
machine to which you are planning to download the JDK. Table 3.3 contains the amounts of
disk space you need to download and uncompress the JDK for each platform.

Table 3.3 Disk Space Requirements for the JDK 1.1

Platform Disk Space Compressed Disk Space Uncompressed
Solaris 13.7 MB 16.5 MB
Windows 5.77 MB 12.1 MB

Starting Your Download If you have some free disk space and a browser handy, you’re ready
to download. Now you can get started!

1. Launch your Net connection (if you need to do that) and your Web browser. If you are
unsure of how to do this, consult your system administrator, your friends who know how
to use computers, the manuals, or a book on using the Web, such as Que’s Special
Edition Using the World Wide Web.

2. Point your browser at the JavaSoft JDK download site at
http://www.javasoft.com/products/jdk/1.2/

3. Scroll down to the pop-up menu that says “Download JDK Software” lists the various
operating systems on which the JDK is available from Sun. Pick your operating system of
choice in that pop-up menu.

4. Click the “Download Software” button just below the pop-up menu.

Installing a Downloaded JDK I 45

5. You'll hit a page that has a number of restrictions on the distribution of the JDK. Read
each and, if you comply to all the restrictions, click the “Yes” button to go to the down-
load page.

6. The page that now comes up has a list of various sites the JDK is available to download
from. If there are options available, use the one closest to your location. Click the link to
start the download.

The JDK is a pretty big file and downloading is going to take a while. How long it takes de-
pends on how fast your connection is, the user load on the FTP server at that particular mo-
ment, the network load on the Internet at the time of day you are downloading the file, the
beating of a butterfly’s wings somewhere on the planet, sunspots, blind luck, and a large num-
ber of other factors that are even more difficult to predict. If the file transfer is going too slow
for your taste, try connecting at another time. Depending on where you are on the planet, good

times to connect will vary, again depending on many of the same factors that control the trans- T
fer rate.

Ch

Installing a Downloaded JDK

Now that you have the appropriate installer file for your computer somewhere handy on your
hard drive, it is time to actually install the software so you can get to work programming. Each
platform has its own standard installation procedures and the 1.2 release of the JDK is pretty
good at following them to make installation a simple and straightforward procedure.

Solaris x86 and SPARC Platforms

For Solaris, the JDK 1.2 is normally distributed as a self-extracting shell script (a file with a .sh
extension); the name of the file indicates its version.

CAUTION

Use tar or your standard system backup process to back up any previous releases of the JDK before
beginning installation of a new version. You don’t want to lose all that work you put into it and you'll have a
copy of the previous release in the event something goes wrong with your new copy.

Installing the JDK on a Solaris machine can be done in one of two ways. It can either be in-
stalled into a user’s home directory for individual use or it can be installed into a public bin

directory, such as /usr/local/bin/, so that all users on a system can use it. The installation
process is the same for both.

1. Choose a directory for the installation. These instructions assume an installation location
of /usr1/JDK1.2. If you choose a different base directory, simply replace USR with the
name of your installation directory. For example, if you choose to install under your
home directory, everywhere you see usr, replace it with ~ or $HOME.

46 I Chapter 3 Installing The JDK and Getting Started

2. Verify that you have write permissions for the installation directory. Use this command to
check the current permissions:

1s -1d /usri

The options to the 1s command specify a long listing, which includes information about
ownership and permission, and also specifies to 1s to not list the contents of the direc-
tory, which is the default. For more information about the 1s command, see your system
manuals.

The output of the command should be similar to the following:
drwxr-xr-x root other 512 Feb 18 21:34 /usr

In this case, the directory is owned by root (the system administrator) and neither the
group nor the general user community has permission to write to this directory. If you
run into this situation and you are not root, you need the assistance of your system
administrator to install in that directory.

3. Move or copy the JDK distribution file to /USR1.

4. Extract the JDK by typing a period, a space, and then the jdk.sh filename (such as
jdk1.2-solaris2-sparc.sh).

> ., jdk1.2-solaris2-sparc.sh
This executes the shell script, which then automatically uncompresses the file you need
into the directories that you need them in.
5. Verify that the following subdirectories were created under /USR1:
jdk1.2
jdk1.2/bin
jdk1.2/classes
jdk1.2/demo
jdk1.2/1ib
jdk1.2/src

6. Set your PATH environment variable. For the C shell and its derivatives, use:
setenv PATH $PATH:/usri/jdk1.2/bin

For the Korn shell and its derivatives, use:

PATH= $PATH; /usri/jdk1.2/bin
export PATH

7. Setyour CLASSPATH environment variable. For the C shell and its derivatives, use:
setenv CLASSPATH /usri/jdk1.2/jre/lib/rt.jar

For the Korn shell and its derivatives, use:

CLASSPATH = CLASSPATH /usri/jdk1.2/jre/lib/rt.jar
export CLASSPATH

Installing a Downloaded JDK I 47

Rather than set these variables from the command line each time, you probably should add the

commands to set the PATH and CLASSPATH variables in your shell resource file—. shrc, .cshrc,
.profile, and so on. If you are a system administrator installing the JDK as a network development
tool, you may want to add these parameters to the default configuration files.

Windows Installation

You need Windows 95 or Windows NT to run Java. For Windows 3.1, see “Installing IBM’s
Applet Developer’s Kit for Windows 3.1" later in this chapter.

Installing the JDK is a fairly simple procedure, but you should know your way around the Win-
dows and DOS environments. For Windows, the JDK is provided in a standard windows setup

format; the name of the file indicates its version. Part

1. Choose a directory for the installation. These instructions assume an installation location
of C:\JDK1.2. If you choose a different base directory, simply append the appropriate
path (and change the drive letter, if appropriate). If you want to install to E: \TOOLS\JAVA,
for example, replace C: with e:\tools whenever it shows up in the instructions.

Ch

CAUTION

Rename the JAVA directory (for example, to OLDJAVA) using the Explorer in Windows 95 or Windows NT. If the
installation fails for any reason, you can restore the previous version directly from OLDJAVA. Otherwise, after
the installation is complete, you can move any additional files, such as documentation, from your old
installation into your new installation before removing it from your system.

2. Ifyou plan on installing to a networked drive, make sure you have permission to write to
the desired directory.

3. Extract the JDK by running the self-extracting program (double-clicking the icon in
Explorer or File Manager works just fine).

4. Verify that the following subdirectories were created on drive C\.
C:\JDK1.2
C:\JDK1.2\BIN
C:\JDK1.2\CLASSES
C:\JDK1.2\DEMO
C:\JDK1.2\LIB

For Windows NT 4.0 and later, you can skip steps 6, 7, and 8, and set the CLASSPATH from a

properties sheet. You do not need to reboot, but you may have to close any DOS Prompt windows that
you had open to use the new variable.

48 I Chapter 3 Installing The JDK and Getting Started

6. Add c:\JDK1.2\BIN to your PATH statement in your autoexec.bat file:
set PATH=c:\windows;c:\dos;...;c:\java\bin

7. Setyour CLASSPATH environment variable in your autoexec.bat file:
set CLASSPATH=c:\java\jre\lib\rt.jar

8. Reboot your computer for the environment variables to take effect.

Macintosh Installation

For Macintosh, the JDK is normally distributed as a stuffed, bin-hexed archive (a file with a
Hax.SIT extension). The file version is indicated in its name.

CAUTION

Make sure to archive your current version of the JDK before installing a newer version. You don’t want to lose
all that work you put into it and you’ll have a copy of the previous release in the event something goes wrong
with your new copy.

To install the JDK for Macintosh, follow the following steps.

1. After following the instructions earlier in this chapter for downloading the MacJDK 1.2,
you should have an installer titled MacJDK.SEA. Double-click this installer so that it
launches into a fairly standard Macintosh installer dialog box.

CAUTION

The Macintosh enables you to name directories and files in a manner that choke UNIX. Filenames that UNIX

can’t handle include the naming of directories with slashes (/). This causes problems with the JDK because

it uses a mixed UNIX/Mac method of tracking paths when the JDK attempts to locate your files. Thus, a slash
in the name of a directory is interpreted as a change of directory.

UNIX also has a few problems with names that include spaces. As of this release, you should follow the UNIX
file and directory naming conventions used by the developers. This means you shouldn’t use spaces,
slashes, asterisks, and most other punctuation characters in your file and directory names. You can, however,
use as many periods as you want, and the filename can be as long as you want it (as long as it’s less than
32 characters).

For example, the following is a perfectly good Macintosh filename but will not work under UNIX:
/o] ... /Stuff \/\/..java

To work under UNIX and the Mac, the filename should look like this:
Stuff.java

2. Inthe lower-left corner of the installer dialog box in the Install Location area, you can
specify where you want to install the JDK. After selecting the appropriate drive and
directory, click the Install or hit “return” button to run the installer. It puts all the Mac
JDK in a directory called MACJDK at whatever location you specify in the installer. The
default installation location is the root level of your startup disk.

Testing the Java Compiler and JVM I 49

You now have a working copy of the JDK on your hard drive folder. This includes two essential
programs: the Java compiler and the AppletViewer. You are now ready to move onto the next
(and much more fun) parts of Java development.

Testing the Java Compiler and JVM

Now you're ready to write a small Java application to test your installation of the JDK.

Creating a New Java Project

Somewhere on your hard drive, create a new directory to store your projects. I call mine
PROJECTS and I keep it out of the JDK directory, so that I don’t need to move it around when-
ever | install a new version of the JDK. Inside that directory, create another directory called
HELLOWORLD.

Part

Now, using your favorite text editor (such as the NotePad, vi, emacs, SimpleText, or something
else), create a file called HelloWorld. java (double-check your capitalization—Java is case-
sensitive), and type into it:

Ch

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello, World!");
}
}s

Don’t worry about the details of syntax right now; just type that in, save it, and exit your text
editor. Make sure it’s saved as a standard ASCII text file.

Running a Java Application for UNIX or Windows
If you're on a UNIX or Windows machine, at the command (DOS) prompt, type the following:

javac HelloWorld.java
Your system should pause for a moment, then return you to your prompt.
Get a directory listing in a DOS window to make sure you have the following files:

>dir
HelloWorld.class HelloWorld. java

Or, in UNIX, get a directory listing to make sure you have the following files:

>1s
HelloWorld.class HelloWorld. java

If you get any errors, check the HelloWorld.java code to make sure it looks exactly as it does
here.

If you get an error that javac was not found, you didn’t set the JAVA/BIN directory in your PATH
variable. Go back and check your installation.

50 I Chapter 3 Installing The JDK and Getting Started

Now you're ready to run your first Java program! At your command prompt, type the following:
>java HelloWorld

You should see the following:

Hello, World!

If you did, congratulations. You've run your first Java application, but more importantly, you've
correctly and successfully installed the JDK.

If you didn’t see “Hello, World!”, there is something wrong with your installation. Check to
make sure your CLASSPATH variable is set to point at both the current working directory (a
period “.”) and to the rt.jar file. Check to make sure you typed the name of the file correctly,
keeping in mind that Java is case-sensitive. If none of that works, you may need to reinstall the
JDK.

Running a Java Application for the Macintosh

The procedure for compiling and running a Java application is a bit different for a Macintosh
because it doesn’t have a command prompt.

1. On your Mac, open your HELLOWORLD folder so that your HelloWorld. java file
appears.

2. Then open the MACJDK folder so that the Java compiler icon appears (it should be a
little “Duke” with a “C” on his chest). Drag the HelloWorld. java file onto the Java
compiler icon. The Java compiler then launches and begins compiling the program.
When it’s finished, a file called Hel1loWorld.class should appear in your HELLOWORLD
folder.

3. Ifyou received compile time errors, check the HelloWworld. java code to make sure it
looks exactly the same as the previous code.

4. Double-click the HelloWworld.class file. The java runner application launches, loads the
HelloWorld program, and runs the program. A window titled stdout should appear, with
the words Hello, World! in them.

If it did, congrats. You've installed the JDK and run your first Java program.

If you didn’t see Hello, World!, there is something wrong with your installation. Check to
make sure you are running System 7, that the JDK installed completely, and that the filename
and the name of the class generated match, keeping in mind that Java is case-sensitive. If you
still can’t get it to work, you may need to reinstall the JDK.

N O T E The authors of the Macintosh Java Runner application have cleverly hidden the Quit

command in the Apple menu. Why they did that isn’t known. If you want to free up the
memory that the Java Runner is taking up after it’s finished running your program, choose Apple, Java
Runtime, Quit. Not very Mac-like, but at least it's not a command line.

To quit, you can just hit command-Q, like any other normal Mac program.

Installing IBM’s Applet Developer’s Kit for Windows 3.1 I 51

Installing IBM’s Applet Developer’s Kit for
Windows 3.1

Why isn’t there a Sun JDK for Windows 3.1? Well, a number of technical issues make porting
the JDK tools to Windows 3.1 difficult, and with the release of Windows 95, Windows 3.1 was
seen as a dying platform, so the decision was made to not directly support it. Some of these
issues include the fact that Java needs long filenames such as the “java” and “.class” filenames.
The eight-character file name and three-character extension of Window’s 3.1 naming system
just couldn’t fully support Java file names. A more difficult problem to solve, however, is the
fact that Java is a multi-threaded language, meaning it can run more than one process at the
same time, but Windows 3.1 doesn’t support multithreading. In order to support Java in Win-
dows 3.1, several groups undertook projects to port the JDK to 3.1, the most successful of

which is IBM’s ADK. T
With IBM’s release of their ADK, Windows 3.1 users now have a way to develop Java applets

and applications without upgrading to Windows 95 or NT. It includes a number of programs Ch
that help get around the problems previously described, as well as improving upon the tools

that come with the JDK.

Downloading the ADK

To get to the main ADK Web page, you first need to launch your Web browser and go to
http://www.alphaworks.ibm.com/. This is the main Web page for a number of IBM’s projects
that are currently under development. To get to the ADK Web page, you’ll need to pick the
“ADK for Win 3.1” entry in the pop-up menu in the “Select” selection.

To completely install the ADK and use all its features, you need three components: the ADK
itself, the Windows 32-bit extension Win32s, and the WinG graphics extension.

To download and install the two windows components, ftp to ftp://ftp.microsoft.com/
softlib/mslfiles/ and get the following two files:

pw1118.exe

wing10.exe
The WinG extension file name is wing10.exe and it is about 830k.

The Win32s file name is pw1118.exe and it is about 2.4 MB. You need to get and install both of
these before installing the ADK.

To install these two system enhancements, make a temporary directory for each of the two and
put the .exe files into them. Use either a DOS prompt or the Run command in the File menu of
the program manager, to execute the .exe files. If you put the wing10.exe file in a directory
called wingtemp on your C: drive, for example, the DOS prompt command would look like:

C:\wingtemp\>wing10.exe

52 I Chapter 3 Installing The JDK and Getting Started

This decompresses all the files to do the complete install. Each should decompress to a large
number of files with an executable called setup.exe. After it is done decompressing, execute
the setup program, again using either a DOS prompt or the File, Run menu. The setup
program prompts you for some information and then installs all the needed files. After you
are done installing these, you can delete the temporary directories you put the installer
programs in.

‘When you have WinG and Win32s installed, you can proceed with the installation of the ADK
itself. You will first need to read the ADK license agreement at http: //www.alphaWorks.
ibm.com/ADK.

At the bottom of the page is a button labeled “I Agree.” If you read the license and agree to its
terms, you can click that button, which takes you to the download page where you can down-
load the ADK installer. The actual ADK file is rather large, about 4 MB, and will take a while to
download, especially over a modem connection.

Once you've gotten the ADK installer, you can then execute it from the Windows program
manager File, Run menu. It asks you for an installation directory (for example: C: \ java\) and
then it does its stuff, installing all the files you’ll need to get up and running with the ADK.

When the ADK is completely installed, it creates a program group with the items in Table 3.4.

Table 3.4 Files in the ADK Program Group

Name Description

Configure AppletViewer This runs the AppletViewer and displays a license document.

ADK.WRI The ADK User Guide—read this for more information on the
ADK.

ADK File A file manager type application that lets you manipulate files
with long file names, rather than the Win 3.1 standard 8.3 file
names.

ADK Edit A small editor that integrates the ADK tools into one

program, so you can work with Java code without having to
switch between a number of other programs.

ADK Console The guts of the ADK, this is the program that runs all the
Java environment-based tools, such as AppletViewer and
javac.

To set up the ADK, run the “Configure AppletViewer” program, agree to the license agree-
ment, follow the instructions to configure the AppletViewer, and then close the applet.

To test your installation, follow these steps:

1. Launch the “ADK Console” program.
2. Select AppletViewer from the Tools menu.

Installing IBM’s Applet Developer’s Kit for Windows 3.1 I 53

3. Type c:\java\demo\Animator\ into the Working Directory Field (or whatever directory
you installed the ADK).

4. Type example1.html into the Command Options field.

5. Press OK.

This should launch the Animator applet and put a dancing Duke on your screen. If it did, then
you're all set to develop Java programs on your Windows 3.1 machine. If it didn’t, make sure
that the path you put in the Working Directory field is actually the path that has the Animator
applet and that there is a examplel.html file in that directory. If not, you may need to go back
through the installation process and try again. e

Part

Ch

JDK Tools

|n this chapter

JDK Tools Reference 56

AppletViewer 56

java, The Java Interpreter 57

javac, The Java Compiler 59

javap, The Java Disassembler 60

javah C-Header and Stub File Creation 61
The javadoc Tool (Documentation Generator) 62
jdb, The Java Debugger 63

The CLASSPATH Environment Variable 64
Macintosh Issues 64

The Java Compiler 67

JavaH: C-Header File Generator 67

CHAPTER

56 I Chapter 4 JDK Tools

JDK Tools Reference

This chapter is intended to cover all the tools that are included in the Java Developer’s Kit.
You’ll learn about each tool, what it does, all its associated options, and the environment vari-
ables it references. If you’re just beginning programming in Java, this chapter serves as an
introduction to the tools of the JDK. If you’re a hard-core Java hacker, this chapter is more of a
reference tool, so you don’t have to waste precious CPU cycles bringing the rather ugly man
page reference materials. Either way, reading this chapter gives you a pretty good idea of what
the JDK tools can do and how to make them do it.

AppletViewer

Applets are programs written in Java that are designed to run embedded in an HTML docu-
ment, just like a Web page. Under most circumstances, they don’t have the ability to run by
themselves. The AppletViewer tool is a small program that lets you run applets without the
overhead of launching a system that hogs the Web browser. It’s a quick and easy way to test
your applets as you're developing them.

You call the AppletViewer with the following command:
AppletViewer [options] URLs...

The URLs in the command line are the Uniform Resource Locators to HTML files that contain
applet tags (such as http://www.javasoft.com/index.html). Alternatively, if you're in a
directory that has an HTML file that references an applet, you can call AppletViewer simply
by typing in the name of the HTML file that contains the applet tag. The following option is

available:
Option Description
-debug Starts the AppletViewer in the Java debugger, jdb, thus allowing you to

debug the applets in the HTML document.

The AppletViewer also has an Applet menu in the AppletViewer window that enables you to set
a number of different functions of the AppletViewer. Those menu options are as follows:
Restart Restarts the applet using the current settings.
Reload Reloads the applet. Changes in the class file are applied upon reload.

Stop Causes the stop () method of the applet to be called and halts the applet. Note the
applet is not destroyed in this example as it is with Reload.

Save Saves the serialized state of the applet.

Start Starts the applet. This is useful when the Stop option has been utilized. If the
applet has not been stopped, it has no action.

Clone Clones (duplicates) the current applet, using the same settings to create another
AppletViewer instance.

Tag Shows the HTML applet tag that is used to run the current applet, as well as any
parameters that are passed to the applet from the HTML tag (see Figure 4.1).

java, The Java Interpreter I 57

m Info Shows special information about the applet, which is set within the applet’s
program (see Figure 4.2).

= Edit This doesn’t appear to do anything; it has been grayed out since the first beta.

m Print Causes the applet’s PrintGraphics to be sent to a printer.

m Properties Shows the AppletViewer security properties. These settings enable you to
configure AppletViewer for a network environment that includes a firewall proxy, or an
HTTP proxy, using the relative proxy server and proxy port boxes. The Network Access
box allows you to select the type of network access that AppletViewer is allowed. The
choices are No Network Access, Applet Host (default), and Unrestricted. The Class
Access box enables you to choose what kind of access—Restricted or Unrestricted—you
would like AppletViewer to have on other classes (see Figure. 4.3)

m Close Closes the AppletViewer window and terminates the applet.

= Quit Closes the AppletViewer window and terminates the applet.

FIG. 4.1
The AppletViewer’s Tag
window.

@ Applet HTML Tag

java, The Java Interpreter
The Java interpreter is what you use to run your compiled Java application.
The syntax for the interpreter is:
java [options] classname

where classname only includes the name of the class and not the extension (.class). The Java
interpreter options are listed in Table 4.1.

58 I Chapter 4 JDK Tools

FIG. 4.2
The AppletViewer's
Applet Info window.

QAppIet Info

FIG. 4-3 'g"'Applet\ﬁawer Properties
The AppletV|§wer S iy ploy serves
Properties window.
Hitp proxy port:
Firewall proxy server: 08
Firewall proxy port: &0
N . Applet Host |—
Class . |Flestri[:ted

Table 4.1 Java Interpreter Options

Option Description
-help Displays all the options.
-version Displays the version of the JDK that is used to compile the

v (also -verbose)

-cs (also -checksource)

source code.

Displays all the classes as they are loaded. (Performs the
same functions as in the javac tool.)

Checks to see if the source code is newer (not yet compiled)
than its class file. If this is the case, then the new version of
source is compiled.

javac, The Java Compiler I 59

Option Description

-debug Used with remote Java files that are to be debugged later with
the jdb tool. The interpreter generates a password for you,
which is used in the jdb’s password option (see the section
“jdb, The Java Debugger” later in this chapter.)

-prof Output profiling information to file \JAVA.PROF.

-classpath dirs java looks for class files in the specified directories, DIRS. For
multiple directories, a colon (in UNIX) or semicolon (in DOS)
is used to separate each directory. For example, on a DOS
machine, the classpath might look like set
CLASSPATH=. ;C:\users\dac\classes;C:\tools\java\classes.

-noasyncgc Turns off asynchronous garbage collection.
-verbosegc Prints out a message each time a garbage collection occurs.
-noclassgc Disables class garbage collection.
-verify Verifies all classes that are loaded.
-verifyremote Verifies classes that are imported or inherited. This is the
default setting. Part
-noverify Turns off class verification.
-mx val Sets the maximum Java heap size to the value specified by val. s

The minimum heap size is 1K (-mx 1k) and the default is 16M
(-mx 16m). (Use the letters m and k to specify megabytes or
kilobytes for the value of val.)

-ms val Sets the initial Java heap size to the value specified by val. The
minimum heap size is 1K (-mx 1k) and the default is 1M (-mx
1m). (Use the letters m and k to specify megabytes or
kilobytes for the value of val.)

-ss val Sets the value of the stack size for a C process to the value
specified in val. The stack size must be greater than 1K (-ss
1k). (Use the letters m and k to specify megabytes or kilobytes
for the value of val.)

-0ss val Sets the stack size of a Java process to the specified value in
val.(Use the letters m and k to specify megabytes or kilobytes
for the value of val.)

javac, The Java Compiler

The javac program is the tool you use to convert .java files into class files that can be run by the
interpreter. Table 4.2 lists the Java compiler options.

60 I Chapter 4 JDK Tools

Table 4.2 Java Compiler Options

Option Description
-0 Displays the current version of the JDK.
-classpath <path> Overrides the default CLASSPATH environment variable and

specifies a new path to look up classes. Make certain you always
include library classes, such as jdk1.2\jre\rt.jar.

-d <directory> Specifies the directory to place the resulting class files in. Note
the directory specifies the root location.

-g Using this option causes debugging tables to be generated with
the class files. This information is necessary to provide complete
debugging information when you use jdb.

-nowarn Turns off warnings. When this is turned out, the Compiler does
not generate any warning messages. Note: this option is available
in JDK 1.1 and above, but not in JDK 1.0

-0 Turns optimization on. This causes all static, final, and prive
methods to be placed inline. Although this can result in faster
performance, it may also cause your class files to become larger.

-verbose Turn verbose compilation on. This causes the compiler to print
out the source files that are being compiled and loaded.

-depend Using the depend option causes the compiler to consider
recompiling class files that are referenced from other class files.
Ordinarily, recompilation is only done based on file dates. Note:
this is JDK 1.2 and is not available in JDK 1.0

-Jjavaoption This option can be used to pass a single argument through to the
Java interpreter that is actually running the compiler. The
javaoption should not contain any spaces; if spaces are required,
multiple —J parameters should be used. This option can be used to
enable you to pass options like mx or ms to alter the amount of
memory used during the compiler’s execution.

javap, The Java Disassembler

The Java disassembler is used to disassemble Java bytecode that has already been compiled.
After disassembling the code, information about the member variables and methods is printed.
The syntax for the Java disassembler is:

javap [options] classnames

Multiple classes can be disassembled. Use a single space to separate each class. The options
available for the disassembler are shown in Table 4.3.

javah C-Header and Stub File Creation I 61

Table 4.3 javap Options

Option Description

-version Displays the version of the JDK that javap is being executed from.

- Disassembles the source file and displays the bytecodes produced by
the compiler.

-1 Prints the local variable tables.

-public Shows only public classes and members.

-protected Shows protected and public classes and members.

-package Prints out private, protected, and public member variables and meth-
ods. (By default, javap uses this option.)

-private Shows all classes and members.

-s Print internal type signatures.

-verbose Prints stacks, local variables, and member methods as the javap works.

-classpath dirs Looks for class files in the specified directories, _DIRS. For multiple
directories, a colon (UNIX) or semicolon (DOS) is used to separate
each directory. For example, on a DOS machine the classpath might
look like set CLASSPATH=. ;C:\users\dac\classes;C:\tools\java\
classes.

-verify Runs the verifier on the source, and checks the classes being loaded.

javah C-Header and Stub File Creation

The javah tool creates C-header and stub files needed to extend your Java code with the C

language.

The syntax of the javah tool is:

javah [options] classname

where classname is the name of the Java class file without the .class extension. See Table 4.4
for a list of javah options.

Table 4.4 javah Options

Option Description

-version Prints out the build version.

-help Prints out the help screen. This is the same as typing javah by itself.
-jni Creates a header file for use in JNI.

continues

Part

Ch

62 I Chapter 4 JDK Tools

Table 4.4 Continued

Option

Description

-td

-trace
-classpath
-stubs

-d dir

v

-0 filename

Identifies the temporary directory for javah to use.

Causes trace information to be added to the stub files.

Specifies the classpath for use with javah.

Creates stub files instead of the default header files.

Tells the javah tool in what directory to create the header or stub files.
Prints out the status as it creates the header or stub file.

Puts both the stub and header files into the file specified by file name.
This file could be a regular text file or even a header (FILENAME.H) or
stub (FILENAME.C) file.

The javadoc Tool (Documentation Generator)

The javadoc tool creates an HTML file based on the tags that are embedded in the /** */ type
of comments within a Java source file. These HTML files are used to store information about
the classes and methods that you can easily view with any Web browser.

Javadoc was actually used by the creators of the JDK to create the Java API Documentation
(refer to http://www.javasoft.com/doc for more information). You can view the API online
and you can also see the source code used to generate it in your \JDK1.2\SRC\JAVA directory.
See Tables 4.5 and 4.6 for information regarding options and tags.

Table 4.5 javadoc Options

Option

Description

-verbose

-d directory

-classpath dirs

-sourcefile dirs

-doctype

-nodepreciated

Displays more information about what files are being documented.

Specifies the directory where javadoc stores the generated HTML files.
For example, javadoc -d C:\usrs\dac\public_html\doc java.lang.

Looks for class files, included in the source file, in the specified
directories, DIRS. For multiple directories, a colon (UNIX)

or semicolon (DOS) is used to separate each directory. For example, on
a DOS machine, the classpath might look like set

CLASSPATH=. ;C:\users\dac\classes;C:\tools\java\classes.

Specifies in colon-separated directories the list of files to use.

Specifies the type of file to output the information in. The default is
HTML, but it can be set to MIE.

Causes javadoc to ignore @depreciated paragraphs.

jdb, The Java Debugger I 63

Option Description

-author Causes javadoc to utilize the @author paragraphs.
-noindex Javadoc does not create an index file.

-notree Javadoc does not create a tree file.

-J<flag> The specified flag is passed directly to the Java runtime.

Table 4.6 javadoc Tags

Tag

Description

@see class

@see class#tmethod

@param param descr
@version ver
@author name
@return descr

@exception class

Puts a See Also link in the HTML file to the class specified by
class.

Puts a See Also link in the HTML file to the method specified by
method.

Describes method arguments.
Specifies the version of the program. Part
Includes the author’s name in the HTML file.

Describes a method’s return value. Ch

Creates a link to the exceptions thrown by the class specified by
class.

jdb, The Java Debugger

The Java debugger is the debugging tool for the Java environment and is completely command-
line driven. You can use the debugger to debug files located on your local system or files that
are located on a remote system. For remote Java files, the jdb must be used with the -host and
-password options described in the table of options. The jdb also consists of a list of commands
that are not covered in this chapter. See Table 4.7 for information regarding jdb options.

Table 4.7 jdb Options

Options

Description

-host hostname

-password password

Tells the jdb where the remote Java program resides. hostname is
the name of the remote computer (such as well.com or sun.com).

Passes to the jdb the password for the remote Java file, issued by
the Java interpreter using the -debug option.

64 I Chapter 4 JDK Tools

Now that you've covered the JDK tools, look at the one variable upon which they all depend—
the CLASSPATH variable.

The CLASSPATH Environment Variable

There is really only one environment variable used by the various tools of the JDK, which is
the CLASSPATH variable and it is essential that it is set correctly. If it is not, the compiler, inter-
preter, and other JDK tools will not be able to find the .class files they need to complete their
tasks.

The CLASSPATH variable points to the directories where all the classes that are available to
import from reside. CLASSPATH lets you put your own class files in various directories and lets
the JDK tools know where they are.

On UNIX machines, the CLASSPATH variable is a colon-separated list of directories in the form:
setenv CLASSPATH .:/users/java/:/usr/local/jdk1.2/classes/

This command can be put in your .login file, so it’s set properly every time you log in.

In DOS land, it’s a semicolon-separated list of directories in the form:

set CLASSPATH=.;C:\users\dac\classes;C:\tools\jdk1.2\classes

This line can be put in your AUTOEXEC . BAT file so that the CLASSPATH is set properly every time
you boot your machine.

The first period points the CLASSPATH at the current working directory, which is quite helpful if
you don'’t feel like typing in full path names every time you want to do something with the Java
program you’re working on at a given moment.

The UNIX and Win32 versions of the JDK are quite similar and most of the commands that
work for one work for the other. The Macintosh version of the JDK has some significant differ-
ences, however.

Macintosh Issues

Because the Mac doesn’t have a command-line interface, the tools for the JDK are slightly
different on the Mac than they are on other platforms.

N O T E The most notable difference is that fewer tools come with the Mac JDK than for other

platforms. Hopefully, this will change soon, but until then, Mac users have to make due
without some of the most basic tools, such as the Java debugger, javadoc, and the Java
disassembler.

The Mac JDK includes four tools:

AppletViewer The applet viewer program to run applets outside of a browser.

Java Compiler Compiles the .java files into .class bytecodes.

Macintosh Issues I 65

Java Runner The Java interpreter, basically the “java” described previously.

JavaH C-header creator, with stub file creation, otherwise known as javah.

For the most part, these do the same things as their non-GUI counterparts but have some
interface issues that make them different. Some tools, like the AppletViewer, are quite similar
to the versions on other platforms. Other tools, like the Java Runner, are completely different.
Here’s the basic information on those tools and where they differ from their cross-platform
counterparts.

AppletViewer for the Macintosh

When opened, the Mac AppletViewer has the standard Mac File and Edit menus. There is also
a status box, which shows the current amount of memory allotted to the Applet-viewer’s Java
Virtual Machine, and how much of that memory is taken. That box also shows progress bars
indicating the status of any information being loaded into the AppletViewer, like .class files or
GIF image files.

N O T E Ifyou are running a Mac that supports drag and drop (supported in Mac OS 7.1 and

above), you can launch applets off your hard drive by simply dragging the HTML file that
contains the <applet> tag onto the little Duke icon of the AppletViewer. You can also double-click the Part
AppletViewer Duke icon and use one of the two Open menus to open an applet.

The AppletViewer File menu contains the following options: Ch

Open URL Opens a URL to a Web page that contains an applet.

Open Local Brings up a standard Mac Open dialog box that lets you open an HTML file
on your local hard drive.

Save Doesn’t do anything; it’s there to comply with the Mac human interface guide-
lines.

Close Closes the topmost window, if that window can be closed.

Properties Shows the AppletViewer security properties. These settings enable you to
configure AppletViewer for a network environment that includes a firewall proxy, or an
HTTP proxy, using the relative proxy server and proxy port boxes. The Network Access
box allows you to select the type of network access that AppletViewer is allowed. The
choices are No Network Access, Applet Host (default), and Unrestricted. The Class
Access box enables you to choose what kind of access—restricted or unrestricted you
would like AppletViewer to have on other classes.

Quit Closes all the open applets and exits the AppletViewer.
The AppletViewer also has an Edit menu, but this is not enabled as of this writing. Hopefully, it

will be enabled soon, at the very least, so you don’t have to type in long URLs in the Open URL
dialog box.

When an applet is running, an Applet menu also appears. The commands available in that
menu are as follows:

66 I Chapter 4 JDK Tools

Restart Restarts the applet using the current settings.
Reload Reloads the applet. Changes in the class file are applied upon reload.

Clone Clones (duplicates) the current applet, using the same settings to create another
AppletViewer instance.

Tag Shows the HTML applet tag that is used to run the current applet, as well as any
parameters that are passed to the applet from the HTML tag (refer to Figure 4.1).

Info Shows special information about the applet, which is set within the applet’s
program (refer to Figure 4.2).

Properties Shows the AppletViewer security properties. These settings enable you to
configure AppletViewer for a network environment that includes a firewall proxy, or an
HTTP proxy, using the relative proxy server and proxy port boxes. The Network Access
box allows you to select the type of network access that AppletViewer is allowed. The
choices are No Network Access, Applet Host (default), and Unrestricted. The Class
Access box enables you to choose what kind of access—Restricted or Unrestricted—you
would like AppletViewer to have on other classes (refer to Figure 4.3).

Quit Closes the AppletViewer window and terminates the applet.

Java Runner, The Mac Java Interpreter

The Mac Java Runner is the Mac equivalent of the java command described earlier. Because
the Mac has no command line, it has a very rudimentary GUI to set the various options. To
make matters slightly worse, that GUI doesn’t quite follow the Apple Human Interface Guide-
lines, which means there’s a menu where you wouldn’t normally expect it.

You normally launch the Java Runner by double-clicking a .class file that has a main ()
method. You use the Java compiler to create that . class file, and so it appears on the desktop,
or in the folder from which it was launched, as a document icon with Duke in the middle, and
1s and Os in the upper-left corner of the icon.

Alternatively, you can drag the .class file onto the Java Runner icon, or double-click the Java
Runner icon and select the .class file in the Open File dialog box that appears.

The Java Runner’s menus are cleverly hidden as a submenu in the Apple, Java Runtime menu
so that they don’t interfere with any menus created by the Java application that is running:

Edit Mem Lets you set the maximum and minimum heap sizes and disable asynchro-
nous garbage collection (to speed things up).
Edit Classpath This option is not currently enabled.

Redirect Stderr Redirects error messages to a file that you specify in the Create File
dialog box that appears after selecting this menu option.

Redirect Stdout Redirects program messages to a file that you specify in the Create File
dialog box that appears after selecting this menu option.

Save Options Saves your other menu settings.

JavaH: C-Header File Generator I 67

Save Text Window Saves the frontmost text window (for example, the output window of
the HelloWorld program) to a file.

Close Text Window Closes the topmost text window.

Quit Quits the Java Runner and kills any running Java applications.

The Java Compiler

The Java compiler has a basic GUI that lets you set the options that are available as command-
line arguments to the other systems. You can compile files by either dragging the .java files
onto the compiler, or by choosing File, Compile File. Other menu options are as follows:

Close Seems to return an error when selected. Hopefully, this will be fixed in a future
release.

CAUTION

As of version 1.02 of the MacJDK, the Close menu item appears to have a bug that causes a method not
found exception when used. Until that bug is fixed, do not use the Close menu item.

Part
Properties Opens a dialog box that lets you set—using check boxes and other items—

most of the options available to the other systems. It also lets you select an outside editor

from a list of popular editors. The default is simple text. This dialog box also lets you set Ch
the CLASSPATH for the compiler, the target folder where .class files will be written, and

disable threaded compiles to speed up the compiler in situations where multithreading is
slowing things down.

Quit Quits the compiler.

JavaH: C-Header File Generator

JavaH is provided so that you can link native methods into Java code. At this time, it only works
for PowerPC-based Macs. It has no menus of its own outside of the standard Java Runner in the
Apple menu, such as the all-important Quit command. To use JavaH, you need a third-party

compiler, such as Metrowerks CodeWarrior, in order to generate the C code to actually link in
with the Java. o

| The Java Language

Object-Oriented Programming 71

Hello world!: Your First Java Program 83
Data Types and Other Tokens 97
Methods 119

©W 0 ~N o O

Using Expressions 131

10 Control Flow 143

11 Classes 157

12 Interfaces 191

13 Threads 207

14 Writing an Applet 227

15 Advance Applet Code 259

16 JAR Archive Files 273

17 Applets Versus Applications 289
18 Managing Applications 313

CHAPTER

Obejct-Oriented Programming

In this chapter

Object-Oriented Programming: A New Way of
Thinking 72

A Short History of Programming 72

A Lesson in Objects 74

Objects as Multiple Entities 78

Organizing Code 78

Objects and How They Relate to Java Classes 78
Building a Hierarchy: A Recipe for OOP Design 79
Java Isn’t a Magic OOP Bullet 81

72 I Chapter 5 Object-Oriented Programming

Object-Oriented Programming: A New Way of
Thinking

By now, as a programmer, you have no doubt heard of a marvelous term called OOP—object-
oriented programming. OOP is truly the hottest method of software development today. It isn’t
a totally new concept, but it has been a long time in coming to the masses. While Java doesn’t
impose OOP programming like some languages (such as SmallTalk), it does embrace it and
allow you to dance with the technology seamlessly.

Object-oriented programming is a completely new way of programming. At the same time, in
many ways OOP is much the same as structured programming. After you learn and embrace
the new terms and concepts associated with object programming, the switch can be so easy
that you might not even notice you are doing it. You see, OOP’s goal is to provide you, the
programmer, with a few new ways to actually write code and a whole lot of new ways to think
about programming.

After you have embraced the new ways OOP teaches you to think about programming, the
lexical changes, or how you actually write code grammatically, come quite naturally. Unfortu-
nately, truly embracing these changes can take some time. For others, the realization of how
OOP works comes in flashes of inspiration. With each new realization, you open up a whole
new set of programming possibilities.

A Short History of Programming

To understand why object-oriented programming is of such great benefit to you as a program-
mer, it’s necessary to take a look at the history of programming as a technology.

In the early days of computing, programming was an extremely labored process. Each step the
computer needed to take had to be meticulously (and flawlessly) programmed. The early lan-
guages were known as Machine Language, which later evolved to Assembly Language.

If you have ever tried giving another person directions for how to tie their shoes, you probably
found that it was very difficult—especially if they had never seen shoelaces before. As a simple
exercise, ask a coworker (one that won't think this is too weird) to take his or her shoes off.
Ask that person to do exactly what you tell him or her to do, and no more. You find that it is
necessary to give very precise, step-by-step directions. “Lift up the left shoelace, move it to the
right side below the right shoelace. Pick up the right shoelace,” and so on.

If you can grasp the number of instructions you need to teach someone how to tie a shoe, you
might be able to grasp what this type of programming was like. For programmers, the instruc-
tions were a bit more cryptic (and the computer was much less forgiving about imprecise
directions). It was necessary to give directions such as “Push the contents of register 1 onto
the stack,” “Take the contents of the accumulator and place them in register 1,” and so on.

A Short History of Programming I 73

Procedural Languages

Programmers soon saw the need for more stylized procedural languages. These procedural
languages placed code into blocks called procedures or functions. The goal of each of these
blocks was to act like a black box that completed one task or another. For instance, you might
create a procedure to write something to the screen, like writeln in Pascal or printf in C. The
purists of this type of programming believed that you could always write these functions with-
out modifying external data. In the example of printf or writeln, the string that you print to
the screen is the same string before and after you print the string out. In essence, the ideal was
not only to build a black box, but to weld the box shut when you were done testing it.

One of the problems with this method, though, is to write all functions in such a way that they
actually do not modify data outside their boundary. This can be very difficult. For instance,
what if you want to pass in a value that you want to have updated while it “lives” inside the
method (but not one that is returned)? Frequently, constraining a procedure in this manner
turns out to be too difficult a restriction. So, as functions began changing data outside their
scope (in C this is done by passing a pointer), a problem called coupling began to surface.
Because the functions were now changing data outside of their scope, testing became more
and more difficult. Coupling meant that each method had to be tested—not only individually,
but also to make sure that it wasn’t used in such a way that a value it changed wasn’t corrupted
as a result. In addition, it meant that each black box had to be tested with all of its black boxes
in place. If any of those boxes where changed, the parent box had to be retested because the
other box may have changed a value and the parent box may not work any longer. (Starts to
sound pretty complicated doesn’t it?)

As large programs were developed, the problem of coupling reared its ugly head. Testing
these programs begot a whole sub-industry, and software managers lost most of their hair. Part
If they were lucky enough to keep their hair, you could spot them just as easily because they

never cut it.
v ch

Structured Development

The next solution was to try structured development. Structured development didn’t necessar-
ily change the languages that were being used, but rather provided a new process. Using struc-
tured development, programmers were expected to plan 100 percent of their program before
ever writing a single line of code. When a program was developed, huge schematics and flow
charts were developed showing the interaction of each function with every other and how each
piece of data flowed through the program. This heavy pre-code work proved to be effective in
some cases, but limiting for most. This pitfall might have come in large part because the em-
phasis in programming became good documentation and not necessarily great design.

In addition, when programmers were pushed to predesign all of their code before actually
writing any of it, a bad thing happened. Programming became institutionalized. You see, good
programs tended to be as much experimentation as real development. Structured development
pulled at this portion of the development cycle. Because the program needed to be completely
designed before anything was implemented, programmers were no longer free to sit and ex-
periment with individual portions of the system.

74 I Chapter 5 Object-Oriented Programming

Ahh...Object-Oriented Programming

Finally, along came object-oriented programming. Object-oriented programming did require a
few language changes, but also changed the way that programmers think about programming.
The resulting programming technique goes back to procedural development by emphasizing
black boxes, embraces structured development (and actually pushes it further), and most
importantly, encourages creative programming design.

Objects under an OOP paradigm are represented in a system, not just their acquainted data
structures. Objects aren’t just numbers, like integers and characters; they are also the methods
that relate and manipulate the numbers. In OOP programming, rather than passing data
around a system openly (such as to a function), messages are passed to and from objects.
Rather than taking data and pushing it through a function, a message is passed to an object
telling it to perform its task.

Object-oriented programming really isn’t all that new; it was developed in the 1970s by the
same group of researchers at Xerox Parc that brought us GUI (graphical user interfaces),
EtherNet, and a host of other products that are commonplace today. Why has OOP taken so
long to enter into the masses? OOP requires a paradigm shift in development. In addition,
because the computer ends up doing much more work, programs developed using OOP do
tend to require a bit more computing horsepower to obtain the same performance results—but
what a difference those little breaks can make.

Objects themselves are the cornerstone of object-oriented programming. The concept of ob-
jects is perhaps the first and most significant change each programmer who wants to do OOP
design must understand.

Objects are robust packages that contain both data and methods. Objects can be replicated and
adjusted without damaging the predefined code. Instead of being trapped under innumerable
potential additional uses, a method’s purpose is easily definable, as is the data upon which it
will work. As the needs of new programs begin to grow, the method can be replicated or ad-
justed to fit the needs of the new system taking advantage of the current method, but not nec-
essarily altering it (by overloading or overriding the method).

Objects themselves can be expanded and, by deriving new objects from existing ones, code
time is greatly reduced. Equally important, if not more important, debug time is greatly re-
duced by localizing bugs, because coupling changes are limited, at worst, to new classes.

A Lesson in Objects

As you work, you are familiar with objects all the time: calculators, phones, computers, fax
machines, and stereos are all examples of objects in the real world. When you deal with these
objects, you don’t separate the object from its quantities and methods. For example, when you
turn on your stereo, you don’t think about the quantities (such as the station number) from the
methods (such as turning the dial or making sound). You simply turn it on, select a station, and
sit back to listen to the music.

A Lesson in Objects I 75

By using object-oriented programming, you can approach the same simplicity of use. As a
structured programmer, you are used to creating data structures to hold data and to defining
methods and functions to manipulate this data. Objects, however, take and combine the data
with the code. The synergistic relationship that comes out is one object that knows everything
necessary to exist and work.

Take a look at an example using your car. When you describe a car, there are a number of
important physical factors: the number of people a car can hold, the speed the car is going, the
amount of horsepower the engine has, the drag coefficient, and so on. In addition, the car has
several functional definitions: It accelerates, decelerates, turns, and parks. Neither the physical
nor the functional definitions alone embody the definition of your car—it is necessary to define
them both.

Traditional Program Design

In a traditional program, you might define a data structure called MyCarData to look like this:

public class MyCarData {
int weight;
float speed;
int hp;
double dragCoef;
}
}

Then you would create a set of methods to deal with the data:

public class RunCar {
public void speedUp(MyCarData m){

.. Part
}
public void slowDown(MyCarData m){ Ch
}

public void stop(MyCarData m){

}

The O00P Way

In OOP programming, the methods for the car to run and the actual running of the car are
combined into one object:

public class Car{
int weight;

float speed;

int hp;

double dragCoef;

public void speedUp(){
speed += hp/weight;
}

76 I Chapter 5 Object-Oriented Programming

public void slowDown(){
speed -= speed * dragCoef;

}

public void stop(){
speed=0;

}

}

Within each of the new methods, there is no need to either reference the variables using dot
notation (such as m.speed) or pass in a reference to variables (such as (MyCarData m)). The
methods implicitly know about the variables of their own class. (These variables are also
known as field variables.)

Extending Objects Through Inheritance

The next step in developing objects is to create multiple objects based on one super object.
Return to the car example. A Saturn SL 2 is a car, and yet certainly it has several attributes that
not all cars have. When building a car, manufacturers don’t typically start from scratch. They
know their cars are going to need several things: tires, doors, steering wheels, and more. Fre-
quently, the same parts can be used between cars. Wouldn't it be nice to start with a generic
car, build up the specifics of a Saturn, and from there (because each Saturn has its own pecu-
liarities) build up the SL 2?

Inheritance is a feature of OOP programming that enables you to do just this. By inheriting all
the common features of a car into a Saturn, it’s not necessary to reinvent the object (car) every
time.

In addition, by inheriting a car’s features into the Saturn—through an added benefit called
polymorphism—the Saturn is also a car. Now that might seem obvious, but the reach and scope
of that fact is enormous. Under traditional programming techniques, you would have to sepa-
rately deal with each type of car—Fords here, GMCs there, and so on. Under OOP, the features
all cars have are encapsulated in the car object. When you inherit car into Ford, GMC, and
Saturn, you can then polymorph them back to car, and much, if not all, of this work is elimi-
nated.

For instance, say you have a race track program. On the race track, you have a green light,
yellow light, and red light. Now, each race car driver comes to the race with a different type of
car. Each driver has accessible to him each of the peculiarities of his individual car (such as
some fancy accelerator in your Volvo). As you put each car on the track, you give a reference of
your car to the track itself. The track controller doesn’t need access to any methods that access
that fancy accelerator of yours or the CD player; those methods are individual to each of the
cars. However, the person sitting in the control tower does want to be able to tell both drivers
to slow down when the yellow light is illuminated. Because the makes are cars, the control
tower program has received them as cars. Take a look at this hypothetical code.

Here are two cars:

class Lamborghini extends Car{
public void superCharge(){

for (int x=0;x<infinity;x++)
speedUp();
}

}

class Volvo extends Car{
CDPlayer cd;

public void goFaster(){
while(I_Have_Gas){
speedUp();
}
}

public void jam(){
cd.turnOn();
}

}
Here is the race track itself:

class RaceTrack {
Car theCars[] = new Car[3];
int numberOfCars = 0;

public void addCar(Car newCar){
theCars[numberOfCars]=newCar;
numberOfCars++;

}

public void yellowLight(){
for (int x=0;x<numberOfCars;x++)
theCars[x].slowDown();

}
Here is the program that puts it all together:

class RaceProgram{

Lamborghini me = new Lamborghini();
Volvo you = new Volvo();
RaceTrack rc = new RaceTrack();

public void start(){
rc.addCar(me) ;
rc.addCar(you);
while(true){

if (somethingIsWrong)
rc.yellowLight();

}

}

}

A Lesson in Objects I 77

Part

Ch

How can this work? In the RaceProgranm class, you created two different objects: me (of type
Lamborghini) and you (of type Volvo). How can you call rc.addCar, which takes a Car as a
parameter type? The answer lies in polymorphism. Because both of the cars extended car, they

78 I Chapter 5 Object-Oriented Programming

can be used as Cars as well as their individual types. This means that if you create yet another
type of car (Saturn), you could call rc.addCar (the Saturn) without having to make any
changes to RaceTrack whatsoever. Notice that this is true, even though volvo effectively is a
different structure, because it now also contains a CDPlayer variable!

Objects as Multiple Entities

One of the pitfalls you have probably fallen into as a procedural programmer is thinking of the
data in your program as a fixed quantity. A perfect example of this is the screen. Usually proce-
dural programs tend to write something to the (one) screen. The problem with this method is
that when you switch to a windowing environment and have to write to multiple screens, the
whole program is in jeopardy. It takes quite a bit of work to go back and change the program so
that the right data is written to the appropriate window.

In contrast, OOP programming treats the screen not as the screen but as a screen. Adding
windows is as simple as telling the function it’s writing to a different screen object.

This demonstrates one of the aspects of OOP that saves the most real programming time im-
mediately. When you become an OOP programmer, you begin thinking of dealing with objects.
No matter if there’s 1 or 100 of them, it doesn’t affect the program in any way. If you're not
familiar with OOP programming, this might not make sense. After all, what you are saying to
yourself is, “If I have two screens, when I go to print something to the screen, I need to be sure
to position it correctly on the correct screen, and pay attention to user interaction to each dif-
ferent window.”

Believe it or not, under OOP the need to do this is washed away. After the elements of a win-
dow or screen are abstracted sufficiently, when you write the method, it’s irrelevant which
screen you're writing to. The window object handles all of that for you. This is actually the flip
side of polymorphism, because all you care about is that the item is a screen, and not any of the
extra capabilities any one particular screen has.

Organizing Code
OOP organizes your code elegantly because of two key factors:
When used correctly, OOP forces you to organize your code into many manageable

pieces.

By using OOP, each piece is organized naturally, without you having to actually think
about the organization. Given that you are forced to organize your code and the organiza-
tion is natural, this is an amazingly powerful feature.

Objects and How They Relate to Java Classes

At the heart of Java is support for these objects you have been hearing about. They come in a
form called a class. (Actually, there is a Java class called 0bject, which all classes inherit from,
so all classes literally are Objects.)

Building a Hierarchy: A Recipe for OOP Design I 79

Objects are instances of classes. In this sense, classes can be thought of as a template for creat-
ing an object. Take a rectangle as an example. A rectangle you want to create should have an
x,y location, height, width, move method, and resize method (for shrinking or enlarging the
rectangle). When you write the code for the rectangle, you create it in a class. However, to take
advantage of the code, you need to create an instance of that class. The instance is a single
Rectangle object.

Building a Hierarchy: A Recipe for OOP Design

When setting out to develop an OOP program for the first time, it is often helpful to have a
recipe to follow. Developing good OOP structures is a lot like baking a pie. It’s first necessary
to gather all the ingredients, then begin assembling each portion of the pie.

Break Down Code to Its Smallest Entities

When writing an OOP program, it’s first necessary to figure out which ingredients are needed.
For instance, if you were writing an arcade game, it would be necessary to figure out every-
thing that would be in that game: creatures, power pieces, the main character, bullets, and so
on.

After you have assembled these pieces, you need to break them down into all of their entities,
both data and functional. For this example, if you were setting out to write the arcade game,
you might create a list like this for the four items:

Piece Entity

Creatures Location, size, power level, attack capability to, and maneuver- Part
ability

Power Pieces Must be drawn, location, power level ch

Bullets Capability to be fired, size, and quantity

Main Character Capability to receive commands from the user, capability to move
around the maze according to these commands, capability to at-
tack, location, and size

Look for Commonality Between the Entities

The next phase of developing an OOP structure is to look for all the common relationships
between each of the entities. For instance, right away you might recognize that the primary
difference between the creatures and the main character (aside from how they look) is who
controls each. Namely, the creatures are controlled by the computer, and the main character is
controlled by the user. Wouldn't it be great if you could write most of the code for both the
creatures and the main character once, and then just write separate code for moving them?

If that’s how you feel, but you really don’t think it could be that easy, keep reading. Treating
objects this way is exactly what the OOP paradigm is all about.

80 I Chapter 5 Object-Oriented Programming

Look for Differences Between Entities

The next step is to find the differences between the entities. For instance, the bullets move and
the power pieces stay put. Creatures are controlled by the computer, and the main character is
controlled by the user. You are looking for relationships that unite and separate all of those
entities in your program.

Find the Largest Commonality Between All Entities

The third step is to find the largest common relationship between all the entities in your pro-
gram. Rarely is it impossible to find any common relationships among all objects. It is possible,
however, to find one entity so completely different that it doesn’t share anything with any other
object.

Looking at the game example, what do you see that all four objects have in common? A quick
list might include size, the capability to move around (the power piece doesn’t really need to
move, but it wouldn’t hurt if it could), and location.

Is that all they have in common? Perhaps the most obvious commonality wasn’t even (inten-
tionally) listed before—the capability to be drawn to the screen. This capability is so obvious
you might just miss it. Don’t forget to look at the obvious.

With these entities, you could create a class called Draw_oObject. The class would contain all
the items just listed.

Put Remaining Common Objects Together and Repeat

The next phase is to put objects that still have things in common together (after you have elimi-
nated the aspects that were just grouped into the previous class). You use these commonalties
to produce another level of classes, each of which inherits from the class that contains all the
completely common information (Draw_Object).

Going back to the example, at this point the power pieces and the bullets probably split from
the creatures and the main character. Now, take the remaining objects and repeat the recipe
again.

Going through the next phase, you find that the only real difference between the power pieces
and the bullets is their size and how fast they move (the power pieces at speed 0). Because
these are primarily minor differences, you combine them into one class.

When you look at the creatures and the main character, you have decided that the main charac-
ter contains everything that a creature does plus some, so you inherit the Creature class in the
Main_Character class.

The final class hierarchy is shown in Figure 5.1. Try this on your own. There are countless
variations to the chart developed here; see what you come up with.

Java Isn’t a Magic OOP Bullet I 81

FIG. 5.1

Building a hierarchy for
your game enables you |
to save a lot of coding.

Draw_Object

Creature Power Pieces / Bullets

Main_Character

Using Objects to Add As Many As Desired

When writing a game, it is often desirable to be able to add as many attack creatures as a par-
ticular board wants. Because the creature class encapsulates, all that you need to create a

creature and a new board with more creatures is to add those creatures to the list. Again, this
might seem obvious, but it’s extremely powerful; it means you don’t need to create a string of
variables like creatureiSpeed, creature2Speed, creatureiPower, creature2Power, and so on.

You can think of this step as if you were creating any other variable. For instance, assuming
that you're already a programmer in a different language, you're probably very used to just
creating an integer variable any time you need one. Now you can create a whole new creature
any time you need one.

Part

Ch

Java Isn’t a Magic OOP Bullet

The focus of this chapter has been to introduce the concepts of good OOP. The chapter has
intentionally avoided complicated coding implementations; the rest of this book should help
you fill in that portion.

Now that you have seen many of the fundamentals of OOP programming at a surface level,
establish why you went through all of this. Java isn’t a magic bullet to creating OOP programs.
While Java embraces the OOP paradigm, it is still possible (and not unusual) to write struc-
tured programs using Java. It’s not unusual to see Java programs written without any acknowl-
edgment of some of the OOP tools just covered, like polymorphism and encapsulation.

By introducing OOP at this stage, hopefully you can break the bad habits of structured pro-
gramming before they begin. You need to remember that OOP is as much a different way of
thinking as it is a different way of programming. Throughout this book, there are applets and
applications written both ways. Look for those programs that are broken into multiple pieces.
Then, when you think you understand OOP, reread this chapter and see if any more insights
are brought to mind. e

CHAPTER

HelloWorld!: Your First Java Pr 0

In this chapter

HelloWorld Application 84

Understanding HelloWorld 85

HelloWorld as an Applet—Running in Netscape 90
Keywords 94

API 95

84 I Chapter 6 HelloWorld!: Your First Java Program

HelloWorld Application

When learning to program, it is often useful to jump in headfirst, learn how to write a short
application, and then step back and learn the rest of the fundamentals. In this chapter you do
just that, and by the end you should be able to write your own Java programs.

You have already seen the simplest Java program, HelloWorld, in Chapter 3, “Installing the JDK
and Getting Started.” Take a closer look at each of the components. Listing 6.1 shows the
HelloWorld application.

Listing 6.1 The HelloWorld Application

public class HelloWorld {
public static void main(String args[]){
System.out.println("Hello World!!");
}
}

As you can see, there really isn’t a lot to this program, which may be why it’s called the easiest
Java application. Nevertheless, you take a close look at the program from the inside out. Before
you do that, though, compile the program and run it.

Create the File

The first step to creating the HelloWorld application is to copy the text from Listing 6.1 into a
file called HelloWorld.java using your favorite text editor (Windows NotePad, or SimpleText on
the Macintosh will work if you don’t have another). It is very important to call the file
HelloWorld.java, because the compiler expects the filename to match the class identifier (see
“Declaring a Class” later in this chapter).

CAUTION

If you use a program such as Microsoft Word to type the code, make sure that you save the file as text only.
If you save it as a Word document, Word adds a lot of information about formatting the text that simply
doesn’t apply to your situation, and only causes you grief.

Compile the Code

To compile the program, you need to first install the JDK. Then, use the program javac in-
cluded with the JDK to convert the text in Listing 6.1 to a form the computer can run. To run
javac on a Macintosh, drag the source file over the javac icon. On any other computer, type the
following at a command prompt: javac HelloWorld.java.

The javac program creates a file called HelloWorld.class from the HelloWorld.java file. Inside
this file (HelloWorld.class) are what is known as bytecodes. Bytecodes are special instructions
that can be run by the Java interpreter.

See “Installing a Downloaded JDK,” p. 45

Understanding HelloWorld I 85

Run the Program

Now that you have compiled the program, you can run it by typing the following at the com-
mand prompt: java HelloWorld.

N O T E The HelloWorld used in the command prompt java HelloWorld is not HelloWorld.class or
HelloWorld.java, just the name of the class.

After you do this, the computer should print the following to the screen:
Hello World!!

That may not seem very interesting, but then it’s a simple program. If you don’t see that on the
screen, go back and make sure you have typed in the file exactly as it is shown in Listing 6.1,
and make sure that you called the file HelloWorld.java.

Understanding HelloWorld

Now that you have seen the results of the HelloWorld program, go back to the original source

code and see if you can understand how it works. As you should begin to see, there are a lot of
parts to the HelloWorld program. After you understand all of them, you’re a long way to being

able to write any program.

Declaring a Class

The first task when creating any Java program is to create a class. Take a look at the first line of
the HelloWorld application:

public class HelloWorld {

This declares a class called HelloWorld.
See “Classes in Java,” p. 160

To create any class, simply write a line that looks like:

Part
public class ClassName

Here, ClassName is the name of the program you are writing. In addition, ClassName must
correspond to the filename. It’s a good idea to make all your class names descriptive, so that Ch
it’s easier to remember for what they are used.

N O T E Itis an accepted practice that class names should always begin with a capital letter. This is
not required, but considered good style. There are also a number of limitations on the
names you can assign to a class, but you learn more about that later in Chapter 11, “Classes.”

Next, notice the brace ({) that is located before the class declaration. If you look at the end of
the class, there is also a closing brace (}). The braces tell the compiler where your class will
begin and end. Any code between those two braces is considered to be in the HelloWorld class.

86 I Chapter 6 HelloWorld!: Your First Java Program

Don’t be confused. Braces are used for a number of things called blocks, which are covered in
more detail in Chapter 8, “Methods.” The braces are matched in a LIFO (Last In, First Out)
format. That means that the next closing brace closes the open brace that was closest to it. In
the case of the HelloWorld program, there are two open braces, so the one that closes the class
is the very last one.

main Method
The next line in the HelloWorld program reads like the following:

public static void main(String args[]){

This line declares what is known as the main method. Methods are essentially mini-programs.
Each method performs some of the tasks of a complete program. The main method is the most
important one with respect to applications, because it is the place that all Java applications
start. For instance, when you run java HelloWorld, the Java interpreter starts at the first line
of the main method.

When creating any Java application, you need to create a main method as shown. In Chapter 8
you learn more about declaring and using methods.

Writing to the Screen

How does the text Hello World!! appear when you run the HelloWorld program? The answer
(as you have probably guessed) lies in the next line of the program:

System.out.println("Hello World!!");
You can replace any of the text within the quotation marks (" ") with any text you would like.

The system.out line is run because, the interpreter looks at the first line of code (namely the
printout) and executes it when the application starts. If you place any other code there, it runs
that code instead.

System.out and System.in

You have just seen how System.out.println was used to print text to the screen. In fact,
System.out.println can be used at any time to print text to what is known as Standard Out. In
almost all cases, Standard Out is the screen.

The system.out.println serves approximately the same purpose as the writeln in Pascal. In
C, the function is printf, and in C++, cout.

printin Versus print There is one minor variation on println that is also readily used:
print("Hello World!!"). The difference between println and print is that print does not
add a carriage return at the end of the line, so any subsequent printouts are on the same line.
Strictly speaking, print is the true cousin to printf and cout for C/C++ programmers.

To demonstrate this, expand your HelloWorld example a bit by copying Listing 6.2 into a file
called HelloWorld2.java and compiling it with the line java HelloWorld2.java.

Understanding HelloWorld I 87

Listing 6.2 A HelloWorld Program with Two Printouts

public class HelloWorld2 {
public static void main(String args[]){
System.out.println("Hello World!");
System.out.println("Hello World Again!");
}
}

To run the program, type java HelloWorld2. You should see output that looks like the
following:

Hello World!
Hello World Again!

Notice that each phrase appears on its own line. Now, for comparison, try the program again
using print instead of println. Copy Listing 6.3 into a file called HelloWorld3, compile, and
run it.

Listing 6.3 A HelloWorld Output Using print Statements

public class HelloWorld3 {
public static void main (String args[]){
System.out.print ("Hello World!");
System.out.print ("Hello World Again!");
}
}

You should notice that the output looks like this:

Hello World!Hello World Again!

What caused the change? When you use print, the program does not add the extra carriage
return.

Extending the String: Writing More Than HelloWorld One of the features Java has inherited Part
from C++ is the capability to add strings together. Although this might not seem completely
mathematically logical, it is awfully convenient for a programmer. Revisit your last HelloWorld

program and get the same output using one println and the + operator (see Listing 6.4). Ch

Listing 6.4 HelloWorld Output Adding Two Strings

public class HelloWorld4 {
public static void main (String Args[]){
System.out.print ("Hello World!" + "Hello World Again!");
}
}

‘When you compile and run HelloWorld4, you should see the same output that was produced
from HelloWorld3. This might not seem too interesting, so take a look at one more extensions

88 I Chapter 6 HelloWorld!: Your First Java Program

of the ability to add to strings—you can also add numbers. For instance, say you want to add
the number 43 to the string. Listing 6.5 shows an example of just such a situation.

Listing 6.5 HelloWorld with a Number

public class HelloWorld5 {
public static void main (String args[]){
System.out.print ("Hello World! " + 43);
}
}

Listing 6.5 produces the following:
Hello World! 43

Getting Information from the User with System.in system.out has a convenient partner
called System. in. While System.out is used to print information to the screen, System.in is
used to get information into the program.

Requesting Input from the User Use System.in.read() to get a character from the user.
This is not covered in too much depth, because System.in isn’t used that often in Java pro-
grams; that is primarily, because (as you learn in the upcoming section “HelloWorld as an
Applet”) it really doesn’t apply to applets. Nevertheless, Listing 6.6 shows an example of a Java
application that reads a letter from the user.

Listing 6.6 ReadHello: An Application that Reads Input from the User

import java.io.*;

public class ReadHello {
public static void main (String args[]){
int inChar;
System.out.println("Enter a Character:");
try {
inChar = System.in.read();
System.out.println("You entered " + inChar);
} catch (IOException e){
System.out.println("Error reading from user");

}

You've probably already noticed that there is a lot more to this code than there was to the last
one. Before that’s explained, you should compile the program and prove to yourself that it
works:

Enter a Character:

A
You entered 65

Understanding HelloWorld I 89

First things first. The code you are most interested in is the line that reads:
inChar = System.in.read();

System.in.read() is a method that takes a look at the character that the user enters. It then
performs what is known as a return on that value. A value that is returned by a method can
then be used in an expression. In the case of ReadHello, a variable called inChar is set to the
value that is returned by the System.in.read() method.

In the next line, the value of the inChar variable is added to the System.out string, just as you
did in Listing 6.5. By adding the variable into the string, you can see the results of your work.
It’s not necessary to use a variable. If you prefer, you can print it out directly in the second
System.out line, by changing it to the following:

System.out.println("You entered "+ System.in.read());

Notice that the program displays a number instead of a character for what you entered. This is
because the read() method of System. in returns an integer, not an actual character. The num-
ber corresponds to what is known as the ASCII character set.

Converting an Integer to a Character You need to do what is known as a cast to convert the
number that is returned from System. in into a character. Casting effectively converts a given
datatype to another one. Change ReadHello to look like Listing 6.7.

Listing 6.7 ReadHello: An Application that Reads in a Character from
the User

import java.io.*;
public class ReadHello {
public static void main (String args[]){
char inChar;
System.out.println("Enter a Character:");
try {
inChar =(char) System.in.read();
System.out.println("You entered " + inChar);
} catch (IOException e){
System.out.println("Error reading from user"); Part

}

Notice the characters before System.in.read().The (char) causes the integer to be changed
into a character.

The Rest of the Extra Code—try and catch What does the rest of all that code do? There is a
sequence there called a try-catch block in this code.

In some programming languages, when a problem occurs during execution, there is no way for
you as a programmer to catch it and deal with the problem. When a problem occurs, the sys-
tem halts and ends the program (usually with some nasty message like General Protection
Fault, or Core Dump). In some languages, it’s a bit complicated. In Java, most problems cause

90 I Chapter 6 HelloWorld!: Your First Java Program

what are known as exceptions, which can be handled by you, so your program doesn’t stop
working.

See “Java’s Exceptions,” p. 364

See “Java’s Events,” p. 381

When a method states that it will throw an exception, it is your responsibility to try to perform
that method, and if it throws the exception, you need to catch it. Do you see the line of code
right after the catch phase? If there is an error while reading, an exception called an
I0Exception is thrown. When that happens, the code in the catch block is called.

HelloWorld as an Applet—Running in Netscape

If you are reading this book, odds are you are most interested in using Java to write programs
called applets. Applets can be run in a browser, such as Netscape Navigator.

Several differences exist between applets and applications. The most important is that Java
applet classes extend an existing class. This class is called java.applet.Applet. For now, it’s
enough to say that you have to extend Applet for a class to be usable as such. This is covered
in more detail in a later chapter.

See “Applets Versus Applications,” p. 775

The New Source Code—Compiling It

One of the simplest applets is the HelloWorld applet, the source code for which is shown in
Listing 6.8. Right away you should see that the applet Helloworld is quite different from the
HelloWorld application in Listing 6.1. You break down the source code to understand it a little
later in this chapter. For now, copy Listing 6.8 into a file called HelloApplet.java and compile it.

Listing 6.8 HelloWorld as an Applet

import java.applet.Applet;
import java.awt.Graphics;
public class HelloApplet extends Applet {
public void paint (Graphics g) {
g.drawString ("Hello World!",0,50);
}
}

Creating an HTML File

‘When you created the HelloWorld application in Listings 6.1 through 6.5, you ran them using
the Java interpreter. Applets, however, don’t run from the command line; they are executed
within a browser—but how do you tell the browser to open the applet?

If you have already written Web pages, you are familiar with HTML. HTML pages are what a
browser such as Netscape is used to dealing with. To get the applet into the browser, you need

HelloWorld as an Applet—Running in Netwcape I 91

to embed what are known as HTML tags into an HTML file. The HTML file can then be read
into a browser.

The simplest HTML file for the Hel1loApplet class is shown in Listing 6.9. Copy this text into a
file called HelloApplet.html.

See “Including a Java Applet in an HTML Page,” p. 228

Take a look at the third line of Listing 6.9. Notice the <APPLET> tag? The <APPLET> tag is a new
HTML tag that is used to include Java applets. When creating your own HTML files, don’t
forget to include the closing </APPLET> tag as well, or your applets won’t appear.

N O T E With Java files, it is necessary that the filename be the same as the class file. This is not
necessary with the HTML file. In fact, a single HTML file can contain several <APPLET>
tags.

Listing 6.9 HelloApp.html—HTML File to Use for Applet

<HTML>
<BODY>
<APPLET CODE="HelloApplet.class" WIDTH = 200 HEIGHT=200> </APPLET>
</BODY>
</HTML>

Running the Program in AppletViewer

To run the applet, the JDK includes a very simplified version of a browser called AppletViewer.
AppletViewer looks for <APPLET> tags in any given HTML file and opens a new window for
each of them.

When you run the HTML file in AppletViewer, you see output such as that in Figure 6.1. To
run the HelloApplet program using AppletViewer, type appletviewer HelloApplet.html on
the command line.

Part
FIG. 6.1 [E5 Applet Viewer: Hell.. [H[=1E3
AppletViewer opens a Applet on

new window and runs

HelloApplet in it. Hello World!

Applet staited.

92 I Chapter 6 HelloWorld!: Your First Java Program

Running HelloWorld in Netscape
Another option for running applets is with Netscape Communicator. You're probably already
familiar with using the Navigator. To open the HelloApplet program in Netscape, choose File,
Open File, then select the HelloApplet.html file, as shown in Figure 6.2.

FIG- 6.2 sk« Netscape - [hitp://www.magnastar.com/que/HelloApplet_html]

HeIloApplet can also be File Edit View Go Bookmarks Options Directory Window Help

run by uslng Netscape Back |F0r\.‘ard| Home | Edit | Reload | Images: | Open | Print | Find | Stop |

Navigator. an:ah'nn.'Ihttp:.-"f’www.magnastar.com.-"que.-"HeIIuAppIet.hlmI j N

‘What's Hewll ‘What's I:unlll Handbook | Net Search | HetD\rE.c:tnryl Software |

Hello World!

=8| [Applet HelloApplet rurming [=

HMstan| et | Beac. MErP| (TN 3€ue. | Saco. | I a35aM

Understanding the Source Code

Now that you have seen how to run the HelloApplet program, go back and see how the pro-
gram works.

Importing Other Classes The first thing to notice are the top two lines of the code:

import java.applet.Applet;
import java.awt.Graphics;

The import statement is a new one. It is often necessary or easier to use the contents of a class
file that have already been created, rather than try to reproduce that work yourself. The import
statement enables you to use these other classes. If you are familiar with the C/C++ #include
declaration, the import statement works in somewhat the same way.

In the case of the HelloApplet program, there are two classes used, other than HelloApplet.
The first is the java.applet.Applet class. The Applet class contains all the information that is
specific to applets. In fact, any class run in a browser as an applet must extend
java.applet.Applet.

HelloWorld as an Applet—Running in Netwcape I 93

The second class that is imported into HelloApplet is the java.awt.Graphics class.
java.awt.Graphics contains all kinds of tools for drawing things to the screen. In fact, the
screen is treated as a Graphics object.

Declaring an Applet Class You might have noticed that there is a slight difference between
this class declaration for the HelloApplet class compared with the HelloWorld application.
HelloApplet extends Applet. Remember in the last chapter how you learned about building a
class structure? extends is the keyword that indicates that a class should be entered into that
class hierarchy. In fact, a class that extends another class is placed at the bottom of the existing
chain:

public class HelloApplet extends Applet {
See “Super Classes—Extending Another Class,” p.164

You might think this harps the issue, but it’s important: All applets must extend
java.applet.Applet. However, because you imported the Applet class, you can simply call it
Applet. If you had not imported java.applet.Applet, you could still have extended it using
the full name:

public class HelloApplet extends java.applet.Applet {

Applet Methods—paint The next item to notice about the HelloApplet class versus
HelloWorld is that HelloApplet doesn’t have a main method. Instead, this applet only has a
paint method. How is this possible?

The answer lies in the fact that the applets don’t start themselves. They are being added to an
already running program (the browser). The browser has a predefined means for getting each
applet to do what it wants. It does this by calling methods that it knows the applet has. One of
these is paint:

public void paint (Graphics g) {

The paint method is called any time the browser needs to display the applet on the screen; you

can use the paint method to display anything. The browser helps by passing a Graphics ob-

ject to the paint method. This object gives the paint method a way to display items directly to

the screen. Part

The next line shows an example of using the Graphics object to draw text to the screen:

g.drawString ("Hello World!",0,50); e

}
}

The Brief Life of an Applet

The paint method is not the only method that the browser calls of the applet. You can override
any of these other methods just like you did for the paint method in the HelloWorld example.

‘When the applet is loaded, the browser calls the init () method. This method is only called
once no matter how many times you return to the same Web page.

94 I Chapter 6 HelloWorld!: Your First Java Program

After the init () method, the browser first calls the paint () method. This means that if you
need to initialize some data before you get into the paint () method, you should do so in the
init () method.

Next, the start () method is called. The start () method is called every time an applet page is
accessed. This means that if you leave a Web page and then click the Back button, the start ()
method is called again. However, the init () method is not.

‘When you leave a Web page (for example, by clicking a link), the stop () method is called.

Finally, the destroy () method is called when the browser exits all together.

N O T E Notice that unlike the paint (Graphics g) method, the init(), start(),stop(),
and destroy () methods do not take any parameters between the parentheses.

Keywords

Before you set off on a more in-depth exploration of each of the topics discussed in this chap-
ter, there are a few other housekeeping matters you need to learn.

The most important of these is the use of keywords in Java. There are certain sequences of
characters, called keywords, that have special meaning in Java. Some of them are like verbs,
some like adjectives, and some like pronouns. Some of them are tokens that are saved for later
versions of the language, and one (goto) is a vile oath from ancient procedural tongues that
may never be uttered in polite Java.

The following is a list of the 56 keywords you can use in Java. When you know the meanings of
all these terms, you will be well on your way to being a Java programmer.

abstract boolean break byte
case cast catch char
class const continue default
do double else extends
final finally float for
future generic goto if
implements import inner instanceof
int interface long native
new null operator outer
package private protected public
rest return short static
super switch synchronized this
throw throws transient try

var void volatile while

API

API I 95

The keywords byvalue, cast, const, future, generic, goto, inner, operator, outer, rest, and
var are the reserved words that have no meaning in Java. Programmers experienced with
other languages such as C, C++, Pascal, or SQL may know for what these terms might eventu-
ally be used. For the time being, you won’t use these terms, and Java is much simpler and
easier to maintain without them.

The tokens true and false are not on this list; technically, they are literal values for Boolean
variables or constants.

The reason you care about keywords is these terms have specific meaning in Java; you can’t
use them as identifiers for something else. This means that you can’t create classes with any of
these names. If Hel1oApplet had been on the list, the compiler never would have compiled that
program for you. In addition, they cannot be used as variables, constants, and so on. However,
they can be used as part of a longer token, for example:

public int abstract_int;

N O T E Because Java is case sensitive, you can use an initial uppercase letter if you are bent on

using one of these words as an identifier of some sort. Although this is possible, it is a very
bad idea in terms of human readability, and it results in wasted manhours when the code must be
improved later to this:

public short Long;

It can be done, but for the sake of clarity and mankind’s future condition, please don’t do it.

In addition, there are numerous classes defined in the standard packages. Although their
names are not keywords, the overuse of these names can make your meaning unclear to
people who work on your application or applet in the future.

In this chapter, you learned how to use several classes other than the one you were writing.
The most important of these was java.applet.Applet. Part

Why were you told what methods were in java.applet.Applet? The answer is that all the
classes in what is known as the Java API are well documented. Although it’s unlikely that you
will have great success understanding the API until you have finished reading several more
chapters, it’s important to start looking at it now.

Ch

As you progress as a Java programmer, the API will probably become one of your best friends.
In fact, it may well be that Java’s rich API is one of the reasons for its success.

You can access a hyperlink version of the API documentation on Sun’s site at http://
www. javasoft.com/products/JDK/CurrentRelease/.

When exploring the API, you should notice how various classes inherit from others using the
extends keyword. Sun has done a great deal of work to keep you from having to write nearly as
much code; you simply must learn to make good use of the classes. e

CHAPTER

Data Types and Other Tokens

In this chapter

Java Has Two Data Types 98
Learning About boolean Variables 99
The Various Flavors of Integer 101
Operators 103

Character Variables 106
Floating-Point Variables 106

Arrays 107

Whitespace 109

Comments 110

Literals: Assigning Values 112
Creating and Destroying Objects 116

98 I Chapter 7 Data Types and Other Tokens

Java Has Two Data Types

When working with computers—either for something as simple as writing a college paper or as
complex as solving quantum theory equations—the single most important thing the computer
does is deal with data. Data to a computer can be numbers, characters, or simply values. Java
has several types of data it can work with, and this chapter covers some of the most important.

In Java, there are two categories into which data types have been divided.
Primitive types

Reference types
Java has eight primitive types, each with its own purpose and use.

Boolean
char
float
byte
int
double
short
long

As you proceed through this chapter, each of these types is covered in detail. For now, take a
look at Table 7.1, which shows the numerical limits each type has.

Table 7.1 Primitive Data Types in the Java Language

Type Description

Boolean These have values of either true or false.

byte 7-bit 2s-complement integer with values between -2” and 2”-1
(128 to 127).

short 16-bit 2s-complement integer with values between -2'° and 2'°-1
(-32,768 to 32,767).

char 16-bit Unicode characters. For alphanumerics, these are the same

as ASCII with the high byte set to 0. The numerical values are
unsigned 16-bit values between 0 and 65535.

int 32-bit 2s-complement integer with values between -2°' and 2°' -1
(-2,147,483,648 to 2, 147,483,647).

long 64-bit 2s-complement integer with values between -2* and 2% -1
(-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807).

Learning About boolean Variables I 99

Type Description

float 32-bit single precision floating-point numbers using the IEEE 754-
1985 standard (+/- about 10%).

double 64-bit double precision floating-point numbers using the IEEE 754-
1985 standard (+/- about 10°"7).

Primitive types in Java are unique because, unlike many other languages, the values listed in
Table 7.1 are always as shown here, regardless of what type of computer you are working on.
This gives you, as a programmer, added security and portability you might not always have in
other languages.

Learning About boolean Variables

The simplest data type available to you in Java is that of the boolean. boolean variables have
two possible values—true or false. In some other languages, Booleans are @ or 1; or, as in
C(++), false is 0 and all other numbers are true. Java has simplified this a bit, and made actual
values true and false.

boolean variables are used mostly when you want to keep track of the state an object is in. For
instance, a piece of paper is either on or off the table. A simple piece of code might say:

boolean on_the_table = true;

Declaring a Variable
You should understand what the line of code in the last section means before you go any fur-
ther. When you create a variable in Java, you must know at least a few things:
You must know what data type you are going to use. In this case, that was Boolean.
You must know what you want to call the variable (on_the_table).

You might also want to know the value with which the variable should start. In this case,
assume the paper is on the table initially, so you set the variable to true. If you do not
specify a value for the variable, the Java compiler automatically makes your Boolean
variables false.

You can create any variable in Java in the same way as was just shown:

1. State the data type that you will be using (boolean).

Part
State the name the variable will be called (on_the_table). o

Assign the variable a value (= true).

e

As with every other line of code in Java, terminate the line with a semicolon (;). =

100 Chapter 7 Data Types and Other Tokens

Identifiers: The Naming of a Variable

Refer to the first example:
boolean on_the_table = true;

How does the computer work with the characters that make up on_the_table? on_the_table
is called an identifier in programming lexicology. Identifiers are important because they are
used to represent a whole host of things. In fact, identifiers are any phrases chosen by the
programmer to represent variables, constants, classes, objects, labels, or methods. After an
identifier is created, it represents the same object in any other place it is used in the same code
block.

There are several rules that must be obeyed when creating an identifier:

The first character of an identifier must be a letter. After that, all subsequent characters
can be letters or numerals.

The characters do not need to be Latin numerals or digits; they can be from any alpha-
bet. Because Java is based on the Unicode, standard identifiers can be in any language,
such as Arabic-Indic, Devanagari, Bengali, Tamil, Thai, or many others.

The underscore (_) and the dollar sign ($) are considered letters and can be used as any
character in an identifier, including the first one.

In Java, as in C and most other modern languages, identifiers are case sensitive and
language sensitive. This means that on_the_table is not the same as On_The_Table.
Changing the case changes the identifier by which the variable is known.

Make your identifier names long enough so that they are descriptive. Most application
developers are forever walking the line of compromise between choosing identifiers that
are short enough to be quickly and easily typed without error and those that are long
enough to be descriptive and easily read. Either way, in a large application, it is useful to
choose a naming convention that reduces the likelihood of accidental reuse of a particu-
lar identifier. It is not generally a good idea to create four variables called x, x1, x2, and
x4, because it would be difficult to remember the purpose of each variable. In addition,
identifiers cannot be keywords.

Table 7.2 shows several legal and illegal identifiers. The first illegal identifier is forbidden be-
cause it begins with a numeral. The second has an illegal character (&) in it. The third also has
an inappropriate character: the blank space. The fourth is a literal number (216) and cannot be
used as an identifier. The last one contains yet another bad character: the hyphen, or minus
sign. Java would try to treat this last case as an expression containing two identifiers and an
operation to be performed on them.

Table 7.2 Examples of Legal and lllegal Identifiers

Legal Identifiers lllegal Identifiers

HelloWorld 9HelloWorld

counter count&add

The Various Flavors of Integer 101

Legal Identifiers lllegal Identifiers

HotJava$ Hot Java

ioc_Queue3 65536

ErnestLawrenceThayers non-plussed
FamousPoemOfJune1888

Changing Boolean Variables

In Chapter 10, “Control Flow,” you see how Boolean variables can be used to change the behav-
ior of a program. For instance, if the paper is on the table, you do nothing, but if it has fallen
onto the floor, you can tell the computer to pick it up.

There are two ways in which you can change a Boolean variable. Because Booleans are not
represented by numbers, you must always set a Boolean to either true or false. The first way
to do this is explicitly. For instance, if you have a variable called My_First_Boolean, to change
this variable to false, you would type:

My _First_Boolean = false;

If you compare this line to the declaration of on_the_table earlier, you might notice that they
are very similar.

The next way to assign a Boolean variable is based on an equation or other variable. For in-
stance, if you want My_First_Boolean to have the same value as on_the_table, you might type
a line like this:

My_First_Boolean= on_the_table;

You can also make the variable have a value based on the equality of other numbers. For in-
stance, the following line would make My _First Boolean false:
My_First_Boolean = 6>7;

Because 6 is not greater than 7, the equation on the right would evaluate false. You learn
more about this type of equation later in Chapter 10.

N O T E Boolean types are a new feature in Java, not found in C and C++.To some, this stricter
adherence to typing may seem oppressive. On the other hand, pervasive ambiguity, which
has resulted in countless lost man-hours from the world’s intellectual workforce in the form of chasing

many hard-to-detect programming errors, may be eliminated. Part

The Various Flavors of Integer ch

The next set of primitive types in Java are all known as integer types:

byte

int

102

Chapter 7 Data Types and Other Tokens

char
short

long

As you saw in Table 7.1, each of these types has a different limit to the numbers it can carry.
For instance, a byte cannot hold any number that is greater than 127, but a 1ong can easily
hold the amount of the national debt. It can actually hold one million times that number.

There are different reasons to use each type, and you should not use a long for every variable
just because it is the biggest. It is unlikely that most of the programs you write will need to deal
with numbers large enough to take advantage of that size. More importantly, large variables
such as longs take up much more space in the computer’s memory than do variables like
short.

Limits on Integer Values

Integers can have values in the ranges shown in Table 7.3.

Table 7.3 Integer Types and Their Limits

Integer Minimum Default Maximum

Type Value Value Value

byte -128 (byte) 0 127

short -32,768 (short) 0 32,767

int -2,147,483,648 0 2,147,483,647

long 9,223,372,036,854,775,808 0 9,223,372,036,854,775,807
char 0 0 65535

N O T E The maximum number for a Long is enough to provide a unique ID for one transaction per

second for every person on the planet for the next 50 years. It is also the number of grains
in about a cubic mile of sand. Yet, if a project to count the black flies in Maine is undertaken, surely
the cry will arise for 128-bit integers.

N O T E If some operation creates a number exceeding the ranges shown here, no overflow or

exception is created. Instead, the 2s-complement value is the result. (For a byte, it's
127+1=-128, 127+9 =-120, and 127+127=-2.) However, an ArithmeticException is thrown if
the right-hand operand in an integer divide or modulo operation is zero.

Creating Integer Variables

All of the main four integer types can be created in nearly the same way (you learn about char
later in this chapter). The following lines show how to create a variable of each of these types:

Operators 103

byte My_First_Byte = 10;

short My_First_Short = 15;

int My_First_Int = 20;

long My_First_Long = 25;

Notice that the declaration of the integer types is nearly identical to that for the Boolean vari-
able and that it is exactly the same for all integer types. The one main difference is that an
integer variable must be assigned a number, not true or false. Also, notice that an integer
must be assigned a whole number, not a fraction. In other words, if you want to have a number
like 5.5 or 5 2/3, you cannot do so with an integer. You learn more about these types of num-
bers in the section “Floating-Point Variables” later in this chapter.

Operations on Integers
You can perform a wide variety of operations on integer variables. Table 7.4 shows a complete
list.

Table 7.4 Operations on Integer Expressions

Operation Description

=, 4=, -=, *= [= Assignment operators

==, 1= Equality and inequality operators

<, <=, >, >= Inequality operators

+, - Unary sign operators

%, % Addition, subtraction, multiplication, division, and modulus operators
4=, .=, %= /= Addition, subtraction, multiplication, division, and assign operators
++, — Increment and decrement operators

<<, >>, >>> Bitwise shift operators

<<=, >>=, >>>= Bitwise shift and assign operators

~ Bitwise logical negation operator

& I," Bitwise AND, OR, and exclusive or (XOR) operators
&=, |=, ~= Bitwise AND, OR, exclusive or (XOR), and assign operators
Later in Chapter 10 you learn about the equality and inequality operators that produce Boolean Part
results. For now, concentrate on the arithmetic operators.
Ch

Operators

Operators are used to change the value of a particular object. For instance, say you want to add
or subtract 5 from 10. As you soon see, you would use the addition or subtraction operator.

104 Chapter 7 Data Types and Other Tokens

They are described here in several related categories. C and C++ programmers should find the
operators in Table 7.4 very familiar.

Arithmetic Operators
Arithmetic operators are used to perform standard math operations on variables. These opera-
tors include:
+ Addition operator
Subtraction operator
* Multiplication operator

/ Division operator

o°

Modulus operator (gives the
remainder of a division)

Probably the only operator in this list that you are not familiar with is the modulus operator.
The modulus of an operation is the remainder of the operand divided by the operandi. In other
words, in the equation 10 % 5, the remainder is 0 because 5 divides evenly into 5. However, the
result of 11 % 5 is 1 because (if you can remember your early math classes), 11 divided by 5 is 2
R 1, or 2 remainder 1.

Listing 7.1 shows an example of these operators in use.

Listing 7.1 Examples Using Arithmetic Operators

int j = 60; // set the byte j's value to 60

int k = 24;

int 1 = 30;

int m = 12L;

int result = 0OL;

result = j + k; // result gets 84: (60 plus 24)

result = result / m; // result gets 7: (84 divided by 12)
result = j - (2*k + result); // result gets 5: (60 minus (48 plus 7))
result = k % result; // result gets 4: (remainder 24 div by 5)

Assignment Operators
The simplest assignment operator is the standard assignment operator. This operator is often
known as the gets operator, because the value on the left gets the value on the right:

= Assignment operator

The arithmetic assignment operators provide a shortcut for assigning a value. When the previ-
ous value of a variable is a factor in determining the value that you want to assign, the arith-
metic assignment operators are often more efficient:

Operators 105

+= Add and assign operator
-= Subtract and assign operator
*= Multiply and assign operator
/= Divide and assign operator
%= Modulus and assign operator
Except for the assignment operator, the arithmetic assignment operators work as if the variable

on the left of the operator were placed on the right. For instance, the following two lines are
essentially the same:

Listing 7.2 shows more examples of the operators in use.

Listing 7.2 Examples Using Arithmetic Assignment Operators

byte j = 60; // set the byte j's value to 60
short k = 24;
int 1 = 30;

long m = 12L;
long result = 0OL;

result += j; // result gets 60: (@0 plus 60)

result += k; // result gets 84: (60 plus 24)

result /= m; // result gets 7: (84 divided by 12)

result -= 1; // result gets -23: (7 minus 30))

result = -result; // result gets 23: (-(-23))

result %= m; // result gets 11: (remainder 23 div by 12)

Increment/Decrement Operators

The increment and decrement operators are used with one variable (they are known as unary
operators):

++ Increment operator

— Decrement operator

For instance, the increment operator (++) adds one to the operand, as shown in the next line of

code:
oy Part
This is the same as:

Ch

X+=1;

The increment and decrement operators behave slightly differently based on the side of the
operand they are placed on. If the operand is placed before the operator (for example, ++x), the

106

Chapter 7 Data Types and Other Tokens

increment occurs before the value is taken for the expression. The result of y is 6 in the follow-
ing code fragment:

int x=5;

int y=++x; /] y=6 x=6

If the operator appears after the operand, the addition occurs after the value is taken. y is 5 as
shown in the next code fragment. Notice that in both examples, x is 6 at the end of the
fragment:

int x=5;

int y = x++; //y=5 x=6

Similarly, the decrement operator (—) subtracts one from the operand, and the timing of this is
in relation to the evaluation of the expression in which it occurs.

Character Variables

Characters in Java are a special set. They can be treated as either a 16-bit unsigned integer with
a value from 0 to 65535, or as a Unicode character. The Unicode standard makes room for the
use of many different languages’ alphabets. The Latin alphabet, numerals, and punctuation
have the same values as the ASCII character set (a set that is used on most PCs and with val-
ues between 0 and 256). The default value for a char variable is \u000o.

The syntax to create a character variable is the same as for integers and Booleans:
char myChar = 'b';

In this example, the myChar variable has been assigned the value of the letter 'b'. Notice the
tick marks (') around the letter b ? These tell the compiler that you want the literal value of b
rather than an identifier called b.

Floating-Point Variables

Floating-point numbers are the last category of native types in Java. Floating-point numbers are
used to represent numbers that have a decimal point in them (such as 5.3 or 99.234). Whole
numbers can also be represented, but as a floating point, the number 5 is actually 5.0.

In Java, floating-point numbers are represented by the types float and double. Both of these
follow a standard floating-point specification: IEEE Standard for Binary Floating-Point Arith-
metic, ANSI/IEEE Std. 754-1985 (IEEE, New York). The fact that these floating-point numbers
follow this specification—no matter what machine the application or applet is running on—is
one of the details that makes Java so portable. In other languages, floating-point operations are
defined for the floating-point unit (FPU) of the particular machine the program is executing on.
This means that the representation of 5.0 on an IBM PC is not the same as on, for example, a
DEC VAX, and the limits on both machines are shown in the following table:

Arrays 107

Floating- Minimum Positive Default Maximum

Point Value Value Value

Type

float 1.40239846e-45f 0 3.40282347e+38f

double 4.94065645841246544e-324d 0 1.7976931348623157e+308d

In addition, there are four unique states that floating-point numbers can have:

Negative infinity
Positive infinity
Zero
Not a number
These states are required, due to how the 754-1985 standard works, to account for number

rollover. For instance, adding 1 to the maximum number of a floating point results in a positive
infinity result.

Many of the operations that can be done on integers have an analogous operation that can be
done on floating-point numbers. The main exceptions are the bitwise operations. The operators
that may be used in expressions of type, float, or double are given in Table 7.5.

Table 7.5 Operations on float and double Expressions

Operation Description

=, 4=, -=, *= [= Assignment operators

==, 1= Equality and inequality operators

<, <=, > >= Inequality operators

+, - Unary sign operators

o5 Addition, subtraction, multiplication, and division operators

+=, .=, %= /= Addition, subtraction, multiplication, division, and assign operators
++, — Increment and decrement operators

Arrays Part
There are three types of reference variables:
Classes Ch
Interfaces

Arrays

108

Chapter 7 Data Types and Other Tokens

Classes and interfaces are so complicated that each gets its own chapter, but arrays are com-
paratively simple and are covered here with the primitive types.

An array is simply a way to have several items in a row. If you have data that can be easily
indexed, arrays are the perfect means to represent them. For instance, if you have five people
in a class and you want to represent all of their IQs, an array would work perfectly. An example
of such an array is:

int IQ[] = {123,109,156,142,131};

The next line shows an example of accessing the 1Q of the third individual:

int ThirdPerson = IQ[3];

Arrays in Java are somewhat tricky. This is mostly because, unlike most other languages, there
are really three steps to filling out an array, rather than one.

1. Declare the array. There are two ways to do this: Place a pair of brackets after the
variable type or place brackets after the identifier name. The following two lines produce
the same result:
int MyIntArray[];
int[] MyIntArray;

2. Create space for the array and define the size. To do this, you must use the keyword new,
followed by the variable type and size:

MyIntArray = new int[500];

3. Place data in the array. For arrays of native types (like those in this chapter), the array
values are all set to 0 initially. The next line shows how to set the fifth element in the
array:

MyIntArray[4] = 467;

At this point, you may be asking yourself how you were able to create the five-element array
and declare the values with the IQ example. The 1Q example took advantage of a shortcut. For
native types only, you can declare the initial values of the array by placing the values between
braces ({,}) on the initial declaration line.

Array declarations are composed of the following parts:

Array modifiers Optional The keywords public, protected,
private, or synchronized

Type name Required The name of the type or class being
arrayed

Brackets Required [1

Initialization Optional See Chapter 11 for more details about
initialization

Semicolon Required ;

Whitespace 109

Listing 7.3 shows several more examples of using arrays.

Listing 7.3 Examples of Declaring Arrays

long Primes[] = new long[1000000]; // Declare an array and assign
// some memory to hold it.

long[] EvenPrimes = new long[1]; // Either way, it's an array.

EvenPrimes[0] = 2; // Populate the array.

// Now declare an array with an implied 'new' and populate.

long Fibonacci[] = {1,1,2,3,5,8,13,21,34,55,89,144};
long Perfects[] = {6, 28}; // Creates two element array.
long BlackFlyNum[]; // Declare an array.

// Default value is null.
BlackFlyNum = new long[2147483647]; // Array indexes must be type int.

// Declare a two dimensional array and populate it.
long TowerOfHanoi[][]={{10,9,8,7,6,5,4,3,2,1},{},{}};

long[][1[] ThreeDTicTacToe; // Uninitialized 3D array.

There are several additional points about arrays you need to know:
Indexing of arrays starts with @ (as in C and C++). In other words, the first element of an
array is MyArray[0], not MyArray[1].

You can populate an array on initialization. This only applies to native types and allows
you to define the value of the array elements.

Array indexes must either be type int (32-bit integer) or be able to be cast as an int. As
aresult, the largest possible array size is 2,147,483,647. Most Java installations would fail
with arrays anywhere near that size, but that is the maximum defined by the language.

‘When populating an array, the rightmost index sequences within the innermost curly
braces.

Whitespace

Of some importance to most languages is the use of whitespace. Whitespace is any character
that is used just to separate letters on a line—a space, tab, line feed, or carriage return.

Part

In Java, whitespace can be declared anywhere within the application’s source code without
affecting the meaning of the code to the compiler. The only place that whitespace cannot be is
between a token, such as a variable or class name. This may be obvious, because the following
two lines are obviously not the same:

int myInt;
int my Int;

110

Chapter 7 Data Types and Other Tokens

Whitespace is optional, but because proper use of it has a big impact on the maintainability of
the source code for an application or applet, its use is highly recommended. Let’s take a look at
the ever popular HelloWorld application written with minimal use of whitespace:

public class HelloWorld{public static void main(String args
O[]1){System.out.println("Hello World!!");}}

Clearly, it is a little harder to ferret out what this application does, or even that you have started
at the beginning and finished at the end. Choose a scheme for applying meaningful whitespace
and follow it. You stand a better chance of knowing which close curly brace (}) matches which

open brace ({).

Comments

Comments are an important part of any language. Comments enable you to leave a message for
other programmers (or yourself) as a reminder of what is going on in that particular section of
code. They are not tokens and neither are any of their contents.

Java supports three styles of comments:

Traditional (from the C language tradition)
C++ style

javadoc (a minor modification on traditional comments)

Traditional Comments

A traditional comment is a C-style comment that begins with a slash-star (/*) and ends with a
star-slash (*/). Take a look at Listing 7.4, which shows two traditional comments.

Listing 7.4 Example Containing Two Traditional Comments

/* The following is a code fragment

* that is here only for the purpose

* of demonstrating a style of comment.
*/

double pi = 3.141592654 /* close enough for now */ ;

As you can see, comments of this sort can span many lines or can be contained within a single
line (outside a token). Comments cannot be nested. Thus, if you try to nest them, the opening
of the inner one is not detected by the compiler, the closing of the inner one ends the com-
ment, and subsequent text is interpreted as tokens. Listing 7.5 shows how this can become
very confusing.

Listing 7.5 An Example of a Single Comment That Looks Like Two

/* This opens the comment
/* That looked like it opened another comment but it is the same one
* This will close the entire comment */

Comments 111

C++ Style Comments

The second style of comment begins with a slash-slash (//) and ends when the current source
code line ends. These comments are especially useful for describing the intended meaning of
the current line of code. Listing 7.6 demonstrates the use of this style of comment.

Listing 7.6 An Example Using Traditional and C++ Style Comments

for (int j = 0, Boolean Bad = false; // initialize outer loop

j < MAX_ROW; // repeat for all rows
jt+) {
for (int k = 0; // initialize inner loop
k < MAX_COL; // repeat for all columns
k+t) {
if (NumeralArray[j]l[k] > '9') { // > highest numeric?
Bad = true; // mark bad
} // close if > '9'
if (NumeralArray[j]l[k] < '0') { // < lowest numeric?
Bad = true; // mark bad
} // close if < '0Q'
} // close inner loop
} // close outer loop

javadoc Comments

The final style of comment in Java is a special case of the first. It has the properties mentioned
previously, but the contents of the comment may be used in automatically generated documen-
tation by the javadoc tool.

CAUTION

Avoid inadvertent use of this style if you plan to use javadoc. The javadoc program will not be able to tell the
difference.

javadoc comments are opened with /**, and are closed with */. By using these comments in an
appropriate manner, you can use javadoc to automatically create documentation pages similar
to those of the Java API. Listing 7.7 shows a javadoc comment.

Listing 7.7 An Example of a javadoc Comment Part

/** This class is for processing databases

* Example use:

* xdb myDB = new xdb (myDbFile); ch
* System.out.println(xdb.showAll()); */

112 Chapter 7 Data Types and Other Tokens

Literals: Assigning Values

‘When you learned about assigning a Boolean variable, there were only two possible values:
true and false. For integers, the values are nearly endless. In addition, there are many ways
an integer value can be represented using literals.

The easiest way to assign a value to an integer value is with its traditional Roman numeral:
int j = 3;

However, what happens when you want to assign a number that is represented in a different
form, such as hexadecimal? To tell the computer that you are giving it a hexadecimal number,
you need to use the hexadecimal literal. For a number like 3, this doesn’t make much differ-
ence, but consider the number 11. Represented in hexadecimal (0x11), it has a value of 16!
Certainly, you need a way to make sure the computer gets this right.

The following statements all contain various literals:

int j=0;

long GrainOfSandOnTheBeachNum=1L;

short Mask1=0x007f;

static String FirstName = "Ernest";
static Char TibetanNine = '\u1049'
Boolean UniverseWillExpandForever = true;

Clearly, there are several types of literals. In fact, there are five major types of literals in the
Java language:

Boolean
Integer
Character
String
Floating-point

Integer Literals

Integer literals are used to represent numbers of integer types. Because integers can be ex-
pressed as decimal (base 10), octal (base 8), or hexadecimal (base 16) numbers, each has its
own literal. In addition, integer numbers can be represented with an optional uppercase L (‘L")
or lowercase L ('1') at the end, which tells the computer to treat that number as a long (64-bit)
integer.

As with C and C++, Java identifies decimal integer literals as any number beginning with a non-
zero digit (for example, any number between 1 and 9). Octal integer literal tokens are recog-
nized by the leading zero (045 is the same as 37 decimal); they may not contain the numerals 8
or 9. Hexadecimal integer literal tokens are known by their distinctive ' zero-X' at the begin-
ning of the token. Hex numbers are composed of the numerals 0 through 9—plus the Latin
letters A through F (case is not important).

Literals: Assigning Values 113

The largest and smallest values for integer literals are shown in each of these three formats:

Largest 32-bit integer literal 2147483647

017777777777

Ox7Effffff
Most negative 32-bit integer -2147483648
literal 020000000000

0x80000000

Largest 64-bit integer literal ~ 9223372036854775807L
O777777TT7TT7TI77T777777L

Ox7EEEEEEFEEEFEEET
Most negative 64-bit integer -9223372036854775808L
literal 0177777777777T777T7777777L
(D<iisiisiisiisiisit

CAUTION
Attempts to represent integers outside the range shown in this table result in compile-time errors.

Character Literals

Character literals are enclosed in single quotation marks. This is true whether the character
value is Latin alphanumeric, an escape sequence, or any other Unicode character. Single char-
acters are any printable character except hyphen (-) or backslash (\). Some examples of these
literals are 'a', 'A', '9', '+',' ',and '~"'.

Some characters, such as the backspace, would be difficult to write out like this, so to solve this
problem, these characters are represented by what are called escape characters. The escape
sequence character literals are in the form of ' \b'. These are found within single quotation
marks—a backslash followed by one of the following:

Another character (b, t,n, f,r, ", ', or \)

A series of octal digits

A u followed by a series of hex digits expressing a nonline-terminating Unicode character

The Escape characters are shown in Table 7.6.

Table 7.6 Escape Characters rart
Escape Literal Meaning o
"\b' \u0008 backspace
"\t \u0009 horizontal tab
"\n' \u000a linefeed

continues

114 Chapter 7 Data Types and Other Tokens

Table 7.6 Continued

Escape Literal Meaning
\f! \u00oc form feed
"\r' \u@0od carriage return
AN \u0022 double quotation mark
AR \u0027 single quotation mark
A \u005c backslash

CAUTION

Don’t use the \u format to express an end-of-line character. Use the \n or \r characters instead.

Character literals mentioned in Table 7.6 are called octal escape literals. They can be used to
represent any Unicode value from '\u000o' to '\uooff' (the traditional ASCII range). In octal
(base 8), these values are from \000 to \377. Note that octal numerals are from 0 to 7 inclusive.
Table 7.7 shows some examples of octal literals.

Table 7.7 Octal Values and Their Meaning

Octal Literal Meaning

'\007' \u0007 bell

"\101' \uoo41 'A’

"\141' \uoo61 'a’

"\o71' \uoe39 '9'

"\042' \u0022 double quotation mark
CAUTION

Character literals of the type in the previous table are interpreted very early by javac. As a result, using the
escape Unicode literals to express a line termination character—such as carriage return or line feed—results
in an end-of-line appearing before the terminal single quotation mark. The result is a compile-time error.
Examples of this type of character literal appear in the Meaning heading listed in the previous table.

Floating-Point Literals

Floating-point numbers can be represented in a number of ways. The following are all legiti-
mate floating-point numbers:

Literals: Assigning Values 115

1003.45 .00100345¢e6 100.345E+1100345e-2
1.00345e3 0.00100345e+6

Floating-point literals have several parts, which appear in the following order as shown in
Table 7.8.

Table 7.8 Floating-Point Requirements

Part Is It Required? Examples
‘Whole Number Not if fractional part is present. 0,1,2,...,9, Number Part 12345
Decimal Point Not if exponent is present;

must be there if there is a
fractional part.

Fractional Can’t be present if there is no 0,1, 14159,
decimal point. Must be there if 718281828,41421, 9944
there is no whole number part.

Exponent Only if there is no decimal point. e23, E-19, E6, e+307, e-1

Type Suffix No. The number is assumed f,F,d,D
to be double precision in the
absence of a type suffix.

The whole number part does not have to be a single numeral; case is not important for the E
which starts the exponent, or for the F or b, which indicate the type. As a result, a given num-
ber can be represented in several different ways as a literal:

Single precision floating-point literals produce compile-time errors if their values are non-
zero and have an absolute value outside the range from 1.40239846e-45f through
3.40282347e+38f.

The range for the non-zero absolute values of double precision literals is
4.94065645841246544e-324 through 1.7976931348623157e+308.

String Literals

Strings are not really native types. However, it is also necessary to talk about them to finish the
discussion of literals. String literals have zero or more characters enclosed in double quotation
marks. These characters may include the escape sequences listed in the “Character Literals”
section earlier in this chapter. Both double quotation marks must appear on the same line of
the source code, so strings may not directly contain a newline character. To achieve the new Ch
line effect, you must use an escape sequence such as \n or \r.

Part

The double-quotation mark (") and backslash (\) characters must also be represented using
the escape sequences (\" and \\).

116

Chapter 7 Data Types and Other Tokens

One nice feature Java inherits from C++ is that if you need to use a longer string, a string may
be created from concatenating two or more smaller strings with the string concatenation opera-
tor (+).

CAUTION

Although it is often convenient to use the + operator for strings, the current implementation of the String
class isn’t very efficient. As a result, doing lots of string concatenations can waste memory resources.

Some examples of string literals include:

"Java"
"Hello World!\n"
"The Devanagari numeral for 9 is \u@96f "
"Do you mean the European Swallow or the African Swallow?"
"x*% *ERROR 9912 Date/Time 1/1/1900 00:01"
+ " predates last backup: all files deleted!"
"If this were an actual emergency"

Creating and Destroying Objects

Memory management is a topic that is very important to all computer languages. Whenever
you create a new instance of a class, the Java runtime system sets aside a portion of memory in
which to store the information pertaining to the class. However, when the object falls out of
scope or is no longer needed by the program, this portion of memory is freed to be used again
by other objects.

‘While Java hides most of these operations from the programmer, it does provide you some
chances to optimize your code by performing certain additional tasks. While requiring you to
allocate memory explicitly for each new object with the new operator, it also enables you to
specialize your new object (by using its constructor methods) and ensures that it leaves no
loose ends when it is destroyed.

N O T E Unlike C and C++, which provide the programmer with a great deal of control over memory

management, Java performs many of these tasks for you. Most notably, in its aptly called
garbage collection, Java automatically frees objects when there are no references to the given object,
thereby making the C++ free () method unnecessary.

Creating Objects with the new Operator

When creating an instance of a class, it is necessary to set aside a piece of memory to store its
data. However, when you declare the instance at the beginning of a class, you are merely tell-
ing the compiler that a variable with a certain name will be used in the class, not to actually
allocate memory for it. Consequently, it is necessary to create the memory for the variable
using the new operator. Examine the following code:

Creating and Destroying Objects 117

public class Checkers

{
private GameBoard board;
public Checkers() {
board = new GameBoard("Checkers");
board.cleanBoard();

You see that although the variable board is declared in the third line, you must also allocate
memory for it using the new operator. The syntax of a statement involving the new operator is:

instanceofClass = new ClassName(optional_parameters);

Quite simply, the line tells the compiler to allocate memory for an instance of the class and
points the variable to the new section of memory. In the process of doing this, the compiler also
calls the class’s constructor method and passes the appropriate parameters to it.

Pointers: Fact or Fiction?

Java claims not to possess pointers and, as a result, prevents the programmer from making some of
the mistakes associated with pointer handling. Nevertheless, although it chooses not to adopt the
pointer-based mindset, Java is forced to deal with the same issues of allocating memory and
creating references to these locations in memory.

Thus, although assigned a different name, references are Java’s version of pointers. Although you
cannot perform some of the intrusive operations with pointers as you can with C, there are striking
parallels between pointer assignment and object creation. You must first declare a variable (the
reference). Then you must allocate adequate memory and assign the reference to it. Furthermore,
because you may later decide to set a reference equal to another type of the same variable (or null),
Java’s reference system is extremely similar to C’s system of pointers.

While Java’s implementation effectively hides the behavior of pointers from the programmer and
shields you from their pitfalls, it is nevertheless a good idea to consider what is occurring behind the
scenes when you create and refer to a variable.

Ch

Methods

In this chapter

Parts of a Method 120
Blocks and Statements 128
Separators 130

CHAPTER

120

Chapter 8 Methods

Parts of a Method

Methods are truly the heart and soul of Java programs. Methods serve the same purpose in
Java that functions do in C, C++, Pascal. All execution, which takes place in any applet or appli-
cation, takes place within a method, and only by combining multiple dynamic methods are
large-scale quality Java applications written.

Like C and C++ functions, Java methods are the essence of the class and are responsible for
managing all tasks that will be performed. A method has two parts: a declaration and a body.
‘While the actual implementation of the method is contained within the method’s body, a great
deal of important information is defined in the method declaration.

The simplest method (and least useful) would look like this:
void SimpleMethod(){

Declaration

The declaration for a method is similar to the first line in the previous section. At the very least,
it specifies what the method will return, and the name the method will be known by. Ordinarily,
as you will soon see, more options than these two are used. In general, method declarations
have the form

access_specifier modifier return_value nameofmethod (parameters)
throws ExceptionList

where everything in italics is optional.

Access Specifiers The first option for a method is the access specifier. Access specifiers are
used to restrict access to the method. Regardless of what the access specifier is, though, the
method is accessible from any other method in the same class. However, although all methods
in a class are accessible by all other methods in the same class, there are certain necessary
tasks that you might not want other objects to be able to perform. You learn more about
classes in Chapter 11, “Classes.” For now you look at how the access modifiers can change a
method.

Public The public modifier is the most relaxed modifier possible for a method. By specifying
amethod as public, it becomes accessible to all classes regardless of their lineage or their
package. In other words, a public method is not restricted in any way. For example:

public void toggleStatus()

Protected The second possible access modifier is protected. Protected methods can be
accessed by any class that extends the current class. For instance, the class
java.awt.Component has a protected method paramString(), which is used in classes such as
java.awt.Button, but is inaccessible to any class that you might create that does not extend
Component. For example:

protected void toggleStatus()
See “Using Packages to Organize Your Code,” p.189

Parts of a Method 121

N O T E If you are having a compile-time error caused by an attempt to access a method not visible Part
to the current scope, you might have trouble diagnosing the source of your problems. This
is because the error message does not tell you that you are attempting to access a protected method.

Instead it resembles the following: Ch

No method matching paramString() found in class java.awt.Button.

java.awt.Button.paramString() is a protected method in java.awt.Button.This is because
the restricted methods are effectively hidden from the non-privileged classes. Therefore, when
compiling a class that does not meet the security restrictions, such methods are hidden from the
compiler.

Also note that you encounter a similar error message when trying to access a private or protected
method outside of its range of access, as well as when you attempt to access a field from an
unprivileged class.

Private Private is the highest degree of protection that can be applied to a method.

A private method is only accessible by those methods in the same class. Even classes that
extend from the current class do not have access to a private class. For example:

private void toggleStatus()

Default Those methods that do not declare their access level have a special accessibility in
Java. These methods are accessible to any class in the rest of the current package, but not any
classes outside the current package. For example:

package abc;
public class NetworkSender {
void sendInfo(String mes) {
system.out.println(mes)
}
}

package abc;
public class NetworkSenderTest {
String mes = "test";
void informOthers(String mes) {
NetworkSender messenger;
messenger = new NetworkSender();
messanger.sendInfo(mes); // this is legal
}
}

package xyz;
import NetworkSender;
public class NetworkSenderTest2 extends NetworkSender{
String mes = "test";
void informOthers(String mes) {
NetworkSender messenger;
messenger = new NetworkSender();
messanger.sendInfo(mes); // this is NOT legal

}

122

Chapter 8 Methods

The first statement invokes sendInfo() as a method belonging to the NetworkSender. This is
legal because default methods are accessible to other classes in the same package (both
NetworkSender and NetworkSenderTest are in the package abc). However, in
NetworkSenderTest2 the statement is illegal because it attempts to invoke sendInfo() on an
instance of the NetworkSender class, but NetworkSenderTest2 is in a different package (xyz).
Even though NetworkSenderTest2 is a subclass of NetworkSender, it is referencing sendInfo ()
not as a method belonging to its superclass, but rather as a method belonging to an instance of
NetworkSender.

Modifiers Method modifiers enable you to set properties for the method, such as where it
will be visible and how subclasses of the current class will interact with it.

Static Static, or class, variables and methods are closely related. For example:
static void toggleStatus()

It is important to differentiate between the properties of a specific instance of a class and the
class itself. In the following code (see Listing 8.1), you create two instances of the Elevator
class and perform some operations with them.

Listing 8.1 Hotel.java—Hotel Example with Instance Methods

class Elevator {
boolean running = true;
void shutDown() {
running = false;
}
}

class FrontDesk {
private final int EVENING = 8;
Elevator NorthElevator, SouthElevator;

FrontDesk() { // the class constructor
NorthElevator new Elevator();
SouthElevator = new Elevator();

}

void maintenance(int time) {
if (time == EVENING)
NorthElevator.shutDown();
}

void displayStatus() {

// code is very inefficient, but serves a purpose
System.out.print("North Elevator is ");

if (!(NorthElevator.running))

System.out.print("not ");

System.out.println("running.");
System.out.print("South Elevator is ");

if (!(SouthElevator.running))

Parts of a Method 123

System.out.print(" not ");
System.out.println("running.");

}

Part

}
Ch

public class Hotel {
public static void main(String args[]) {
FrontDesk lobby;
lobby = new FrontDesk();
System.out.println("It's 7:00. Time to check the elevators.");
lobby.maintenance(7);
lobby.displayStatus();

System.out.println();
System.out.println("It's 8:00. Time to check the elevators.");
lobby.maintenance(8);
lobby.displayStatus();

Both NorthElevator and SouthElevator are instances of the Elevator class. This means that
each is created with its own running variable and its own copy of the shutDown () method.
Although these are initially identical for both elevators, as you can see from the preceding
example, the status of running in NorthElevator and SouthElevator does not remain equal
once the maintenance () method is called.

Consequently, if compiled and run, the preceding code produces the following output:

C:\dev>\JDK1.2\java\bin\java Hotel

It's 7:00. Time to check the elevators.
North Elevator is running.

South Elevator is running.

It's 8:00. Time to check the elevators.
North Elevator is not running.

South Elevator is running.

N O T E In the preceding example, you might notice a rather funny looking method named
FrontDesk (). What is it? As you learn in the “Constructors” section in Chapter 11, this is

the constructor method for the FrontDesk class. Called whenever an instance of FrontDesk is

created, it provides you the ability to initialize fields and perform other such preparatory operations.

Variables and methods such as running and shutDown () are called instance variables and in-
stance methods. This is because every time the Elevator class is instantiated, a new copy of
each is created. In the preceding example, while the value of the running variable certainly can
change because there are two copies of it, changing one does not change the other. Therefore,
you can track the status of the NorthElevator and SouthElevator separately.

However, what if you want to define and modify a property for all elevators? Examine the ex-
ample in Listing 8.2 and note the additions.

124 Chapter 8 Methods

Listing 8.2 Hotel2.java—Hotel Example with Static Methods

class Elevator {
boolean running = true;
static boolean powered = true;
void shutDown() {
running = false;

}

static void togglePower() {
powered = !powered;

}

}

class FrontDesk {
private final int EVENING = 8;
private final int CLOSING 10;
private final int OPENING 6;
Elevator NorthElevator, SouthElevator;
FrontDesk() {
NorthElevator = new Elevator();
SouthElevator = new Elevator();

}

void maintenance(int time) {
if (time == EVENING)
NorthElevator.shutDown();
else if ((time == CLOSING) ,, (time == OPENING))
Elevator.togglePower();

}

void displayStatus() {
// Code is very inefficient, but serves a purpose.
System.out.print("North Elevator is ");
if (!(NorthElevator.running))
System.out.print("not ");
System.out.println("running.");
System.out.print("South Elevator is ");
if (!(SouthElevator.running))
System.out.print(" not ");
System.out.println("running.");
System.out.print("The elevators are ");
if (!(Elevator.powered))
System.out.print("not ");
System.out.println("powered.");

}

public class Hotel2 {
public static void main(String args[]) {
FrontDesk lobby;
lobby = new FrontDesk();
System.out.println("It's 7:00. Time to check the elevators.");
lobby.maintenance(7);
lobby.displayStatus();

System.out.println();
System.out.println("It's 8:00. Time to check the elevators.");

Parts of a Method 125

lobby.maintenance(8);
lobby.displayStatus(); Part

System.out.println();
System.out.println("It's 10:00. Time to check the elevators."); Ch
lobby.maintenance(10);
lobby.displayStatus();

In this case, the variable powered is now a static variable, and the method togglePower () is a
static method. This means that each is now a property of all Elevator classes, not the specific
instances. Invoking either the NorthElevator.togglePower (), SouthElevator.togglePower (),
or Elevator.togglePower () method would change the status of the powered variable in both
classes.

Consequently, the code would produce the following output:

C:\dev>\JDK1.2\java\bin\java Hotel2

It's 7:00. Time to check the elevators.
North Elevator is running.

South Elevator is running.

The elevators are powered.

It's 8:00. Time to check the elevators.
North Elevator is not running.

South Elevator is running.

The elevators are powered.

It's 10:00. Time to check the elevators.
North Elevator is not running.

South Elevator is running.

The elevators are not powered.

Placing the static modifier in front of a method declaration makes the method a static
method. While nonstatic methods can also operate with static variables, static methods can
only deal with static variables and static methods.

Abstract Abstract methods are simply methods that are declared, but are not implemented in
the current class. The responsibility of defining the body of the method is left to subclasses of
the current class. For example:

abstract void toggleStatus();

CAUTION

Neither static methods nor class constructors can be declared to be abstract. Furthermore, you should
not make abstract methods final, because doing so prevents you from overriding the method.

Final By placing the keyword final in front of the method declaration, you prevent any
subclasses of the current class from overriding the given method. This ability enhances the
degree of insulation of your classes, and you can ensure that the functionality defined in this
method will never be altered in any way. For example:

final void toggleStatus()

126

Chapter 8 Methods

Native Native methods are methods that you want to use, but do not want to write in Java.
Native methods are most commonly written in C++ and can provide several benefits such as
faster execution time. Like abstract methods, they are declared simply by placing the modifier
native in front of the method declaration and by substituting a semicolon for the method body.

However, it is also important to remember that the declaration informs the compiler as to the
properties of the method. Therefore, it is imperative that you specify the same return type and
parameter list as can be found in the native code.

Synchronized By placing the keyword synchronized in front of a method declaration, you
can prevent data corruption that may result when two methods attempt to access the same
piece of data at the same time. Although this might not be a concern for simple programs, after
you begin to use threads in your programs, this can become a serious problem. For example:

synchronized void toggleStatus()
See “What Are Threads?” p. 208

Returning Information Although returning information is one of the most important things a
method can do, there is little to discuss by way of details about returning information. Java
methods can return any data type ranging from simple ones, such as integers and characters,
to more complex objects. (This means that you can return things such as strings as well.)

Keep in mind that unless you use the keyword void as your return type, you must return a
variable of the type specified in your declaration.

For example, the following method is declared to return a variable of type boolean. The return
is actually accomplished by employing the return (either true or false) statement in the third
and fourth lines:
public synchronized boolean isEmpty(int x, . ét y) {
if (board[x][y] == EMPTY)
return true;
return false;

}

Method Name The rules regarding method names are quite simple and are the same as any
other Java identifier: Begin with a Unicode letter (or an underscore or dollar sign) and continue
with only Unicode characters.

Parameter Lists Simply put, the parameter list is the list of information that will be passed to
the method. It is in the following form and can consist of as many parameters as you want:

DataType VariableName, DataType VariableName,...

N O T E If you have no parameters, Java requires that you simply leave the parentheses empty. (This

is unlike other languages that permit you to omit a parameter list, or C, which requires the
keyword void.) Therefore, a method that took no parameters would have a declaration resembling the
following:

public static final void cleanBoard()

Parts of a Method 127

Passing Parameters in Java Part
In C and C++, variables are always passed by value. In Pascal, they are always passed by reference.
In Java, however, it depends on what data type you are using. This is probably the single most
ambiguous part of the entire Java language. Here is the rule: If the type being passed is a primitive
type (such as int, char, or float), the result is passed by value. If, however, the type being passed
is an object (such as a class you created), the object is passed by reference.

Ch

What does this mean? As shown in Listing 8.2, if you pass an int to a method and that method
changes the int, in the old class the int still has the value it did before. However, when a class is
passed and a variable is changed, the variable is changed in the old method, too. Take a look at
Listing 8.3.

Listing 8.3 PassingDemo.java—The Difference Between Passing an Object
and a Primitive Type

public class passingDemo {

public void first(){
x0Object o = new xObject ();
0.X = 5;
int x = 5;
changeThem (x, 0);
System.out.println();
System.out.println("Back in the original method");
System.out.println("The value of o0.x is "+0.X);
System.out.println("But, The value of x is now "+X);

public void changeThem (int x, xObject 0){
X =9;
0.X = 9;
System.out.println("In the changThem method");
System.out.println("The value of o0.x is "+0.X);
System.out.println("The value of x is now "+X);

}

public static void main(String args[]){
passingDemo myDemo = new passingDemo();
myDemo.first();

class xObject {
public int x =5;
}

128 Chapter 8 Methods

The resulting output from this code is

In the changeThem method
The value of o.x is 9
The value of x is 9

Back in the original method

The value of o.x is 9
The value of x is 5

Pass by Reference or Pass by Value? One important thing to understand about any pro-
gramming language is whether the values are passed into a method by value or by reference.
If a language uses pass by reference, when you pass a value into a method as a parameter, and
then change the value it is changed back in the calling program as well. On the other hand, if a
language uses pass by value, only the value is passed into the method and any changes aren’t
present in the calling method.

Java is actually a mixed system. Native types (byte,short,char,int,long,float,double and bool-
ean) are passed by value. All objects however are passed by reference. This is why in the
example in the previous section the value of X (a native) is not changed in the original method.
On the other hand since o (an object) is passed by reference, 0.x has been changed when it’s
printed out in the original method.

Blocks and Statements

Methods and static initializers in Java are defined by blocks of statements. A block of state-
ments is a series of statements enclosed within curly-braces {}. When a statement’s form calls
for a statement or substatement as a part, a block can be inserted in the substatement’s place.

The simplest block {} is shown in the following example:

public void HiThere() {
}

The next example is only slightly more complex:

public void HiThere(){
int Test;
Test = 5;
}
Code blocks are not only integral for defining the start and end of a method, but they can also
be used in a variety of locations throughout your code. One very important aspect of a block is

that it is treated lexically as one instruction. This means that you can put together large blocks
of code that will be treated as one instruction line.

There is nothing in the definition of Java that prevents the programmer from breaking code
into blocks even though they are not specifically called for, but this is seldom done. The follow-
ing code fragment demonstrates this legal but seldom-performed technique:

Blocks and Statements 129

String Batter;

Part
Short Inning, Out, Strikes;
Batsman Casey; // Object of class Batsman.
if ((Inning == 9) && (Out==2) && (Batter.equals("Casey"))) { Ch

Casey.manner("ease");

Casey.bearing("pride");

{ // Begins new block for no reason.
int OnlyExistsInThisBlock = 1;
Casey.face("smile");
Casey.hat("lightly doff");

3 // Ends superfluous blocking.

}

Notice that this fragment contains two complete blocks. One is the substatement of the if
statement, and the other is the unneeded block, which contains the unused integer
OnlyExistsInThisBlock.

Labeled Statements

Any statement in Java can have a label. The actual label has the same properties as any other
identifier; it cannot have the same name as a keyword or already declared local identifier. If it
has the same name as a variable, method, or type name that is available to this block, then
within that block, the new label takes precedence and that outside variable, method, or type is
hidden. The label has the scope of the current block. The label is followed by a colon.

Labels are only used by the break and continue statements.

An example of labeled statements appears in the following code fragment:

writhing:
Pitcher.GrindsBall("Hip");
Casey.eye("Defiance Gleams");
Casey.lip("Curling Sneer");
pitch: while (strike++ < 2) {
if (strike < 2) continue pitch;
break writhing;

}

The writhing statement is simple labeling of an expression statement, in this case, a method
call from a rather complicated object called Pitcher. The pitch statement is labeling an itera-
tion statement (while). This label is used as a parameter for the continue statement.

Scope
Another use of blocks is to control what is known as the scope of an object. When you declare a
variable, it is only available for your use within a given code block. For instance, say you had

the following block:
{

int x= 5;
}

System.out.println ("X is ="+x); // This line is not valid.

130 Chapter 8 Methods

The last line of this code would not be valid, because the computer creates the x variable, but
when the computer reaches the closing brace, it gets rid of x.

Separators

Separators are single-character tokens, which (as their name implies) are found between other
tokens. There are nine separators, which are loosely described as follows:

(

Used both to open a parameter list for a method and to establish a precedence for
operations in an expression

Used both to close a parameter list for a method and to establish a precedence for
operations in an expression

Used both to open a parameter list or used to begin a block of statements or an
initialization list
Used to close a block of statements or an initialization list

Used both to open a parameter list for a Precedes an expression used as an array
index

Follows an expression used as an array index

Used both to end an expression statement and to separate the parts of a for
statement

Used as a list delimiter in many contexts

Used both as a decimal point and to separate such things as package name from class
name from method or variable name

Using Expressions

In this chapter

What Is an Expression? 132

How Expressions Are Evaluated 132

Of Special Interest to C Programmers 136
Bitwise Operators 136

The Shift Operators 138

Type Conversions 139

Addition of Strings 141

CHAPTER

132

Chapter 9 Using Expressions

What Is an Expression?

Expressions—combinations of operators and operands—are one of the key building blocks of
the Java language, as they are of many programming languages. Expressions allow you to
perform arithmetic calculations, concatenate strings, compare values, perform logical opera-
tions, and manipulate objects. Without expressions, a programming language is dead—useless
and lifeless.

You've already seen some expressions, mostly fairly simple ones, in other chapters in this
book. Chapter 7, “Data Types and Other Tokens,” in particular showed you that operators—
one of the two key elements in an expression—form one of the main classifications of Java
tokens, along with such things as keywords, comments, and so on. In this chapter, you take a
closer look at how you can use operators to build expressions—in other words, how to put
operators to work for you.

There are all kinds of technical definitions of what an expression is, but at its simplest, an ex-
pression is what results when operands and operators are joined together. Expressions are
usually used to perform operations—manipulations—on variables or values. In Table 9.1, you
see several legal Java expressions.

Table 9.1 Legal Java Expressions

Name of Expression Example

Additive expression X+5

Assignment expression x=5

Array indexing sizes[11]

Method invocation Triangle.RotatelLeft(50)

How Expressions Are Evaluated

When an expression is simple, like those shown in Table 9.1, figuring out the result of the
expression is easy. When the expression becomes more detailed and more than one operator is
used, things get more complicated.

In Chapter 7, you learned that expressions are just combinations of operators and operands.
And while that definition may be true, it’s not always very helpful. Sometimes you need to
create and use pretty complex expressions—maybe to perform some kind of complicated
calculation or other involved manipulation. To do this, you need a deeper understanding of how
Java expressions are created and evaluated. In this section, you look at three major tools that
will help you in your work with Java expressions: operator associativity, operator precedence,
and order of evaluation.

How Expressions Are Evaluated 133

Operator Associativity

The easiest of the expression rules is associativity. All the arithmetic operators are said to
associate left-to-right. This means that if the same operator appears more than once in an ex-
pression—as the plus in a+b+c does—then the leftmost occurrence is evaluated first, followed
by the one to its right, and so on. Consider the following assignment statement:

X = atb+c;
) Part

In this example, the value of the expression on the right of the = is calculated and assigned to
the variable x on the left. In calculating the value on the right, the fact that the + operator asso-
ciates left-to-right means that the value of a+b is calculated first, and the result is then added to
c. The result of that second calculation is what is assigned to x. So if you were to write it using
explicit parentheses, the line would read:

Ch

x=((atb)+c);

N O T E Notice that in the previous example, a+b+c, the same operator appears twice. It's when
the same operator appears more than once—as it does in this case—that you apply the
associativity rule.

You would use the associativity rule in evaluating the right sides of each of the following as-
signment statements:

volume = length * width * height ;
OrderTotal = SubTotal + Freight + Taxes ;
PerOrderPerUnit = Purchase / Orders / Units ;

Of these expressions, only the last one would result in a different way if you associated the
expression incorrectly. The correct answer for this expression is

(Purchase / Orders)/ Units

However, evaluated incorrectly the result would be
Purchase / (Orders/Units)

which can also be written as

(Purchase * Units)/ Orders

which is obviously not the same as the correct expression.

Precedence of Java Operators

When you have an expression that involves different operators, the associativity rule doesn’t
apply, because the associativity rule only helps figure out how combinations of the same opera-
tor would be evaluated. Now you need to know how expressions using combinations of differ-
ent operators are evaluated.

134

Chapter 9 Using Expressions

Precedence helps to determine which operator to act on first. If you write A+B*C, by standard
mathematics you would first multiply B and C and then add the result to A. Precedence helps

the computer to do the same thing. The multiplicative operators (*, /, and %) have higher pre-
cedence than the additive operators (+ and -). So, in a compound expression that incorporates
both multiplicative and additive operators, the multiplicative operators are evaluated first.

Consider the following assignment statement, which is intended to convert a Fahrenheit tem-
perature to Celsius:

Celsius = Fahrenheit - 32 * 5 / 9;

The correct conversion between Celsius and Fahrenheit is that the degrees Celsius are equal
degrees Fahrenheit minus 32 times 5 divided by 9. However, in the equation, because the * and
/ operators have higher precedence, the sub-expression 32*5/9 is evaluated first (yielding the
result 17) and that value is subtracted from the Fahrenheit variable.

To correctly write this equation, and whenever you need to change the order of evaluation of
operators in an expression, you can use parentheses. Any expression within parentheses is
evaluated first. To perform the correct conversion for the preceding example, you would write:

Celsius = (Fahrenheit - 32) * 5 / 9;

N O T E Interestingly, there are some computer languages that do not use rules of precedence.
Some languages, like APL for example, use a straight left-to-right or right-to-left order of
evaluation, regardless of the operators involved.

Use of parentheses would also help with the following examples:
NewAmount = (Savings + Cash) * ExchangeRate ;
TotalConsumption = (Distance2 - Distancel) * ConsumptionRate ;

The precedence of the unary arithmetic operators—in fact all unary operators—is very high;
it’s above all the other arithmetic operators. In the following example, you multiply the value -5
times the value of Xantham, and not Xantham times five negated (although the results are the
same):

Ryman = -5 * Xantham;

Summary—The Operator Table

Table 9.2 is what is known as the precedence table. The operators with the highest precedence
are at the top. Operators on the same line are of equal precedence.

All these operators associate left-to-right, except the unary operators, assignments, and the
conditional. For any single operator, operand evaluation is strictly left-to-right, and all operands
are evaluated before operations are performed.

How Expressions Are Evaluated 135

Table 9.2 The Complete Java Operator Precedence Table

Description Operators

High Precedence 10

Instance Of Unary +o- =l - -

Multiplicative * /% Part
Additive + -

Shift << >>>>> ch
Relational <<=>=> >

Equality ===

Bitwise AND &

Bitwise XOR 8

Bitwise OR !

Conditional-AND &&

Conditional-OR .

Conditional ?:

Assignment = op=

Order of Evaluation
Many people, when they first learn a language, confuse the issue of operator precedence with
order of evaluation. The two are actually quite different. The precedence rules help you deter-
mine which operators come first in an expression and what the operands are for an operator.
For example, in the following line of code, the operands of the * operator are a and (b+c):
d=a* (b+tc) ;
The order of evaluation rules, on the other hand, help you to determine not when operators are
evaluated, but when operands are evaluated.
Here are three rules that should help you remember how an expression is evaluated:

For any binary operator, the left operand is evaluated before the right operand.

Operands are always evaluated fully before the operator is evaluated; for example, before
the operation is actually performed.

If a number of arguments are supplied in a method call, separated by commas, the
arguments are evaluated strictly left-to-right.

136

Chapter 9 Using Expressions

Of Special Interest to C Programmers

Because Java is an evolutionary outgrowth of C and C++, it’s understandable that the expres-
sion syntax for the three languages is so similar. If you already know C, it’s important that you
keep in mind that the three languages are only similar—not identical.

One very important difference is that order of evaluation is guaranteed in Java, and is generally
undefined or implementation-specific in C. In Java, the remainder (%), increment (++), and
decrement (- -) operators are defined for all primitive data types (except Boolean); in C, they
are defined only for integers.

Relational and equality operators in Java produce a Boolean result; in C, they produce results of
type int. Furthermore, the logical operators in Java are restricted to Boolean operands.

Java supports native operations on strings—including string concatenation and string assign-
ment. C does not have this support for strings.

In C, using the right-shift operator (>>) on a signed quantity results in implementation-specific
behavior. Java avoids this confusion by using two different right-shift operators—one that pads
with zeroes and the other that does sign-extension.

Bitwise Operators

If you have a number, such as 0x0F2 (which is a hexadecimal number equal to 242), do you
know how to get rid of just the 2? Do you know how to find out which of the bits of 0x0F2 are
set the same as they are for the number 0x0A1? Bitwise operators allow you to solve these
problems easily. (To answer the question: 0x0F2&0x0F0 and 0x0F2&0x0A1.)

The bitwise operators are a set of operators that are either very important or completely unim-
portant to you depending on what you are doing. When you need a bitwise operator, it is rarely
the case that you can substitute any other operation to easily reproduce the same results. But,
at the same time, it’s highly likely that most of the work you do will not require you to perform
such esoteric calculations.

So what are bitwise operators? Bitwise operators work on the fundamental level of how values
are stored in a computer. Numbers are stored in sequences of on and off, known as bits, which
are most often translated to the binary numbers 1 and 0. A typical variable such as an int has
32 of these 1s and Os in order to make up a complete number. It is often helpful to be able to
manipulate these values directly, and bitwise operators are the means to do that.

Consider a simple example using bytes. A byte comprises eight bits of memory. Each of the
eight bits can have the value of 0 or 1, and the value of the whole quantity is determined by
using base 2 arithmetic, meaning that the rightmost bit represents a value of 0 or 1; the next bit
represents the value of 0 or 2; the next represents the value 0 or 4, and so on, where each bit
has a value of 0 and 2" and n is the bit number. Table 9.3 shows the binary representation of
several numbers.

Bitwise Operators 137

Table 9.3 Some Base 10 Values and Their Base 2 Equivalents

Base 10 Value 128 64 32 16 8 4 2 1
17 0 0 0 0 1 0 0 0 1
63 0 0 0 1 1 1 1 1 1
75 0 0 1 0 0 1 0 1 1 Part
131 0 1 0 0 0 0 0 1 1
Ch

To find the Base 10 value of the numbers in Table 9.3, you need to add together the number at
the top of the column for each of the columns containing a 1. For instance, the first row would
be

16+1 = 17

The numeric quantities in Table 9.3 are all positive integers, and that is on purpose. Negative
numbers are a little more difficult to represent. For any integer quantity in Java, except char,
the leftmost bit is reserved for the sign-bit. If the sign-bit is 1, then the value is negative. The
rest of the bits in a negative number are also determined a little differently, in what is known as
two’s-complement, but don’t worry about that now. Floating-point numbers also have their own
special binary representation, but that’s beyond the scope of this book.

The three binary bitwise operators perform the logical operations of AND, OR, and Exclusive
OR (sometimes called XOR) on each bit in turn. The three operators are:

Bitwise AND: &

Bitwise OR: !

Bitwise Exclusive OR: *

Each of the operators produces a result based on what is known as a truth table. Each of the
operators has a different truth table, and the next three tables show them.

To determine the results of a bitwise operator, it is necessary to take a look at each of the oper-
ands as a set of bits and compare the bits to the appropriate truth table.

First Value (A) Second Value (B) Resulting Value
(A&B)

0

_ o = O
—_ o O O

0
1
1

138 Chapter 9 Using Expressions

First Value (a) Second Value (b) Resulting Value
(AB)

0 0 0

0 1 1

1 0 1

1 1 1

First Value (a) Second Value (b) Resulting Value
(A~ B)

0 0 0

0 1 1

1 0 1

1 1 0

The operands of the bitwise operators can also be Boolean, in addition to being any other
integer type.

Table 9.4 shows the results of each of these operations performed on two sample values. First,
you see the Boolean values of the two numbers 11309 and 798, and then the resulting bit se-
quences after the various bit operators are applied.

Table 9.4 Bitwise Operation Examples

Expression Binary Representation
11309 0010 1100 0010 1101
798 0000 0011 0001 1110
11309 & 798 0000 0000 0000 1100
11309 | 798 0010 1111 0011 1111
11309 ~ 798 0010 1111 0011 0011

The Shift Operators

There are three shift operators in Java, as follows:
Left shift: <<
Signed right shift: >>
Unsigned right shift: >>>

Type Conversions 139

The shift operators move (shift) all of the bits in a number to the left or the right. The left oper-
and is the value to be shifted, while the right operand is the number of bits to shift by, so in the
equation

17<<2

the number 17 will be shifted two bits to the left. The left shift and the unsigned right shift
populate the vacated spaces with zeroes. The signed right shift populates the vacated spaces

with the sign bit. The following table shows two 8-bit quantities, 31 and -17, and what happens part
when they are shifted:
Quantity X x<<2 x>>2 x>>>2 Ch
31 00011111 01111100 00000111 00000111
-17 11101111 10111100 11111011 00111011

The precedence of the shift operators is above that of the relational operators, but below the
additive arithmetic operators.

Type Conversions

One very critical aspect of types in general in any language is how they interrelate. In other
words, if you have a float such as 1.2, how does that relate to, say, an integer? How does the
language handle a situation where a byte (8 bits) is added to an int (32 bits)? To deal with
these problems, Java performs type conversions. Java is called a strongly typed language,
because at compile time the type of every variable is known. Java performs extensive type-
checking (to help detect programmer errors) and imposes strict restrictions on when values
can be converted from one type to another.

There are really two different kinds of conversions:

Explicit conversions occur when you deliberately change the data type of a value.

Implicit conversions occur any time two unequal types are represented in an equation,
and they can be adjusted to be the same time. This can happen without your interven-
tion, even without your knowledge.

Briefly then, casting and converting are the way Java allows the use of a variable of one type to
be used in an expression of another type.

N O T E InC,almost any data type can be converted to almost any other across an assignment

statement. This is not the case in Java, and implicit conversions between numeric data
types are only performed if they do not result in loss of precision or magnitude. Any attempted
conversion that would result in such a loss produces a compiler error, unless there is an explicit
cast.

Implicit Type Conversions

Java performs a number of implicit type conversions when evaluating expressions, but the
rules are simpler and more controlled than in the case of C or even C++.

140

Chapter 9 Using Expressions

For unary operators (such as ++ or - -), the situation is very simple: Operands of type byte or
short are converted to int, and all other types are left as is.

For binary operators, the situation is only slightly more complex. For operations involving only
integer operands, if either of the operands is long, then the other is also converted to long;
otherwise, both operands are converted to int. The result of the expression is an int, unless
the value produced is so large that a 1ong is required. For operations involving at least one
floating-point operand, if either of the operands is double, then the other is also converted to
double and the result of the expression is also a double; otherwise, both operands are con-
verted to float, and the result of the expression is also a float. Consider the expressions in
Listing 9.1.

Fortunately, implicit conversions take place almost always without your wanting or needing
to know. The compiler handles all the details of adding bytes and ints together so you don’t
have to.

Listing 9.1 Some Mixed Expressions Showing Type Conversions

short Width;
long Length, Area;
double TotalCost, CostPerFoot;

// In the multiplication below, Width will be converted to a
// long, and the result of the calculation will be a long.
Area = Length * Width;

// In the division below, Area will be converted to a double,
// and the result of the calculation will be a double.
CostPerFoot = TotalCost / Area ;

Cast Operator

Normally with implicit conversion, the conversion is so natural that you don’t even notice.
Sometimes, though, it is important to make sure a conversion occurs between two types. Doing
this type of conversion requires an explicit cast, by using the cast operator.

The cast operator consists of a type name within round brackets. It is a unary operator with
high precedence and comes before its operand, the result of which is a variable of the type
specified by the cast, but which has the value of the original object. The following example
shows an example of an explicit cast:

float x = 2.0;

float y = 1.7;

x = ((int)(x/y) *y)

When x is divided by y in this example, the type of the result is a floating-point number. How-
ever, the value of x/y is explicitly converted to type int by the cast operator, resulting in a 1,
not 1.2. So the end result of this equation is that x equals 1.7.

Addition of Strings 141

Not all conversions are legal. For instance, Boolean values cannot be cast to any other type,
and objects can only be converted to a parent class.

See “Declaring a Class,” p. 85

N O T E Because casting involves an unconditional type conversion (if the conversion is legal), it is
also sometimes known as type coercion.

Part
Casting and Converting Integers

The four integer types can be cast to any other type except Boolean. However, casting into a Ch
smaller type can result in a loss of data, and a cast to a floating-point number (float or double)

will probably result in the loss of some precision, unless the integer is a whole power of two

(for example, 1, 2, 4, 8,...).

Casting and Converting Characters

Characters can be cast in the same way 16-bit (short) integers are cast; that is, you can cast
them to be anything. But, if you cast into a smaller type (byte), you lose some data. In fact, even
if you convert between a character and a short, you can lose some data.

N O T E If you are using the Han character set (Chinese, Japanese, or Korean), you can lose data by
casting a char into a short (16-bit integer), because the top bit will be lost.

Casting and Converting Booleans

There are not any direct ways to cast or convert a Boolean to any other type. However, if you
are intent on getting an integer to have a 0 or 1 value based on the current value of a Boolean,
use an if -else statement, or imitate the following code.

int j;
boolean tf;
j = tf?1:0; // Integer j gets 1 if tf is true, and 0 otherwise.

Conversion the other way can be done with zero to be equal to false, and anything else equal to
true as follows:

int j;
boolean tf;
tf = (j!1=0); // Boolean tf is true if j is not 0, false otherwise.

Addition of Strings

Before you can finally leave the subject of operators, it is important to also cover a special use
of the addition operator as it relates to strings.

142 Chapter 9 Using Expressions

In general, Java does not support operator overloading; however, in Java, the concatenation of
strings is supported by using the + operator. The behavior of the + operator with strings is just
what you’d expect if you're familiar with C++. The first and second string are concatenated to
produce a string that contains the values of both. In the following expression, the resulting
string would be “Hello World”:

"Hello" + " World"

If a non-string value is added to a string, it is first converted to a string using implicit typecast-
ing before the concatenation takes place. This means, for example, that a numeric value can be
added to a string. The numeric value is converted to an appropriate sequence of digit charac-

ters, which are concatenated to the original string. All the following are legal string concatena-
tions:

"George " + "Burns"
"Burns" + " and " + "Allen"
"Fahrenheit" + 451

"Answer is: " + true

Control Flow

In this chapter

Controlling the Execution 144

true and false Operators on Booleans 144
Logical Expressions 148

The Conditional Operator 150

Booleans in Control Flow Statements 150
Control Flow Functions 151

Iteration Statements 152

Jump Statements 156

CHAPTER

144 Chapter 10 Control Flow

Controlling the Execution

Controlling the flow of execution is perhaps the most important aspect of any programming
language. Control flow allows you to direct the computer in different directions depending on
conditions. So, if you're lost, you might turn in a random direction. Otherwise, you would fol-

low the map.

You can also think about control flow like a stoplight. If the light is red, you want to stop your

car, but if the light is green, you want all cars to go through the intersection. Without this type
of decision making, programs would be flat and lifeless. This chapter teaches you how to make
the computer follow the map and traffic laws.

true and false Operators on Booleans

Almost all control flow expressions in Java control the flow based on a true or false value. For
instance, as you learn later in this chapter, an if (value) statement causes the next statement
to be executed only if the value is true. You can actually write something like if (true), but
there is little value in it. Instead, usually the value is a Boolean expression.

Operators in Java have particular meanings for use with Boolean expressions. Many of the

same operator symbols are used with other types of expressions. In most cases, the meanings
are a natural extension from the operations performed on integer types. The operations shown
in Table 10.1 can be performed on Booleans.

Table 10.1 Operations on Boolean Expressions

Operation Name

Description

= Assignment

== Equality

1= Inequality

! Logical NOT

& AND

Asin tf = true;.

This produces a true if the two Boolean operands have
the same value (true or false). It produces false
otherwise. This is equivalent to NOT EXCLUSIVE OR
(NXOR).

This produces a true if the two Boolean operands have
different values (one true, the other false). It produces
false otherwise. This is equivalent to EXCLUSIVE OR
XOR).

If the operand is false, the output is true, and vice versa.

Produces a true if and only if both operands are true.
Note: This is only valid for Boolean operands. For other
values, it’s a bitwise operator.

Produces a false if and only if both operands are false.
Note: This is only valid for Boolean operands. For other
values, it’s a bitwise operator.

true and false Operators on Booleans 145

Operation Name Description

» XOR Produces true only if exactly one (exclusive OR) operand
is true. Note: This is only valid for Boolean operands. For
other values, it’s a bitwise operator.

&& Logical AND Same result for Booleans as described for &.
" Logical oR Same result for Booleans as described for |.
?: if-then-else Requires a Boolean expression before the question mark.

The Relational Operators

The most intuitive comparative operators are those that fall into a category known as relational
operators. Relational operators include those standard greater-than and less-than symbols you T
learned about back in third grade. Conveniently enough, they work the same as they did back
in third grade, too. For instance, you know that if you write (3>4), you wrote something wrong
(false). On the other hand, (3<4) is correct (true). In Java and most other languages, you are
not limited to evaluating constants; you are free to use variables, so the statement
(Democrats>Republicans) is also valid. The complete list of relational operators is shown here:

Ch

Operator Boolean Result

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The precedence of the relational operators is below that of the arithmetic operators, but above

that of the assignment operator. Thus, the following two assignment statements produce identi-
cal results:

resultl = a+tb < c*d ;
result2 = (a+tb) < (c*d) ;

The associativity is left-to-right, but this feature isn’t really very useful. It may not be immedi-
ately obvious why, but consider the following expression:

a<b<ec

The first expression, a<b, is evaluated first, and produces a value of true or false. This value
then would have to be compared to c. Because a Boolean cannot be used in a relational expres-
sion, the compiler generates a syntax error.

N O T E InC and C++, the relational operators produce an integer value of @ or 1, which can be
used in any expression expecting an integer. Expressions like the following are legal in C or
C++, but generate compiler errors in Java:

RateArray [dayl < day2]
NewValue = OldvValue + (NewRate > OldRate) * Interest;

146 Chapter 10 Control Flow

Try a very basic program to test some of what you have just learned. Listing 10.1 shows a list
of printouts that tell if the things you learned in grade school were true. Here, we’re using
another convenient fact of Java—you can add Boolean values to a string and the answer true or
false will be displayed for you.

Listing 10.1 QuickTest.java—A Simple Lesson from the Third Grade

public class QuickTest

{
public static void main(String args[]){
System.out.println("5 is greater than 6:"+(5>6));
System.out.println("6 is greater than or equal to 3:"+(6>=3));
System.out.println("8 is less than 10:"+(8<10));
}
}

To run this program, first copy Listing 10.1 to a file called QuickTest. java. As discussed in
previous chapters, it’s important the file be called QuickTest. java with all capitalization the
same. Next, compile the program using javac:

javac QuickTest.java

After the file is compiled, you're ready to run it:

java QuickTest

As you may have already guessed, the output you get should look like this:

5 is greater than 6:false
6 is greater than or equal to 3:true
8 is less than 10:true

The Equality Operators

The equality operators are the next set of evaluation operators in Java. Equality operators en-
able you to compare one value to another and find out if they are equal. In third grade, you
might have written this as (3=3). Unfortunately, in Java, this statement would cause the com-
piler to use the assignment operator (also known as gets) rather than evaluate the equation.
gets is used in traditional computing as a substitute for the = operator when reading text, as
shown here. So, if you were to read out loud the line 3=3, you would say “three gets three.”

The problem is that this is not the result you are looking for. To solve this problem, a separate
two-character operator (==) is used. In Java then, you would write the equation as (3==3). This
would be read out loud as “three equals three.”

On the other hand, obviously the equation (3==4) would result in an incorrect equation
(false).

true and false Operators on Booleans

The following equality operators are very similar to the relational operators, with slightly lower
precedence:

Operator Boolean Result
== Is equal to

1= Is not equal to

The equality operators can take operands of virtually any type. In the case of the primitive data
types, the values of the operands are compared. However, if the operands are some other type
of object (such as a class you created), the evaluation determines if both operands refer to
exactly the same object. Consider the following example:

String1 == String2

In this example, String1 and String2 must refer to the same string—not to two different
strings that happen to contain the same sequence of characters. Consider the lines shown in
Listing 10.2.

Listing 10.2 ObjectEquals.java—Comparing Objects in Java

public class ObjectEquals
{
public static void main(String args[]){
String String1l = new String("Hi Mom");
String String2 = new String("Hi Mom");
/ /At this point String1 is not equal to String2
System.out.println("String1 == String2 :"+(String1==String2));

String String3=String1;
//Now String1 is equal to String2
System.out.println("String1 == String3 :"+(String1==String3));

Given this sequence, String1==String2 would return false after the first two lines because
despite the fact that they contain the same letters, they are not the same object. On the other
hand, String1=String3 would return true because they refer to exactly the same object. So as
you may have already guessed, the output of this program is as follows:

String1 == String2 :false
String1 == String3 :true

N O T E |If you want to compare String1 to String2 in the first two lines of this example, you can
use the equals method of String. This would be written String1.equals(String2).
The equals () method compares the strings character by character.

147

Part

Ch

148

Chapter 10 Control Flow

The associativity of these operators is again left-to-right. You’ve seen that the associativity of
the relational operators is really not useful to you as a programmer. The associativity of the
equality operators is only slightly more useful. Take a look at the following example:

StartTemp == EndTemp == LastRace

Here, the variables StartTemp and EndTemp are compared first, and the Boolean result of that
comparison is compared to LastRace, which must be Boolean. If LastRace is of some non-
Boolean type, the compiler generates an error.

CAUTION

Writing code that depends on this kind of subtlety is considered extremely poor form. Even if you understand
it completely when you write it, chances are you'll be as mystified as everyone else when you try to read it a
few weeks or months later. Try to use constructs in your code that are easily read. If there is some reason
that you must use an expression like the one just given, be sure to use comments to explain how the
expression operates and, if possible, why you've chosen to implement your algorithm that way.

Logical Expressions

The third set of evaluation operators falls into a category known as logical expressions. Logical
expressions work a bit differently than the previous operators and are probably not something
you covered in your third-grade math class.

Logical expressions operate either on a pair of Booleans or on the individual bits of an object.
There are two types of logical operators which are divided roughly along these lines:

Boolean operators Only operate on Boolean values

Bitwise operators Operate on each bit in a pair of integral operands
You have already seen in Chapter 9, “Using Expressions,” how bitwise operators work. This
chapter covers only the conditional half of the logical expression operators. However, it is inter-

esting to note that, with some minor exceptions, bitwise operators and conditional operators
will produce the same result if the operands are Boolean.

Conditional-AND and Conditional-OR Operators

There are two primary Boolean operators:
Conditional-AND: &&
Conditional-OR: ||
Oddly, in most computer languages (including Java) there is no conditional -XOR operator.

These operators obey the same truth table that was constructed in Chapter 9 for the bitwise
operators. They also tend to be fairly easy to read. For instance, true && true when read “both
true and true” is obviously true. For your convenience, the truth tables for AND and OR are
reproduced:

Logical Expressions 149

When A is And when B is (A && B) (A]| B)
false false false false
false true false true
true false false true
true true true true

The operands of a conditional-OR or a conditional-AND expression are evaluated left-to-right;
if the value of the expression is determined after evaluating the left operand, the right operand
will not be evaluated. So, in the following example, if x is indeed less than y, then m and n are
not compared:

(x<y) 1i (m>n)
If the left side of this expression produces the Boolean value true, then the result of the whole Part
expression is true, regardless of the result of the comparison m>n. Note that in the following

expression, if you instead used a bitwise operator, m and n are compared regardless of the
values of x and y: Ch

(x<y) | (m>n)

The precedence of the two conditional operators is below that of the bitwise operators.

The Unary Logical Operators

There are two unary logical operators:

Logical negation of Boolean operand: !

Bitwise negation of integral or Boolean operand: ~

N O T E Forinteger operands, this operator is the bit flipper—each bit in its operand is toggled.
(What was @ becomes 1; what was 1 becomes 0.)

By placing a negation operator in front of any value, the expression continues with the opposite
value of that which the value had originally. For instance, ! true would be false.

Both these operators have high precedence, equivalent to that of the other unary operators.
Take a look at the following example, which shows a combination of the logical negation and
the conditional-AND:

if (!dbase.EOF && dbase.RecordIsValid())

Because the logical negation has high precedence, it is evaluated first. If EOF refers to End of
File, you first check to see if you have reached the end of the file on this database. If you
haven'’t, the second operand is evaluated, which in this case is a method invocation that might
determine the validity of the record. The key to understanding this is to realize that if the first
operand is false—in other words, you have reached the end of the file—then you won’t check
to see if the record is valid.

150

Chapter 10 Control Flow

The Conditional Operator

The conditional operator is unique because it is the one ternary or triadic operator meaning
that there are three operands to the expression (instead of the typical two). It operates in Java,
as it does in C and C++, and takes the following form:

expressioni ? expression2 : expression3

In this syntax, expression1 must produce a Boolean value. If this value is true, then
expression2 is evaluated, and its result is the value of the conditional. If expression1 is false,
then expression3 is evaluated, and its result is the value of the conditional. You can look at the
ternary operator just as if it was a typical if statement:

If (expressioni)
expression2;
else
expression3;

Consider the following examples. The first is using the conditional operator to determine the
maximum of two values; the second is determining the minimum of two values; the third is
determining the absolute value of a quantity.

BestReturn = Stocks > Bonds ? Stocks : Bonds ;
LowSales = JuneSales < JulySales ? JuneSales : JulySales ;
Distance = Site1-Site2 > @ ? Site1-Site2 : Site2 - Sitel ;

In reviewing these examples, think about the precedence rules and convince yourself that none
of the three examples requires any brackets to be evaluated correctly.

Booleans in Control Flow Statements

Booleans (and Boolean expressions) are the only type that may be used in the true clause of
the control flow statements as seen in the following code fragment:

Boolean TestVal = false;
int IntVal = 1;

'i%.(TestVal) {} else {}
if (Intval != 1) {} else {}

v.vr.u:.le (Testval) {}
while (Intval == 0) {}

do {} while (TestVal)

do {} while (IntVal == 0)

for (int j=0; TestVal; j++) {}
for (int j=0; IntVal < 5; j++) {}

In this code fragment, the comparisons of the integer Intval to an integer constant value are
very simple Boolean expressions. Naturally, much more complicated expressions could be
used in the same place.

Control Flow Functions 151

Control Flow Functions

Control flow is the heart of any program. Control flow is the ability to adjust (control) the way
that a program progresses (flows). By adjusting the direction that a computer takes, the pro-
grams that you build become dynamic. Without control flow, programs would not be able to do
anything more than several sequential operations.

if Statements

The simplest form of control flow is the if statement. An if takes a look at a conditional ex-
pression (probably derived through any of the means described the first half of this chapter)
and if the value is true, the next block of code is executed. The general syntax for the if is as

follows:

if (expression) Part
statement;

If the value is false, the computer skips the statement and continues on. An example of an if Ch

statement is shown in the following code fragment:

if (myNameIsFred)
System.out.println("Hi Fred");
System.out.println("Welcome to the system");

If the value of myNameIsFred is true, when this fragment runs the computer prints out the
following:

Hi Fred
Welcome to the system

However, if the value is false, the program skips over the line after the if and the result is as
follows:

Welcome to the system

In most situations, you will want to execute more than one line of code based on an evaluation.
To do this, you can place a code block after the if, which begins and ends with a pair of curly
braces. The following code fragment shows just such an example:

if (umpire.says.equals("Strike two")){ //equals method returns Boolean
Crowd.cry("Fraud"); // method call

Strike++; // last statement in if block.

}

Casey.face("Christian charity"); // 1st statement after if block.

if-else Statements

Only slightly more advanced than a simple if, the if-else expression passes execution to the
else statement if the if evaluates to false. The code in the else block is not run if the if is
true. Only one or the other set of code is run. The general syntax for an if-else is as follows:
if (expression)

if_statement;

else
else_statement;

152

Chapter 10 Control Flow

An example of an if-else statement is as follows:

if (strike != 2)

Casey.lip("Curling Sneer"); // single substatement (could have// been a
block)
else {
Casey.teeth("Clenched in hate"); // block of substatements// (could have

been single)
Casey.bat.pound("Plate");
}

One important aspect of if -else blocks is how else blocks are evaluated when there are
nested ifs. In other words, consider the following code:

if (firstval==0)

if (secondVal==1)

firstvVal++;

else
firstval—;

When is the else executed? In this example, the tabbing shows you that the else is associated
with the inner (second) if. An if-else expression counts as one statement, so the else be-
longs to the most recent if and is part of the if statement for the first if. Another way to put
this is that ifs are evaluated to elses in a First In First Out (FIFO) fashion. You can change
this by placing the second if in a block:

if (firstVal==0){

if (secondVal==1)

firstvVal++;

}
else
firstval—;

Because a block counts as a single statement, the else is associated with the first if.
Another equally valid if -else statement is known as the compound if:

if (firstVal==0)
if (secondVal==1)
firstVal++;
else if (thirdval==2)
firstvVal-—;

In this example, the firstVval statement is only executed when firstval is 0, secondval is not
1, and the thirdval is 2. Follow this last example through to verify to yourself that this is the
case.

Iteration Statements

Programmers use iteration statements to control sequences of statements that are repeated
according to runtime conditions.

Iteration Statements 153

Java supports five types of iteration statements:

while
for
break
do
continue
These are very similar to the statements of the same type found in C and C++, with the excep-

tion that continue and break statements in Java have optional parameters that can change their
behavior (compared with C and C++, where these statements have no parameters) within the

substatement blocks.
. Part
while Statements
The while statement tests an expression and, if it is true, executes the next statement or block ~

repeatedly until the expression becomes false. When the variable or expression is false,
control is passed to the next statement after the while statement. The syntax for a while loop
looks very similar to that of an if statement:

while (expression)
statement;

while loops can become endless, either intentionally or by accident, if the expression is made
so that it will never become false. The following example shows a while loop in action:
while (Casey.RoundingTheBasepads==true) {

Crowd.cry("Hooray for Casey");

}

In this example, it is clear that the expression might not be true initially, and if not, the block in
the substatement will never be executed. If it is true, this block of code is executed repeatedly
until it is not true.

do Statements

The do statement is similar to the while statement. In fact, it has a while clause at the end. Like
the while expression in the previous section, the expression in the while statement must be a
Boolean. The execution of a do loop processes the statement and then evaluates the while. If
the while is true, execution returns to the do statement until the expression becomes false.
The complete syntax for a do-while loop is as follows:

do

statement;
while (expression)

154

Chapter 10 Control Flow

The primary reason a programmer chooses to use a do statement instead of a while statement
is that the statement will always be executed at least once, regardless of the value of the ex-
pression. This is also known as post-evaluation. For example:

do {

Crowd.cry("Kill the Umpire!");
} while (umpire.says.equals("Strike two"));

In this example, the method Crowd.cry is invoked at least once no matter what. As long as the
umpire.says method returns the string "Strike two", the Crowd.cry method is called over
and over again.

for Statements

The most complicated of the four iteration statements is the for loop. The for statement gives
the programmer the capability of all three of the other iteration statements. The complete
syntax of a for loop is as follows:

for (initialization, expression , step)
statement;

The for loop first runs the initialization code (like a do) and then evaluates the expression (like
an if or while). If the expression is true, the statement is executed and then the step is per-
formed. A for loop can also be written with a while loop as follows:

initialization;

while (expression){

statement;

step;
}

An example of a for loop appears in the following code fragment:

for (int ball=0, int strike=0; (ball<4) && (strike<3);Ump.EvaluateSwing()) {
Pitcher.pitch();
Player.swing();

}

This example demonstrates the fact that the initialization clause can have more than one state-
ment, and that the statements are separated by commas. Both the initialization and step clauses
can have multiple statements this way. On the flip side, the statements can also be empty, with
no statements.

switch Statements

The next type of control flow is the switch statement. The switch statement is the first control
flow statement that does not require a Boolean evaluation. A switch passes control to one of
many statements within its block of substatements, depending on the value of the expression in
the statement. Control is passed to the first statement following a case label with the same
value as the expression. If there are none, control passes to the default label. If there is no
default label, control passes to the first statement after the switch block.

Iteration Statements

The syntax for a switch is as follows:

switch (expression){

case V1: statement1;
break;

case V2: statement2;
break;

default: statementD;
}

Unique to switches, the expression must be of an integer type. You may use bytes, shorts,
chars, or ints, but not floats or Booleans.

The break statements are not really required. However, because of the way a switch works,
breaks frequently end up being used. As soon as a value matches the expression, execution
continues from that point. The execution falls through all the other statements. Take a look at
the following example:

switch (1){

case 1: System.out.println ("one");

case 2: System.out.println ("two");

case default: System.out.println("Default");

I
In this example, the resulting output would be as follows:

one
two
Default

This happens because as soon as a case match is made, the execution falls through, or contin-
ues through, to the end of the switch. It is likely, however, that you don’t want to print all three
results. The break can be used to only produce the one printout. To do this, the code should be
changed to the following:

switch (1){

case 1: System.out.println ("one");

break;

case 2: System.out.println ("two");

break;

case default: System.out.println("Default");

break;

}

N O T E Notice that unlike if,while, do, and for statements, the case statement is not limited
to a single statement, and no blocks are required. Execution simply begins after the case
and continues until a break.

The switch expression and case label constants must all evaluate to either byte, short, char,
or int. In addition, no two case labels in the same switch block can have the same value.

Another example of the switch statement is included in the following code fragment:

switch (strike) {
case 0:
case 1:

155

Part

Ch

156

Chapter 10 Control Flow

Casey.lip("Curling Sneer");

break;

case 2:

Casey.teeth("Clenched in hate");
Casey.bat.pound("Plate");

break;

default:

System.out.println("Strike out of range");

}

In this example, assume that strike is a compatible integer type (for example, int). Control
passes to the correct line, depending on the value of strike. If strike doesn’t have one of the
values it should have, a programmer-defined error message is printed.

Jump Statements

In addition to the more common control flow functions, Java also has three kinds of jump state-
ments: break, continue, and return.

break Statements

The substatement blocks of loops and switch statements can be broken out of by using the
break statement. An unlabeled break statement passes control to the next line after the current
(innermost) iteration (while, do, for, or switch statement).

With a label, control may be passed to a statement with that label within the current method. If
there is a finally clause to a currently open try statement, that clause is executed before
control is passed on.

continue Statements

A continue statement may only appear within the substatement block of an iteration statement
(while, do, or for). The effect of the unlabeled continue statement is to skip the remainder of
the statements in the innermost iteration statement’s block and go on to the next pass through
the loop. The label parameter permits the programmer to choose which level of nested itera-
tion statements to continue with.

If there is a finally clause for a currently open try statement within the indicated level of
nesting, that clause is executed before control is passed on.

return Statements

A return statement passes control to the caller of the method, constructor, or static initializer
containing the return statement. If the return statement is in a method that is not declared
void, it may have a parameter of the same type as the method.

If there is a finally clause for a currently open try statement, that clause is executed before
control is passed.

See “Returning Information,” p. 126

Classes

In this chapter

What Are Classes? 158

Why Use Classes? 158

Classes in Java 160

Declaring a Class 162

Constructors 165

Creating an Instance of a Class 167
Referring to Parts of Classes 169

Variables 172

Inner Classes 181

Packages 185

Importing Classes in Packages 186
Importing Entire Packages 186

Using a Class Without Importing It 187
Using Packages to Organize Your Code 189
Implicit Import of All java.lang Classes 190

CHAPTER

158

Chapter 11 Classes

What Are Classes?

Classes are the major building block of an object-oriented structure. In fact, classes are what
make objects possible, and without objects, object-oriented programming would just be ori-
ented programming which, well, would not make sense. There are several major advantages to
using objects. They enable you to encapsulate data, keeping all information and actions about a
particular item separate from the rest of your code. They allow you to build class hierarchies,
which enables you to build up more and more complex structures from simpler ones. Lastly,
through a technique called polymorphism, dissimilar objects that share a common attribute
can be utilized by their similarities.

From a common-sense view, classes are a way to assemble a set of data and then determine all
of the methods needed to access, use, and change that data.

Fundamentally, every class has two major portions. The first portion is that of state. The state
of an object is nothing more than the values of each of its variables. If, for instance, you had a
class StopLight with one variable, RedGreenYellow, the state of the StopLight would be deter-
mined by the value of RedGreenYellow. For example:

public class StopLight{
int RedGreenBlue;

}

The second portion of a class is its tools, or methods. The methods of a class determine the
utility the class has. In the case of the StopLight, it is likely that you would have a method
called changeLight (), which would cause the light to change from red to green (probably by
changing the RedGreenYellow variable).

public class StopLight{
int RedGreenBlue;
changelLight(){
RedGreenBlue = ++RedGreenBlue%3;

}

N O T E To distinguish class variables with variables that are parts of methods, class variables
are often referred to as fields, or class scope variables. In the previous example, the
RedGreenYellow variable would be a field of the StopLight class.

Why Use Classes?

When dealing with classes, it is important to remember that classes do not enable program-
mers to do anything more than what they would be able to do without them. While it might be
significantly more work, you could write all OOP programs structurally.

So why use classes? The answer to this question is similar to the reason why large companies
are divided into departments and sub-departments. By organizing hundreds of people with

Why Use Classes? 159

thousands of tasks, the department architecture provides for a simple distribution of tasks and
responsibilities. Furthermore, because the billing department knows how to bill customers,
the sales department does not need to worry about those details. By doing this work, the bill-
ing department has effectively encapsulated the work of billing within itself.

However, the power of object-oriented programming extends beyond the simple capability to
encapsulate functionality in objects. A great deal of the appeal of OOP is its capability to pro-
vide inheritance—the capability to create new classes based on old classes. As an example of
inheritance, consider a game board. Assume that you wrote a Checkers game a couple of
months ago, and would now like to write a chess game. By using traditional programming
techniques, you would start from scratch, or maybe cut and paste some of your old code. Using
inheritance can eliminate most of this work. Instead, you build upon the code you wrote for
your Checkers game. Override only those methods that behave differently in Checkers instead
of Chess, and add only those methods that Checkers simply doesn’t need.

N O T E When new classes inherit the properties of another class, they are referred to as child
classes or subclasses. The class from which they are derived is then called a parent or
superclass.

Another benefit of enclosing data and methods in classes is the OOP characteristic of encapsu- Part
lation—the capability to isolate and insulate information effectively from the rest of your pro-
gram. By creating isolated modules, after you have developed a complete class that performs a
certain task, you may effectively forget the intricacies of that task and simply use the methods
provided by the class. Because the class mechanisms are isolated, even if you have to signifi-
cantly change the inner workings of a given class later, you do not need to modify the rest of
your program as long the methods used to gain access to the class do not change. A side ben-
efit of this is that by placing the data within the class and creating the appropriate methods to
manipulate it, you may seal off the data from the rest of the program, thereby preventing acci-
dental corruption of the data.

Ch

Finally, the allure of the OOP approach to creating self-sustaining modules is further enhanced
by the fact that children of a given class are still considered to be of the same “type” as the
parent. This feature, called polymorphism, enables you to perform the same operation on dif-
ferent types of classes as long as they share a common trait. Although the behavior of each
class might be different, you know that the class will be able to perform the same operation as
its parent because it is of the same family tree. For example, if you were to create a vehicle
class, you may later choose to create Truck and Bike classes, each extending the vehicle class.
Although bikes and trucks are very different, they are both still vehicles! Therefore, every-
thing that you are permitted to do with an instance of the vehicle class you may also do with
an instance of the Truck or Bike classes. A car dealership, then, need not worry if it is selling a
Volvo or Saturn. The lot is simply full of vehicles.

160

Chapter 11 Classes

What’s So New About Object-Oriented Programming?

OOP emphasizes a modular view of programming by forcing you to break down your task into
manageable components, each with a specific function. However, unlike procedural functions, which
are simply pieced together to form a program, objects are living “creatures” that have the capability
to manage themselves, running concurrently with other operations and even existing after the rest of
the program has terminated. It is this capability to exist and work with objects as a separate entity
that makes OOP a nice match for Java, a network-based language.

CAUTION

In the previous example, while every bike and truck is also a vehicle, a vehicle is not necessarily a bike or a
truck. Thus, while the Bike and Truck classes can be treated just like the Vehicle class in Java, you may
not perform an operation reserved for the Bike class on an instance of the Vehicle class.

Classes in Java

As stated at the beginning of this chapter, classes are the essential building block in any Java
applet or application. Classes are used to create objects. When you create an instance of a class,
you create an object. You can include all the code for that object within the class. In accordance
with the object-oriented paradigm, you can later choose to build upon that class to build new
programs or enhance your current program.

Bigger and Better Java

Java itself is built from classes that are made available to the general public in the JDK. While there
are some limitations, a large number of the classes that make up the Java architecture may them-
selves be extended. By doing this, you may tailor the classes in the Java API library—especially those
in the AWT—to meet your particular needs.

Before you start creating large programs, you must first learn how to create simple classes. In
terms of syntax, there are two parts to a class in Java: the declaration and the body. Listing 11.1
is a simple class that fulfills some of the requirements of the simple game board discussed
earlier. Examine this listing to get an idea of what constitutes a class. You can refer to this
listing again later as your understanding of classes grows.

Listing 11.1 GameBoard.java—A General Class for Creating a 10x10
Board Game

public class GameBoard

{

/* This is the beginning of a simple game board class that provides the basic */
/* structures necessary for a game board. It may easily be */

/* extended to create a richer game board. */

Classes in Java 161

private static final int WIDTH = 10; /* These are constants */
private static final int HEIGHT = 10; /* that you want to */
private static final int EMPTY = @; /* keep as standards */

private int board[][];
// This array will keep track of the board

public String myname; // what game is being played

public GameBoard (String gamename) {
board = new int[WIDTH][HEIGHT];
myname = new String(gamename);

}

public final void cleanBoard() {
for (int i = 0; i < WIDTH; i++)
for (int j = 0; j < HEIGHT; j++)
board[i][j] = EMPTY;

}
public synchronized void setSquare(int x, int y, int value) {

board[x][y] = value;
}

)) .) . Part
public synchronized boolean isEmpty(int x, int y) {

if (board[x][y] == EMPTY)

return(true);
return(false); Ch

Take a quick look through this class. The first part of any class is the class declaration. Most
classes you write will look very similar to GameBoard:

public class GameBoard

Declaring a class states several things, but probably the most important one is the name of the
class (GameBoard). In the case of any public class, the name of the class must also match up
with the name of the file it is in. In other words, this class must appear in the file
GameBoard.java.

The next part of the class is the opening brace. You should notice that there is a brace ({) at the
beginning of the class, and if you look all the way down at the bottom there is also a closing
brace (}). The braces define the area in the file where the class definitions will exist.

A bit farther down you will see several comments. As you learned in “Comments” (Chapter 7),
comments can exist anywhere in the file and are ignored by the compiler, but they help you
leave messages for yourself or other programmers. Next, you will see several fields declared.
Each of these variables is accessible from any of the methods in the class. When you change
them in one method, all the other methods will see the new value.

162 Chapter 11 Classes

private static final int WIDTH = 10; /* These are constants */
private static final int HEIGHT = 10; /* that you want to */
private static final int EMPTY = @; /* keep as standards */
private int board[][];

// This array will keep track of the board

public String myname; // what game is being played
Finally, you should see four methods:

public GameBoard (String gamename) {
board = new int[WIDTH][HEIGHT];
myname = new String(gamename);

}

public final void cleanBoard() {
for (int i = @; i < WIDTH; i++)
for (int j = 0; j < HEIGHT; j++)
board[i][j] = EMPTY;

}
public synchronized void setSquare(int x, int y, int value) {
board[x][y] = value;
}
public synchronized boolean isEmpty(int x, int y) {
if (board[x][y] == EMPTY)
return(true);
return(false);

Declaring a Class

In general, Java class declarations have the form

AccessSpecifier class NewClass extends NameofSuperClass implements
NameofInterface

where everything in italics is optional. As you can see, there are four properties of the class
that may be defined in the declaration:

Modifiers

Class name

SuperClasses

Interfaces

Access Specifiers

The access specifiers in a class declaration determine how the class can be handled in later
development and are very similar to those four access specifiers discussed in Chapter 8,
“Methods.” Although they are usually not extremely important in developing the class itself,

Declaring a Class

they become very important when you decide to create other classes, interfaces, and excep-
tions that involve that class.

When creating a class, you may choose to accept the default status or you may employ one of
the three specifiers: public, final, or abstract.

Public Classes By placing the modifier public in front of the class declaration, the class is
defined to be public. Public classes are, as their name implies, accessible by all objects. This
means that they can be used or extended by any object, regardless of its package. Here’s an

example:

public class PictureFrame

Also note that public classes must be defined in a file called ClassName.java (for example,
PictureFrame.java).

Protected Classes If you choose not to place a modifier in front of the class declaration, the
class is created with the default properties. Therefore, you should be aware of what these
properties are.

By default, all classes are assigned the protected level of access. This means that while the
class may be extended and employed by other classes, only those objects within the same
package may make use of this class. Here’s an example of a friendly class:

class PictureFrame

Final Classes Final classes may not have any subclasses and are created by placing the
modifier final in front of the class declaration.

The reason for creating final classes may not be not be evident at first. Why would you want to
prevent other classes from extending your class? Isn’t that one of the appeals of the object-
oriented approach?

It is important to remember that the object-oriented approach effectively enables you to create
many versions of a class (by creating children that inherit its properties but nevertheless
change it somewhat). Consequently, if you are creating a class to serve as a standard (for ex-
ample, a class that will handle network communications), you would not want to allow other
classes to handle this function in a different manner. Thus, by making the class final, you
eliminate this possibility and ensure consistency.

In addition, telling the compiler that this is the final version of a class allows the compiler to
perform a number of performance optimizations that otherwise would not be possible. Here’s
an example:

final class PictureFrame

Abstract Classes An abstract class, denoted by the modifier abstract, is a class in which at
least one method is not complete. This state of not being finished is referred to as abstract. For
example:

abstract class PictureFrame

163

Part

Ch

164

Chapter 11 Classes

How can a finished class not be complete? In the case of a grammar-checking class that is to be
implemented in many languages, there are several methods that would have to be changed for
each language-dependent version class. To create a cleaner program, instead of creating an
EnglishChecker, a FrenchChecker, and a SpanishChecker class from scratch, you could simply
create a GrammarChecker class in which the language-specific methods are declared as ab -
stract and left empty. When ready, you could then create the language-specific classes that
would extend the abstract Grammarchecker class and fill in the blanks by redefining these meth-
ods with actual code. Although you would still end up with separate classes for each language,
the heart of your code would be in the GrammarChecker class, leaving only the language-
dependent portions for the specific classes.

N O T E Because they are not complete, you may not create instances of abstract classes.

The class declaration need not be very complex and most often is very simple. In this
example, only one modifier, public, was used; no other classes or interfaces were required.

Class Name

Like all other Java identifiers, the only requirements on a class name are that it:

Begin with a letter or the characters - or $

Contain only Unicode characters above hex 00C0 (basic letters and digits, as well as
some other special characters)

Not be the same as any Java keyword (such as void or int)

Also, it is general practice to capitalize the first letter in the name of any class.

Although only required for public classes, it is generally a good practice to name the file in which class
NewClass is defined NewClass.java. Doing so helps the compiler find NewClass, even if NewClass
has not been compiled yet.

Super Classes—Extending Another Class

One of the most important aspects of OOP is the ability to use the methods and fields of a class
you have already built. By building upon these simpler classes to build bigger ones, you can
save yourself a lot of coding. Possibly even more important, you can greatly reduce the work of
finding and fixing bugs in your code. To build upon a previous class, you must extend the class
in the class declaration.

By extending a super class, you are making your class a new copy of that class but are allowing
for growth. If you were simply to leave the rest of the class blank (and not do anything different
with the modifiers), the new class would behave identically to the original class. Your new class
will have all of the fields and methods declared or inherited in the original class.

Constructors

N O T E Does this example look familiar?
public class MyClass extends Applet {

If you look at the source of any applet, you see that its declaration resembles the example. In fact, you
probably have been extending the java.applet.Applet class without even knowing what you were
doing.

Remember the methods you have been able to use in your applets, such as showStatus (), init(),
and keyDown () ? Did they appear out of thin air? No, they are drawn from the
java.applet.Applet class or one of the classes that it extends, such as java.awt.Component.

By extending the java.applet.Applet class, your applet class is able to access and implement
these methods, thereby providing your applet with a great deal of power.

Every class in Java is considered to be an object. By default, every class is derived from the
java.lang.Object class. So if your class does not extend any other class, it still extends
java.lang.Object.

N O T E Multiple-inheritance does not exist in Java. Thus, unlike C++, Java classes may only extend
one class.

Constructors

Constructors are very special methods with unique properties and a unique purpose. Con-
structors are used to set certain properties and perform certain tasks when instances of the
class are created. For instance, the constructor for the GameBoard class is:

public GameBoard (String gamename) {

board = new int[WIDTH][HEIGHT];
myname = new String(gamename);

}

Constructors are identified by having the same name as the class itself. Thus, in the GameBoard
class, the name of the constructor is GameBoard (). Secondly, constructors do not specify a
return argument because they are not actually called as a method. For instance, if you wanted
to create an instance of the GameClass, you would have a line that looked like this:

GameClass myGame = new GameClass();
When the new GameClass () is actually instantiated, the constructor method is called.

In general, constructors are used to initialize the class’s fields and perform various tasks re-
lated to creation, such as connecting to a server or performing some initial calculations.

Also note that overloading the constructor enables you to create an object in several different
ways. For example, by creating several constructors, each with a different set of parameters,
you enable yourself to create an instance of the GameBoard class by specifying the name of the
game, the values of the board, both, or neither. This practice is prevalent in the Java libraries
themselves. As a result, you can create most data types (such as java.lang.String and
java.net.Socket) while specifying varying degrees and types of information.

165

Part

Ch

166 Chapter 11 Classes

Most programmers choose to make their constructors public. This is because if the level of access for
the constructor is less than the level of access for the class itself, another class may be able to declare
an instance of your class but will not actually be able to create an instance of that class.

However, this loophole may actually be used to your advantage. By making your constructor private, you
may enable other classes to use static methods of your class without enabling them to create an
instance of it.

Finally, constructors cannot be declared to be native, abstract, static, synchronized, or
final.

Overriding Methods

It is not legal to create two methods within the same class that have both the same name and
the same parameter list. After all, doing so would just confuse the whole system (which method
would you really want to be calling?). However, one of the purposes of extending a class is to
create a new class with added functionality. To allow you to do this, when you inherit another
class, you can override any of its methods by defining a method with the same name and pa-
rameter list as a method in the superclass. For instance, consider an Elevator class, shown in
Listing 11.2.

Listing 11.2 Elevator.java—A Simple Elevator Class

class Elevator {
private boolean running = true;

public void shutDown() {
running = false;

}

At some point you realize that this elevator just isn’t very safe, so you decide to create a safer
one. You want to extend the old Elevator class and maintain most of its properties, but change
some as well. Specifically, you want to check to make sure the elevator car is empty before
stopping, so you override the shutDown () method as shown in Listing 11.3.

Listing 11.3 SaferElevator.java—A Safer Elevator That Extends Elevator

class SaferElevator extends Elevator {

public void shutDown() {
if (isEmpty())
running = false;

Creating an Instance of a Class

else
printErrorMessage();

}

Note that overriding is accomplished only if the new method has the same name and param-
eter signature as the method in the parent class. If the parameter signature is not the same, the
new method will overload the parent method, not override it. For example, look at Listing 11.4.

Listing 11.4 SaferElevator.java—Safer Elevator with an Overloaded
shutDown() Not an Overridden One

class SaferElevator extends Elevator {

public void shutDown(int delay) {
if (isEmpty())
running = false;
else
printErrorMessage();

}

The shutbown method from the Elevator class would not have changed. Adding the parameter
(int delay) to the method changes what is known as the method signature. The new
shutDown method is still valid, though, and can be called because it has overloaded the original
shutDown, as you learned in Chapter 8, “Methods.”

N O T E When you override a method, you may not make it more protected than the original
method. Because the shutDown method is public in Elevator, you cannot make it
private in SaferElevator.

Creating an Instance of a Class

To actually use a class you have created, you need to be able to create an instance of that class.
An instance is an object of the type of the class. Any class you create can be instantiated, just
like any other data type in Java. For example, to create an instance of the GameBoard, you would
generally declare a variable of that type. Listing 11.5 shows a class called Checkers creating an
instance of the GameBoard class.

Listing 11.5 Checkers.java—Creates an Instance of GameBoard

public class Checkers{
GameBoard myBoard = new GameBoard();

167

Part

Ch

168

Chapter 11 Classes

N O T E Technically, it's not necessary to create an instance of a class in order to use it. If the
method or variable you are calling is static, no instance is necessary. However, remember
that a static method can only refer to static class variables.

This exception is what allows you to access the out variable of System without actually instantiating
a System variable. In other words, you can type:

System.out.println("Note, System was not instantiated!!");

As you may have noticed, the one primary difference between declaring an Object type, like
GameBoard, and a primitive type, like int, is the use of the new keyword. In Listing 11.5, we
used the phrase new GameBoard () to create a new instance of GameBoard. new performs several
key tasks:

Tells the computer to allocate the space necessary to store a GameBoard
Causes the constructor method of GameBoard to be called
Returns a reference to the object (which is then assigned to myBoard)
You may be wondering in all of this, how does the very first instance of my class get created?

After all, when you create an applet or an application, you don’t have any way to actually instan-
tiate that class, so how does it come to be? The answer lies with the virtual machine.

When a browser encounters an <APPLET> tag (see Chapter 14, “Writing an Applet,” to learn
more about applets) or the Java program is run on an application (see Chapter 17, “Applets
Versus Applications”), the virtual machine does a few things. In the case of an application,
when you type java MyClass, the virtual machine calls the static method main () in MyClass.
That doesn’t actually create an instance of MyClass, but, because it’s static (see the preceding
note), an instance isn’t necessary. That’s why you typically need to create an instance of your
class in the main () method. In the case of an applet, the browser does create an instance of
MyClass when it encounters <APPLET CODE="MyClass"> and automatically calls the init ()
method.

N O T E One additional difference in Java between objects and primitive types is how they are

referenced. Primitive types are always referred to by their value. Object types are always
referred to by their reference. This means that in the following code, x and y are not equal at the end,
butin wand z, myName is the same:

int x = 5;

int y = x;

yt+; /] x =5,y =6;

GameBoard w = new GameBoard();

GameBoard z = w;

w.myName = "newString"; //Since z and w point to the same object, they now

both have the same myName

Referring to Parts of Classes 169

Referring to Parts of Classes

Now that you have begun to develop classes, examine how they can be used in other classes.
As discussed earlier in the section “Why Use Classes?”, Java classes may contain instances of
other classes that are treated as variables. However, you may also deal with the fields and
methods of these class type reference variables. To do so, Java uses the standard dot notation
used in most OOP languages. Listing 11.6 is an example.

Listing 11.6 Checkers.java—The GameBoard is Accessed by its Instance
Board
import java.awt.*;

public class Checkers

{

private GameBoard board;

public Checkers() {
board = new GameBoard("Checkers");
board.cleanBoard();

Part

public void movePiece(int player, int direction) {
java.awt.Point destination;
. Ch
if (board.isEmpty(destination.x, destination.y))
// code to move piece

}

private void showBoard(Graphics g) {
g.drawString(board.myname,100,100);
drawBoard(g) ;

}

private void drawBoard(Graphics g){

Notice that board is an instance in the GameBoard class, and the variable myname in the
GameBoard class is referenced by board.myname. The general notation for this type of access is
instanceName.methodOrVariableName.

CAUTION

Notice that the variable myname is referred to as board.myname, not as GameBoard.myname. If you try to
do so, you get an error resembling:

Checkers.java:5: Can't make a static reference to non-static variable
myname in class GameBoard.

170 Chapter 11 Classes

This is because GameBoard is a type of class, while board is an instance of the class. As discussed in the
previous section, when you deal with board, you deal with a specific copy of the GameBoard class.
Because myname is not a static variable, it is not a property of the GameBoard class, but rather a property
of the instances of that class. Therefore, it cannot be changed or referenced by using GameBoard as the
variable name.

This Special Variable You have seen how to refer to other classes. However, what if you want
the class to refer to itself? Although the reasons to do so may not seem so obvious at first,
being able to refer to itself is a capability that is very important for a class. To solve this prob-
lem, a unique variable called this is used whenever it is necessary to explicitly refer to the
class itself.

In general, there are two situations that warrant use of the this variable:

When there are two variables in your class with the same name—one belonging to the
class and one belonging to a specific method.

When a class needs to pass itself as an argument to a method. Often when you create
applets that employ other classes, it is desirable to provide those classes with access to
such methods as showStatus (). For example, if you are creating a Presentation applet
class and want to use a simple TextScroll class to display some text across the status
bar at the bottom of the screen, you need to provide the TextScroll class with some
means of using the showStatus () method belonging to the applet. The best way to
enable the TextScroll to do this is to create the TextScroll class with a constructor
method that accepts an instance of the Presentation applet class as one of its argu-
ments.

As seen in Listing 11.7, the TextScroll class would then be able to display the information
across the bottom of the Presentation class’s screen.

Listing 11.7 Presentation.java—An Instance of the Presentation Is Passed
to a TextScroll Constructor

public class Presentation extends Applet {
TextScroll scroller;

public void init() {

scroller = new TextScroll(this, length_of_text);
scroller.start();

}

class TextScroll extends Thread {
Presentation screen;
String newMessage;
boolean running;
int size;

Referring to Parts of Classes 171

TextScroll(Presentation appl, int size) {
screen = appl;

}

public void run() {
while (running) {
displayText();
}

}

void displayText() {
// perform some operations to update what should
// be displayed (newMessage)

screen.showStatus (newMessage) ;

}
See “What Are Threads?” p. 208

Note the use of the special this variable in the init () method of the Presentation class as
well as the result. This technique is extremely useful and powerful.

super Special Variable Along the same lines as this, the special variable super provides
access to a class’s super class. This is useful when overriding a method, because when doing
so you may want to use code from the old method as well. For example, if you were creating
anew class NewGameBoard that extended the GameBoard class and were overriding the ch
setSquare () method, you might employ the super variable to use the former code without

recopying all of it (see Listing 11.8).

Part

Listing 11.8 NewGameBoard.java—Extending the setSquare Method, but
Still Using the Results of the Existing Method

class NewGameBoard extends game board {

private static int FIXEDWALL = 99;
// permanent wall, cannot be moved

public static synchronized void setSquare(int x, int y, int value)({
if (board[x][y] != FIXEDWALL) {
super.setSquare(x,y,val);

}

In the preceding example, you use the super variable to refer to the original version of the
setSquare () method, found in the GameBoard class. By doing so, you save yourself the head-
ache of recopying the entire method, while at the same time adding to the functionality of the
setSquare method. This allows you to keep the functionality of setSquare encapsulated in the
original GameBoard class. If, down the road you discover an error in some of the logic, you
won’t be forced to change it in both the GameBoard and the NewGameBoard classes.

172

Chapter 11 Classes

You should also examine how to call the super method if the method you are dealing with is a
constructor. It is necessary to call the constructor for a parent class, just as you need to call the
constructor for any class. Although calling a super constructor is not much different from any
other super method, its syntax may seem confusing at first:

public NewGameBoard(String gamename) {
// new code would go here
super(gamename) ;

}

Note that on a simplistic level, super can be considered equivalent to GameBoard. Consequently,
because GameBoard () is the name of the original constructor method, it may be referred to as
super().

Variables

Obviously, variables are an integral part of programs and, thus, classes as well. In Chapter 7,
“Data Types and Other Tokens,” you examined the various types of variables, but now you
must also consider how they are employed in your programs and the different roles they may
assume.

When creating variables, whether they are as simple as integers or as complex as derived
classes, you must consider how they will be used, what processes will require access to the
variables, and what degree of protection you want to provide to these variables.

The ability to access a given variable is dependent on two things: the access modifiers used
when creating the variable and the location of the variable declaration within the class.

See “Literals—Assigning Values,” p. 1307

Class Fields Versus Method Variables
In a class, there are two types of variables: those belonging to the class itself and those belonging to
specific methods.

Those variables declared outside of any methods, but within a given class (usually immediately after
the class declaration and before any methods), are referred to as fields of the class and are
accessible to all methods of it.

In addition, one may declare variables within a method. These variables are local to the method and
may only be accessed within that method.

Because method variables exist only for the lifetime of the method, they cannot be accessed by other
classes. Consequently, you cannot apply any access modifiers to method variables.

Although it is possible to make every field accessible to every class, this is not a prudent prac-
tice. First of all, you would be defeating a great deal of the purpose of creating your program
from classes. Why do you choose appropriate class names instead of class1, class2, class3,
and so on? You do so simply to create a clean program that is easy to code, follow, and debug.
For the same reason, by creating various levels of protection, you encapsulate your code into
self-sufficient and more logical chunks.

Variables 173

Furthermore, inasmuch as OOP is heavily dependent on the modification of code that you have
written beforehand, access restrictions prevent you from later doing something that you
shouldn’t. (Keep in mind that preventing access to a field does not prevent the use of it.) For
example, if you were creating a Circle class, there would most likely be several fields that
would keep track of the properties of the class, such as radius, area, border_color, and so
on—many of which may be dependent on each other. Although it may seem logical to make the
radius field public (accessible by all other classes), consider what would happen if a few weeks
later you decided to write the code shown in Listing 11.9.

Listing 11.9 Circle.java—Code Fragment Showing What Direct Access to a
Class Field Looks Like

import java.awt.*;

class Circle {

public int radius, area;
public Color border_color;

class Graphicallnterface {
Circle ball;

void animateBall() {
for (int update_radius = @; update_radius <= 10; update_radius++){
ball.radius = update_radius;
paintBall(ball.area, ball.border_color);

}
}

void paintBall(int area,Color color){

}
}

This code would not produce the desired result. Although the

ball.radius = update_radius;

statement would change the radius, it would not affect the area field. As a result, you would be
supplying the paintBall() method with incorrect information. Now, instead, if the radius and

area variables are protected, and any update to the radius forced the area to be recomputed,
the problem would disappear as shown in Listing 11.10.

Listing 11.10 Circle.java—Providing Access to the Circle Fields Through

Methods

class Circle {
protected int radius, area;

public void newRadius (int rad){

continues

Part

Ch

174

Chapter 11 Classes

Listing 11.10 Continued

radius = rad;
area = rad *2 * Math.PI;

public int radius(){
return radius;

}

public int area (){
return area;

}

class GraphicalInterface {
Circle ball;

void animateBall() {
for (int update_radius = 0; update_radius <= 10; update_radius++){
ball.newRadius (update_radius);
paintBall(ball.area(), ball.border_color);

}
}

In the next few sections, you examine the various ways of regulating access and solving this
problem.

Although it is important to consider the level of access that other objects will have to your
fields, it is also important to consider how visible the fields and method variables will be within
your class. Where the variable is accessible, a property called scope is very important. In
general, every variable is accessible only within the block (delimited by the curly braces { and
}) in which it is declared. However, there are some slight exceptions to this rule. Examine
Listing 11.11.

Listing 11.11 CashRegister.java—Variables Have Scope Based on Where
They Are Declared

class CashRegister {
public int total;
int sales_value[];
Outputlog log;

void printReceipt(int total_sale) {
Tape.println("Total Sale = $"+ total_sale);
Tape.println("Thank you for shopping with us.");

Variables 175

void sellItem(int value) {
log.sale(value);
total += value;

}

int totalSales() {
int num_of_sales, total = 0;
num_of_sales = log.countSales();

for (int i = 1; i <= num_of_sales; i++)
total += sales_value[i];
re
turn(total);
}
}

Now examine some of the variables and their scope:

Variable Name Declared As Scope

total Field global to Entire class
CashRegister class

total Local to Within totalSales() Part
totalSales () method

log Field global to Entire class ch
CashRegister class

value Parameter to Within sellItem()
sellItem()

i Local to Within the for
totalSales() loop

within for loop

There are several things to note from the table. Start with the simplest variable, 1og. log is a
field of the CashRegister class and is, therefore, visible throughout the entire class. Every
method in the class (as well as other classes in the same package) may access 1og. Similarly,
value, although declared as a parameter, is nevertheless local to the method sellItem() in
which it was declared. Although all statements in sel1Item() may access value, it may not be
accessed by any other methods. Slightly more confusing is the variable i, which is declared not
at the beginning of a method but within a for statement. Like 1og and value that exist only
within the block in which they were defined, i exists only within the for statement in which it
was defined. In fact, if you consider a complex for loop like that shown in the following ex-
ample, i is recreated (in this case, 10 times).

for (int x = 0; x<10 ;x++){
for (int i =0;i < num_of_sales; i++)

}

To understand why this is the case, it may be helpful to look at how this code might look if you
“unwound it” into a while loop.

176 Chapter 11 Classes

{
int x = 0; //declare x and set it's initial value
while (x <10) {
{ //start the next for loop
int i = 0; //declare i and set it's initial value
while (i < num_of_sales) {
.. //do whatever is in the inner for loop
i++; //perform the increment of i
}
}
x++; //increment x
}
}

As you can see, even though the for loop looks fairly simple, the scope of the variables is
actually quite complicated if you add all the implied braces.

Finally, you arrive at the problem of having two total variables with overlapping scope. While
the total field is accessible to all methods, a problem seems to arise in the totalSales()
method. In such cases, using the multiply-defined identifier refers to the most local definition of
the variable. Therefore, although having no impact on the rest of the class, within the
totalSales() the identifier total actually refers to the local variable total, not the global one.
This means that after exiting the totalSales() method, the total class variable is unchanged.
In such a situation, you can access the class by using the this keyword. So, to set the class
variable total to the value of the local variable total, you would type:

this.total = total;

Although using the same identifier as a field and method variable name does not cause many
problems and is considered an acceptable practice, it is preferable to choose a different (and
more descriptive) identifier, such as total_sales. Another equally valid way to make your
code easier to read is to come up with a unique naming scheme for all your class variables. The
following are two common ways to do this:

Add the letter m (for my) as the first letter to all class field variables
Add an underscore (_) to the beginning of the all field variables

Personally, I prefer the second option because it doesn’t cause the confusion that can come
from the former solution. If we were to have used this naming scheme in the previous example,
it would have looked like this:

class CashRegister {
public int _total;
int _sales_ valuel[];
Outputlog _log;

N O T E Although you can use the same identifier as a class field and as a local variable within a
method, this does not apply to all code blocks within your code. For example, declaring
num_of_sales as your counter within the for block would produce an error.

Variables 177

Modifiers

Like the modifiers for classes and methods, access modifiers determine how accessible certain
variables are to other classes. However, it is important to realize that access modifiers apply
only to the global fields of the class. It makes little sense to speak of access modifiers for vari-
ables within methods because they exist only while the method is executing. Afterwards, they
are collected to free up memory for other variables.

Why Not Make All Variables Fields?
Because all class variables (fields) are accessible to all methods in a given class, why not make all
variables fields global to all methods in the class?

The first reason is that you would be wasting a great deal of memory. Although local variables (those
variables declared within the methods themselves) exist only while the method is executing, fields
must exist for the lifetime of the Object. Consequently, instead of allocating memory for dozens of
fields by making many of your variables local, you are able to use the same piece of memory over
and over again.

The second reason is that making all your variables global would create sloppy programs that would

be hard to follow. If you are going to be using a counter only in one method, why not declare it in that

method? Furthermore, if all of your variables are global, someone reviewing your code (or you, a few Part
weeks later) would have no idea from where the variables were obtaining their values, because there

would be no logical path of values being passed from method to method.

Ch

Default By default, fields are assigned a level of access that, although accessible to other
classes within the same package, are not accessible to subclasses of the current class or
classes outside of the current package. For example:

int size;

public Identical to the public access modifier for methods, the public modifier makes
fields visible to all classes, regardless of their package, as well as all subclasses. Again, you
should make an effort to limit public fields. For example:

public int size;

protected protected fields may be accessed by all subclasses of the current class, but are
not visible to classes outside of the current package. For example:

protected int size;

private The highest degree of protection, private fields are accessible to all methods within
the current class. They are, however, not accessible to any other classes, nor are they acces-
sible to the subclasses of the current class. For example:

private int size;

static As with methods, placing the modifier static in front of the field declaration makes
the field static. static fields are fields of the class whose values are the same in all instances
of the class. Consequently, changing a static field in one class will affect that field in all

178

Chapter 11 Classes

instances of the given class. static fields may be modified in both static and non-static
methods. For example:

static int size;
See Chapter 8, “Methods,” p. 119

final Although Java does not have preprocess, #define-type statements, or constants,

there is a very simple way of creating constants—fields whose values cannot change while the
program is running. By placing the modifier final in front of a field declaration, you tell the
compiler that the value of the field cannot change during execution. Furthermore, because it
cannot change elsewhere, you must set the actual value of all final fields as soon as they are
declared, as seen in the next example:

final int SIZE = 5;

If the value cannot change, why not use the value itself within the program? The answer to this
question is twofold:

‘While you cannot change the value of constants within your code, as a programmer, you
may later change the value of a constant without having to change the value of each use
of the constant. For instance, if S1ZE is used in 10 locations, you only need to change the
number 5 in one location, not in 10.

By using constants, your code becomes a lot cleaner and easier to follow. For example, in
the GameBoard class, using 0 as a check for an empty space would not always make sense
to a reader of your code. However, using the final field EMPTY and assigning it the value 0

makes the code a lot easier to follow.

N O T E By convention, all letters of constants are capitalized. Furthermore, to save memory,
constants are usually made static as well.

N O T E There are two additional modifiers for fields.

When dealing with many threads, there are several problems that can result when multiple
threads attempt to access the same data at the same time. Although a majority of these problems can
be solved by making certain methods synchronized, in future releases of Java, you will be able to
declare certain fields as threadsafe. Such fields will be handled extra carefully by the Java runtime
environment. In particular, the validity of each volatile field will be checked before and after each use.

The other heralded keyword, transient, is related closely to the capability to enable the creation of
persistent Java applets and Beans. In such an environment, transient fields would not be part of the
persistent object.

Using Methods to Provide Guarded Access

Although it may be advantageous to restrict access to certain fields in your class, it is neverthe-
less often necessary to provide some form of access to those fields. A very intelligent and
useful way of doing this is to allow access to restricted fields through less restricted methods
(often referred to as set and get methods), such as in Listing 11.12.

Variables 179

Listing 11.12 Circle.java—A Circle with Protected Fields

class Circle {
private int radius, area;
private Color border_color;

public void setRadius(int update_radius) {
radius = update_radius;
area = Math.PI * radius * 2;

}

public Color getColor() {
return(border_color);

}

public int getRadius() {
return(radius);

}

public int getArea() {
return(area);

}
}
class Graphicallnterface {
Circle ball; Part
void animateBall() {
for (int update_radius = 0@; update_radius <= 10; ch
update_radius++){
ball.setRadius(update_radius);
paintBall(ball.getArea(), ball.getColor());
}
}
}

By limiting access to the radius field to the setRadius () method, you ensure that any change
of the radius will be followed by an appropriate change of the area variable. Because you have
made the two fields private, you must also provide yourself with the means of accessing them
through the various get-type methods. These methods are commonly referred to as accessor
methods because they provide access to otherwise inaccessible fields. Although at first this
may seem a bit cumbersome, its benefits by far outweigh its disadvantages. As a result, it is a
very widely used approach that is extremely prevalent in the Java API libraries on which Java is
heavily dependent.

Using the finalize() Method

Belonging to the java.lang.Object class, and thus present in all classes, is the finalize()
method. Empty by default, this method is called by the Java runtime system during the process
of garbage collection and, may be used to clean up any ongoing processes before the object is
destroyed. For example, in a class that deals with sockets, it is good practice to close all sock-
ets before destroying the object defined by the class. Therefore, you could place the code to

180 Chapter 11 Classes

close the sockets in the finalize () method. After the instance of the class is no longer being
used in the program and is destroyed, this method would be invoked to close the sockets as
required.

N O TE The finalize() method is very similarto the ~classname () method in C++.

For example, take a look at the finalize () method in Listing 11.13.

Listing 11.13 NetworkSender.java—Using finalize()

import java.io.*;

Import java.net.*;

public class NetworkSender

{
private Socket me;
private OutputStream out;

public NetworkSender(String host, int port) {
try {
me = new Socket (host,port);
out = me.getOutputStream();

catch (Exception e) {
System.out.println(e.getMessage();
}

public void sendInfo(char signal) {
try {
out.write(signal);
out.flush();
}
catch (Exception e) {
System.out.println(e.getMessage());
}
b

public void disconnect() {
System.out.println("Disconnecting...");
try {
me.close();

}

catch (Exception e)
System.out.println("Error on Disconnect" + e.getMessage());

System.out.println("done.");

}

/* In this case finalize() is the identical to disconnect() /*
/* and only attempts to ensure closure of the socket in the /*
/* case that disconnect() is not called. */

Inner Classes 181

protected void finalize() {
System.out.println("Disconnecting...");

try {
me.close();

}
catch (Exception e)
System.out.println("Error on Disconnect" + e.getMessage());

System.out.println("done.");

N OTE finalize() is declared to be protected in java.lang.Object and must remain
protected or become less restricted.

CAUTION

While the finalize () method is a legitimate tool, it should not be relied upon too heavily because
garbage collection is not a completely predictable process. This is because garbage collection runs in the
background as a low-priority thread and is generally performed when you have no memory left. Part

Consequently, it is a good practice to attempt to perform such clean-up tasks elsewhere in your code,
resorting to finalize () only as a last resort and when failure to execute such statements will not cause ch
significant problems.

Inner Classes

With the Java 1.1 compiler, Sun added several new features to the language. One of these was
nested classes. Nested classes can only be compiled using a Java 1.1 or 1.2 compiler.

What Are Inner Classes?

Inner classes are classes that are actually included within the body of another class. In fact, you
can even include a class within the body of a method. Nested classes are primarily useful to
programmers because they can help you structure your code in a more organized fashion. In
addition, in some cases they can add to the readability of the code.

You may wonder why you would ever want to do this. The reality is that you are never required
to develop anything using inner classes. However, inner classes provide you with the ability to
organize your code in a more understandable fashion, and occasionally provide the compiler
with a means to further optimize the final code. It is also true that you can produce identical
results by placing the inner classes in their own scope.

At this point, if you’re one of those programmers who rode out the evolution of C++, you might
be wondering whether or not inner classes are just one of those concepts that seemed like a
good idea to the designers at the time, but that ends up only causing confusion. Wasn’t Java
supposed to avoid these pitfalls? Wasn’t that the rationalization for avoiding operator

182

Chapter 11 Classes

overloading, multiple inheritance and other useful but confusing aspects of languages such as
C++? Well, the unfortunate answer is maybe. Time will tell how well inner classes are accepted
by the developer community as a whole. Regardless of what your own view is, it’s very impor-
tant to understand how to utilize inner classes in case you find yourself editing code from indi-
viduals who do utilize the power of inner classes. With that spirit, forge ahead and look at how
inner classes work.

Creating a Program with Inner Classes

The major advantage of inner classes is the ability to create what are known as adapter classes.
Adapter classes are classes that implement an interface. By isolating individual adapters into
nested classes, you can, in essence, build a package-like structure right within a single top-level
class.

Take a look at an example that uses an adapter class. Listing 11.14 demonstrates how two
individual and separate Runnable interfaces can be created in the same class. Both of these
interfaces need access to the variable currentCount of the top-level class.

Listing 11.14 BigBlue—An Application that Utilizes an Inner Class (Apple)
/*

*

* BigBlue

*

*/

public class BigBlue implements Runnable{
int currentCount;

class Apple implements Runnable {
public void run(){
while(true){
System.out.println("count="+currentCount);

try{
Thread.sleep(100);

}catch (Exception e){}

}

public Runnable getApple(){
return new Apple();

}
public void run(){
while(true){
currentCount+=5;
try{

Thread.sleep(75);
}catch (Exception e){}

}

public static void main(String argv[]){
BigBlue b = new BigBlue();

Inner Classes 183

Thread appleThread = new Thread (b.get Apple());

appleThread.start();
Thread thisThread = new Thread (b);
thisThread.start();

b

As you look at the preceding example, notice that the run () method of BigBlue has access
directly to the currentCount variable, because currentCount is a field of the BigB1lue class.
This works just like any other method. Now take a look at the Apple class. This class also has
access to the currentCount variable, and it accesses it just like it was its own, only it’s not; it’s
received from the top-level class BigBlue.

To compile this program, it’s not necessary to compile both Apple and BigB1lue, just the
BigBlue class:

javac BigBlue.java

To run the program, type:

java BigBlue

What you end up seeing are a sequence of numbers. Notice that because the sleep time in the
BigBlue thread is a bit shorter than the Apple one, every once in a while the numbers incre-

ment faster. This was done to demonstrate that they were in fact two different threads, running
in two completely different loops.

CAUTION
If, when you compile a class containing an inner class, you get an error similar to:
bigBlue.java:30 :

no enclosing instance of class bigBlue is in scope; an explicit one must be
provided when creating class bigBlue. apple, as in outer. new inner() or
outer.super().

Thread appleThread = new Thread (new apple());

You may be very confused. To explain this error, look at what a main method would look like that might
generate this error:

public static void main(String argv[])({

bigBlue b = new bigBlue();

Thread appleThread = new Thread (new apple());
appleThread.start();

Thread thisThread = new Thread (b);
thisThread.start();

Part

Ch

184 Chapter 11 Classes

What causes this error is an attempt to create a new apple () inside of the static main method. To be able
to access the apple class, you must do so in a non-static instance of BigBlue.

Synchronization with Inner Classes

From time to time, it is necessary to be able to synchronize a method on the parent class of an
inner class. Ordinarily, you might just declare a method to be synchronized or create a block
that is synchronized (this). However, because this is a new class, how are you to specify a
synchronization on the parent class? Consider the situation where we create an enumeration,
as in Listing 11.15.

Listing 11.15 Enumeration of Elements

public class FixedStack {
int array[] = new int[10];
int top=0;

synchronized public void push(int item) {
array[top++] = item;

}

class Enumerator implements java.util.Enumeration {
public int nextElement() {
synchronized (FixedStack.this) {
if (count > top)
count = top;
if (count == 0)
throw new
NoSuchElementException("FixedStack");
return array|[--count];

N o T E InlListing 11.15, make sure you don’t try to access an element in the array with the

nextElement () method of the Enumeration at the same time an element is added with
the push () method. To do this, the example uses the qualified FixedStack.this variable.The
qualified name refers to the super class of this. The inner class implicitly knows that the qualified
this refers to the instance that instantiated the inner class.

So How Do Inner Classes Work?

At this point, you're probably wondering how inner classes work. Under Java 1.0, inner classes
were not available. So, how did Java designers make the programs that you write using inner
classes work with virtual machines that were designed from the 1.0 specification? The answer
is that inner classes aren’t really new. The solution lies in the fact that when you write a class

Packages

with an inner class in it, the compiler takes the inner class outside of the main class and just
adjusts the compiled result.

Again, if you’re one of those programmers who rode the change in the early days of C++, inner
classes will spark a note. The reason is that in the beginning of C++, C++ was really C wrapped
in an object-oriented shroud. When you wrote a C++ program, the C++ compiler actually just
converted your C++ code into C code, and then a C compiler did the real compilation. Well,
with Java, you don’t actually need two compilers, but the end result is very similar.

Why Use Inner Classes?

You might be saying to yourself, “Why should I ever use an inner class?” The answer, as indi-
cated at the beginning of this section, is to organize your code in a more suitable fashion. Sun’s
documentation refers to these inner classes as Adapter classes. To understand why, look at
what inner classes are usually used for.

An inner class can extend or implement any interface you would like—so can an ordinary
class. The only problem is that when a standard class implements an interface, it’s often diffi-
cult to locate where the methods associated with the interface are located within the code.
However, because the declaration and the code are together with an inner class, this is gener-
ally much clearer.

Packages

When you start creating a large number of classes for a program, it is helpful to keep them
together. A clutter of class files is not unlike how your hard drive would look without
subdirectories or folders. Imagine if all the files on your hard drive were placed in a single
folder. You would have thousands of files, and you would have to make sure that none of them
had the same name.

Class files by themselves must comply with this same arrangement. That’s a fairly rigid re-
quirement. To overcome this, Java has a system called packages. You can think of each pack-
age as a subdirectory. You have already seen how a number of packages are used in the Java
API For example, java.awt is a package, java.lang is another package, and so on.

Packages in Java are groups of classes. These are similar to libraries in many computer lan-
guages. A package of Java classes typically contains related classes. You can imagine a package
called Transportation, which would have numerous classes defined in it such as Car, Boat,
Airplane, Train, Rocket, AmphibiousCar, SeaPlane, and so on. Applications that deal with
items of this sort might benefit from importing the imaginary Transportation package.

To make a class a member of a package, you must declare it using the package statement:
package Transportation;
Some unique requirements go along with the package statement, however:

For a class to be included in a package, its source code must be in the same directory as
the rest of the package files. You can get around this requirement, but it’s not really a
good idea.

185

Part

Ch

186

Chapter 11 Classes

The package statement itself must be the very first statement in the file. In other words,
you can have comments and whitespace before the package line, but nothing else. The
following table shows an example of a valid and an invalid package statement:

Legal lllegal

package Transportation import java.applet.Applet;

import java.applet.Applet; package Transportation;

Importing Classes in Packages

After a file has been declared to be part of a package, the actual name for the class is the pack-
age name dot (.) and the name of the class. In other words, in our Transportation example,
the car class would be Transportation.Car, where before it would have been simply Car.

This leads to a small problem with an easy solution. If you write a program and then later de-
cide to make all of the classes a member of a package, how does the compiler find the other
files? Before, they were called car and Van. Now, you must import them as
Transportation.Car in order to use them. In other words, as shown here, where before you
imported Car, you must now import Transportation.Car:

Old New

import Car; import Transportation.Car

Importing Entire Packages

It is also possible to import the entire contents of a package or all of the classes in that pack-
age. You have probably already seen this done with some of the JDK classes such as java.awt.
To import all the classes, replace the individual class name with the wild card (*):

import java.awt.*;

By importing entire packages, you give yourself access to every class in the package. This can
be very convenient, because you don’t need to make up a big list like:

import java.awt.Graphics;

import java.awt.Image;

import java.awt.Button;
import java.awt.Canvas;

Now, if you're thinking, “That seems simple; why don’t I just import the entire package all the
time?” The answer lies in the fact that there are a couple of drawbacks to importing the entire
package:

‘When you import an entire package, the virtual machine has to keep track of the names
of all of the elements in the package. Using extra RAM to store class and method names
is not terribly important right now because your computer probably has 16M or more of
RAM. However, as more and more small, Java-based computers come into play, this
could become an issue. In addition, this slows the system down slightly.

Using a Class Without Importing It 187

If you import several packages and they happen to share a class file name, things start to
fall apart. Which class do you really want? For instance, if you import YourCorp. *, which
has a Button class, and import java.awt. *, which also contains a Button class, the two
Button classes will collide.

The most important drawback deals with the bandwidth over the Internet. When you
import an entire package that is not on the computer already (this excludes the java.*
packages) the Appletviewer or other browser has to drag all of the class files for the
entire package across the Net before it can continue. If you have 30 classes in a package
and are only using two, your applets aren’t going to load nearly as fast, and you would be
wasting a lot of resources.

Using a Class Without Importing It

You may have not realized this before, but it is not necessary to actually import a class before
you use it. Ordinarily, classes in the null package (default) and that reside in the same physical
directory can be used without doing anything. For instance, if there are two classes Car and
van in the same directory, you can create an instance of Car in the van class without actually

importing the car class. Listings 11.16 and 11.17 show two such classes.
Part

Listing 11.16 A Simple Class File for the Car Class

//Car is just a generic class with a few variables
public class Car {
int wheels;
int tires;
int speed;
//simple constructor
public Car (int inWheels, int inTires, int inSpeed){
wheels=inWheels;
tires = inTires;
speed = inSpeed;
}
}

Ch

Listing 11.17 A Simple Class File for Van that Uses the Car Class

//The Van class is another simple class, but uses the Car class
public class Van {
//The Car class is used here without being imported
Car theCar;
int doors;
//simple constructor
public Van (Car inCar, int inDoor){
theCar= inCar;
doors= inDoor;
}
}

188

Chapter 11 Classes

When you place a class in a package, you can still use the class without importing it. The only
difference is that you must use the full class name when declaring the instance. Listings 11.18
and 11.19 are identical to 11.15 and 11.16 except that Car is a member of the Transportation
package.

Listing 11.18 A Simple Class File for the Car Class in a Package

package Transportation;
//Car is just a generic class with a few variables
public class Car {

int wheels;

int tires;

int speed;

//simple constructor

public Car (int inWheels, int inTires, int inSpeed){

wheels=inWheels;

tires = inTires;

speed = inSpeed;

}
}

Listing 11.19 A Simple Class File for Van that Uses the Car Class in a
Package

//The Van class is another simple class, but uses the Car class
public class Van {
//The Car class is used here without being imported
Transportation.Car theCar;
int doors;
//simple constructor
public Van (Car inCar, int inDoor){
theCar= inCar;
doors= inDoor;
}
}

N O T E Although you do not need to import a package to use the classes, doing so affords a
shorthand way to refer to classes defined in the package. Specifically, in the previous
example, if the package was imported:

import Transportation.Car;

to create an object of Class Car, you would not need Transportation in front of every Car
reference, and the code would look otherwise identical to Listing 11.18.

Using Packages to Organize Your Code 189

Using Packages to Organize Your Code

Packages are more than just a shortcut. They are a way of keeping things organized.

Java itself comes with a built-in set of packages, as shown in Table 11.1.

Table 11.1 Standard Java Packages
Package

Description

java.applet

java.

java.

java.

java.

java.

awt

io

lang

net

util

Contains classes needed to create Java
applets that run under Netscape 2.0 (or
greater), HotJava, or other Java-
compatible browsers.

Contains classes helpful in writing
platform-independent graphic user
interface (GUI) applications. This comes
with several subpackages including
java.awt.peer and java.awt.image.

Contains classes for doing I/0 (input

.. Part
and output). This is where the data A
stream classes are kept.
Contains the essential Java classes. Ch

java.lang is implicitly imported, so you
don’t need to import its classes.

Contains the classes used for making
network connections. These are used in
tandem with java.io for reading and
writing data from the network.

Contains other tools and data
structures, such as encoding, decoding,
vectors, stacks, and more.

Additional packages are also available commercially.

The one feature to notice about these classes is how Sun Microsystems has used the packages
to group similar classes together. When you set out to construct a program, you might be
tempted to place the entire program in a package. For instance, say you were writing a Pac
Man game. You might be tempted to place all of the classes in a package called Pac. Would this
be a good idea? Probably not, but it all depends on your implementation.

The odds are that your Pac Man game will include a lot of code that is likely to be used by
other arcade-style games you have written. For instance, you might create what is known as a

190

Chapter 11 Classes

game sprite engine. It's probably a more far-sighted approach to place all of the elements for
the game-sprite in their own package and then place only those classes that are specific to the
Pac Man game in the Pac package. Later you can go back and add to the game-sprite package
without disrupting the readability of your Pac Man game.

Implicit Import of All java.lang Classes

You might have noticed from reading the code throughout this book that there is another set of
classes that you don’t need to import to use. The classes in the java.lang package are always
imported for you. This means that you can use the java.lang.System class as if it was part of
the system—without importing it in statements like this:

System.out.println("Hi there, System hasn't been imported");

This can be a very convenient thing as in the case of System, but it can also be a source of
confusion. For instance, look back at Listing 11.10; the Mmath class is also used without instanti-
ating it to access the value of PI. However, if you're not familiar with how Math got imported
(automatically), this may have caused you some confusion. The only way to overcome this is to
become familiar with the java.lang package and learn what classes are available to you. e

Interfaces

|n this chapter

What Are Interfaces? 192

Creating an Interface 193

Implementing Interfaces 198

Using Interfaces from Other Classes 201
Exceptions 204

CHAPTER

192

Chapter 12 Interfaces

What Are Interfaces?

Interfaces are Java’s substitute for C++’s feature of multiple inheritance, the practice of allowing
a class to have several superclasses. Although it is often desirable to have a class inherit sev-
eral sets of properties, for several reasons the creators of Java decided not to allow multiple
inheritance. Java classes, however, can implement several interfaces, thereby enabling you to
create classes that build upon other objects without the problems created by multiple inherit-
ance.

Somewhat resembling classes in syntax, interfaces are used when you want to define a certain
functionality to be used in several classes, but are not sure exactly how this functionality will be
defined by each of these classes. By placing such methods in an interface, you are able to
outline common behavior and leave the specific implementation to the classes themselves. This
makes using interfaces instead of classes a better choice when dealing with advanced data
handling.

Interfaces are the underprivileged first cousins of classes. In fact, they are extremely similar to
pure abstract classes. Although classes have the capability to define an object, interfaces define
a set of methods and constants to be implemented by another object. From a practical view-
point, interfaces help to define the behavior of an object by declaring a set of characteristics for
the object. For example, knowing that a person is an athlete does not define her entire person-
ality, but does ensure that she has certain traits and capabilities.

As an example, say an athlete will always have a 100-meter time, be able to perform the task of
running a mile, and be able to lift weights. By later implementing the athlete interface, you
ensure that a person will possess these abilities.

Thinking of interfaces in another way, consider your radio, TV, and computer speakers. Each of
them has one common control: volume. For this reason, you might want all these devices to
implement an interface called volumeControl.

Interfaces have one major limitation: They can define abstract methods and final fields, but
cannot specify any implementation for these methods. For methods, this means that the body
is empty. The classes that implement the interface are responsible for specifying the implemen-
tation of these methods. This means that, unlike extending a class, when you implement an
interface, you must override every method in the interface.

In general, interfaces enable you as a programmer to define a certain set of functionality with-
out having any idea as to how this functionality will be later defined. For example, if a class
implemented the java.lang.Runnable interface (an interface with one method—run()), the
class is known to have a run () method. Because the VM can be assured that any Runnable
class has a run () method, the VM can blindly call the run () method. At the same time, when
the designers were writing the VM, they did not have to know anything about what would
happen in the run() method. So, you could be doing an animation, or calculating the first 1,000
prime numbers. It doesn’t matter; all that does matter is that you will be running, and you have
established that by implementing the Runnable interface.

Creating an Interface 193

Another excellent example is the java.applet.AppletContext interface. This interface defines
a set of methods that returns information regarding the environment in which an applet is
running. For instance, the AppletContext defines a method called getImage. Any viewer ca-
pable of running an applet has a means to load an image through the implementation of this
method.

The problem is that different viewers such as the Appletviewer or Netscape Navigator get
images differently. Worse yet, even the same browser varies based on the platform it is running
on. Fortunately, every Java-enabled browser implements the AppletContext interface, so al-
though the java.applet.Applet class depends on the methods declared in the AppletContext
interface, it does not need to worry about how these methods work. That means, you can use
the same applet class and the same methods (such as java.applet.Applet.getImage()) in a
variety of environments and browsers without worrying about whether the getImage () method
will be there.

Creating an Interface

The syntax for creating an interface is extremely similar to that for creating a class. However,
there are a few exceptions. The most significant difference is that none of the methods in your
interface may have a body, nor can you declare any variables that will not serve as constants.

An example interface is shown in Listing 12.1. It shows three items: an interface, a class that
implements the interface, and a class that uses the derived class. Look it over to get an idea as
to how interfaces are used and where we are going in this chapter.

Part
Listing 12.1 Product.java: Product Interface
public interface Product {
static final String MAKER "My Corp"; Ch

static final String PHONE "555-123-4567";

public int getPrice(int id);

}

***pegin Listing 12.1a: Shoe.java: Class Shoe which implements the Product
Interface
public class Shoe implements Product {
public int getPrice(int id) {
if (id == 1)
return(5);
else
return(10);
}
public String getMaker() {
return(MAKER) ;
}

continues

194

Chapter 12 Interfaces

Listing 12.1 Continued

***Begin Listing 12.1b: Store.java: Class Store extends Shoe(which implements
Product)
public class Store {

static Shoe hightop;

public static void init() {
hightop = new Shoe();

}

public static void main(String argv[]) {
init();
getInfo(hightop);

orderInfo(hightop);
}

public static void getInfo(Shoe item) {
System.out.println("This Product is made by "+ item.MAKER);
System.out.println("It costs $" + item.getPrice(1) + '\n');

}

public static void orderInfo(Product item) {
System.out.println("To order from " + item.MAKER + " call " +
Oitem.PHONE + ".");
System.out.println("Each item costs $" + item.getPrice(1));
}
}

The Declaration

Interface declarations have the syntax
public interface NameoflInterface extends InterfacelList
where everything in italics is optional.

Public Interfaces By default, interfaces may be implemented by all classes in the same pack-
age. But if you make your interface public, you allow classes and objects outside of the given
package to implement it as well.

Just like public classes, public interfaces must be defined in a file named NameOf Interface.java.

Interface Name The rules for an interface name are identical to those for classes. The only
requirements on the name are that it begin with a letter, an underscore character, or a dollar
sign; contain only Unicode characters (basic letters and digits, as well as some other special
characters); and not be the same as any Java keyword (such as extends or int). Again, like
classes, it is common practice to capitalize the first letter of any interface name.

See “Keywords,” p. 94

Creating an Interface 195

Although only required for public interfaces, it is a good practice to place all interfaces in a file named
NameOf Interface.java. This enables both you and the Java compiler to find the source code for your
class.

Thus, while the Product interface is not public, you should still declare it in a file named Product.java.

Extending Other Interfaces In keeping with the OOP practice of inheritance, Java interfaces
may also extend other interfaces as a means of building larger interfaces upon previously
developed code. The new sub-interface inherits all the methods and static constants of the
super-interfaces just as subclasses inherit the properties of superclasses.

See “Object-Oriented Programming: A New Way of Thinking,” p. 72

The one major rule that interfaces must obey when extending other interfaces is that they may
not define the body of the parent methods, any more than they can define the body of their own
methods. Any class that implements the new interface must define the body of all of the meth-
ods for both the parent and child interface.

As an example, the following lines show a new interface that extends a previously defined
interface (Runnable):
interface MonitoredRunnable extends java.lang.Runnable {

boolean isRunning() {

}
}
The declaration shows a more detailed Runnable interface, including some of the features that
can be found in java.lang.Thread.

Interfaces cannot extend classes. There are a number of reasons for this, but probably the
N O TE easiestto understand is that any class that the interface would be extending would have
its method bodies defined. This violates the “prime directive” of interfaces.

Remember that if you implement an extended interface, you must override both the methods
in the new interface and the methods in the old interface, as seen in Listing 12.2.

Listing 12.2 Fireworks Class Implementing the MonitoredRunnable Derived
Interface

class Fireworks implements MonitoredRunnable {
private boolean running; /| Keeps track of state.

void run() {
shootFireWorks();

}

continues

Part

Ch

196

Chapter 12 Interfaces

Listing 12.2 Continued

boolean isRunning() { // Provides access to other objects without
return(running); //allowing them to change the value of running.

}

Because Fireworks implements MonitoredRunnable, it must override isRunning(), declared in
MonitoredRunnable. Because MonitoredRunnable extends Runnable, it must also override
run(), declared in Runnable.

N O T E Although classes implement interfaces to inherit their properties, interfaces extend other

interfaces. When extending more than one interface, separate each by a comma. This
means that although classes cannot extend multiple classes, interfaces are allowed to extend multiple
interfaces:

interface MonitoredRunnable extends java.lang.Runnable,java.lang.Cloneable {
boolean isRunning() {

}

The Interface Body

The body of an interface cannot specify the specific implementation of any methods, but it does
specify their properties. In addition, interfaces may also contain final variables.

For example, declaring the MAKER variable in the Product interface allows you to declare a
constant that will be employed by all classes implementing the Product interface.

Another good example of final fields in interfaces can be found in the
java.awt.image.ImageConsumer interface. The interface defines a set of final integers that
serve as standards for interpreting information. Because the RANDOMPIXELORDER variable
equals 1, classes that implement the ImageConsumer interface can make reference to the vari-
able and know that the value of 1 means that the pixels will be sent in a random order. This is
shown in the setHints method of Listing 12.3.

Listing 12.3 Pseudocode for a Class Implementing ImageConsumer

public class Magnalmage implements ImageConsumer{
imageComplete(int status) {

}

setColorModel(ColorModel cm) {
) .

setDimensions(int x, int y) {

}
setHints(int hints) {

Creating an Interface

if ((hints & RANDOMPIXELORDER)!=0){

i
}

setPixels(int x, int y, int w , int h, ColorModel cm , byte pixels[],
Oint off, int scansize) {

}

setPixels(int x, int y, int w, int h, ColorModel cm, int pixels[], int off,
Oint scansize) {

}

setProperties(Hashtable props) {

}

Methods The main purpose of interfaces is to declare abstract methods that will be defined
in other classes. As a result, if you are dealing with a class that implements an interface, you
can be assured that these methods will be defined in the class. Although this process is not
overly complicated, there is one important difference that should be noticed.

The syntax for declaring a method in an interface is extremely similar to declaring a method in
a class, but in contrast to methods declared in classes, methods declared in interfaces cannot
possess bodies. An interface method consists of only a declaration. For example, the following
two methods are complete if they are defined in an interface:
public int getPrice(int id);
public void showState();
However, in a class, they would require method bodies:
public int getPrice(int id) {
if (id == 1)
return(5);
else
return(10);

}

public void showState() {
System.out.println("Massachusetts");

}

The method declaration does not determine how a method will behave; it does define how it
will be used by defining what information it needs and what (if any) information will be re-
turned. The method that is actually defined later in a class must have the same properties as
you define in the interface. To make the best use of this fact, it is important to carefully con-
sider factors like return type and parameter lists when defining the method in the interface.

Method declarations in interfaces have the following syntax:

public return_value nameofmethod (parameters) throws ExceptionList;

197

Part

Ch

198 Chapter 12 Interfaces

where everything in italics is optional. Also note that unlike normal method declarations in
classes, declarations in interfaces are immediately followed by a semicolon.

N O T E All methods in interfaces are public by default, regardless of the presence or absence of
the public modifier. This is in contrast to class methods which default to friendly.

It's actually illegal to use any of the other standard method modifiers (including native, static,
synchronized, final, private, protected, or private protected) when declaring a method in an
interface.

Variables in Interfaces Although interfaces are generally employed to provide abstract
implementation of methods, you may also define variables within them. Because you cannot
place any code within the bodies of the methods, all variables declared in an interface must be
global to the class. Furthermore, regardless of the modifiers used when declaring the field, all
fields declared in an interface are always public, final, and static.

Although all fields will be created as public, final, and static, you do not need to explicitly state this in
the field declaration. All fields default to public, static, and final regardless of the presence of these
modifiers. It is, however, a good practice to explicitly define all fields in interfaces as public, final, and
static to remind yourself (and other programmers) of this fact.

As seen in the Product interface, interface fields—Ilike final static fields in classes—are used to
define constants that can be accessed by all classes that implement the interface:

public interface Product {
//This variable is static and final.
static final String MAKER = "My Corp";

//This variable is also static and final by default, even though not
//stated explicitly.
String PHONE = "555-123-4567";

public int getPrice(int id);
}

Implementing Interfaces

Now that you know how to create interfaces, let’s examine how they are used in developing
classes. Listing 12.4 shows an example of a class that implements our Product interface.

Listing 12.4 Shoe Class Implementing the Product Interface

class Shoe implements Product {
public int getPrice(int id) {
if (id == 1)
return(5);
else
return(10);

Implementing Interfaces 199

public String getMaker() {
return (MAKER) ;

}

Of course, the code in the class can deal with functions other than those relating to the inter-
face (such as the getMaker () method). But, to fulfill the requirements of implementing the
Product interface, the class must override the getPrice (int) method.

Overriding Methods

Declaring a method in an interface is a good practice. However, the method cannot be used
until a class implements the interface and overrides the given method.

@ Remember that if you implement an interface, you are required to override all methods declared in the
interface. Failure to do so will make your class abstract.

Modifiers

As discussed earlier, methods declared in interfaces are by default assigned the public level of
access. Consequently, because you cannot override a method to be more private than it already
is, all methods declared in interfaces and overridden in classes must be assigned the public
access modifier, unless they are explicitly made less public in the interface.

Of the remaining modifiers that may be applied to methods, only native and abstract may be
applied to methods originally declared in interfaces.

Parameter List

Interface methods define a set of parameters that must be passed to the method. Consequently,
declaring a new method with the same name but a different set of parameters than the method
declared in your interface overloads the method, not overrides it.

Although there is nothing wrong with overloading methods declared in interfaces, it is also
important to implement the method declared in the interface. Therefore, unless you declare
your class to be abstract, you must override each method, employing the same parameter
signature as in your interface (see Listing 12.5). By the way, only one method satisfies the
run() method required for Runnable.

Listing 12.5 Runner.java—A Class (Runner) that Implements Runnable and
Has Two run Methods

public void Runner implements Runnable {

//This method overloads the run() method; it does not
//fulfill the requirements for Runnable.

continues

Part

Ch

200 Chapter 12 Interfaces

Body

Listing 12.5 Continued

public void run(int max){
int count =0;
while (count++<max){

try{
Thread.sleep(500);
} catch (Exception e){}

}

//This method fulfills the requirement for Runnable.
//You must have this method.
public void run(){

while (true){

try{
Thread.sleep(500);
} catch (Exception e){}

If the method String createName(int length, boolean capitalized) is declared in an
interface, here are some valid and invalid examples of how to override it. The invalid methods
can exist (as overloaded versions of the method) in addition to the valid ones, but will not be
related to the interface:

Valid
String createName(int a, boolean b)

String createName(int width, boolean formatted)

Invalid
String createName (boolean capitalized, int length)

String createName(int length)

When creating a class that implements an interface, one of your chief concerns will be creating
bodies for the methods originally declared in the interface. Unless you decide to make the
method native, it is necessary to create the body for every method originally declared in your
interface if you do not want to make your new class abstract.

The actual implementation and code of the body of your new method is entirely up to you. This
is one of the good things about using interfaces. Although the interface ensures that, in a non-
abstract class, its methods will be defined and will return an appropriate data type, the interface
places no further restrictions or limitations on the method bodies.

Using Interfaces from Other Classes 201

Using Interfaces from Other Classes

You've learned how to create interfaces and build classes based on interfaces. However, inter-
faces are not useful unless you can develop classes that will either employ the derived classes
or the interface itself.

Using an Interface’s Fields

Although the fields of an interface must be both static and final, they can be extremely useful in
your code.

The following example demonstrates that any variable from an interface can be referenced by
using the same dot notation you use with classes. That means you can use
java.awt.image.ImageConsumer.COMPLETESCANLINES just as with the class java.awt.Event
you use with java.awt.Event.MOUSE_DOWN. This provides you with access to constants. Listing
12.6 shows an example of another ImageConsumer variable being used.

Listing 12.6 Using the Constant Fields of an Interface

import java.awt.image.*;
class MyImageHandler {
/* The java.awt.image.ImageConsumer interface defines certain constants to serve
as indicators. STATICIMAGEDONE, which is set to equal 3, informs the consumer
that the image is complete.*/

ImageConsumer picture;

void checkStatus(boolean done) {

if (done) Part
picture.imageComplete(ImageConsumer.STATICIMAGEDONE) ;
}

Ch

Using Interfaces as Types

One of the most important features of an interface is that it can be used as a data type. An
interface variable can be used just as you would any class.

As a Parameter Type In Listing 12.7, you create a simple application that employs the Shoe
class developed earlier. Because the Shoe class implements the Product interface, you may
deal with the instances of the Shoe class either as standard Shoe objects or as objects based on
the Product interface. Although both approaches produce the same results, treating the in-
stance as an object based on the Product interface provides you with a more flexible and useful
way of using the resources provided by the Product interface.

Listing 12.7 Using the Product Interface as a Parameter Type

class Store {
static Shoe hightop;

continues

202

Chapter 12 Interfaces

Listing 12.7 Continued

public static void init() {
hightop = new Shoe();

}

public static void main(String argv[]) {
init();
getInfo(hightop);
orderInfo(hightop);

}

public static void getInfo(Shoe item) {
System.out.println("This Product is made by "+ item.MAKER);
System.out.println("It costs $" + item.getPrice(1) + '\n');

}

public static void orderInfo(Product item) {
System.out.println("To order from " +item.MAKER + " call " +
Oitem.PHONE + ".");
System.out.println("Each item costs $" + item.getPrice(1));

Output In the following example, the getInfo() method treats hightop as a simple class with
certain methods and fields. However, the interesting example is orderInfo(), which extracts
almost the same information without knowing anything about a Shoe. Because a Shoe meets
the requirements of a Product, you are able to implicitly cast a Shoe to become a Product. As a
result, because you know that the Product interface declares certain features, you can be sure
that these features, such as the getPrice () method, are present in the parameter item:
C:\dev>\jdk\java\bin\java Store

This Product is made by My Corp
It costs $5

To order from My Corp call 555-123-4567.
Each item costs $5

N O T E Notice that in treating hightop as a Product, you are implicitly casting it as a new data
type without specifically stating so in your code. Although the compiler has no trouble

doing this, you could substitute that line of code in the Store class for the following:

orderInfo((Product)hightop);

This statement would accomplish the same goal and is often easier for other programmers to read,
because it shows that orderInfo() accepts a Product, not a Shoe as its argument.

Although it is not necessary to use the Product type as your argument in this simplistic ex-
ample, its use becomes apparent when you have multiple classes, each of which implements
the same interface. For example, consider a more elaborate Store class with several items, all
of which implemented the Product interface, such as in Listing 12.8.

Using Interfaces from Other Classes

203

Listing 12.8 Using an Interface as a Type to Deal with Several Classes

interface Product {
static final String MAKER "My Corp";
static final String PHONE = "555-123-4567";
public int getPrice(int id);
public void showName();

}

class Book implements Product {
public int getPrice(int id) {
if (id == 1)
return(20);
else
return(30);
}
public void showName() {
System.out.println("I'm a book!");
}
}
class Shoe implements Product {
public int getPrice(int id) {
if (id == 1)
return(5);
else
return(10);
}
public void showName() {
System.out.println("I'm a shoe!");
}
}

class store {
static Shoe hightop;
static Book using_java;

public static void init() {
hightop = new Shoe();

using_java = new Book();

}

public static void main(String argv[]) {
init();
orderInfo(hightop);

orderInfo(using_java);

}

public static void orderInfo(Product item)
item.showName();
System.out.println("To order from " +
Oitem.PHONE + ".");

Part

Ch

{

item.MAKER + " call " +

System.out.println("Each item costs $" + item.getPrice(1));

continues

204

Chapter 12 Interfaces

Listing 12.8 Continued

Output:

C:\dev>\JDK1.2\java\bin\java Store

I'm a shoe!

To order from My Corp call 555-123-4567.
Each item costs $5

I'm a book!

To order from My Corp call 555-123-4567.
Each item costs $20

Exceptions

For an interface method to throw an exception, the exception type (or one of its superclasses)
must be listed in the exception list for the method as defined in the interface. Here are the
rules for overriding methods that throw exceptions:

The new exception list may only contain exceptions listed in the original exception list,
or subclasses of the originally listed exceptions.

The new exception list does not need to contain any exceptions, regardless of the
number listed in the original exception list. (This is because the original list is inherently
assigned to the new method.)

The new method may throw any exception listed in the original exception list or derived
from an exception in the original list, regardless of its own exception list.

In general, the exception list of the method—which is declared in the interface, not the
redeclared method—determines which expectations can and cannot be thrown. In other
words, when a redeclared method changes the exception list, it cannot add any exceptions that
are not included in the original interface declaration.

As an example, examine the interface and method declarations in Listing 12.9.

Listing 12.9 Alternate Exception Lists

interface Example {
public int getPrice(int id) throws java.lang.RuntimeException;

}

class User implements Example {

public int getPrice(int id) throws java.awt.AWTException {

// Illegal - Reason 1

// java.awt.AWTException is not a subclass of java.lang.RuntimeException

/1] method body

}

public int getPrice(int id) {

if (id == 6)
throw new java.lang.IndexOutOfBoundsException();

// Legal - Reason 2
// IndexOutOfBoundsException is derived from

Exceptions 205

// RuntimeException
else

}
public int getPrice(int id) throws java.lang.IndexOutOfBoundsException {
// Legal - Reason 1
// IndexOutOfBoundsException is derived from
//RuntimeException
if (id == 6)
throw new java.lang.ArrayIndexOutOfBoundsException();
// Legal - Reason 3
/1 ArrayIndexOutOfBoundsException is derived from
//IndexOutOfBoundsException

Part

Ch

CHAPTER

Threads

|n this chapter

What Are Threads? 208

Why Use Threads? 208

How to Make Your Classes Threadable 209

The Great Thread Race 209

Understanding the GreatRace 212

Thread Processing 214

Try Out the Great Thread Race 215

Changing the Priority 215

A Word About Thread Priority, Netscape, and Windows 217
Synchronization 219

Speaking with a Forked Tongue 220

Changing the Running State of the Threads 221
Obtaining the Number of Threads That Are Running 222
Finding All the Threads That Are Running 223

The Daemon Property 225

208

Chapter 13 Threads

What Are Threads?

A unique property of Java is its built-in support for threads. Threads allow you to do many
things at the same time. If you could only move one arm or leg at a time, you would probably
feel fairly limited. Threads are the computer’s answer to this problem. This chapter covers how
threads can be used in Java programs.

Think about a typical corporation. In almost every company there are at least three interdepen-
dent departments: management, accounting, and manufacturing/sales. For an efficient com-
pany to run, all three of these operations need to work at the same time. If accounting fails to
do its job, the company will go bankrupt. If management fails, the company will simply fall
apart, and if manufacturing doesn’t do its job, the company will have nothing with which to
make money.

Many software programs operate under the same conditions as your company. In a company,
you complete all the tasks at the same time by assigning them to different people. Each person
goes off and does his or her appointed task. With software, you (usually) only have a single
processor, and that single processor has to take on the tasks of all these groups. To manage
this, a concept called multitasking was invented. In reality, the processor is still only doing one
thing at any one time, but it switches between them so fast that it seems like it is doing them all
simultaneously. Fortunately, modern computers work much faster than human beings, so you
hardly even notice that this is happening.

Now, let’s go one step further. Have you ever noticed that the accounting person is really doing
more than one thing? For instance, that person spends time photocopying spreadsheets, calcu-
lating how many widgets the company needs to sell to corner the widget market, adding up all

the books, and making sure the bills get paid.

In operating system terms, this is known as multithreading. Think about it in this way: Each
program is assigned a particular person to carry out a group of tasks, called a process. That
person then breaks up his or her time even further into threads.

Why Use Threads?

So, you're saying to yourself, “Why should I care how the computer works, so long as it runs
my programs?” Multithreading is important to understand because one of the great advances
Java makes over other programming languages is its built-in, native support for threading. By
using threading, you can avoid long pauses between what your users do and when they see
things happen. Better yet, you can send tasks such as printing off into the background where
users don’t have to worry about them—they can continue typing their dissertation or perform
some other task.

In Java, currently the most common use of a thread is to allow your applet to go off and do
something while the browser continues to do its job. Any application you're working on that
requires two things to be done at the same time is probably a great candidate for threading.

The Great Thread Race

How to Make Your Classes Threadable

You can make your applications and classes run in separate threads in two ways:

Extending the Thread class
Implementing the Runnable interface

It should be noted that making your class able to run as a thread does not automatically make
it run as such. A section later in this chapter explains this.

Extend Thread

You can make your class runnable as a thread by extending the class java.lang.Thread. This
gives you direct access to all the thread methods directly:

public class GreatRace extends Thread

Implement Runnable

Usually, when you want to make a class able to run in its own thread, you also want to extend
the features of some other class. Because Java doesn’t support multiple inheritance, the solu-
tion to this is to implement the Runnable interface. In fact, Thread actually implements
Runnable itself. The Runnable interface has only one method: run(). Any time you make a
class implement Runnable, you need to have a run () method in your class. In the run()
method you actually do all the work you want to have done by that particular thread:

public class GreatRace extends java.applet.Applet implements Runnable

The Great Thread Race

209

Now that you have seen how to make your class runnable, let’s take a look at a thread example.

The source code for two classes follows (see Listings 13.1 and 13.2):

GreatRace. A class that adds several items of the class Threader.

Threader. Operates in its own thread and races along a track to the finish line.

Listing 13.1 GreatRace.java

import java.awt.Graphics;
import java.awt.GridLayout;
import java.awt.Frame;
import Threader;

public class GreatRace extends java.applet.Applet implements Runnable{
Threader theRacers[];
static int racerCount = 3;
Thread theThreads[];
Thread thisThread;
static boolean inApplet=true;

continues

Part

Ch

210 Chapter 13 Threads

Listing 13.1 Continued
int numberofThreadsAtStart;

public void init(){
//we will use this later to see if all our Threads have died.
numberofThreadsAtStart = Thread.activeCount();

//Specify the layout. We will be adding all of the racers one on top
//of the other.

setlLayout (new GridLayout(racerCount,1));

//Specify the number of racers in this race, and make the arrays for the
//Threaders and the actual threads the proper size.

theRacers = new Threader [racerCount];

theThreads = new Thread[racerCount];

//Create a new Thread for each racer, and add it to the panel.

for (int x=0;x<racerCount;x++){
theRacers[x]=new Threader ("Racer #"+X);
theRacers[x].setSize(getSize().width,getSize().height/racerCount);
add (theRacers[x]);
theThreads[x]=new Thread(theRacers[x]);

}
i

public void start(){
//Start all of the racing threads
for (int x=0;x<racerCount;x++)
theThreads[x].start();

//Create a thread of our own. We will use this to monitor the state of
//the racers and determine when we should quit altogether.

thisThread= new Thread (this);

thisThread.start();

public void stop(){
for (int x= 0;x<theRacers.length;x++){
theRacers[x].stop();
}
}

public void run(){
//Loop around until all of the racers have finished the race.
while(Thread.activeCount ()>numberofThreadsAtStart+2){
try{
thisThread.sleep(100);
} catch (InterruptedException e){
System.out.println("thisThread was interrupted");
}
}

The Great Thread Race 211

//Once the race is done, end the program.
if (inApplet){

stop();

destroy();

else
System.exit (0);

public static void main (String argv[])({
inApplet=false;

//Check to see if the number of racers has been specified on the command
//1line.
if (argv.length>0)

racerCount = Integer.parselnt(argv[0]);

//Create a new frame and place the race in it.
Frame theFrame = new Frame("The Great Thread Race");
GreatRace theRace = new GreatRace();
theFrame.setSize (400,200);
theFrame.add ("Center",theRace);
theFrame.show();
theRace.init();
theFrame.pack();
theRace.start();
}

}//end class GreatRace.

Listing 13.2 Threader.java

import java.awt.Graphics;
import java.awt.Color;

public class Threader extends java.awt.Canvas implements Runnable {
int myPosition =0;
String myName;
int numberofSteps=600;
boolean keepRunning = true;

//Constructor for a Threader. We need to know our name when we
//create the Threader.
public Threader (String inName){

myName=new String (inName);

}

public synchronized void paint(Graphics g){
//Draw a line for the 'racing line'.
g.setColor (Color.black);
g.drawLine (0,getSize().height/2,getSize().width,getSize().height/2);

continues

Part

Ch

212 Chapter 13 Threads

Listing 13.2 Continued

//Draw the round racer.

g.setColor (Color.yellow);

g.fillOval((myPosition*getSize().width/

OnumberofSteps),0,15,getSize().height);
}

public void stop(){
keepRunning = false;

}

public void run(){
//Loop until we have finished the race.
while ((myPosition <numberofSteps)&& keepRunning){
//Move ahead one position.
myPosition++;
repaint();

//Put ourselves to sleep so the paint thread can get around to painting.

try{
Thread.currentThread().sleep(10);
}catch (Exception e){System.out.println("Exception on sleep");}

}

System.out.println("Threader:"+myName+" has finished the race");

}

}//end class Threader.

Understanding the GreatRace

Most of the code in Threader. java and GreatRace. java should be fairly easy for you to under-
stand by now. Let’s take a look at the key sections of the code that deal with the actual threads.
The first one to look at is the for loop in the init () method of GreatRace (see Listing 13.3).

Listing 13.3 for Loop from init() in GreatRace

for (int x=0;x<racerCount;x++){
theRacers[x]=new Threader ("Racer #"+Xx);
theRacers[x].resize(size().width,size().height/racerCount);
add (theRacers[x]);
theThreads[x]=new Thread(theRacers[x]);

In the for loop, the first thing to do is create an instance of the class Threader. As you can see
from Listing 13.2, Threader is an ordinary class that happens to also implement the Runnable
interface. After an instance of Threader is created, it is added to the panel, and the new thread
is created with your Threader argument. Don’t confuse the Threader class with the Thread

class.

Understanding the GreatRace

CAUTION

The new Thread can only be called using an object extending Thread or one that implements Runnable.
In either case, the object must have a run () method. However, when you first create the thread, the run ()
method is not called. That only happens when the thread is started.

The next important set of code is in the start () method, again of GreatRace. java (see
Listing 13.4).

Listing 13.4 start() Method of GreatRace

public void start(){
//Start all of the racing threads.
for (int x=0;x<racerCount;x++)
// start() will call the run() method.
theThreads[x].start();

//Create a thread of our own. We will use this to monitor the state of
//the racers and determine when we should quit altogether.

thisThread= new Thread (this);

thisThread.start();
}

The first task is to start up all the threads created in the init () method. When the thread is
started, it calls the run() method on its Runnable right away. In this case, that’s the run()
method of the Threader object that was passed to the constructor back in the init () method.

Notice that after the racers have started, a thread is created for the actual applet. This thread
will be used to monitor what is going on with all the threads. If the race finishes (that is, all the
other threads have died and are no longer active), you might as well end the program.

Finally, take a look at the last set of important code—the run () method of Threader (see List-
ing 13.5).

Listing 13.5 run() Method of Threader (racer)

public void run(){
//Loop until we have finished the race.
while ((myPosition <numberofSteps)&& keepRunning){
//Move ahead one position.
myPosition++;
repaint();

//Put ourselves to sleep so the paint thread can get around to painting.
try{
Thread.currentThread().sleep(10);
}catch (Exception e){System.out.println("Exception on sleep");}
}
System.out.println("Threader:"+myName+" has finished the race");

}

213

Part

Ch

214

Chapter 13 Threads

Notice that the while loop is fairly long. run() is only called once when the thread is started. If
you plan to do a lot of repetitive work—which is usually the case in a thread—you need to stay
within the confines of run (). In fact, it isn’t a bad idea to think of the run () method as being a
lot like typical main () methods in other structured languages.

Look down a few lines and notice that you put the thread to sleep a bit, in the middle of each
loop (Thread.currentThread().sleep(10)). This is an important task. You should almost
always put your threads to sleep once in a while to prevent other threads from going into star-
vation.

It is true that under Windows you can get away without doing this in some cases. This works
because Windows doesn’t really behave like it should with respect to the priority of a thread, as
discussed later in the section “A Word About Thread Priority, Netscape, and Windows.” How-
ever, this is a bad idea, and it probably will not be portable. UNIX machines in particular will
look like the applet has hung, and the Macintosh will do the same thing. This has to do with
the priority assigned to the paint thread, but there are many other reasons to give the system a
breather from your thread.

Thread Processing

To better understand the importance of putting a thread to sleep, it is important to first under-
stand how it is that a computer actually performs threading. How does a computer handle
threads so that it seems to us that it is doing more than one thing at a time? The answer lies at
the heart of what is known as task swapping.

Inside a computer is a periodic clock. For this example, say that the clock ticks every millisec-
ond (in reality, the period is probably much shorter). Now, every millisecond the computer
looks at its process table. In the table are pointers to each of the processes (and threads) cur-
rently running. It then checks to see whether there are any threads that want to run, and if not
goes back to the one it was previously running. This is shown in the timeline of Figure 13.1.

If the Task Manager looks at the process table and there are more threads that are not sleep-
ing, it then goes round-robin between them if they are the same priority. This activity is shown
in Figure 13.2.

FIG. 13.1 Task Task Task Task

. manager manager manager manager
With only one process H } :g } :g } :g ! :g > Time
running, the Task
Manager alwavs goes process 1 process 1 process 1 process 1

way!

back to that process.
FIG. 13.2 Task Task Task Task

. manager manager manager manager
With two processes of H : :g : :g : :g : :g > Time
the same priority process 1 process 2 process 1 process 2 process 1

running, the Task
Manager swaps between

them.

Changing the Priority 215

The third option that the Task Manager might find is that there are two threads running, but
process 2 is of a lower priority than process 1. In this case, the Task Manager runs only the
thread that is the higher priority. The timeline for this session is shown in Figure 13.3.

FIG. 13.3 Task Task Task Task
manager manager manager manager
The Task Manager " : :g : :g : :g : >
z!W:yS re_tu Tst:? thz process 1 process 1 process 1 process 2 process 1
Igher priority threa
(1) until it decides to (Priority 9) (Priority 9) (Priority 9)
go to sleep.
Process 1 Process 1
goes to wakes
sleep up

Try Out the Great Thread Race

Go ahead and compile the GreatRace and run it as shown in Figure 13.4 by typing
java GreatRace

You can also access it using your browser, by opening the index.html file.

FIG 13 4 =l The Great Thread Race.
GreatRace runs as an
application.

You just saw three rather boring ovals run across the screen. Did you notice that they all ran at
almost the same speed, yet they were really all processing separately? You can run the
GreatRace with as many racers as you want by typing

java GreatRace 5 Part
The racers should all make it across the screen in about the same time (see Figure 13.5).

If you run the race a number of times, you see that the race is actually quite fair, and each of Ch
the racers wins just about an equal number of times. If you show the Java Console under

Netscape or look at the window you ran Java GreatRace from, you can actually see the order

in which the racers finish, as shown in Figure 13.6.

Changing the Priority
There are two methods in java.lang.Thread that deal with the priority of a thread:

setPriority(int)—used to set a new priority for a thread.

getPriority()—used to obtain the current priority of a thread.

216 Chapter 13 Threads
FIG' 13'5 ril‘: Edit View Go nm::::ptp::c:ra:n::m:‘in::ng N=Ip|
GreatRace as an Elzlalalz|s(8s] =
applet Location: |B=ttp Jfwww magnastar . can/quef Thr eads/.
WhateNew | Whatscon| andboo| Netearo | et ety suware |

| /el Applet GreatRace rning I, _E_IJ
FIG_ 13_6 EiThe Great Thread Race [_ O] %]
A window shows —
GreatRace and the
DOS window it was run i
from. —

Let’s see what happens when you tell the computer you want it to treat each of the racers a bit
differently by changing the priority.

Change the init () method in GreatRace. java by adding the following line into the for loop:
theThreads[x].setPriority(Thread.MIN_PRIORITY+X);

The for loop now looks like Listing 13.6.

Listing 13.6 New for Loop for init() Method

//Create a new Thread for each racer, and add it to the panel.

for (int x=0;x<racerCount;x++){
theRacers[x]=new Threader ("Racer #"+x);
theRacers[x].setSize(getSize().width,getSize().height/racerCount);
add (theRacers[x]);
theThreads[x]=new Thread(theRacers[x]);
theThreads[x].setPriority(Thread.MIN_PRIORITY+X);

FIG- 13-7 = The CGreat Thread Race
The New GreatRace
shown as it is run—

A Word About Thread Priority, Netscape, and Windows

Recompile GreatRace now, and run it again, as shown in Figure 13.7.

By changing the priority of the racers, all of a sudden the bottom racer always wins. Why? The
highest priority thread always gets to use the processor when it is not sleeping. This means
that every 10ms, the bottom racer gets to advance towards the finish line, stopping the work of
the other racers. The other racers get a chance to try to catch up only when that racer decides
to go to sleep. Unlike the hare in the fable about the tortoise and the hare, though, the highest
priority thread always wakes up in 10ms, and rather quickly outpaces the other racers all the
way to the finish line. As soon as that racer finishes, the next racer becomes the highest prior-
ity and gets to move every 10ms, leaving the next racer farther behind.

N O T E The priority of the thread was changed with the method setPriority(int) from

Thread. Note that you did not just give it a number. The priority was set relative to the
MIN_PRIORITY variable in Thread.This is an important step. The MIN_PRIORITY and
MAX_PRIORITY are variables that could be set differently for a particular machine. Currently, the
MIN_PRIORITY on all machines is 1, and the MAX_PRIORITY is 10. It is important not to exceed
these values. Doing so will cause an I11legalArgumentException to be thrown.

A Word About Thread Priority, Netscape,
and Windows

If you ran the updated version of GreatRace under Windows, you saw something like Figure
13.8. No doubt you’re wondering why your race did not turn out the same as was shown in
Figure 13.7. The trailing two racers stayed very close together until the first one won.

FIG. 13.8 [E3 The Great Thread Race [_[O] %]
The New GreatRace

as it appears running

under Windows 95.

With Netscape under Windows, as shown in Figure 13.9, you may be wondering why your last
racer didn’t even win!

217

Part

Ch

218 Chapter 13 Threads

FIG. 13.9 -i~ Netscape - [The Great Thread Race] EEE I

New GreatRace run File Edit View Go Bookmarks Options Directory Window Help

as an app|et running Back | Forwardl Home | Reload | Images | Open | Print | Find | Stop |

under Windows 95. Location: Ihttp'x’.-"www magnastar.com/gue/T hreads/ j N
‘What's New! | What's Cooll | Handbook | Net Search | Net Directory | Software | Sl
3| [Applet GreatRacermmmg [=7

R Start| ZE Microsoftword -25.00C | fisava | ¥¥Netscape - [The Great Thr.. 5:53PM

The reason for this discrepancy is that threads under Windows don’t have nearly the amount of
control in terms of priority as do threads under UNIX or Macintosh machines. In fact, threads
that have nearly the same priority are treated almost as if they had the same priority with the
Windows version of Netscape. That is the reason why under Netscape the last two racers seem
to have a nearly equal chance at winning the race. To make the last racer always win, you must

increase the priority difference. Try changing the line in the GreatRace
like this:

theThreads[x].setPriority(Thread.MIN_PRIORITY+x*2);

Now if you try the race under Windows 95, the last racer should always
as seen in Figure 13.10.

FIG. 13_10 E’iThe Great Thread Race [_ o] x]

GreatRace with
increased priorities
under Windows 95.

init () method to read

win by a good margin,

If you run it again under Netscape, the last racer also wins, but just barely (see Figure 13.11).

FIG. 13.11
GreatRace with
increased priorities as
an applet under
Windows 95.

Synchronization 219

b~ Metscape - [The Great Thread Race] HEE I
File Edit “iew Go Bookmarks Options Directory ‘Window Help
Back |F0rward| Home | Heluadl Image;l Open | Print | Find | Stop |
Lnt:atinn:Ihttp:.-".-"www.magnaslar.c:om.-"que.-"Threads.-" j N
‘What's Hewll What's Cooll | Handbook | MNet Search | Net Diret:tnryl Software | Sl
=)
T8 [Applet GreatRacerunming [E?J
R Start| ZEMicrosoft wor..| HBJAVA |5 The Great Th..| [E¥ Netscape -... | soapm

This difference is important to realize. If you’re going to depend on the priority of your threads,
make sure that you test the application on both a Windows and Macintosh or UNIX machine. If
you don’t have the luxury of a UNIX machine or Macintosh, it seems that running the program
as a Java application rather than a Java applet is a closer approximation to how the thread pri-
orities should be handled, as you saw in the last two figures.

CAUTION

These thread priority differences make it dangerous to not put your threads to sleep occasionally if you're

only using a Windows 95 machine. The paint thread, which is a low-priority thread, will get a chance at the
processor under Windows, but only because it will be able to keep up just as the racers did. However, this
does not work under a Macintosh or UNIX machine.

Synchronization

When dealing with multiple threads, consider this: What happens when two or more threads
want to access the same variable at the same time, and at least one of the threads wants to
change the variable? If they were allowed to do this at will, chaos would reign. For example,
while one thread reads Joe Smith’s record, another thread tries to change his salary (Joe has
earned a 50-cent raise). The problem is that this little change causes the thread reading the file
in the middle of the other update to see something somewhat random, and it thinks Joe has
gotten a $500 raise. That’s a great thing for Joe, but not such a great thing for the company, and
probably a worse thing for the programmer who will lose his job because of it. How do you
resolve this?

Part

Ch

220

Chapter 13 Threads

The first thing to do is declare the method that will change the data and the method that will
read to be synchronized. Java’s keyword, synchronized, tells the system to put a lock around a
particular method. At most, one thread may be in any synchronized method at a time. Listing
13.7 shows an example of two synchronized methods.

Listing 13.7 Two synchronized Methods

public synchronized void setVar(int){
myVar=x;

}

public synchronized int getVar (){
return myVar;

}

Now, while in setvar(), the JVM sets a condition lock, and no other thread will be allowed to
enter a synchronized method, including getvar (), until setvar () has finished. Because the
other threads are prevented from entering getVvar (), no thread will obtain incorrect informa-
tion because setVvar() is in mid-write.

Don’t make all your methods synchronized or you won’t be able to do any multithreading at all
because the other threads will wait for the lock to be released and only one thread will be ac-
tive at a time. But even with only a couple of methods declared as synchronized, what happens
when one thread starts a synchronized method, stops execution until some condition happens
that needs to be set by another thread, and that other thread would itself have to go into a
(blocked) synchronized method? The solution lies in the dining philosopher’s problem.

Speaking with a Forked Tongue

What is the dining philosopher’s problem? Well, I won’t go into all the details, but let me lay out
the scenario for you.

Five philosophers are sitting around a table with a plate of food in front of them. One chopstick
lies on the table between each philosopher, for a total of five chopsticks. What happens when
they all want to eat? They need two chopsticks to eat the food, but there are not enough chop-
sticks to go around. At most, two of them can eat at any one time—the other three will have to
wait. How do you make sure that each philosopher doesn’t pick up one chopstick, and none of
them can get two? This will lead to starvation because no one will be able to eat. (The philoso-
phers are too busy thinking to realize that one of them can go into the kitchen for more chop-
sticks; that isn’t the solution.)

There are a number of ways to solve this ancient problem (at least in terms of the life of a com-
puter). I won’t even try to solve this problem for you. But it’s important to realize the conse-
quences. If you make a method synchronized, and it is going to stop because of some condi-
tion that can only be set by another thread, make sure that you exit the method and return the
chopstick to the table. If you don't, it is famine waiting to happen. The philosopher won’t return

Changing the Running State of the Threads 221

his chopstick(s) to the table, and he will be waiting for something to happen that can’t happen
because his fellow thinkers don’t have utensils to be able to start eating.

Changing the Running State of the Threads

Threads have a number of possible states. Let’s take a look at how to change the state and what
the effects are. The methods covered here are:

start()

yield()

destroy ()

sleep(long), sleep(long,int)

*stop()

*resume ()

*suspend ()
*These methods have been deprecated, so generally speaking don’t use them.

start () and stop() are relatively simple operations for a thread. start () tells a thread to start
the run () method of its associated Runnable object.

stop () tells the thread to stop. There is more that goes into stop ()—it actually throws a
ThreadDeath object at the thread. In almost every situation, you should not try to catch this
object. The only time you need to consider doing so is if you have a number of extraordinary
things you need to clean up before you can stop.

CAUTION

stop(),suspend(),and resume () have all been deprecated in JDK 1.2.This is because they can
inherently lead to thread deadlocks, like we talked about with the philosophers. Instead of using these

methods, you should use conditions in the run () method to produce the same result.
Part

CAUTION Ch

If you catch the ThreadDeath object, be sure to throw it again. If you don’t do this, the thread will not
actually stop, and, because the error handler won't notice this, nothing will ever complain.

You have already briefly looked at the sleep() method, when putting the Threadable to sleep
in the GreatRace. Putting a thread to sleep essentially tells the VM, “I'm done with what I am
doing right now; wake me up in a little while.” By putting a thread to sleep, you are allowing
lower-priority threads a chance to get a shot at the processor. This is especially important when
very low-priority threads are doing tasks that, although not as important, still need to be done
periodically. Without stepping out of the way occasionally, your thread can put these threads
into starvation.

222

Chapter 13 Threads

The sleep() method comes in two varieties. The first is sleep(long), which tells the inter-
preter that you want to go to sleep for a certain number of milliseconds:

thisThread.sleep(100);

The only problem with this version is that a millisecond, although only an instant for humans,
is an awfully long time for a computer. Even on a 486/33 computer, this is enough time for the
processor to do 25,000 instructions. On high-end workstations, hundreds of thousands of in-
structions can be done in one millisecond.

As a result, there is a second incantation: sleep (long, int). With this version of the sleep
command, you can put a thread to sleep for a number of milliseconds, plus a few nanoseconds:

thisThread.sleep(99,250);

suspend() and resume () are two methods that you can use to put threads to sleep until some
other event has occurred. One such example is if you were about to start a huge mathematical
computation, such as finding the millionth prime number, and you don’t want the other threads
to be taking up any of the processor until the answer had been computed. (Incidentally, if
you're really trying to find the millionth prime number, I would suggest you write the program
in a language other than Java. Fortran still is king for this type of calculation—and get yourself
avery large computer.)

Again, as of JDK 1.2, suspend () and resume () have been deprecated. You should have your
thread monitor its status and use await (), notify() scheme.

yield() works a bit differently from suspend(). yield() is much closer to sleep(). With
yield() you're telling the interpreter that you want to get out of the way of the other threads,
but when they are done, you want to pick back up. yield() does not require a resume () to
start back up when the other threads have stopped, gone to sleep, or died.

The last method to change a thread’s running state is destroy (). In general, don’t use
destroy (). destroy() does not do any cleanup on the thread; it just destroys it. Because it is
essentially the same as shutting down a program in progress, you should use destroy () only
as a last resort.

Obtaining the Number of Threads That Are Running

Java.lang.Thread has one method that deals with determining the number of threads that are
running: activeCount ().

Thread.activeCount () returns the integer number of the number of threads that are running
in the current ThreadGroup. This is used in the GreatRace to find out when all the threads have
finished executing. Notice that in the init () method, you check the number of threads that
are running when you start your program. In the run() method, you then compare this num-
ber plus two to the number of threads currently running to see whether your racers have fin-
ished the race:

while(Thread.activeCount ()>numberofThreadsAtStart+2){

Finding All the Threads That Are Running 223

N O T E Whyadd +2? You need to account for two additional threads that do not exist before the
race starts. The first one is made out of GreatRace (thisThread), which actually runs

through the main loop of GreatRace. The other thread that has not started up at the point the

init () method is hit is the Screen_Updater thread. This thread does not start until it is required to

do something.

As with most programming solutions, you have many ways to determine whether all the racers have
finished. You can use thread messaging with PipedInputStream and PipedOutputStream, or

check to see whether the threads are alive.

Finding All the Threads That Are Running

Sometimes it’s necessary to be able to see all the threads that are running. For instance, what
if you did not know that there were two threads you needed to account for in the main () loop of
the GreatRace? There are three methods in java.lang.Thread that help you show just this
information:

enumerate(Thread[])
getName ()

setName (String)

enumerate(Thread[]) is used to get a list of all the threads that are running in the current
ThreadGroup. getName () is used to get the name assigned to the thread, whereas its counter-
part setName (String) is used to actually set this name. By default, if you do not pass in a name
for the thread to the constructor of a thread, it is assigned the default name Thread - x where x
is a unique number for that thread.

Let’s modify the GreatRace a bit to show all the threads that are running. Change the run()
method to look like what’s shown in Listing 13.8.

Part
Listing 13.8 New run() Method for GreatRace

public void run(){ Cch
Thread allThreads[];
//Loop around until all of the racers have finished the race.
while(Thread.activeCount()>1){
try{
//Create a Thread array for allThreads.
allThreads = new Thread[Thread.activeCount()];
//Obtain a link to all of the current Threads.
Thread.enumerate (allThreads);
//Display the name of all the Threads.
System.out.println("****** New List ***** ");
for (int x=0;x<allThreads.length;x++)
System.out.println("Thread:"+allThreads[x].getName()
O+":"+allThreads[x].getPriority()+":"+allThreads[x].isDaemon());

continues

224

Chapter 13 Threads

Listing 13.8 Continued

thisThread.sleep(1000);
} catch (InterruptedException e){
System.out.println("thisThread was interrupted"); }

}

//0nce the race is done, end the program.
if (inApplet){

destroy();

}
else
System.exit(0);

The new set of lines is at the beginning of the while () loop. These lines create an array of
threads, use the enumerate method, which was just talked about, and write out the name of

each of the threads to System.out.

Now recompile the program and run it. Under Netscape, make sure that you show the Java
Console by choosing Options, Show Java Console (see Figure 13.12).

As the race progresses and each of the racers completes the race, you can see that the number
of active threads really does decrease. In fact, run the application and give it a number higher
than three (see Figure 13.13). In other words, try:

java GreatRace 5

FIG 13 12 = Netscape: The Great Thread Race K
. 13.
Hle Ed View Go Beuknarke Opons Diesary Winiow nep
The GreatRace
: |t ZE 28 ®
running under Netscape
. Location: |}np 7wvw muagnast.ar . con/que) Threadss
Wlth the Java ConSOIe What's New | Whal's Cool| Handbook| NetSearch| NetDirectory| Software
showing.
fi=r Java Console
Thread: Thread—4:3:false # -
IThread:Thread-5:S:true
e
hraan:Threasﬂ iSifalse
hread:Thread—2:1:false
hread:Thread—-3:2:false
hread:Thread—4:3:false
hread:Thread-5:5itrue
Thread: Thread—1:5:false
I Thread:Thread—-2:1:false
Thread:Tl i2:1
Thread:T| i3]
IThread:TI ue
iciens o
Thread:Thread—1:5:false
Thread:Thread—2:1:false
Thread: fal
I Thread:T]
I Thread:T ue
v
5 ;
| Clear| Closs|
sl — =]

The Daemon Property 225

term

FIG. 13.13
GreatRace can be run
with five racers.

=]
n Updater

LSt wken

[ThecreatThreadmace |

The Daemon Property

Threads can be one of two types: either a user thread or a daemon thread.

So what is a daemon? Well, Webster’s Dictionary says it is “a supernatural being or force, not
specifically evil.”

In a sense, Webster’s is right, even with respect to daemon threads. Although the thread is not
actually supernatural and it is definitely not evil, a daemon thread is not a natural thread, either.
You can set off daemon threads on a path without ever worrying whether they come back.
After you start a daemon thread, you don’t need to worry about stopping it. When the thread
reaches the end of the tasks it was assigned, it stops and changes its state to inactive, much
like user threads.

An important difference between daemon threads and user threads is that daemon threads can
run all the time. If the Java interpreter determines that only daemon threads are running, it will
exit, without worrying whether the daemon threads have finished. This is useful because it
enables you to start threads that do things such as monitoring; they die on their own when
there is nothing else running.

Part

The usefulness of this technique is limited for graphical Java applications because, by default, s

several base threads are not set to be daemon. These include:
AWT - Input
Main
AWT -Motif

Screen_Updater

Unfortunately, this means that any application using the AWT class will have non-daemon
threads that prevent the application from exiting.

226 Chapter 13 Threads

Two methods in java.lang.Thread deal with the daemonic state assigned to a thread:

isDaemon()

setDaemon(boolean)

The first method, isbaemon (), is used to test the state of a particular thread. Occasionally, this
is useful to an object running as a thread so that it can determine whether it is running as a
daemon or a regular thread. isbaemon () returns true if the thread is a daemon, and false
otherwise.

The second method, setDaemon (boolean), is used to change the daemonic state of the thread.
To make a thread a daemon, you indicate this by setting the input value to true. To change it
back to a user thread, you set the Boolean value to false.

If you had wanted to make each of the racers in the GreatRace daemon threads, you could have
done so. In the init() for loop, this would have looked like Listing 13.9.

Listing 13.9 New for Loop for init() Method in GreatRace.java

for (int x=0;x<racerCount;x++){
theRacers[x]=new Threader ("Racer #"+Xx);
theRacers[x].resize(size().width,size().height/racerCount);
add (theRacers[x]);
theThreads[x]=new Thread(theRacers[x]);
theThreads[x].setDaemon(true);

Writing an Applet

In this chapter

Java’s Children 228

Applets and HTML 228

Including a Java Applet in an HTML Page 228
Using Java Activator 234

Begin Developing Java Applets 237

Exploring the Life Cycle of an Applet 239

An Applet That Uses Controls 249

CHAPTER

228

Chapter 14 Writing an Applet

Java’s Children

In the beginning there was FTP, and then came Telnet; years later Telnet begot the Web. The
‘Web was static and without life until there came CGI, but CGI required a submit button and
whole new pages to be downloaded, and the world saw that this was not good. Then a few
visionaries saw a product called Oak lying in the ashes, and like a phoenix, they resurrected it
to make the Web dynamic and client/server. They renamed this product Java, with children
they called applets. The world paused and saw that it was good.

If you're new to Java, one thing you're probably dying to learn how to do is write applets.
Applets are those Java programs you have seen running all over the World Wide Web. They
provide a fascinating layer on top of the already dynamic Java language, which extends far
beyond traditional programming architecture and methodology. When you write an applet, you
create a program that can not only be run on just about any computer but also can be included
in a standard HTML page. Now that you've learned the Java language, you are no doubt ex-
cited to start creating applets, those dynamic creatures you see all over the Internet. In this
chapter, you will learn to apply your new knowledge toward writing Java applets.

Applets and HTML

Because you're interested in writing Java applets, you're probably already familiar with using
HTML (Hypertext Markup Language) to create Web pages. If not, it’s probably not a bad idea
to pick up a book on HTML such as Que’s Special Edition Using HTML 4, Fourth Edition, to
get some idea of how that markup language actually works.

As you now know, Java can be used to create two types of programs: applets and standalone
applications. An applet must be included as part of a Web page, such as an image or a line of
text. When your Java-capable Web browser loads an HTML document containing a reference to
an applet, the applet is also loaded and executed. (See Chapter 1, “What Java Can Do for You,”
for more information.)

Let’s quickly review how an applet’s code comes to run on your computer. When the browser
detects an <APPLET> tag in an HTML file, it will retrieve the class files for the applet from the
server. The bytecode verifier then determines whether the class is a legitimate one. Assuming
that the class is legit, the verifier will start to process the class file. As the VM detects import
statements, it will continue to go back to the server for more class files until it has downloaded
all the code for the applet. For a visual depiction of this cycle see Figure 14.1.

Including a Java Applet in an HTML Page

If your primary goal with this chapter is to be able to display the “Java Compliant” logo on your
pages, this section is for you. The simplest means to obtain a Java applet is to get one that has
already been built, or that you contract to have built for you. If you have not had time to read
the rest of this book and learn to program in Java yourself, this is probably the direction you
will take. Look at how to include in a Web page a simple applet from MagnaStar, Inc., called
Muncher.

Including a Java Applet in an HTML Page 229

FIG. 14.1 Thiz Mt
The bytecode verifier mouEs HTRL
will continue to return
to the server until all
the applet code has
been downloaded.

N

Listing 14.1 shows the simplest version of an HTML file that could be used to display Muncher.

Listing 14.1 An HTML File that Includes the Muncher Applet

<HTML>
<BODY>
<APPLET CODE="GobLoader.class" HEIGHT=0 WIDTH=0></APPLET>
</BODY>
</HTML>

Notice the <APPLET> tag on the third line. The <APPLET> tag is used to indicate to the browser
that you want it to include an applet on your page. In many ways the <APPLET> tag is similar to
the tag. There are three key attributes to notice about the <APPLET> tag: CODE, HEIGHT,
and WIDTH.

N O T E Like most HTML tags, the <APPLET> tag is mostly case-insensitive. In other words, all three

of the following tags perform the same thing:
<APPLET CODE="GobLoader.class" height=0 width=0></APPLET>
<Applet code="GobLoader.class" HEIGHT=0 WIDTH=0></Applet>
<apPlEt cOdE="GobLoader.class" height=0 width=0></ApPlET>
However, an important distinction needs to be made. Although the <APPLET> tag itself is case-
insensitive, its attribute values are not. This means that you cannot enter GobLoader as gobloader Part
or GOBLOADER.
. .) Ch
The first attribute of the <APPLET> tag is the CODE statement. The CODE value of <APPLET> is
similar to the SRC value of . In the case of <APPLET>, the CODE value must be set to the
name of the main class file of the applet. In the case of Muncher, there are a number of classes,

230

Chapter 14 Writing an Applet

but the only one you should include in the HTML file is GobLoader.class (Muncher used to be
called Gobbler, so the name is a hold over). This is important to realize; including the wrong
class name can cause some strange and disastrous problems. It’s also important to remember
that having a CODE value is a required portion of an <APPLET> tag, unless an alternative OBJECT
attribute is not present.

N O T E Most applets come with either a description of which class file to include, or a sample
HTML file you can look at to find this answer. Alternatively, the class name is the one thing
you can see when viewing the HTML document source on another site.

The second and third attributes to notice are the HEIGHT and WIDTH attributes. These are identi-
cal to those in the tag. There is one unique thing about an applet, though, that is not
exactly the same as an image. Some applets, such as Muncher, don’t actually take up any space
on the Web page. Instead they create their own windows. This means that the size should be
set to 0. In addition, unlike images, for almost all applets, the HEIGHT and WIDTH attributes
should be set. With images, if you do not specify the height and width, the browser can figure
them out on its own eventually. With applets, this is usually not the case.

The final thing to notice about the <APPLET> tag is the closing </APPLET> tag. The ending tag is
required for an applet. In addition, as you will see in Listing 14.2, because the <APPLET> tag
does not have an ALT attribute like , the space before the </APPLET> tag can be used to
include alternative information.

Including Alternative Information

Listing 14.2 shows a more complete version of the HTML for Muncher (see Figure 14.2).

FIG. 14.2 @Munchel by MagnaStar M= 3

Muncheris a
shareware applet
available on the
Internet.

-8 | Unsigned Java Applet Window

Including a Java Applet in an HTML Page 231

Listing 14.2 An HTML File That Includes an Applet Plus Alternative
Information for Non-Java Browsers

<HTML>

<BODY>

<APPLET CODE="GoblLoader.class" HEIGHT=0 WIDTH=0>

Warning: You are not using a Java browser. There is an applet on this
page you cannot see.

If you had a Java-enabled browser you would see something similar to the picture
O below

</APPLET>

</BODY>

</HTML>

As you can see, you can include any standard HTML between the <APPLET> and </APPLET> tag.
A non-Java browser will ignore the <APPLET> tag and only read this information.

The <PARAM> Tag Java applets have a tag in addition to <APPLET>. This HTML tag is
<PARAM>. Many applets use the parameter tag to specify additional information about the
applet’s behavior. Take a look at another applet that does this. GrayButton, also from
MagnaStar, Inc., provides a simple means of adding some interaction to your Web pages (see
Figure 14.3).

FIG. 14.3 Metscape - [Guild Home Page]
The GrayButton File Edit View Go Bookmarks DOptions Directory ‘Window Help
applet is used on this @ Location:Ihttp:.-"f’www.exec:pc.com.-""inc.-"

page to provide some
limited interaction.

Part

=f-m| | Applet grayloaded = Ch

The complete listing for including GrayButton on your Web page is shown in Listing 14.3.

232

Chapter 14 Writing an Applet

Listing 14.3 An HTML File for an Applet That Uses <PARAM> Tags

<HTML>

<BODY>

<APPLET CODE="gray.class" WIDTH=300 HEIGHT=300>

<PARAM NAME="graphic" VALUE ="http://www.magnastar.com/NOW.GIF">

<PARAM NAME ="link" VALUE="http://www.magnastar.com/GrayButton/license.html">

</APPLET>

</BODY>

</HTML>

This example demonstrates two important things. First note the <PARAM> tags on lines 4 and 5.
To get this applet to run, you must specify a graphic for it to load and a place for it to link to if
the user clicks that button. Take a look at the syntax for the <PARAM> tag.

The <PARAM> tag must be included between the <APPLET> and the </APPLET> tags. A <PARAM>
tag anywhere else has no point of reference, so the browser ignores it.

In general, the <PARAM> tag has two attributes of its own: NAME and VALUE. The NANE attribute is
used to specify which parameter you are setting. In the case of the GrayButton, there are two
NAMES that must be set, "graphic" and "link".

The second attribute of the <PARAM> tag is VALUE. The VALUE attribute is used to dictate the
VALUE that should be associated with the NAME. The VALUE does not have to be a string, al-
though both of them with GrayButton are. The VALUE could easily be a number if the applet
called for that type of data.

N O T E In addition to the <PARAM> tags, the example in Listing 14.3 also shows the use of an

image link before the </APPLET>.This is another example of an alternative display. If the
viewer does not have a Java-enabled browser, the graphic will be displayed instead. In the case of
GrayButton, this works out especially nice, because the only thing that is lost without a Java browser
is the level of interaction.

Additional <APPLET> Attributes

In addition to the attributes already mentioned, you can use several attribute values to further
customize how an applet will behave, as shown in Table 14.1.

Table 14.1 Attributes for the <APPLET> Tag

Attribute Value Description

CODE* Class name Defines the name of the class file that
extends java.applet.Applet.

HEIGHT/ Number Height in pixels that the applet occupies
vertically on the Web page.

Attribute

Value

Including a Java Applet in an HTML Page 233

Description

WIDTHA

VSPACE

HSPACE

ALIGN

ALT

ARCHIVE

OBJECT

CODEBASE

* Required

Number

Number

Number

Any of:

LEFT, RIGHT,

TOP, TEXTTOP,
MIDDLE, ABSMIDDLE,
BASELINE, BOTTOM,
ABSBOTTOM

String

Archive list

Serialized
applet

URL

N Highly Recommended

Width in pixels that the applet occupies
horizontally on the Web page.

Vertical space in pixels between the applet
and the rest of the HTML. Behaves identi-
cally to the vspace value of an tag.

Horizontal space in pixels between the applet
and the rest of the HTML. Behaves identi-
cally to the HSpace value of an tag.

Indicates the alignment of the applet in
relationship to the rest of the page.

These values work the same as their
counterparts.

Specifies alternate text to be displayed by the
browser if it is unable to display the actual
applet. This attribute is only utilized if the
browser understands the <APPLET> tag but is
unable to display the applet. Otherwise, the
open HTML between the <APPLET> and
</APPLET> tags is displayed.

Contains a list of archives and other re-
sources that should be “preloaded” by the
browser before it begins execution.

Contains the name of the file

that has a serialized representation of the
applet. The init () method of the

applet is not called because it is presumed to
have been called on the serialized applet;
however, the start () method is.

Note: If an 0OBJECT attribute is present, a CODE
attribute need not be; however, one or the
other is required.

URL of base directory where the class files

for the applet are located (under the security Part
manager). This host, and the host where the
HTML with the <APPLET> tag is located, are
the only hosts that can be accessed by the
applet.

Ch

234

Chapter 14 Writing an Applet

To sum up, look at Listing 14.4. The text in normal characters is typed literally; the text shown

in italics is replaced by whatever is appropriate for the applet you’re including in the document.
The first and last lines are required. Other lines in the tag are optional. Figure 14.4 shows how

attributes can affect an applet’s placement.

FIG. 14.4 b Netscape - [MagnaStar. Inc. - Clock] HEE
As you look at this File Edt Wiew Go Bookmaks Options Diectory Window Help
. 3
figure, you can see how G e | By & ¥ |2 |2 | @ | L)

] . Back Fomerd Home Reload IMTEgEs Open Print. Find Stop.
the various attributes
affect the applet’s Nul:i:u;|http:.-".-"www.magnastal.c:om.-"applets;"misc.-"c:loc:k.-"index.htm\ j
placement.

Flease send any feedbad: to: fesdhadifmamastr. com _I
=8| [Applet clock running =7

Listing 14.4 LST14 04.TXT—The <APPLET> Tag

<APPLET attributes>
parameters
alternate-content
</APPLET>

Using Java Plug-in

One of the best innovations that Sun Microsystems, Inc. has added in a while is known as the
Java Plug-in. Java Plug-in was designed to directly address the fragmentation of the Java Virtual
Machine in the variety of browsers. Over time, each browser started to include its own version
of the VM. This led to minor differences between each of the browsers. In addition, Microsoft
chose not to implement some of the key features of the JDK.

To use the Java Plug-in, users must download the Java Plug-in first and plug it into their brows-
ers. Adding the Java Plug-in gives the browser full support for the latest JDK. As an added
benefit, the way the Java Plug-in is used it will actually upgrade itself. The great thing about
this is it means in the future you will no longer have to concern yourself with using JDK 1.2 and
future JDKs because browsers will already be upgraded.

Using Java Activator 235

Using Java Plug-in in Internet Explorer

Using Java Plug-in in Internet Explorer requires that you use a different pattern other than the
one that you just learned with the <APPLET> tag. Java Plug-in is actually a different program for
Internet Explorer altogether, so you need to include it just like any other ActiveX component.
Listing 14.5 shows how Java Plug-in can be used in an HTML page designed for Internet Ex-
plorer, with the same applet used previously in Listing 14.3.

Listing 14.5 Using Java Plug-in in Internet Explorer

<OBJECT CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH="300" HEIGHT="300" ALIGN="baseline"
codebase="http://java.sun.com/products/plugin/1.1/jinstall-11-
win32.cab#Version=1,1,0,0">

<PARAM NAME="code" VALUE="gray.class">

<PARAM NAME="codebase" VALUE="html/">

<PARAM NAME="graphic" VALUE ="http://www.magnastar.com/NOW.GIF">

<PARAM NAME ="link" VALUE="http://www.magnastar.com/GrayButton/license.html">
No JDK 1.2 support for APPLET!!

</O0BJECT>

The <0BJECT> tag in Listing 14.5 has many of the same attributes as the <APPLET> tag in Listing
14.3. There are some differences, however. First, and perhaps most obvious, is the CLASSID
parameter. This ID identifies not the Java class, but rather the Java Plug-in. It should always be
this number, so you don’t have to worry about where this came from. The number will actually
be different for each different version of the Java Plug-in, so you may need to find out what the
latest version is and get its CLASSID.

Now, the CODEBASE in the <OBJECT> tag that you see is not the CODEBASE for the java class, but
it’s the CODEBASE for the Java Plug-in. Because both the code and CODEBASE parameters can’t be
specified in the <OBJECT> tag itself, they end up in the <PARAM> tags between <OBJECT> and
</0OBJECT>

Using Java Plug-in in Netscape

Netscape. does not use ActiveX components like Internet Explorer. Instead, you need to use a
Netscape plug-in. Listing 14.6 shows how to use Java Plug-in in Netscape.

Listing 14.6 Using Java Plug-in in Netscape.

<EMBED TYPE="application/x-java-applet;version=1.2" WIDTH="300" HEIGHT="300"
ALIGN="baseline" CODE="gray.class" CODEBASE="html/"
GRAPHIC="http://www.magnastar.com/NOW.GIF"
LINK="http://www.magnastar.com/GrayButton/license.html" Ch
pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">

<NOEMBED>

No JDK 1.2 support for APPLET!!

</NOEMBED>

</EMBED>

Part

236 Chapter 14 Writing an Applet

With the <EMBED> tag, the new parameter isn’t CLASSID; instead it’s the TYPE value. You might
notice that there is a VERSION value in the type. The VERSION allows you to specify the Java
version you wish to use. Note the PLUGINSPAGE parameter, which specifies where Netscape can
find the plug-in if it hasn’t already downloaded it.

One of the interesting things about using an <EMBED> tag is that there are no equivalents to the
<PARAN> tag. Instead, you see all of the values listed inside of the <EMBED> tag itself. Look at the
LINK parameter for an example of how this is used.

Setting Up the HTML for All Browsers

You can combine the <EMBED> and <OBJECT> tags as shown in Listing 14.7 so that both
Netscape and Internet Explorer will use Java Plug-in.

Listing 14.7 Using Java Plug-in in Both Internet Explorer and Netscape

<OBJECT CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH="300" HEIGHT="300" ALIGN="baseline"
codebase="http://java.sun.com/products/plugin/1.1/jinstall-11-win32.cab
O#Version=1,1,0,0"><PARAM NAME="code" VALUE="gray.class">

<PARAM NAME="codebase" VALUE="html/">

<PARAM NAME="graphic" VALUE ="http://www.magnastar.com/NOW.GIF">

<PARAM NAME ="link" VALUE="http://www.magnastar.com/GrayButton/license.html">
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">

<COMMENT>

<EMBED TYPE="application/x-java-applet;version=1.1" WIDTH="300" HEIGHT="300"
ALIGN="baseline" CODE="gray.class" CODEBASE="html/"
GRAPHIC=http://www.magnastar.com/NOW.GIF
LINK="http://www.magnastar.com/GrayButton/license.html"
pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">
<NOEMBED>

</COMMENT>

No JDK 1.2 support for APPLET!!

</NOEMBED></EMBED>

</O0BJECT>

But Listing 14.7 tries to use Java Plug-in, even if it’s on a browser that doesn’t support the
ActiveX or plug-in. So to be truly accurate, the best thing to do is use Listing 14.8. This listing
includes the necessary JavaScript code to have the browser properly look for the right system.
Under Internet Explorer and Netscape on a Windows machine the browser will use the Java
Plug-in, and on all other platforms it will use the built-in VM. Normally you can just copy
Listing 14.8 into your HTML and replace all of the correct parameters, so even though this
looks complicated, you really just need to copy and paste.

Listing 14.8 Using the Best Java VM Regardless of Platform

<SCRIPT LANGUAGE="JavaScript"><!--
if (_ie == true) document.writeln('<OBJECT
CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

Begin Developing Java Applets 237

WIDTH="300" HEIGHT="300" ALIGN="baseline"
codebase="http://java.sun.com/products/plugin/1.1/jinstall-11-
Owin32.cab#Version=1,1,0,0">

<NOEMBED><XMP>") ;

else if (_ns == true) document.writeln('<EMBED
TYPE="application/x-java-applet;version=1.1" WIDTH="200" HEIGHT="200"
ALIGN="baseline" CODE="gray.class" CODEBASE="html/"
GRAPHIC=http://www.magnastar.com/NOW.GIF

LINK ="http://www.magnastar.com/GrayButton/license.html"
pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">
<NOEMBED><XMP>") ;

//--></SCRIPT>

<APPLET CODE="gray.class" CODEBASE="html/" ALIGN="baseline"

WIDTH="300" HEIGHT="300"></XMP>

<PARAM NAME="code" VALUE="gray.class">

<PARAM NAME="codebase" VALUE="html/">

<PARAM NAME="graphic" VALUE ="http://www.magnastar.com/NOW.GIF">

<PARAM NAME ="link" VALUE="http://www.magnastar.com/GrayButton/license.html">
No JDK 1.2 support for APPLET!!

</APPLET></NOEMBED></EMBED></0BJECT>

Begin Developing Java Applets

Now that you have explored how to include an applet in an HTML page, take a look at how to
write some of your own.

Many years ago, two programming visionaries named Kernie and Richie invented a language
called C. The first program they wrote was called Hello World. Since that time, the first pro-
gram that any programmer writes in any language simply displays “Hello World” to the screen.
So, take a look at how to write the HelloWorld applet in Java.

In the preceding several chapters, you have learned about each of the parts of the Hello World
application, but let’s review it one more time, as shown in Listing 14.9.

Listing 14.9 Hello World as an Applet

import java.applet.Applet;
import java.awt.Graphics;
/*
*

* HelloWorld

*

N Part
public class HelloWorld extends Applet {
public void paint (Graphics g){
g.drawString ("HelloWorld",5,20); Ch

}

238

Chapter 14 Writing an Applet

To create the HelloWorld applet, copy the contents of Listing 14.9 into a file called
HelloWorld.java. It is important that you call the file Hel1loWorld. java, or you will be unable
to compile the program. Now, assuming that you have installed the JDK from Sun in your path,
compile the program by typing the following at a command prompt:

javac HelloWorld.java

N O T E Windows users, for this to work, you will need to open a DOS prompt window.

If everything has worked correctly, you should now have an additional file in your directory
called HelloWorld.class. This file is the Java equivalent of an . exe file. Before you can run the
applet, though, you will need to create an HTML file as discussed in the previous section. In
the case of the HelloWworld applet, the HTML file should look like Listing 14.10.

N o T E Technically, the class file is not an executable file by itself. However, several products such

as Asymetric’s SuperCede and Microsoft’s Visual J++ now include native compilers for Java
that actually produce . exe files. These compilers are also known as static compilers and will generate
.exe files, but are no longer platform independent.

Listing 14.10 An HTML File for the HelloWorld Applet

<HTML>
<BODY>

<APPLET CODE="HelloWorld.class" HEIGHT=100 WIDTH=100></APPLET>
</BODY>
</HTML>

After you have created the HTML file, you can open it in a browser like Netscape Navigator, or
use one of the tools that come with the JDK called appletviewer. Figure 14.5 shows what
happens when you load this file in Netscape.

Notice that when a Java applet is loaded, the Navigator has to go back to the server (or in this
case, your hard drive) to download the HelloWorld.class file before it can be run. This is done
exactly the same way that a GIF file is grabbed for an image, but it does take an extra second or
two.

Understanding Hello World—Building Applets

Now, go back and break down the code in the HelloWworld applet, so you can understand it.

The first thing that you should have noticed is that HelloWorld extends java.applet.Applet.
Every applet in the world must extend Applet. As you can see, you take advantage of object-
oriented programming (OOP) inheritance to declare your applet class by subclassing Java’s
Applet class. For more information on inheritance, check out Chapter 11, “Classes.”

FIG. 14.5
HelloWorld displays
some text on the
browser.

Exploring the Life Cycle of an Applet

w4+ Metscape - [hitp://www.magnastar.co.__plugins/helloworld_html]

File Edit View Go Bookmarks Options Diectoy Window Help

o | [&y | £

Back Forvard Home Edit

Reload

IrriEges

A
g
Open

Find

Sitp

Lnt:atlnn.'Ihttp:.-".-"www.magnastar.c:om.-"que.-"pluglns.-"he\loworld.html

What's Hewll ‘What's I:nnlll Handbook | Net Search | HetDiruclnrpl Software |

Hello World

That was a Demonstration of a Java program

= | Applet hello runming

=14

N O T E The reason it is necessary to extend Applet is because every browser expects to receive

an Applet class from the CODE attribute. By using the polymorphic characteristics of

inheritance, your custom applet, such as HelloWorld, is both a HelloWorld class and an Applet

class.

Exploring the Life Cycle of an Applet

It might surprise you to learn that an applet actually has a life cycle. This means that through-
out the time that an applet exists, certain methods will be called on that applet. To be precise,
four methods are called on an applet:

init ()—Called the first time that an applet is loaded

start ()—Called after the init () method, and thereafter each time a browser returns to

a page on which the applet is contained

stop ()—Called any time a browser leaves a Web page containing the applet

destroy ()—Called before a browser completely shuts down

Figure 14.6 shows the life cycle of an applet. To better understand how the life cycle of an
applet works, take a look at a program designed to show when these methods are called. List-

ing 14.11 contains a program that prints out a message each time one of the methods is called
and puts up a graph of this activity.

239

Part

Ch

240 Chapter 14 Writing an Applet

FIG. 14.6

A visual representation
of the life cycle of an

applet.

Init

£

| Start |
Reload or
Leave resize browser,
Web page v or return to
Web page
| Stop
Exit
Browser

Y
| Destroy |

Listing 14.11 InitStartStop Applet, Which Demonstrates the Use of the Life
Cycle Methods

import java.applet.Applet;
import java.awt.*;

/*
*
* InitStartStop
*
*/
public class InitStartStop extends Applet{
int initCount = 0;
int startCount = 0;
int stopCount = 0;
int destroyCount = 0;

public void paint (Graphics g){
//clear the area
g.setColor(Color.white);
g.fillRect(0,0,size().width,size().height);
//paint all the standard parts of the graph
g.setColor (Color.red);
g.drawLine (120,20,120,220);
g.drawLine (120,220,300,220);
//draw the labels
g.setColor (Color.gray);
.drawString ("Init Count", 5,50);
.drawString ("Start Count", 5,100);
.drawString ("Stop Count", 5,150);
g.drawString ("Destroy Count", 5,200);
//paint the grid lines
g.setColor(Color.lightGray);
for (int x=(120+25) ;x<300;x+=25){
g.drawLine(x,20,x,199);

[(e (o }(o]

}

Exploring the Life Cycle of an Applet 241

//draw the bars for each of the stats
.setColor (Color.black);

.fillRect (120,30,initCount * 25,40);
.fillRect (120,80,startCount * 25,40);
.fillRect (120,130,stopCount * 25, 40);
.fillRect (120,180,destroyCount * 25, 40);

Qe

}

public void update(Graphics g){
paint(g);
}

public void init(){
initCount++;
System.out.println("init");
repaint();

}

public void start(){
startCount++;
System.out.println("start");
repaint();

}

public void stop(){
stopCount++;
System.out.println("stop");
repaint();

}

public void destroy(){
destroyCount++;
System.out.println("destroy");
repaint();

Compiling the InitStartStop Applet

To be able to run the InitStartStop applet, just like the HelloWorld applet, you must compile
it and generate an HTML file that references the applet. To do this, first copy the contents of

Listing 14.11 to afile called InitStartStop.java. Then compile this file using javac:

Part
javac InitStartStop.java

Now, before you can actually use the InitStartStop applet, you must first create the HTML for
it. The InitStartStop.html file is as follows:

<HTML>
<BODY>
<APPLET code="InitStartStop.class" HEIGHT=300 WIDTH=400></APPLET>
</BODY>
</HTML>

242

Chapter 14 Writing an Applet

Finally, you're set to run the InitStartStop applet. To do this, load the InitStartStop.html
file into a browser such as Netscape Navigator. The first time you load the program you will see
something that looks like Figure 14.7. The init () method has been called once, as has the
start () method. This should be exactly what you expected to see.

FlG_ 14.7 w3 Netscape - [http://www.magnastar.co.../se3d/InitStartStop. html]

When InitStartStop
first starts, it has run the
init() method and the

start() method once. & ttp: /v, magnastar. com/que/se3/InitS tatS top. himl

Init Count

Start Count

Stop Count

Destroy Count

Now click the reload button a couple of times. Each time you do, the number of times that
stop() is called and the number of times that start () is called will both increment once, as
demonstrated in Figure 14.8. However, the init () count will stay the same because the init()
method is only called the first time the browser loads the applet.

As you run the applet, you can also look at those printout statements you were generating. To
do this in Netscape 3.1 and earlier, select Options, Show Java Console. Users of Netscape 4.0
can get to the Java Console by accessing Communicator, Java Console. This should produce
yet another window, as shown in Figure 14.9. Inside this window, you can see all the
System.out messages as they appear. Try clicking reload a few more times. Now, try going to a
different Web page. What happened? Well of course, stop () was called, and start () wasn’t.
Now click the back button. start () is called.

Understanding the InitStartStop Applet

To understand the InitStartStop applet, take it step by step.

import java.applet.Applet;
import java.awt.*;

Exploring the Life Cycle of an Applet 243

FIG. 14.8

After leaving the page
and coming back
several times, start()

and stop() will have N

incremented. Notice
that the applet has
always started one
more time than it has Irit Count
stopped.
Start Count
Stop Count
Destroy Count
FIG. 14.9 ﬁava Cose D I I

The Java Console in
Netscape shows you
the System.out
messages as they
appeatr.

The first thing in the file are several import statements. As you learned in Chapter 11, for a
class to be used (without fully qualifying its name each time), the class must first be imported.
Just like the HelloWorld applet, InitStartStop needs access to the java.awt.Graphics class.
In addition, InitStartStop will need access to a couple of other java.awt classes. So rather
than import each individual class separately, the entire package of java.awt is imported here.

The first method in InitStartStop is the paint method. This method paints a number of
things to the screen using methods available in the java.Graphics class. You will learn more
about the Graphics class in Chapter 27, “Files, Streams, and Java,” so for now, just concentrate
on the last part of the paint () method.

244

Chapter 14 Writing an Applet

//draw the bars for each of the stats
g.setColor (Color.black);

g.fillRect (120,30,initCount * 25,40);
g.fillRect (120,80,startCount * 25,40);
g.fillRect (120,130,stopCount * 25, 40);
g.fillRect (120,180,destroyCount * 25, 40);

The purpose of this section is to draw the actual bars that you saw indicating how many times
each of the methods had been called. This is accomplished by increasing the width of the bar
by 25 times the count number (such as initCount*25).

public void update(Graphics g){

paint(g);
}
The next method in the class is update (). update () just calls paint (), so you might be won-
dering what it is doing there. To understand why, it’s necessary to understand the relationship
between update () and paint (). Ordinarily when an applet needs to be painted, either because
it’s just been displayed to the screen, or perhaps a different screen that had been covering the
applet was just removed, the paint () method is called. However, when an applet only needs to
be partially painted, such as when another window has only partially obscured the applet or
when the repaint () method was called, the update () method is called. By default, update ()
clears the panel and then calls paint (). However, this can cause an annoying flicker (try run-
ning InitStartStop with this method removed). To get around this, it’s become routine for
programmers to insert an update () method, which does not clear the screen but calls paint ()
right away.

The next several methods are really the ones you want to see something from. Each method
increments a counter, does a printout, and calls repaint () (which causes the update/paint ()
method to be called).

public void init(){
initCount++;
System.out.println("init");
repaint();

}

public void start(){
startCount++;
System.out.println("start");
repaint();

}

public void stop(){
stopCount++;
System.out.println("stop");
repaint();

Exploring the Life Cycle of an Applet 245

public void destroy(){

destroyCount++;
System.out.println("destroy");
repaint();
}
}
Java Animator Applet

One of the fun things to do with Java is create simple animations. It should be pointed out that
Java is not the best medium to do this. If all you want to do is create an animation, there are
much better ways to do so, such as GIF89a Cel Frame animations. Or you can use the Java
Media Framework discussed in Chapter 44, “Java Media Framework.” However, because deri-
vations of animations are so frequently done in Java, an animator is shown here. Listing 14.12
shows a complete version of an animator written in Java.

Listing 14.12 Animator Class Cycles Through Images

import java.awt.*;
import java.util.Vector;

public class Animator extends java.applet.Applet implements Runnable {
Vector images;

int imgNumber;

int currentImage=1;

Thread thisThread;

public void init(){
//Read in the number of images in the animation
imgNumber = new Integer(getParameter("imgNumber")).intValue();

//Load the images
for (int x=0;x<imgNumber;x++){
Image img = getlImage(getDocumentBase(),"images/img"+(x+1));
images.addElement (img);
}
}

public void paint(Graphics g){
g.drawImage((Image)images.elementAt(currentImage++),0,0,null);
currentImageS%=imgNumber;

}
public void update(Graphics g){ sl
paint(g);
}
Ch

public void start(){
thisThread = new Thread(this);
thisThread.start();
}

continues

246

Chapter 14 Writing an Applet

Listing 14.12 Continued

public void stop(){
thisThread.stop();

}

public void run(){
while(true){

try{
thisThread.sleep(100);

}
catch (Exception e){}

You can probably tell that there is much more to this applet than to the HelloWor1ld one. To
compile this program, first copy all of Listing 14.12 into a file called Animator.java. To run it,
you will need to create an HTML file that should look something like Listing 14.13.

Listing 14.13 HTML File for Including Animator

<HTML>

<BODY>

<APPLET code="Animator.class" HEIGHT=200 WIDTH=200>
<PARAM NAME="imgNumber" VALUE="5">

</APPLET>

</BODY>

</HTML>

In addition to these files, you will also need to have several images that you want to animate,
and you will need to place them in a subdirectory called images. The images must be called
img1.gif, img2.gif, and so on, where img1.gif is the first image of the animation. You will
also want to change the imgNumber parameter to have the correct number of images. With all
that done, you should see something similar to Figure 14.10.

Now, to understand how Animator works, break Listing 14.12 into some more manageable
chunks. First, take the first three lines of the code:

import java.awt.*;
import java.util.Vector;

public class Animator extends java.applet.Applet implements Runnable {

The first two lines serve to import other Java classes. Java is an extensible language, and the
object-oriented nature of the language allows you to take advantage of prebuilt classes. The
first two lines of the Animator code import such classes.

FIG. 14.10

Java can be used to
generate some
interesting animations.

Exploring the Life Cycle of an Applet 247

w4 Netscape - [PCC Home Page] HEE I
File Edit “iew Go Bookmarks Options Directory ‘Window Help
Lnt:ah'nn;Ihttp:.-".-"www.pc:c:web.com.-" j

4 ¥

| Hotstuff - Sample Galleries
=8| [Applet pecAnimatar runming =4

The third line of code is the class declaration. At the end of the line you will notice that the
Animator, like HelloWorld, extends java.applet.Applet. java.applet.Applet is the name of
the class from which all applets extend. Immediately after the class declaration is the statement
implements Runnable, which indicates that the application can be run as a thread. It is impor-
tant that Animator be able to run as a thread because it will continue to process even after the
rest of the page is finished loading.

Immediately after these lines of code, Animator declares several variables of its own.

Vector images;
int imgNumber;
int currentImage=1;
Thread thisThread;

Remember from Chapter 10, “Control Flow,” that Java is a strongly typed language. This means
that each variable must be declared to be a specific type. In some other languages, such as
JavaScript, you would have created the variables with only the var keyword.

var images;

var imgNumber;

var currentImage=1;
var thisThread; Part

For a variety of reasons, this is not really the best way to work, and Java requires that you

declare the type that each variable will be. As you can see, you are creating four variables. The Ch
Vector is a class type that is convenient to contain a number of elements, especially if you do

not know ahead of time how many you will be adding. The thread variable will be used to

control the activity of the applet later on.

248

Chapter 14 Writing an Applet

The Animator applet has several methods. The first of these is the init () method.

public void init(){
//Read in the number of images in the animation
imgNumber = new Integer(getParameter("imgNumber")).intValue();

//Load the images
for (int x=0;x<imgNumber;x++){
Image img = getImage(getDocumentBase(),"images/img"+(x+1));
images.addElement (img);
}
}

The init () method is called when the page is initially loaded into the browser. It is convenient
to use the init () method to set up variables that only have to be initialized once. In the case of
the Animator class, all the images only need to be loaded once. Notice that after the getImage
method is called, the image is added to the vector of images.

The next method is the paint () method. The paint () method is called each time the applet

needs to be displayed on the Web page. This can happen if the user scrolls the applet off the

screen and then scrolls back, or if you specifically cause the applet to be repainted.

public void paint(Graphics g){
g.drawImage((Image)images.elementAt(currentImage++),0,0,null);
currentImage%s=imgNumber;

}

Without breaking the paint () method apart completely, break the drawImage line apart a bit.
drawImage ()is a method that obviously draws an image to the graphics screen. Four param-
eters must be given the drawImage () method. First, the name of the image, next the x and y
locations, and finally the imageObserver, which should pay attention to the image.

So why is the image name ((Image)images.elementAt (currentImage++) so complicated?
Well, take it from the right side back. First, you want to display the current image
(currentImage). It is convenient to increment the currentImage number so that the next time
through you will display the next image and you automatically increment the currentImage
variable (currentImage++). Now you have stored the images in a vector, and the way to get the
current image from the vector is to use the method elementAt on the image object
(elementAt (CurrentImage++)). The only problem at this point is that the vector does not
really know it is holding an image. The vector only knows that it has something, and so it re-
turns the image to you in a way that isn’t quite right, so you need to perform what is known as
a cast. The (Image) in front of the images.elementAt performs the cast for you, and now you
have retrieved an image.

The next method is start (). start() is called each time the user goes to a specific page. But
wait, isn’t that when the init () method is called? No, not exactly. You see, the init () method
is only called the first time the page is loaded. From that point on, each time the page is loaded,
the only method called is start (). start () is called the first time too, after the init () method,
but on successive loads only start () is called.

An Applet That Uses Controls 249

public void start(){
thisThread = new Thread(this);
thisThread.start();
}

The start () method is a great place to put the applet into a known state. In the case of
Animator, a thread is created. Without a complete explanation of threads, this means that the
applet will continue to run as the rest of the browser does other things.

public void stop(){
thisThread.stop();

}
See Chapter 13, “Threads.” p. 207

A close cousin to the start () method is the stop () method, which is called each time the user
leaves the page. It is important to clean up what you have started when the page is exited. The
stop () method of Animator takes the thread it was running and stops it.

The last method for Animator is run(). run() is the method that actually runs in the thread.

public void run(){
while(true){
repaint();
try{
thisThread.sleep(100);

}
catch (Exception e){}

}
}

Essentially what occurs in Animator’s run method is a constant loop that consists of first telling
the Animator to repaint and then to place the Animator thread in a state known as sleep for
100ms. The result of this is that 10 times a second (1/100ms) the next frame of the animation is
displayed.

An Applet That Uses Controls

As you saw in the previous applet example, applets are interactive applications that can handle
messages generated by both the system and the user. Another way, besides the mouse, that

you can enable user interaction is by including controls—such as buttons, menus, list boxes,

and text boxes—in your applet’s display. Although controls are covered thoroughly in Chapter

19, “java.awt: Components,” you’ll get an introduction to them now, as you create an applet

that can connect you to various Web sites on the Internet. Part

Listing 14.14 is the Java source code for the applet in question, and Listing 14.15 is the applet’s

HTML document. Before running this applet (by loading its HTML document into a Java- Ch
compatible browser), make your Internet connection. Then, when you run the applet, you see a
window something like Figure 14.16, which shows InternetApplet running in Netscape Navi-

gator 3.1. Just click one of the connection buttons, and you automatically log on to the Web site
associated with the button. Figure 14.12 shows where you end up when you click the CNet

button.

250

FIG. 14.11

The InternetApplet
applet uses buttons to
provide an instant
connection to eight
different Web sites.

FIG. 14.12

The CNet button, for
example, connects to
CNet’s terrific site.

Chapter 14 Writing an Applet

iy Netscape - [Applet Test Page]

B[] S
File Edit View Go Bookmarks Options Diectory Window Help
N RCIN s & Z |8 | @ @
Baok Forvard Home Reload I Open Print Find Stop.

@ Location: |E:\My DocumentsiUsing Java 1.1%code\chapl B\ ntermnetApplethl nternetdpplet. html
‘What's New? | ‘What's Cool? | Destinations | NetEeamhl People | Enﬂwarel

Applet Test Page

Sun Netscape | Microsoft [Macmillan
Time CNet Borland Yahoo
Tl | =7
kit Metscape - [Welcome to CHET.COM] HE E3
File Edit View Go Bookmarks Options Diectoy Window Help
G [o [B @ 2| & |m| ®
Beck | Forwerd | Home Reload | I Open | Print Find Stop

@ Netsite: |http: v, cnet.com/

‘What's New? | ‘What's Cool? | Destinations | NetEEamhl People | Enﬂwarel

{
@ ¥
CNET: The Computer Network

Join now

Jownload

QUAK'E

now. Click here.

W top CrET 1
AOL leaving
NASDAD market

for member-only August 1 e How more than 638,888 members

services CompuServe eyes
Europe Online
stake
HEWS -
Top stories go to
CHET radio
this week on
: |ICNFT em =
{8 [Document: Done

[=7

An Applet That Uses Controls 251

Listing 14.14 InternetApplet.java—The InternetApplet Applet

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.net.*;
public class InternetApplet extends Applet implements ActionListener {
boolean badURL;
public void init() {
GridLayout layout = new GridLayout(2, 4, 10, 10);
setLayout(layout);
Font font = new Font("TimesRoman", Font.PLAIN, 24);
setFont(font);
Button button = new Button("Sun");
button.setActionCommand("http://www.sun.com");
button.addActionListener(this);
add(button);
button = new Button("Netscape");
button.setActionCommand("http://www.netscape.com");
button.addActionListener(this);
add(button);
button = new Button("Javasoft");
button.setActionCommand("http://www.javasoft.com");
button.addActionListener(this);
add(button);
button = new Button("Macmillan");
button.setActionCommand("http://www.mcp.com");
button.addActionListener(this);
add(button);
button = new Button("Time");
button.setActionCommand("http://www.pathfinder.com");
button.addActionListener(this);
add(button);
button = new Button("CNet");
button.setActionCommand("http://www.cnet.com");
button.addActionListener(this);
add(button);
button = new Button("Borland");
button.setActionCommand("http://www.borland.com");
button.addActionListener(this);
add(button);
button = new Button("Yahoo");
button.setActionCommand("http://www.yahoo.com");
button.addActionListener(this);
add(button);
badURL = false;
}

public void paint(Graphics g) {
if (badURL)
g.drawString("Bad URL!", 60, 130);
}
public void actionPerformed(ActionEvent event) {
String pageName = event.getActionCommand();

continues

252

Chapter 14 Writing an Applet

Listing 14.14 Continued

try {
URL url = new URL(pageName);
AppletContext context = getAppletContext();
context.showDocument (url);

}

catch (MalformedURLException e) {
badURL = true;
repaint();

}

}
}

N O T E The preceding applet works only in browsers that support Java 1.1 or better. So, if you need
to use an older browser that has not been upgraded, you will want to look through the
following code in Listing 14.15, which supports the 1.0 model.

Listing 14.15 InternetApplet.java—The InternetApplet Applet

import java.awt.*;
import java.applet.*;
import java.net.*;
public class InternetApplet extends Applet
{
boolean badURL;
public void init()
{
GridLayout layout = new GridLayout(2, 4, 10, 10);
setLayout(layout);
Font font = new Font("TimesRoman", Font.PLAIN, 24);

setFont(font);

Button button = new Button("Sun");
add(button);

button = new Button("Netscape");
add(button);

button = new Button("Microsoft");
add(button);

button = new Button("Macmillan");
add(button);

button = new Button("Time");

add (button);

button = new Button("CNet");

add (button);

button = new Button("Borland");
add (button);

button = new Button("Yahoo");
add(button);

badURL = false;

An Applet That Uses Controls 253

}
public void paint(Graphics Q)
{
if (badURL)
g.drawString("Bad URL!", 60, 130);

public boolean action(Event evt, Object arg)
{
String str;
if (arg == "Sun")
str = "http://www.sun.com";
else if (arg == "Netscape")
str = "http://www.netscape.com";
else if (arg == "Microsoft")
str = "http://www.microsoft.com";
else if (arg == "Macmillan")
str "http://www.mcp.com";
else if (arg == "Time")
str "http://www.pathfinder.com";
else if (arg == "CNet")
str "http://www.cnet.com";
else if (arg == "Borland")
str "http://www.borland.com";
else
str = "http://www.yahoo.com";

try

URL url = new URL(str);
AppletContext context = getAppletContext();
context.showDocument (url);

b
catch (MalformedURLException e)

{
badURL = true;

repaint();

}

return true;

Listing 14.16 InternetApplet.html—InternetApplet’'s HTML Document
<TITLE>Applet Test Page</TITLE>

<H1>Applet Test Page</H1> Part
<APPLET
CODE="InternetApplet.class"
WIDTH=500 Ch
HEIGHT=150

NAME="InternetApplet">
</APPLET>

254 Chapter 14 Writing an Applet

Understanding the InternetApplet Applet
Now take a look at the applet’s source code. The first three lines enable the program to access
the classes stored in Java’s awt, applet, and net packages:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.net.*;

You're already familiar with the awt and applet packages. The net package contains the
classes needed to log on to the Internet.

The applet’s main class, which is derived from Applet, begins in the next line:

public class InternetApplet extends Applet

InternetApplet then declares its single data member:

boolean badURL;

The badURL data member is used in the program to notify the applet that the currently selected
URL is no good.

Exploring the init() Method

Next comes the familiar init () method, where the applet can perform whatever initialization it
requires. In this case, the applet first declares and sets a layout manager:

GridLayout layout = new GridLayout(2, 4, 10, 10);

setLayout(layout);

Java programs use layout managers to control where components in the program will appear
on the screen. Java offers many types of layout managers, each represented by its own class in
the awt package. (See Chapter 21, “Containers and Layout Managers,” for more information on
layout managers.) If you don’t create and set your own layout manager, Java uses the
FlowLayout manager—which places components horizontally one after the other—by default.
In InternetApplet, you're using a GridLayout manager, which organizes components into a
grid. GridLayout’s constructor takes four arguments:

Number of rows in the grid
Number of columns in the grid
Horizontal space between cells in the grid

Vertical space between the cells
These latter two arguments have default values of 0 if you want to leave them off.

The setLayout () function is a member of the Container class, which is a superclass (a parent
class in the class hierarchy) of the Applet class. Its single argument is a reference to a layout-
manager object. After calling setLayout (), Java knows to use the new layout manager rather
than the default one.

An Applet That Uses Controls 255

After setting the applet’s layout manager, the program creates and sets the font that’ll be used
for all text in the applet:

Font font = new Font("TimesRoman", Font.PLAIN, 24);
setFont(font);

The constructor for the Font class takes three arguments—the font’s name, attribute, and size.
The font’s name can be Dialog, Helvetica, TimesRoman, Courier, or Symbol, whereas the at-
tribute can be Font.PLAIN, Font.ITALIC, or Font.BOLD. The setFont ()method sets the new
font for the applet.

The next task is to create and add to the applet the button controls used to select Web sites.
Listing 14.17 shows a sample of the code that accomplishes this task.

Listing 14.17 LST14 17.TXT—Creating Button Controls

Button button = new Button("Sun");
button.setActionCommand("http://www.sun.com");
button.addActionListener(this);

add (button);

The Button class’s constructor takes a single argument, which is the text label that appears in
the button when it’s displayed. If you want your buttons to be more interesting with graphics as
well as text, you will probably want to read about JFC in Chapters 34, “Java Security in Depth,”
and 35, “Object Serialization.” JFC includes more advanced buttons, but because there is more
involved, we haven’t used them in this chapter.

ActionCommand and ActionListeners

When you create a button, you have the option of specifying the command that will be issued
when the button is clicked. By default, this command is the same as the label you put on the
button. However, in this case, when the button is clicked you want it to specify an URL. So, the
next line after each button is created specifies the action command for that button.

For the command to be useful, though, you must establish a listener for the button. After a
listener is registered with the applet, it will receive a notification any time the indicated event
occurs. In this case, we want to listen to the Action event.

The add () method adds the button to the next available cell in the GridLayout manager.

Finally, init ()sets the badURL flag to false. In the event that one of the URLSs you've entered

doesn’t work out, the badURL flag will help you notify the user. part

badURL = false;

The actionPeformed() Method

Before you can add this as an action listener, you must first implement the ActionListener
interface. The ActionListener requires you to create an actionPeformed () method.

Ch

256

Chapter 14 Writing an Applet

When the user clicks one of the applet’s buttons, the actionPeformed () method is called.
Because you've specified the URL as the command for the button, you can use the action
command to obtain the selected URL as shown below.

String pageName = event.getActionCommand();

After obtaining the selected URL, the applet can connect to the Web site. Before doing this,
though, the program must set up a try and catch program block because the URL class’s con-
structor throws a MalformedURLException, which must be caught by your program. (You learn
more about exceptions in Chapter 20, “Exceptions and Events in Depth.”) The try program
blocks attempts to create the URL object and connects to the Web site, as shown in Listing
14.18.

Listing 14.18 LST14 18.TXT—Connecting to a Web Site

try

{
URL url = new URL(pageName);
AppletContext context = getAppletContext();
context.showDocument(url);

}

In the try block, the program first tries to create an URL object from the URL text string. If the
construction fails, the URL class throws a MalformedURLException, and program execution
continues at the catch program block, which you look at soon. If the URL object gets con-
structed successfully, the program calls the getAppletContext () method to get a reference to
the applet’s AppletContext object. This object’s showDocument () method connects the applet to
the chosen URL.

If the URL class’s constructor throws an exception, program execution jumps to the catch pro-
gram block, which is shown in Listing 14.19.

Listing 14.19 LST14 19.TXT—The Catch Program Block

catch (MalformedURLException e)

{
badURL = true;
repaint();

In the catch program block, the program simply sets the badURL flag to true and calls
repaint () to display an error message to the user.

Exploring the paint() Method

Listing 14.20 shows the applet’s paint () method, which does nothing more than display an
error message if the badURL flag is set to true.

An Applet that Uses Controls

N O T E Because the URLs are hard-coded into the program, it's not likely that the URL will
construct improperly. If you were to change a button’s URL, though, the error message lets
you know whether you typed the URL incorrectly.

Listing 14.20 LST14 20.TXT—The paint() Method

public void paint(Graphics g)
{
if (badURL)
g.drawString("Bad URL!", 60, 130);

The drawstring()function, which is a method of the Graphics class, displays a text string on
the screen. Its three arguments are the string to display, and the X,Y coordinates at which to
display the string. e

257

Part

Ch

CHAPTER

Advanced Applet Code

|n this chapter

Using the <PARAM> Tag 260

Adding Images to an Applet 264

Adding Sound to an Applet 266

Using the Applet to Control the Browser 268
Putting It All Together 270

260

Chapter 15 Advanced Applet Code

Using the <PARAM> Tag

The most utilized java.applet. Applet feature is the capability to get information from the
HTML file. This information can be useful because it enables you to use the HTML file almost
as a batch file, containing the runtime parameters for a particular applet. This also enables you
to write an applet once, which can be customized by people unfamiliar with Java coding. This
information is placed in what are known as <PARAM> tags.

In Chapter 14, “Writing an Applet,” you learned that <PARAM> tags are part of the <APPLET> tag
included in HTML files. In addition, you learned that the syntax for a <PARAM> tag is

<PARAM NAME="parameter_name" VALUE=value_ of_parameter>

where the items in italics are replaced by specific information for your case. In this chapter, you
learn how to use this information within an applet.
See “Writing an Applet,” p. 227

To access the parameter data, java.applet.Applet has a method called getParameter (). The
method prototype for this method looks like this:

public String getParameter(String name)

As you can see from the prototype, getParameter () requires a parameter—a name. That name
corresponds directly to the NAME value in the <PARAM> tag, so if you had a tag that looked like

<PARAM NAME="Stars" VALUE=50>
you could retrieve the result with a line of code similar to this:

String starCount = getParameter("Stars");

N O T E Normally, you will actually develop the program and then the HTML file, so this example will
probably be backward for most of your development.

If what you had wanted to get from the parameter was a string value, the previous code might
be enough to satisfy your needs. However, odds are that what you really wanted was an integer
with a value of 50. Because getParameter () returns a string, how can you obtain the int value
50? The answer lies in the Wrapper class for int called java.lang.Integer. Integer can take a
string that represents a number and “parse” through it to get the number value. Using Integer,
you can retrieve the value into an int by using Integer’s parseInt () method, as shown here:

int starCountInt = Integer.parselnt(starCount);

How to put this whole thing together in a complete applet that paints the stars in random places
on the screen is shown in Listing 15.1.

Using the <PARAM> Tag

Listing 15.1 StarPainter Reads in a Value for the Number of Stars and Paints
Them to the Screen

import java.applet.Applet;
import java.awt.*;

/*

*

* StarPainter
*

*/
public class StarPainter extends Applet{
int starCount;
public void init(){
starCount = Integer.parselnt(getParameter("Stars"));
}

public void paint(Graphics g){
g.setColor(Color.black);
for (int count=0;count<starCount;count++){
int xValue = (int)(getSize().width*Math.random());
int yvValue = (int) (getSize().height*Math.random());
g.drawLine(xValue,yValue,xValue,yValue);

When you compile StarPainter, you also need to create an HTML file for it. In Listing 15.2,
you see one possible version of this HTML file. Figure 15.1 shows what StarPainter looks like
with those parameter values. Try changing the number of stars to see what happens (you
might want to increase it by a large number because it’s difficult to see small changes in this
applet).

FIG. 15.1
StarPainter paints
stars at random places
on the screen.

Listing 15.2 An HTML File for the StarPainter Applet

<HR>

<APPLET CODE="StarPainter.class" WIDTH=100 HEIGHT=100>
<PARAM NAME=Stars VALUE=500>

</APPLET>

<HR>

261

Part

Ch

262 Chapter 15 Advanced Applet Code

Understanding the StarPainter Source Code

Because you're still fairly new to applet programming, take a look at Listing 15.1 and walk
through how the StarPainter applet works.

import java.applet.Applet;

import java.awt.*;

The first thing to notice is, like all Java classes, the StarPainter program needs to import

several classes. This is really an important step. When you’re just starting to program in Java,
you may get frustrated by an error that looks like the following:

StarPainter.java:14 Class Graphics not found in type declaration.
public void paint(Graphics g){

This error occurs because you failed to import the Graphics class.

public void init(){
starCount = Integer.parselnt(getParameter("Stars"));

}

The init () method of starPainter should look just like you thought it would, except for one
minor change. You have combined the two lines of code you saw earlier into one. Notice that
this demonstrates the fact that it is perfectly legitimate to use a method (getParameter()) as a
parameter to a second method (parseInt()) when the proper value is being returned.
public void paint(Graphics g){
g.setColor(Color.black);
for (int count=0;count<starCount;count++){
int xValue = (int) (getSize().width*Math.random());

int yvalue = (int) (getSize().height*Math.random());
g.drawLine(xValue,yValue,xValue,yValue);

}

The paint () method of StarPainter is not too involved but does contain some methods you
haven’t seen until now. The first thing that the paint () method does is set the paint color to
black.

See “Graphics,” p. 431

Using the getSize() Method

Now concentrate on the xvalue= and the yvalue= lines.
int xValue = (int) (getSize().width*Math.random());
To help you understand this line, break it up into several lines of equivalent code:

int width = getSize().width;

double randomLoc = Math.random();
double location = width * randomLoc;
int xValue = (int) location;

Using the <PARAM> Tag 263

Go through the code on your own and verify that it does get you the same result as the xvalue= Part
line in StarPainter.

The first line of code uses a method you haven’t seen before—getSize (). getSize() isa
method that an applet inherits from the java.awt.Component class. getSize () can be a useful
method for applets because it allows you to find out how much room you have to work with. To
understand how the applet obtained the getSize () method, take a look at the API for the
applet at http: //www.javasoft.com/products/jdk/1.2/docs/api/packages.html.

Ch

When you visit the Web site, you see a structure at the top of the applet, called an inheritance
tree, which looks like the following:

Class java.applet.Applet

java.lang.Object
I

+----java.awt.Component
1
1
+----java.awt.Container
|
I

+----java.awt.Panel

1

1

+----java.applet.Applet
An inheritance tree helps you to see all the classes Applet inherits from. You see that, just like
when you create your applets by extending the java.applet.Applet class (and in so doing you
obtain all the methods of Applet), when Applet extends Panel, it obtains all of Panel’s meth-
ods. So even though you aren’t extending Component, because Container does and because
Panel extends Container, and Applet extends Panel, and PaintStars extends Applet, you
have effectively inherited all those classes and can use the methods present in all of them.

At the top of the tree, you will see Component, which is a rich class with a lot of methods. You
will want to get to know Component very well. Component has a method called getSize (), which
is the method you were looking for.

Going back to your equivalent code, the next line after the width = getSize().width; is aline
that says:

double randomLoc = Math.random();

Math is a class in the java.lang package (thatis, java.lang.Math). Math has a number of valu-
able methods, one of which is random(). random() returns a random number from 0.0-1.0. This
can be useful because, as you used it here, you can use that number to generate any random
number you need. The rest of the code should be easy to follow after you understand random ()
and getSize().

N O T E Notice that when you call random (), you are doing this on the class Math and not on an
actual instance of Math. In other words, what you are NOT doing is

Math myMathVar = new Math();
double randomLoc = myMathVar.random();

264 Chapter 15 Advanced Applet Code

How can you do this? Ordinarily you cannot call methods just using their class names. However, if a
method is defined as static, the method can be invoked without having to create an instance object of
the class first. It just so happens that all of Math’s methods are static, so you can use them without
having to actually invoke Math. If you're following along using Sun Microsystems’s API, you may have
noticed that random () is preceded by a green dot rather than a red one. This is to indicate that
random () is a static method.

See “Methods,” p. 119

Adding Images to an Applet

Another common task when building an applet is displaying an image. As you saw in the
StarPainter applet, you can create images on your own using the Graphics class, but you can
also load images stored in .gif or .jpg formats. getImage () is the method that has been added
to java.applet.Applet for the purpose of loading such images.

public Image getImage(URL url)

getImage() is an easy method to use. All you need to know is the URL where the image can be
found. So to get the image called banner.gif from the Web site www.magnastar.com, all you
would need to do is use a line similar to this:

Image testImage = getImage (new URL("http://www.magnastar.com/banner.gif");

To put this in an applet, see Listing 15.3.

Listing 15.3 PaintBanner Loads an Image and Displays It

import java.applet.Applet;
import java.awt.*;
import java.net.URL;

/*
*
* PaintBanner
*
*/
public class PaintBanner extends Applet{
Image testImage;
public void init(){
testImage = getImage("http://www.magnastar.com/banner.gif");

}

public void paint(Graphics g){
g.drawImage(testImage,0,0,this);
}

Adding Images to an Applet 265

PaintBanner is an effective applet if what you want to do is paint one image: banner.gif. How-
ever, it’s unlikely that you will have too many requirements for banner.gif. Because of the
URL restrictions imposed on applets, you would not even be able to load the banner.gif image
from www.magnastar.com unless the applet actually resides on the www.magnastar.com com-
puter.

You can get away from this requirement by using the getParameter () method you learned
about in the preceding section, embedding a parameter that would be used for the URL. For
limited cases, this might actually work. However, what if you want to load the banner.gif
graphic, and you want to always load it off the current computer? In other words, what if you
create an applet that relies on a number of graphics, but when somebody from www. jars.com
loads the applet, they need to get the image from www. jars.com, not from www.magnastar.com.

java.applet.Applet has two methods that can help you in this pursuit. It has the capability to
tell you the relative URL of either the location where the class files for the applet were re-
trieved, or where the HTML file the applet was contained in are from. These two methods are
getDocumentBase () and getCodeBase ().

public URL getDocumentBase()
public URL getCodeBase()

The getDocumentBase () method will return the relative URL where the applet is contained.
getCodeBase () returns the relative URL where the applet’s class files are located. The key here
is the term relative. The two methods return only the relative location for the file. For instance,
the relative URL for the banner.gif file talked about before would be http://
www.magnastar.com/. Had it been located in a subdirectory called Images, the URL would be
http://www.magnastar.com/Images/. To get to the whole URL, you need to create an URL
from both this URL and the name of the actual file you’re looking for. How do you do this? The
answer is twofold; first you could use the two-parameter constructor for an URL, which would
look like new URL (getDocumentBase (), "banner.gif"). It just so happens that getImage()
itself has been overloaded to provide this same functionality as well. Listing 15.4 shows Listing
15.3 again using the getDocumentBase () method.

Listing 15.4 Loading an Image from the Current Directory

import java.applet.Applet;
import java.awt.*;
import java.net.URL;

/*
*
* PaintBanner
*
*/
public class PaintBanner extends Applet{

Image testImage;

public void init(){

testImage = getImage(getDocumentBase(), "banner.gif");

}

continues

Part

Ch

266 Chapter 15 Advanced Applet Code
Listing 15.4 Continued
public void paint(Graphics g){
g.drawImage(testImage,0,0,this);
}
}
Figure 15.2 shows the result of adding the getDocumentBase () method.
FIG. 15.2
The ABREL
getDocumentBase () Quality Java Programming By
method will return the MagnaStm‘, Inc.

relative URL where the
applet is contained.

Now when you run PaintBanner, the browser will look for the graphic banner.gif in the same
directory where it found the HTML file. When you move PaintBanner to another system or
directory, there is no need to change either the HTML or the source code.

N O T E One interesting characteristic of getImage () is that it returns immediately. In other words,

your program starts to process the next file right away. getImage () does not wait until
after the image has been dragged across the Net; in fact, the image isn’t actually even retrieved until it
is first used. Be aware of this fact because you'll likely see images paint slowly at times. You learn more
about this in Chapter 22, “Graphics.

Adding Sound to an Applet

Another useful feature of applets is their capability to load and use sounds. One new feature of
Java 1.2 is the capability to load many sound files. In the past, Java only had support for one
format—the AU format. Now you can use many file formats, including WAVE, AU, AIFF, MIDI,
and a great format—RMF.

Audio is abstracted in Java in a class called java.applet.AudioClip. Applet provides several
methods to load the audio files, the getAudioClip() method is available in a variety of formats,
and a new method—newAudioClip()—allows you to load an audio file without needing to have
the browser’s support.

Adding Sound to an Applet 267

public AudioClip getAudioClip(URL url)

public AudioClip getAudioClip(URL url, String name) i

public static final AudioClip newAudioClip(URL r)
Ch
newAudioClip () and getAudioClip () work similarly to getImage (). In fact, just as with

getImage(), getAudioClip () has two possibilities, one with just the URL, and one with a rela-
tive URL and a name. To actually use the AudioClip, you will need to use one of AudioClip’s
methods: play(), loop(), or stop (). Each of these methods works exactly as you would think
it would. play () plays the clip once, whereas loop() plays it over and over. Please use courtesy
when using loop (). There is nothing worse than hearing the same clip over and over, so don’t
arbitrarily loop an AudioClip endlessly. Put these together in a small applet, as shown in List-
ing 15.5.

Listing 15.5 Play AudioClip—When You Click This Applet It Plays a Sound

import java.applet.Applet;
import java.applet.AudioClip;
import java.awt.Event;

/*

*

* PlayAudio

*

*/

public class PlayAudio extends java.applet.Applet{
AudioClip audio;

public void init(){
audio = getAudioClip(getDocumentBase(), "welcome.au");

}

public booleanmouseDown(Event evt, int x, int y){
audio.play();
returns true;

One major difference between getAudioClip () and getImage() is that getAudioClip() will go
out to the Net and return the actual audio clip. getImage () does not do this, instead

getImage () returns immediately and only loads the image when you need it. However, when
you get an audio clip, the rest of your program will have to wait until that audio file has been
downloaded.

One more audio-related method in Applet is called play (). play() is overloaded the same way
that getAudioClip () and getImage() are. The difference between play() and getAudioClip()
is that play () grabs the audio clip and plays it right away. However, it doesn’t save the audio
clip so, if you need it again, it will have to be re-downloaded from the Net.

268 Chapter 15 Advanced Applet Code

Using the Applet to Control the Browser

Another thing you can use an applet to do is provide control over the browser. This is impor-
tant because it allows the applets that you write to extend the capabilities of a standard
browser, actually changing the experience of a user to fit your new needs.

One difference between the methods used to control the browser, as opposed to the rest of the
methods discussed in this chapter, is that java.applet.Applet doesn’t have the capability to
change the Web page itself. Instead, a class called AppletContext, which is basically a link to
the browser itself, actually controls the browser environment in which the applet lives.

To retrieve the AppletContext for the browser, you need to use the following method:
public AppletContext getAppletContext()

After you have the AppletContext for the applet, you can begin to manipulate the browser.

Changing the Status Message

An applet can cause the browser to change Web pages or display a different message. The first
method for doing this is showStatus (). showStatus() causes the message to be displayed in
the status window, normally at the bottom of the page, as seen in Figure 15.3.

FIG. 15.3 E"g‘ﬁpplel Viewer: ShowClickCount.class [H[=] E3

When you click the appiel
applet, the status line
changes.

You've clicked 8 times

public void showStatus(String msg)

Using showStatus (), you can change the value of this output to be any string you want. Listing
15.6 shows a sample program that changes the status to indicate the number of times you've
clicked the applet.

Using the Applet to Control the Browser 269

Listing 15.6 The Status Window of This Browser Is Changed by the Applet Part

import java.applet.Applet;

import java.awt.Event; ch
/*

*

* ShowClickCount

*

*/
public class ShowClickCount extends Applet
{
int count=0;
public boolean mouseDown(Event evt, int x, int y){
getAppletContext().showStatus("You've clicked "+(count++)+" times");
return true;
}
}

When you run the ShowClickCount applet, you will notice the status message changes each
time you click the applet. Changing the status message at the bottom of the page can be a
useful way to give feedback to your users. Notice how the browser uses the status area to tell
you about where a link goes, or the status of a download.

Changing the Page the Browser Displays

Another thing you can do with the browser is change the Web page it is displaying. This can be
useful because it means you can now add navigation capabilities to your applet.
AppletContext’s method for doing this comes in two varieties:

showDocument (URL)
showDocument (URL, String)

If you’re jumping ahead, you’re thinking to yourself, “Ahh huh, showDocument () has the same
relative URL and final document options that getImage () and getAudioClip() did.” If that’s
what you're thinking—well, there’s no easy way to break this to you—you're wrong. The two
versions of showDocument () do not work the same way as getImage () and getAudioClip(), SO
read on.

First, showbocument (URL) does change the browser window to the URL you’ve pointed it to,
just as you might have guessed. So, if you want to create a simple applet that just changes to
the Web page, you could put something together like Listing 15.7.

270

Chapter 15 Advanced Applet Code

Listing 15.7 Show Document Displaying a Different Web Page in the
Browser

import java.applet.Applet;
import java.awt.Event;
import java.net.*;

/*
*

* ShowDocument
*

*/
public class ShowDocument extends Applet {
public boolean mouseDown(Event evt, int x, int y){

try{
getAppletContext().showDocument(new URL("http://www.magnastar.com"));

} catch (MalformedURLException urlException){
System.out.println("Sorry but there was an error creating the
OURL: "+urlException);
}

return true;

When you run the Showbocument applet and then click it, your browser changes to the

www . magnastar.com Web page. Notice the try-catch sequence in the preceding example. Do
you realize why you need it? It’s required because the constructor for URL throws an exception
if the URL isn’t valid. For instance, if you point to http: //www.magnastar.com, this would not
be a valid URL because URL doesn’t know what to do with http.

So what, then, is the difference between the two showDocument () methods? Well, the first
method takes the URL you want to show, as just covered. The second takes the URL you want
to point to and the name of the target frame to display the document in. You can use the actual
name of the frame you want to display in (if you are using frames on the Web page) or the
values "_self", " parent",and "_blank" to refer to either the current frame (default), the
parent frame, or a new window, respectively.

Putting It All Together

Now, try to construct a more complete example using each of the methods you learned about
in this chapter. For this complete example, first display a graphic. Then, each time the mouse
enters the applet, play a sound. When the mouse button is pressed, display a message, and
when the button is released, change pages. Listing 15.8 shows you how to create this applica-
tion; see if you can work through the source code on your own.

Putting It All Together

Listing 15.8 ActiveBanner Displays an Image and Plays a Sound When the
Mouse Enters the Area and Switches Web Pages When It’s Clicked

import java.applet.*;
import java.awt.*;
import java.net.*;

/*

*

* ActiveBanner

*

*/

public class ActiveBanner extends Applet{
Image banner;
AudioClip welcome;

public void init(){
banner = getImage(getDocumentBase(), "banner.gif");
welcome = getAudioClip(getDocumentBase(),"welcome.au");

}

public void paint(Graphics g){
g.drawImage(banner,0,0,this);

}

public void update (Graphics g){
paint(g);
}

public boolean mouseEnter(Event e, int x, int y){
welcome.play();
return true;

}

public boolean mouseDown(Event e, int x, int y){
getAppletContext().showStatus("Release the mouse button to go to
AmagnaStar");
return true;

}

public boolean mouseUp(Event e, int x, int y){
try{
getAppletContext().showDocument(new URL("http://
Awww.magnastar.com"));
} catch (MalformedURLException urlException){
System.out.println("Sorry but there was an error creating the
AURL: "+urlException);
}

return true;

271

Part

Ch

JAR Archive Files

In this chapter

Why JAR? 274

When to Use JAR Archives 275
JAR Archives and Security 279
The java.util.zip Package 285
JAR File Format 288

CHAPTER

274

Chapter 16 JAR Archive Files

Why JAR?

The JAR file format brings several important advantages to applets. These include performance
improvements and enhanced portability. JAR files also implement the Security Model that was
introduced with JDK 1.1, described in detail in Chapter 34, “Java Security in Depth.”

JAR archives are not the first Java archive format to be supported. Since version 1.0, the JDK
has used the uncompressed ZIP file classes.zip to store the JDK system class files as a single
disk file. Netscape Navigator 3.0, following this procedure, allowed the <APPLET> tag to load an
applet from a similar ZIP file. Starting with version 3.0, Microsoft Internet Explorer started
allowing you to load Java applets from Microsoft’s CAB files, like ActiveX controls.

JAR files have been replacing these other mechanisms over time. They offer the following
benefits which make them the preferred choice.

Bundling

A complex applet may consist of dozens or hundreds of Java classes, each stored in a separate
class file (recall that each public class must be stored in a separate file). To run the applet, the
‘Web browser makes an HTTP connection to load each file, as needed, from the server. Estab-
lishing an HTTP connection entails overhead, and if the class files are small, as they typically
are, much of the time spent loading an applet can be spent establishing the multiple HTTP
connections required to load all the class files.

The first and most obvious benefit of a JAR file is that it combines several class files into one
archive file, which can then be transmitted from the server to the Web browser over a single
HTTP connection. Furthermore, JAR files can contain not only class files but also audio and

image files, allowing an entire applet to be downloaded in one transaction. This is useful not

only for improved performance, but also because it simplifies applet distribution.

Compression

JAR files, like CAB files (but unlike classes.zip), are compressed using a variant of the stan-
dard Lempel-Ziv algorithm. For example, the JDK TicTacToe demo is 20 percent smaller when
archived as a JAR file; the ImageMap demo is 5 percent smaller (it contains more image files,
which are already compressed). By not only aggregating multiple files but also compressing
them, JAR files can greatly reduce the time needed to download an applet.

Backward Compatibility

Because JAR archives preserve the directory hierarchy of their files, and because they can be
loaded through a simple change to the <APPLET> tag, JAR archives can be used transparently
with existing Java applets, with no change to the applet code.

Portability

Portability, in this case, refers to two things: portability between browsers, and portability
between Web servers.

When to Use JAR Archives 275

Browser incompatibility between Netscape Navigator, Microsoft Internet Explorer, and other
browsers is a familiar bugaboo to anyone who has developed Web pages or Java applets. Prior
to Java 1.1, a Web developer had no portable archiving mechanism.

JAR files solve this problem by providing a single, browser-independent archive file format.
Because JAR support and tools are implemented entirely in Java, any browser supporting the

standard Java 1.1+ library will be able to support JAR files.

Part
The other side of the portability question becomes clear when you try to move an applet from

one Web server to another. For example, imagine that you have developed an applet running

on a Windows 95-based Web server. Your files have descriptive names such as Ch
NavigationBarAnimationPanel.class—a legal filename under Windows 95. Now you need to

move your Web site to a Macintosh-based Web server. Unfortunately, you discover that

Macintosh filenames are limited to 31 characters, and you are forced to rename not only your

Java source files, but also your classes within them (because filenames must match the names

of classes they contain).

(To see this firsthand, try downloading and installing the JDK 1.1 beta 2 documentation files on
a Macintosh. Many of the filenames will be truncated, and your browser won’t be able to navi-
gate links to those files.)

By storing an applet’s various class files and other resource files in a single JAR file, you make
the applet immune to any idiosyncrasies of the Web server’s underlying file system.

Security

As of JDK 1.1, the Java Security Model has been extended. It is now possible, by using authen-
ticated JAR archives, for the user to verify the origin of an applet, mark it as trusted, and give it
additional privileges. This makes it possible for new types of applets to be written, such as word
processors that store files on the local user’s hard disk.

When to Use JAR Archives

You should consider using a JAR archive for your applet if any of the following apply:
You wish to decrease your applet’s loading time, especially if your applet consists of
many files.

You wish to simplify the distribution of your applet or make it portable to more Web
servers.

Your applet needs to be authenticated as trusted code.

@ JAR files are useful chiefly for applets. If you are developing a Java application, JAR files won’t be as
useful to you, although you may still use them as a general-purpose archiving format.

276 Chapter 16 JAR Archive Files

The jar Tool
The jar tool allows you to create, list, and extract files from JAR archives. It deliberately re-
sembles the UNIX tar tool, both in function and in usage. Like other tools in the JDK, the jar
tool is implemented as a Java application, making it portable to any platform supporting Java.

Creating a New Archive To create a new archive, use the options cvf. The ¢ option tells jar
to create a new archive. The v option tells jar to output verbose diagnostic messages to the
console while it is working so you can see what is being added. The f option tells jar to create
an archive file of the given name. For example, the following

jar cvf Foo.jar *.class images

will create a new JAR archive named Foo. jar in the current directory. The archive will contain
all the class files in the current directory, as well as the complete images directory and all its
contents.

As an example, connect to the directory containing the JDK demo TicTacToe.

A listing of the directory contents reveals a class file and two subdirectories containing audio
and image files:

D:\java\demo\TicTacToe>dir
Volume in drive D is NTFS20
Volume Serial Number is 6C98-56B4

Directory of D:\JDK1.2\demo\TicTacToe

01/13/97 10:04a <DIR>

01/13/97 10:04a <DIR> ..

12/16/96 11:29a <DIR> audio

11/19/96 12:34p 139 examplel.html

12/16/96 11:29a <DIR> images

11/19/96 12:34p 3,454 TicTacToe.class

12/06/96 10:27a 7,593 TicTacToe.java
7 File(s) 11,186 bytes

1,575,772,160 bytes free
Create a new subdirectory that will contain the JAR file version of this applet:
D:\JDK1.2\demo\TicTacToe>mkdir jar
Now create the JAR archive:

D:\JDK1.2\demo\TicTacToe>jar cvf jar\TicTacToe.jar *.class audio images
adding: TicTacToe.class

adding: audio/beep.au

adding: audio/ding.au

adding: audio/return.au

adding: audio/yahoo1.au

adding: audio/yahoo2.au

adding: images/cross.gif

adding: images/not.gif

Notice that when directories are listed as input files to the jar tool, their contents are added to
the archive and the directory names are preserved.

When to Use JAR Archives

When the jar tool creates a new archive, it automatically adds a manifest file to the archive. In
most cases, this will suffice. However, should you wish to create your own manifest file, and
have the jar tool use that, you can do so by specifying the m option.

Listing Archive Contents The jar tool can also list the contents of a JAR archive. For
example

jar tvf Foo.jar
will list the contents of Foo. jar.

To continue with the TicTacToe demo applet, connect to the jar subdirectory you created
previously. Use the t option to obtain a listing.

D:\JDK1.2\demo\TicTacToe\jar>jar tf TicTacToe.jar
META-INF/MANIFEST.MF

TicTacToe.class

audio/beep.au

audio/ding.au

audio/return.au

audio/yahoot.au

audio/yahoo2.au

images/cross.gif

images/not.gif

Notice that a manifest file has been added to the archive automatically. See the section “Mani-
fest File,” later in this chapter, for more information about manifest files. You can obtain more
information by using the v option.

D:\JDK1.2\demo\TicTacToe\jar>jar tvf TicTacToe.jar
1045 Mon Jan 13 11:52:18 PST 1997 META-INF/MANIFEST.MF
3454 Tue Nov 19 12:34:26 PST 1996 TicTacToe.class
4032 Tue Nov 19 12:34:26 PST 1996 audio/beep.au
2566 Tue Nov 19 12:34:26 PST 1996 audio/ding.au
6558 Tue Nov 19 12:34:26 PST 1996 audio/return.au
7834 Tue Nov 19 12:34:26 PST 1996 audio/yahool.au
7463 Tue Nov 19 12:34:26 PST 1996 audio/yahoo2.au
157 Tue Nov 19 12:34:24 PST 1996 images/cross.gif
158 Tue Nov 19 12:34:24 PST 1996 images/not.gif

Extracting Files from an Archive Finally, the jar tool can extract files from an archive file.
For example, to extract the TicTacToe.class file, type the following:

D:\JDK1.2\demo\TicTacToe\jar>jar xvf TicTacToe.jar TicTacToe.class
extracted: TicTacToe.class, 3454 bytes

If you are following along on your computer, remove the file you just extracted so that upcom-
ing examples will work:

D:\JDK1.2\demo\TicTacToe\jar>del TicTacToe.class

277

You cannot use the x option to extract a single file within a subdirectory of the JAR archive. Instead,
specify the entire subdirectory and, after it has been extracted, discard those files that you do not
need.

Part

Ch

278

Chapter 16 JAR Archive Files

The APPLET Tag

The APPLET tag embeds a Java applet into an HTML file. It has a number of attributes that
specify the name of the applet to be loaded, the URL to use to locate the applet, and the size of
the applet on the page. In addition to these attributes, any number of parameters can be speci-
fied. For example, in the following

<APPLET CODE="FooMain.class" WIDTH=100 HEIGHT=120>

<PARAM NAME="color" VALUE="red">

<PARAM NAME="background" VALUE="blue">
</APPLET>

the CODEBASE attribute indicates the URL base from which to load the class file. If no CODEBASE
is specified, the URL of the referring page is used. For example, the browser will try to load the
following applet from http://www.foo.com/applets/FooMain.class:

<APPLET CODE="FooMain.class" CODEBASE="http://www.foo.com/applets/" WIDTH=100
OHEIGHT=120>

;}APPLET>
Beginning with JDK 1.1, Sun specified changes to the <APPLET> tag which enable the class to
be loaded from a JAR archive that is downloaded before the Java applet class is located.

Loading from a JAR archive can be specified in two ways: using an attribute or using a param-
eter. First, an attribute named ARCHIVES can be used, as follows:

<APPLET ARCHIVES="Foo.jar" CODE="FooMain.class">
</APPLET>
When the browser reads this tag, it first downloads the Foo. jar file from the server, then tries

to find the FooMain.class in Foo. jar. If the browser cannot find the class in the archive, it
looks at the location specified by the CODEBASE, as usual.

Alternatively, the JAR archive can be specified as a parameter. This parameter should have the
name ARCHIVES. The parameter’s value is the name of the JAR file, as follows:

<APPLET CODE="FooMain.class">
<PARAM NAME=ARCHIVES VALUE="Foo.jar">

;}APPLET>
It’s possible to specify more than one JAR archive to be loaded. To do so, insert the string +
(a plus sign surrounded by spaces) between the archive filenames, as follows:

<APPLET ARCHIVES="foo.jar + foo_images.jar + foo_sounds.jar"
CODE="FooMain.class">

</APPLET>

Specifying a JAR archive in an APPLET tag is a performance optimization, instructing the

browser to preload a specified archive and use that archive, if possible, when locating classes.
If the JAR file is not found, or if a required class file is not found in the archive, the usual search

JAR Archives and Security 279

procedure, as defined by JDK 1.0, will be followed. Specifying a JAR file to preload does not
prevent the usual search paths from being tried and used if necessary.

As a final example, look at the <APPLET> tag used by the TicTacToe demo in JDK 1.1. The file
examplel.html, in Listing 16.1, contains this <APPLET> tag.

LISTING 16.1 examplel.htmlI—Without JAR Archive Loading

Part
<title>TicTacToe</title>
<hr>
<applet code=TicTacToe.class width=120 height=120> Ch
</applet>
<hr>

The source.

Copy this to the subdirectory jar that you created previously.

D:\JDK1.2\demo\TicTacToe>copy examplel.html jar
1 file(s) copied.

Now edit it to add the APPLETS attribute. It should look like Listing 16.2 when you're done.

LISTING 16.2 examplel.html—With JAR Archive Loading
<title>TicTacToe</title>

<hr>

<applet code=TicTacToe.class archives=TicTacToe.jar width=120 height=120>
</applet>

<hr>

The source.

Now you should be able to run the TicTacToe applet from the JAR archive created earlier:

D:\java\demo\TicTacToe\jar>appletviewer examplei.html
loading d:\jdki1lb2\java\bin\..\lib\awt.properties

Compatible Browsers

To use a JAR file, you must be using a JDK 1.1 browser, which means you can use Navigator
3.0 or Internet Explorer 3.0 if you've added the Java Activator. If you're using a 4.0+ browser
though, worry not—you're already set.

JAR Archives and Security

The Web allows content to be downloaded, and the Java architecture extends the Web to allow
executable content to be downloaded. Although this opens up tremendous new possibilities, it
also opens up new risks. A static text or image file can do little to harm its receiver (Snow
Crash notwithstanding), but a piece of code can, potentially, do a lot of damage—witness com-
puter viruses.

280

Chapter 16 JAR Archive Files

In order to protect recipients of downloaded code, Java implements a security model known as
the sandbox. This is a domain within which an untrusted piece of Java code may do whatever it
wishes. By restricting the applet’s activities to a well-defined area, a browser can run an
untrusted applet while still protecting everything outside the sandbox—typically, the local
machine’s memory, files, and disks, and the network.

Running within the sandbox is not a hindrance to an applet that displays a clock, a stock ticker,
or an animated navigation bar. But what about an applet that implements a word processor or a
spreadsheet? For such an applet to be useful, it needs to interact with the user’s local machine
in order to read and write files (unless the applet wants to tackle the formidable task of main-
taining user data files on a remote server). To do this, it needs to leave the sandbox. Under
JDK 1.0, it was difficult for applets to do this. However, using authenticated JAR archives,
applets have a standard way to easily gain trusted status.

The Manifest File

The first entry in any JAR file is a collection of meta-information about the archive. The jar tool
generates this meta-information automatically and stores it in a top-level directory named

META - INF. This directory always contains what is known as the manifest file, META- INF/
MANIFEST.INF (see Listing 16.3).

Normally, if no authentication is applied, the manifest file contains checksums for the other
files in the archive. For example, you can extract the manifest file for the TicTacToe.jar
archive, created previously, as follows:

D:\JDK1.2\demo\TicTacToe\jar>jar xvf TicTacToe.jar META-INF
extracted: META-INF/MANIFEST.MF, 1045 bytes

LISTING 16.3 Manifest File MANIFEST.MF of TicTacToe.jar

Manifest-Version: 1.0

Name: TicTacToe.class

Hash-Algorithms: MD5 SHA

MD5-Hash: TsjcL1vWU7k4/HDkwOnvHg==
SHA-Hash: IGRKfYKD8Cpef7+or5ZKqYp3bho=

Name: audio\beep.au

Hash-Algorithms: MD5 SHA

MD5-Hash: kZv279ZIA/H6mOw4t8W8XA==
SHA-Hash: JgfdUl4/uzNq5yUy3e07ZXwvNOc=

Name: audio\ding.au

Hash-Algorithms: MD5 SHA

MD5-Hash: 230JDEp/LqCZC70AEIOSVQ==
SHA-Hash: dpRUB8DKzEPQ@Grc7DIrXclPMjJ8=

Name: audio\return.au

Hash-Algorithms: MD5 SHA

MD5-Hash: tBUwkF2geyor/nmPeF81hg==
SHA-Hash: ABV7Ar1gRYQmpp7kSbkH3GN+YOA=

JAR Archives and Security 281

Name: audio\yahooi.au

Hash-Algorithms: MD5 SHA

MD5-Hash: Bq9PhKz6zAWrgQvtGWS8zQ==
SHA-Hash: qUO3jWxRvJWIp25S9XRQk51bLaY=

Name: audio\yahoo2.au

Hash-Algorithms: MD5 SHA

MD5-Hash: 61lhsclKkFy5iBu+km+DAVQ==

SHA-Hash: Gfc7hOmtTmM31JJ1HJZgkMm2elo= Part

Name: images\cross.gif
Hash-Algorithms: MD5 SHA

MD5-Hash: gTJaDGQtdz1Y4W+hHWxjgA==
SHA-Hash: plA3I8z0S3u8XXj9+vutZupQooU=

Ch

Name: images\not.gif

Hash-Algorithms: MD5 SHA

MD5 -Hash: SJsp04DooHqq9ndFnn6Sew==
SHA-Hash: MmqEk9R8pMigNK3xDi2yK1cyyzZ8=

The manifest file lists all the files in the archive, together with values labeled MD5 -Hash and
SHA-Hash. Listing 16.3 shows a typical manifest file. MD5 and SHA are message digests, also known
as one-way hash functions. A hash function takes an arbitrary piece of input data and produces a
piece of output data of a fixed size. MD5 hashes are 128 bits; SHA hashes are 160 bits. The term
one-way refers to the fact that it is difficult to produce the same hash from two different inputs.

The message digests in this manifest can be used to confirm that the archive has not under-
gone accidental corruption: As a browser reads each file from the archive, it can compute its
MD5 and SHA hash values and check them against those in the file. Deliberate corruption, on the
other hand, cannot be ruled out, because anyone who intentionally corrupts an archive file can
also modify the manifest file’s corresponding hash.

It is possible, however, to detect deliberate corruption of the files in a JAR archive. To do so,
the JAR archive must be “signed.” This is analogous to signing a paper document with a pen. It
indicates, with certainty, that the given JAR archive came from the indicated source. In fact, a
digital signature is stronger than a physical one; it is harder to forge, it cannot be repudiated by
the signer, and the signed document cannot be modified.

Private Keys, Public Keys, and Certificates

In order to sign a JAR archive, you must first create a private key, a public key, and a certificate.
The public and private keys are paired pieces of data used to create digital signatures and to
encrypt data. A certificate is a guarantee by one entity, usually a trusted public organization,
that another entity’s public key is valid. (In this case, more specifically, a certificate conforms to
the X.509 standard published by CCITT.) The combination of a public key and a certificate can
be used to confidently verify a digital signature.

282

Chapter 16 JAR Archive Files

keytool

The keytool tool handles the creation and management of identities, public and private keys,
and certificates. The details of key and certificate creation and management are beyond the
scope of this chapter, but they are covered in Chapter 34.

Very quickly, the keytool program can create files called keystore databases. These databases
are actually files that reside generally in the root of your JDK installation and contain the cer-
tificates that you have created or used.

keytool itself has a variety of parameters, used to specify the manipulation of a key. However,
for now look at just one scenario, generating a key. To do this, you need to know several things.
First, you need an alias by which this key will be known. For now, let’s use javajoe. Next, you
need a distinguishing name by which you will be known. This name is part of the X.509 stan-
dard for specifying your name and follows this format:

CN=commonName OU=organizationUnit O=organizationName L=locality
[OName S=stateName C=country

Each of these fields helps spell out who you are; for example, my -dname might be
"CN=Joe Weber, OU=QUE, O=Macmillan Publishing, L=Milwaukee, S=Wisconsin, C=US"
Now you can use both of these values to generate a new key:

keytool -genkey -dname "CN=Joe Weber, OU=QUE, O=Macmillan Publishing,
OJL=Milwaukee, S=Wisconsin, C=US" -alias javajoe

As you probably already guessed, the -genkey command tells keytool that you are generating
a new key, -dname specifies distinguishing name, and -alias specifies the alias you will be
using. Note that the alias is case-sensitive, so javajoe is not the same alias as JavaJoe.

When you run keytool like this, you are prompted to enter a password for the keystore and a
password for your new key. These passwords will be required each time you use the key later
down the road. You could also have specified the key password on the command line using the
-storepass -keypass parameter. If you want to, you can set the -storepass to
mystorepassword and the -keypass to privatekeypassword using the following command:
keytool -genkey -dname "CN=Joe Weber, OU=QUE, O=Macmillan Publishing,

0 L=Milwaukee, S=Wisconsin, C=US" -alias javajoe -storepass
0 mystorepassword -keypass privatekeypassword

In general, the parameters for use when generating a key are
keytool -genkey {-alias alias} {-keyalg keyalg} {-keysize keysize}

0 {-sigalg sigalg} [-dname dname] [-keypass keypass] {-validity valDays}
0 {-keystore keystore} [-storepass storepass] {-v}

jarsigner

Now that you have generated a key, you can digitally sign your JAR file. Signing a file is useful
so that you and users of the file can be sure that you are the person who sent the file and that it
hasn’t been tampered with.

JAR Archives and Security 283

Before you can sign the JAR file, you need to know a couple of details. First, you need to know
the alias for the key you wish to use. Next, you need to know the -keystore password and the
private key password for the key you will be using. Finally, you optionally need to know the
location of the keystore file. If you've left it in the default location, you don’t need this, but if
you’ve moved it elsewhere, you need to specify that information.

Using the key that you created under the keytool section, you can now sign the
TicTacToe. jar file using the following command line:

jarsigner -storepass mystorepassword -keypass privatekeypassword
0 TicTacToe.jar javajoe

‘When you sign the JAR file, it adds two files to the manifest for the file. The first file is an .SF
file. The . sF file contains information very similar to the manifest file that is always included
with a JAR file. However, the .SF file’s digest includes not the hash of the binary data in the file
(as the manifest’s does) but rather a hash of the data in the manifest. This locks in the manifest
information.

The second file is a .DSA file. The .DSA file contains a signature of the . SF file and also contains,
encoded inside it, a copy of the .SF file and a certificate authenticating the public key corre-
sponding to the private key used for signing.

Wow, that’s a mouthful. Fortunately, you should never have to know any of those details. How-
ever, you should know that both files by default are named via the first eight characters in the
alias (converted to uppercase); so in this case, you would have JAVAJOE . DSA and JAVAJOE . SF.
As this implies, you can sign a JAR file more than once and chain these signatures together,
resulting in an . SF and .DSA file for each person who signed the file.

jarsigner has a number of additional options that you can use, depending on your particular
situation, as outlined in Table 16.1.

TABLE 16.1 jarsigner Options

Option Description

-keystore file Specify the keystore (database file) location. By default, this
file refers to . keystore in the user’s home directory. This
directory is specified by the user.home system property. For
Windows systems, user.home is the path specified by
concatenating the HOMEDRIVE and HOMEPATH environment
variables, if they produce a valid path; otherwise, it is the
root of the JDK installation directory.

-storepass password Specify the keystore password. You need this password only
when signing a JAR file, not when verifying it. If you fail to
specify this command option, you are prompted to enter it.
Normally, you should not specify this password on the
command line for security reasons.

continues

Part

Ch

284 Chapter 16 JAR Archive Files

TABLE 16.1 Continued
Option

Description

-keypass password

-sigfile file

-signedjar file

-verify

-ids

-verbose idOrSigner

Specify the password for the individual key entry. You need
this password only when signing a JAR file, not when
verifying it. If you fail to specify this command option you
will be prompted to enter it. Normally, you should not specify
this password on the command line for security reasons.

Note: The keypass password can be the same as the
keystore password. If it is, the keypass is not required.

Specifies the base filename for the .SF and .DSA files. If none
is specified, the first eight characters of the alias (converted
to uppercase) are used.

Specifies the name to be used for the signed JAR file
(output). If this is not specified, the new JAR file contains the
same name as its source (and overwrites it).

Specifies that you want to verify the signatures in the file.
This is basically the opposite of signing the file.

Assuming the verification was successful, jar verified will
be displayed.

If an unsigned JAR file is verified, or one is signed with an
unsupported algorithm (for example, RSA when you don’t
have an RSA provider installed), the following is displayed:
jar is unsigned. (signatures missing or not
parsable).

This option can be used only if the -verify and -verbose
options are also used. If it is, the distinguished names of the
JAR file signer(s) and the alias name for the keystore entry
are also displayed.

Puts jarsigner into verbose mode. In this mode, the signer
outputs additional information as the signing or verification
progresses.

N O T E UnderJDK 1.1, the functionality of keytool and jarsigner was embedded in a tool
called javakey. If you haven't upgraded to 1.2, you use javakey instead. However, note
that there is no backward compatibility to javakey with keytool, so you can’t interchange them.

With javakey, when you have a public key, a private key, and a certificate, you need one more thing to
sign an archive. This is the directive file, which specifies the signer, certificate, and the name to be
used for the signature file. The directive file consists of fields of name-value pairs. The required fields
are given in Table 16.2. For a sample directive file, see Listing 16.4.

The java.util.zip Package 285

TABLE 16.2 Required JAR Directive File Fields

Field Name Field Value
signer Name of the signer. This name must already be registered in the
persistent database maintained by javakey.
cert Certificate number to use for the given signer. The first certificate is
number 1. Part
chain Chain depth for a chain of certificates. This is currently not supported;
use 0.

Ch
signature.file A name, 8 characters or shorter, to assign the signature and certificate
files that will be created in the META - INF directory of the signed JAR
archive.

LISTING 16.4 Example JAR Directive File LiuJDF.txt

signer=1liu

cert=1

chain=0
signature.file=LIUSIGN

To sign a JAR file, use the javakey tool with option -gs and two arguments: the name of the directive
file and the name of the JAR archive file. For example, the following command signs the archive

Foo. jar using the directive file LiuJDF . txt:

javakey -gs LiudDF.txt Foo.jar

In response to this command, javakey creates two entries in the META - INF directory of the archive:
the signature file LIUSIGN. SF and the certificate file LIUSIGN.DSA.

N o T E Although a purported feature of JAR archives is the capability of signing individual files, the
current release of the jarsigner tool does not seem to support this.

The java.util.zip Package

The java.util.zip package contains a number of classes that manipulate JAR archive files.
Although you will typically not need to use these classes, it is helpful to understand them at a
general level. You do not need to use these classes to create or load JAR files; you can use the
jar tool and the APPLET tag for that.

The java.util.zip package defines the Checksum interface. The Checksum interface defines a
protocol for a class that computes the checksum of a stream. java.util.zip provides two
classes that implement the Checksum interface: Adler32 and CRC32.

286

Chapter 16 JAR Archive Files

Classes

The package java.util.zip defines the following 14 classes.

ZipFile The zipFile class represents a ZIP archive file. It provides methods that read the
file’s entries. This class does not allow you to create a new archive file or to edit an existing
file’s contents. You must use the jar tool for that.

ZipEntry zipEntry represents an entry in an archive file and has methods that get and set
various attributes of the entry, such as its name, modification time, and CRC checksum. In
addition, by calling the method zipFile.getInputStream() with a ZipEntry object, you can
obtain an InputStream object that you can use to read the entry’s contents.

Adler32 and CRC32 The Adler32 and CRC32 classes implement the Checksum interface.
They compute two different checksums of a data stream. CRC-32 is a standard industry algo-
rithm; Adler-32 is a checksum developed by one of the ZLIB authors, Mark Adler, with similar
characteristics but lower computational costs. To use these classes, you instantiate them and
pass them to the constructor of CheckedInputStream or CheckedOutputStream. In fact, this is
just what DeflaterOutputStream and InflaterInputStream do, using the Adler32 class.

CheckedInputStream and CheckedOutputStream checkedInputStream and
CheckedOutputStream extend java.io. FilterInputStreamand java.io.
FilterOutputStream. They maintain a checksum of the data being read or written. The con-
structor for each of these classes takes a stream object, and an object implementing the
Checksum interface, which allows the caller to specify different checksum algorithms for differ-
ent streams.

Deflater and Inflater Deflater and Inflater implement general-purpose compression and
decompression using the standard deflate compression algorithm. For more information, see
RFC 1951, available at http://www.internic.net/rfc/rfc1951.txt.

DeflaterOutputStream and InflaterinputStream DeflaterOutputStream and
InflaterInputStream extend java.io. FilterInputStreamand java.io.
FilterOutputStream. DeflaterOutputStream compresses its output stream;
InflaterInputStream decompresses its input stream. These classes form the basis for other
compression and decompression streams that use other protocols, including GzIP
(Gz1POutputStreamand GZIPInputStream) and ZIP (ZipOutputStream and ZipInputStream).

GZIPOutputStream and GZIPInputStream GziPoutputStreamand GZIPInputStream extend
DeflaterOuputStream and InflaterInputStream. They use the standard GzIP compression
algorithm to compress the output stream and decompress the input stream. For more informa-
tion, see RFC 1952, available at http://www.internic.net/rfc/rfc1951.txt.

ZipOutputStream and ZiplnputStream zipoutputStreamand ZipInputStream extend
DeflaterOuputStream and InflaterInputStream. They use the ZIP compression algorithm to
compress the output stream and decompress the input stream.

The java.util.zip Package 287

Reading a JAR File Programmatically

Typically, you will not use the classes in java.util.zip to read a JAR file; you will specify the
archive to be read in your APPLET tag, and the browser will do the rest. However, should you
need to read a JAR file yourself, this section will get you started.

First, enter Listing 16.5, named DumpJAR. java.

Part
LISTING 16.5 Source Code for DumpJAR.java

import java.util.zip.ZipFile; Ch
import java.util.zip.ZipEntry;
import java.util.Enumeration;

class DumpJAR

{
public static void main(String[] args)
{
String file_name = args[Q];
try
{
ZipFile zip = new ZipFile(file_name);
PrintEntryNames(zip);
}
catch (java.io.IOException e)
{
System.out.println("Exception " + e);
}
}
public static void PrintEntryNames(ZipFile zip)
{
for (Enumeration e = zip.entries(); e.hasMoreElements();)
{
ZipEntry entry = (ZipEntry)e.nextElement();
System.out.println(entry.getName());
}
}
}

Now compile it:
D:\JDK1.2\demo\TicTacToe\jar>javac DumpJAR.java

If you run this application on the TicTacToe. jar file created earlier, you will see a listing of its
contents. Notice that the entries are not shown in the same order that the jar tool produces.
You should not depend on the order of entries returned by the zZipFile.entries () method:

D:\JDK1.2\demo\TicTacToe\jar>java DumpJAR TicTacToe.jar
audio/return.au

audio/ding.au

TicTacToe.class

audio/yahoot.au

288 Chapter 16 JAR Archive Files

audio/yahoo2.au
images/not.gif
audio/beep.au
images/cross.gif
META-INF/MANIFEST.MF

JAR File Format

The JAR file format is based on the general-purpose, freely usable ZLIB file format, which is
based on the ZIP file format. This is a portable file format designed to store multiple files in a
directory hierarchy. The ZLIB format is not specific to any single compression method; how-
ever, the deflate compression scheme is commonly used. This is the compression method
used in JAR files. The deflate protocol is based on a variant of the Lempel-Ziv algorithm, LZ77,
and features low compression overhead and well-defined runtime memory requirements. This
makes it a good general-purpose compression protocol. For more information about ZLIB,
refer to RFC 1950 and RFC 1951, available at ftp://ds.internic.net/rfc/.

In general, you won’t need to concern yourself with the details of the JAR file format, because
you interact with JAR files through the jar and javakey tools and possibly the java.util.zip
package. e

CHAPTER

Applets Versus Applications

In this chapter

Applications Explored 290

Advantages of Applications 290

Developing Java Applications 291

Converting an Applet to an Application 296
Packaging Your Applications in Zip Format 310
Converting an Application to an Applet 310

290

Chapter 17 Applets Versus Applications

Applications Explored

Although Java became famous for its capability to create applets, it is also an equally powerful
language to develop full-fledged applications. In fact, the ability to use Java to create applica-
tions may be the more powerful attribute. Applications written in Java do not suffer from the
numerous pitfalls that traditional programming paradigms present.

It’s almost ironic that the most overlooked portion of Java is the capability to create applica-
tions. When programming in other languages, such as C, C++, or any other traditional lan-
guage, what you always create are standard programs. Oddly enough, the hype surrounding
applets has created an environment where most people interested in Java completely overlook
the possibility of using Java to create applications in addition to applets.

The difference between applications and applets is at once very subtle and at the same time
very profound. In fact, as you will learn later in the chapter, applications can at the same time
be applets and vice versa. The most fundamental difference between applets and applications is
their operating environment. Applets must “live” within a browser such as Netscape Navigator,
Microsoft Internet Explorer, or AppletViewer. Applications can be run directly from the com-
mand prompt with the use of the Java interpreter. (If you're using the JDK, that would be
java.exe.)

N O T E Inthe future, you will be able to run Java applications directly from your operating system

without having to invoke the Java interpreter. Microsoft, IBM, and Apple have all signed a
letter of intent to embed the Java Virtual Machine into upcoming versions of their operating systems. In
addition, Sun has a project currently code-named Kona, which will be an entirely Java-based 0S. When
the JVM becomes part of the 0S, Java applications will become even more crucial.

Advantages of Applications

The application model offers a number of advantages over the applet. For one thing, applica-
tions can be faster. This is caused by a couple of things. First, an application does not have the
overhead of the browser to deal with. In addition, when run as an applet, the browser generally
has control of the amount of memory an applet may utilize. As an application, you have com-
plete control over the entire environment the program is running in. These items combine to
result in slightly faster execution of Java applications, which are free of some of the burdens of
their applet counterparts.

The Sandbox

The more substantial difference between applications and applets is the lack of what is known
as a sandbox. The sandbox restricts the operation of an applet. Under ordinary circumstances,
an applet is forbidden from trying to write or read from your local file system, for instance, and
the applet cannot open an URL to any host on the Internet that it pleases, only to the host from
which the HTML and class files came. In contrast, an application is under no such restrictions.
When a Java program is run as an application, it has all the rights and capabilities that any
program written in, say C++, would have.

Developing Java Applications 291

N O T E Ifyou read chapters 16 and 34, you will learn how to create signed applets. These applets
can open the security box and allow the applet to perform additional operations.

In addition, the new JDK 1.2 security features allow you to do just the opposite. You can restrict an
application or a part of the application so that it has no more rights than an applet.

This means that applications can run what are known as trusted methods. You can find a num-
ber of these methods in the java.lang.RunTime class. However, they also include all native
methods, and a host of others.

So, assuming that you don’t care about the minor performance boost, and you don’t need ac-
cess to elements outside the sandbox, why not just bundle AppletViewer with your applet?
Applications have four additional advantages:

Windows generated from an application do not display the Wwarning applet window, Part
which can be a source of confusion to inexperienced users.

Applications do not require an HTML file to tell them what to load. Ch

Applications are much cleaner because they are executed just like normal executable
programs.

Your clients undoubtedly will consider applications to be full-fledged programs, and
based on the name alone, they will consider applets to be miniature programs. Generally,
this means that they will be willing to pay more for something that they perceive to be a
complete program as compared to a partial one.

Developing Java Applications

When you learned about writing Java applets in Chapter 14, “Writing an Applet,” one of the
first things you learned is that any applet must extend the java.applet.Applet class. Unlike
applets, applications do not need to extend any other class in order to be usable. In fact, the
reason that applets need to extend the java.applet.Applet class is so that an application
(known as a browser) can use the class through polymorphism.

See “Extending Objects Through Inheritance.” p. 76

Any Java class can be run as an application. There is really only one restriction to this: To run a
class as an application, it must have a main method with the following prototype:

public static void main (String args[])
So an application can be thought of as just a normal class that has one unique feature: a static

public main method. In Java the main () method has the same purpose as the main() function
in C and C++—it’s where the application starts.

HelloWorld—The Application

As you have done in previous chapters and will continue to do throughout this book, take a
look at the infamous “Hello World” program as it would be written as a Java application, as
shown in Listing 17.1.

292

Chapter 17 Applets Versus Applications

Listing 17.1 The Simplest Application Is HelloWorld

public class Hello{
public static void main(String args[]){
System.out.println("Hello World!");

}

You can compile the Hello class just as you have the others in this book. From a command
prompt type:

javac Hello.java

Alternatively, on a Macintosh drag the Hello. java file over the javac icon.

N O T E As with any standard public class, He11o must be defined within a file that carries its
name followed by the extension . java.Therefore, in this case Hello must be in a file
called Hello. java.

To invoke a Java application, you will use the syntax [java ClassName]. Note that you use the
ClassName only, not the ClassName.class or the ClassName. java. java will search the existing
classpath (which includes your current directory [.]) to try to locate the class that you have
indicated. Therefore, to run your Hello application from the command prompt, type the
following:

java Hello

What you should see is the message Hello World appear onscreen. Note that you did not type
Hello.class, only Hello. The Java Virtual Machine implicitly knows that the Hello class is
located within the file Hello.class, and that it should start off right away with the main ()
method.

N 0 T E On the Macintosh, things work a bit differently, as you have already learned when you

learned to compile Java programs. In the case of running a Java application, double-click
the Java icon and enter the class name you wish to run. Alternatively, you can drag the class file for the
application over the Java icon.

Also, for users of Windows, to get a command prompt you need to start the program MS-DOS
Prompt.

Passing Parameters to an Application

As you saw with the “HelloWorld” application, applications, unlike applets, do not rely on an
HTML file to be loaded. This can be a benefit because it decreases the complexity of the sys-
tem, but how then do you pass parameters into the application?

Developing Java Applications 293

In C/C++ you will typically utilize the values in the arrays of argv and argc. The argv/argc
system tends to be one that is a bit obtuse, and many programmers look up how to utilize the
variables each time they need them. In Java, the parameter set is much simpler.

You will recall from laying out the prototype for the main () method that main has a param-
eter—an array of strings. This array of strings contains the values of the additional parameters
left on the command line. If you are a DOS user, for example, you’re probably familiar with the
/2 option. For instance:

dir /?
The /72 is an additional parameter to the dir program. Now, take a look at how to do this with
the Hello World program. Instead of having the program say hello to the whole world, change
it so that it only says hello to you. Listing 17.2 shows just how to do this.
Part
Listing 17.2 HelloWorld Using a Command-Line Parameter

public class Hello{ Ch
public static void main(String args[]){
System.out.println("Hello "+args[Q]+"!");
}

To compile the program, type:
javac Hello.java

But to run this version of Hello is slightly different because you need to use the additional
parameter:

java Hello Weber
Now, what you should see is:

Hello Weber!

Preventing Null Pointer Exceptions
If you accidentally did not type the additional parameter at the end of the command line, what
you saw was:

java.lang.ArrayIndexOutOfBoundsException:
at Hello.main(Hello.java):3

To prevent this message, if a user happens to forget to add his or her name at the end of the
line, you need to put in some error checking. Probably the best way to do this is to add an if
statement. Make one more change to the Hello World program, as shown in Listing 17.3.

294

Chapter 17 Applets Versus Applications

Listing 17.3 HelloWorld with a Parameter and Some Error Checking

public class Hello{
public static void main(String args[]){
if (args.length <1){
System.out.println("Syntax for running Hello is:");

System.out.println(" java Hello <Name>");
System.out.println("\n\nWhere <Name> is the person to greet");
} else

System.out.println("Hello "+args[OQ]+"!");

Now, if you happen to run the Hello World program without any parameters, what you will see
should look like this:

Syntax for running Hello is:
java Hello <Name>

Where <Name> is the person to greet

Limitations Imposed Due to the Static Nature of main()

The main method of a class has characteristics very similar to the main() function in C or C++.
Unlike C and C++, however, because the main method must be static, it cannot utilize nonstatic
methods or variables of its class directly. The following code, for instance, would not compile:

public class fooBar {

int foo;

public static void main(String args[]){
foo = 50;

}

}

The problem, of course, is that the foo variable is not static, and the compiler will refuse to
allow the static method main () to modify it. To understand why this occurs, review what it
means for any method or variable to be static. When a static method is loaded into memory, the
virtual machine looks at it and essentially says: “Okay, well there is only going to be one of
these, regardless of how many instances of the class the user creates, so I'm going to assign it
to a special place in memory. I might as well do that now.” This happens not when the class is
first instantiated, but as soon as the class is loaded. Later, when the fooBar class is actually
instantiated, what would happen if the main method were allowed to access the foo variable?

When the fooBar class is instantiated, the machine allocates space for the foo variable, and
then calls the main method. But wait, the main method was already placed into memory with a
reference to the foo variable...but which foo variable? Of course this is assuming that you had
actually been able to compile this class. So there is no real answer, but you can see why the
compiler won’t let you perform this type of activity.

Developing Java Applications

You can solve this problem in one of two ways. First, you can declare the foo variable to be
static, as shown in Listing 17.4.

Listing 17.4 fooBar Written so that foo Is Static

public class fooBar {
static int foo;

public init(){
System.out.println("Init method");
}

public static void main(String args[]){
foo = 50;
}

The fooBar class will now compile, but what about calling methods, such as the init method
in the preceding example? Because the init () method is not itself static, the compiler would
again refuse to compile the fooBar class. Of course, you could declare the init method to be
static as well, but this can quickly become quite cumbersome, and it would be difficult, if not
impossible, to actually perform many of the useful tasks you want to do as a programmer.
Instead, it is probably a good idea to have the fooBar’s main method instantiate another copy of
fooBar, as shown in Listing 17.5.

Listing 17.5 fooBar Creates an Instance of Itself in the main Method

public class fooBar {
int foo;

public init(){
System.out.println("Init method");
}

public static void main(String args[]){
fooBar f = new fooBar();
f.foo = 50;
f.init();

Now, because the f variable is actually created within the main method, you can perform op-
erations on the f instance. The major difference here is that you are performing operations not
on the this variables, but on the f. this variables, and this distinction helps the compiler un-
derstand how to deal with such methods. In other words, f is actually an instance of fooBar.

295

Part

Ch

296 Chapter 17 Applets Versus Applications

Converting an Applet to an Application

Now that you have briefly looked at how to create an application, consider another very impor-
tant aspect of application programming—converting an applet to an application. You see, there
is really no reason why a program you have already written as an applet can’t also be run as an
application. This section provides a step-by-step walkthrough that shows you how to convert
the clock applet (shown in Figure 17.1) into an application.

FIG. 17.1
The clock applet running
in Navigator.

Why Convert an Applet to an Application?

An applet cannot be run from the command prompt without a browser.

So why convert an applet to an application? Well for one thing, believe it or not, not everyone in
the world has realized that the Internet exists. Some people and companies do, but do not yet
have access to the Internet, and many companies have access to the Internet but do not allow
their users to surf the World Wide Web. More important, though, many people do not have
access to the World Wide Web all of the time. For those people who don’t have access to the
World Wide Web all the time, applications on the Web aren’t as useful.

As a result, before long you probably will want to present your applets to people and companies
that are not yet familiar with the Internet, or you may want to present your applets to people
without forcing them to be connected to the Internet. One perfect example of this is when you
want to deliver your applets on a CD-ROM. With Java, there is no reason why the application
you deliver on the CD should be any different from what you display on the Internet. Imagine
being able to develop a single application that will run on every platform and that can work

Converting an Applet to an Application 297

over the World Wide Web, Enterprise Network, and CD-ROM, all without changing a single
line of code or performing a single recompilation.

Changing the Applet Code to an Application

For this chapter, you will change the simple clock applet into an application. Listing 17.6 shows
the source code for the applet.

Listing 17.6 A Simple Application That Displays a Clock
/*

* Clock

*

*/ Part

import java.applet.Applet;
import java.awt.*;
import java.util.*; Ch

public class Clock extends Applet implements Runnable{
Thread thisThread;

Color faceColor,borderColor,minuteColor,hourColor,secondColor;

public void init(){
//read in the colors for each of the hands and for the face/border
faceColor = readColor (getParameter("faceCol"));
borderColor = readColor (getParameter("borderCol"));
minuteColor = readColor (getParameter("minuteCol"));
hourColor = readColor(getParameter("hourCol"));
secondColor = readColor(getParameter("secondCol"));

}

// This method creates a color based on a string.
// The string is assumed to be "red,green,blue" where each
// of the colors is represented by its integer equivalent.
public Color readColor(String aColor) {
if (aColor == null) {

return Color.black;

}

int r;
int g;
int b;

//break the string apart into each number
StringTokenizer st = new StringTokenizer(aColor, ",");

try {
r Integer.valueOf (st.nextToken()).intValue()

() ;
g = Integer.valueOf(st.nextToken()).intValue();
b = Integer.valueOf(st.nextToken()).intValue();
return new Color(r,g,b);

continues

298 Chapter 17 Applets Versus Applications

Listing 17.6 Continued

}
catch (Exception e) {
System.out.println("An exception occurred trying
0 to convert a parameter to a color:"+e);
return Color.black;
}
}

public void start(){
thisThread = new Thread(this);
thisThread.start();

}

public void run(){
while(true){
repaint();
try{
thisThread.sleep(1000);
}catch (Exception e){}

}

public void update(Graphics g){
paint(g);
}

public void paint(Graphics g){
//fill clock face
g.setColor(faceColor);
g.fillOval(0,0,100,100);
g.setColor(borderColor);
g.drawOval(0,0,100,100);

//get the current time

Calendar d = Calendar.getInstance();

//draw the minute hand

g.setColor(minuteColor);

double angle = (((double) (90 - d.get
O (Calendar.MINUTE)))/60)*2 * Math.PI;

g.drawLine(50,50,50+(int) (Math.sin(angle)*50),50 +
0 (int) (Math.cos(angle)*50));

//draw the hour hand

g.setColor(hourColor);

angle = ((((double)18 - d.get(Calendar.HOUR_OF_DAY)
[+ (double)d.get(Calendar.MINUTE) /60))/12)*2 * Math.PI;

g.drawLine(50,50,50+(int) (Math.sin(angle)*40),50 +
0 (int) (Math.cos(angle)*40));

//draw the second hand

g.setColor(secondColor);

angle = (((double) (90 - d.get(Calendar.SECOND)))/60)*2 * Math.PI;

g.drawLine(50,50,50+(int) (Math.sin(angle)*50),50 +
0 (int) (Math.cos(angle)*50));

Converting an Applet to an Application 299

The first task is to add a main () method to the Clock class to make it into an application. To do
S0, open Clock. java in your favorite text editor. Page all the way down until you reach the
closing brace (}). Directly before that brace, add the code shown in Listing 17.7.

Listing 17.7 New main Method for Clock.java

static boolean inApplet =true;
public static void main(String args[]){
/*set a boolean flag to show if you are in an applet or not */
inApplet=false; Part

/*Create a Frame to place our application in. */
/*You can change the string value to show your desired label*/
Ch
/*for the frame */
Frame myFrame = new Frame ("Clock as an Application");

/*Create a clock instance. */
Clock myApp = new Clock();

/*Add the current application to the Frame */
myFrame.add ("Center",myApp);

/*Resize the Frame to the desired size, and make it visible */
myFrame.setSize(100,130);
myFrame.show();

/*Run the methods the browser normally would */
myApp.init();
myApp.start();

Here is a line-by-line breakdown of this code fragment:
inApplet=false;

The first statement in this code creates a status variable, so you can tell if the program is being
run as an applet or as an application. As you will learn later, you often must do a few things
differently when you have an applet that is not actually running in a browser such as
AppletViewer or Netscape. As a result, a Boolean variable (inApplet) has been added to the
class. Technically, for good programming structure, the declaration for this variable should be
placed at the top with the rest of your variables, but it’s easier to see it here. Notice that the
variable is declared to be static. If you miss this keyword, the compiler growls at you about
referencing a nonstatic variable in a static method. main () must be static and public for you to
run the method as an application.

Frame myFrame = new Frame ("Clock as an Application");

300

Chapter 17 Applets Versus Applications

Next, you create a frame in which to put your new clock. The parameter "Clock as an
Application" is placed in the title bar of Frame. Indicating that the program is being run as an
application is good practice; this indication helps eliminate confusion on the part of the user. If
you don’t want to set the title in the Constructor for some reason, you can create an untitled
Frame and change the title later, using setTitle(String), if you prefer.

Clock myApp = new Clock();

The next line indicates that you want to create a new instance of the class Clock. A perfectly
legitimate question at this point is, why not use this? After all, this is an instantiation of the
class Clock already, right? The primary reason to create a new instance of Clock is to avoid
rewriting any of the applet methods to make them static. Just as it is not legitimate to change
the variable inApplet if it is nonstatic, it is not legitimate to try to access a nonstatic method. It
is, however, legitimate to access the nonstatic methods of a variable. Bearing that in mind,
create a new instance variable of the class Clock called myApp and add it to the frame.

myFrame.add ("Center",myApp);

The next line adds the new Clock variable to the frame. This is important because before you
attach the Clock to something, it can’t be displayed.

See “Layout Managers,” p. 406

Next, you add the lines myFrame.resetSize (100,130) and myFrame.show() to the Clock.java
file. myFrame.setSize(100,130) tells the application to make the frame’s size 100x100, but you
also need to account for a 30-pixel title bar that the frame has vertically. Normally, when you
convert an applet to an application, you know the ideal size for your applet. When in doubt, go
ahead and copy the WIDTH and HEIGHT values from your most commonly used HTML file. On
those rare occasions when you want the size to be adjustable, use the techniques covered later
in this chapter when you learn how to account for parameter data, to read in the size from the
command line.

myFrame.resize(100,100);
myFrame.show();

CAUTION

Technically, when the applet has been added to the frame, you could go through the normal applet methods
init() and start() right there. Contrary to popular belief, however, this procedure is not a good idea. If
your applet uses double buffering or requires any other image that is built with the createImage (x,y)
method, the procedure will not work until the frame has been shown. The drawback is that you will see a
flicker as the frame comes up with nothing in it. Keep this fact in the back of your mind, even if you're not
using createImage(x,y) now because this minor fact is not documented anywhere and has caused this
author hours of headaches because it's easy to forget.

Converting an Applet to an Application

Finally, you add the lines myApp.init () and myApp.start() to your function. Because your
application is not running in the browser, the init () and start () methods are not called auto-
matically, as they would be if the program were running as an applet. As a result, you must
simulate the effect by calling the methods explicitly. It should be pointed out that if your appli-
cation does not appear, you may want to add the line myApp.repaint () to the end of the main ()
method.

myApp.init();

myApp.start();

Before you save your new copy of Clock. java, you need to make one more change. Go to the
top of the file in which you are performing your imports and make sure that you are importing
java.awt.Frame. Then go ahead and save the file.

import java.awt.Frame

Accounting for Other Applet Peculiarities

The most difficult problem to deal with when you convert applets to applications has to do with
duplicating the effect of a parameter tag and other applet-specific tasks. You can handle this
situation in many ways; the following sections discuss two of the most common solutions.

Defaulting The first solution is defaulting. In defaulting, the idea is to provide the application
with all the information that it would be getting anyway from the HTML file. In a sense, this
solution is exactly what you did when you told the Frame what size you wanted to use with
resize(x,y). To do this for the <param> items requires rewriting the getParameter method.

Clock has several parameters it receives in <param> tags. Take a look at the number of
<param> tags from the Clock’s HTML file in Listing 17.8.

Listing 17.8 Clock.html

<TITLE>Clock</TITLE>

<H1>Clock </H1>

<hr>

<applet code="Clock.class" width=100 height=100>
<param name=hourCol value=255,00,00 >
<param name=minuteCol value=00,255,00>
<param name=secondCol value=00,00,255>
<param name=borderCol value=255,255,255>
<param name=faceCol value=125,125,125>
</applet>

<hr>

To mimic these effects in your new application, add the method shown in Listing 17.9 to your
current Clock. java file.

301

Part

Ch

302 Chapter 17 Applets Versus Applications

Listing 17.9 getParameter() Method for Clock.java

public String getParameter (String name){
String ST;
if (inApplet)
return super.getParameter(name);
//If you are not in an applet you default all of the values.

if (name == "hourCol")
return "255,00,00"

if (name == "minuteCol")
return "00,255,00";

if (name == "secondCol")
return "00,00,255";

if (name == "borderCol")
return "255,255,255";

if (name == "faceCol")

return "125,125,125";
return null;

CAUTION

If you are going to have several parameters, you should use a switch statement. A switch requires an
integer, however, which you can get by using the hashCode () of the string. Unfortunately, because multiple
strings can have the same hashCode (), you must then make sure you really have the correct string. This
makes the solution much more involved. Still, if you are working with several <param> tags, consider using
this alternative method.

This method replaces the duties normally performed by the java.applet.Applet class with
your own default values.

Notice that the first thing you do is check to see whether you are in an applet (if (inApplet)).
If so, you use the getParameter(String) method from your super class
(java.applet.Applet). Doing this maintains your normal pattern of operation when you go
back and use Clock as an applet again. The idea is to have one program that can run as both an
application and an applet.

N O T E A better way to handle the getParameter () is to implement appletStub. However,

without a complete explanation of interfaces, explaining how to do this would be purely
academic. If you plan to implement several aspects of java.applet.Applet, refer to Chapter 12,
“Interfaces,” for more information.

Recompiling the Application
The next step is recompiling the application. Recompiling an application is no different from
compiling an applet. In this case, type the following:

javac Clock.java

Converting an Applet to an Application 303

Testing the Application

Now you can test your application (see Figure 17.2). To do so, you need to invoke the Java
Virtual Machine, followed by the class name, as follows:

java Clock

FIG. 17.2
The Clock running as
an application

@ Be sure to maintain proper capitalization at all times.

Second Way to Add <param> Information Defaulting is a quick and easy way to get the
extraneous information into an application that you normally leave in an HTML file. Odds are,
however, that if you took the time to include a parameter tag in the first place, you don’t want
the values to be fixed. After all, you could have hard-coded the values to start with, and then
you never would have had this problem in the first place. How do you get information into your
application from the outside world? The easiest answer is to get it from the command line.

As you recall, the main () method takes an array of strings as an argument. You can use this
array to deliver information to an application at runtime. This section addresses one of the
simplest cases: sending the WIDTH and HEIGHT information to the application from the command
line. Although this section doesn’t also explain how to insert the information for a <param>,
hopefully you can deduce from this example how to do it for <param> tags on your own.

To use the information from the command line, you need to make a few modifications in the
main () method. Listing 17.10 shows the new version.

Listing 17.10 New main() Method

public static void main(String args[]){
/*set a boolean flag to show if you are in an applet or not */
inApplet=false;

/*Create a Frame to place your application in. */

/*You can change the string value to show your desired label*/
/*for the frame */

Frame myFrame = new Frame ("Clock as an Application");

/*Create a clock instance. */
Clock myApp = new Clock();

continues

Part

Ch

304

Chapter 17 Applets Versus Applications

Listing 17.10 Continued

/*Add the current application to the Frame */
myFrame.add ("Center",myApp);

/*Resize the Frame to the desired size, and make it visible */
/*Resize the Frame to the desired size, and make it visible */
if (args.length>=2)
/*resize the Frame based on command line inputs */
myFrame.setSize(Integer.parseInt(args[0]),Integer.parselnt(args[1]));
else
myFrame.setSize(100,130);
myFrame.show() ;

/*Run the methods the browser normally would */
myApp.init();
myApp.start();

Make the necessary changes and recompile the program. Now you can run the Clock at any
size you want. Try the following:

java Clock 100 100

At first glance, your new main () method is almost identical to the one in Listing 17.3. The main
difference is a group of six lines:

/*Resize the Frame to the desired size, and make it visible */
if (argv.length>=2)
/*resize the Frame based on command line inputs */
myFrame.setSize(Integer.parseInt(args[0]),Integer.parselnt(args[1]));
else
myFrame.setSize(100,130);

The first line of actual code checks to see whether the user put enough information in the
command line. This check prevents null pointer exceptions caused by accessing information
that isn’t really there. Besides, you probably want the user to be able to run Clock at its normal
size without specifying the actual size.

The next line is the one that does most of the work. It should be fairly obvious to you what is
happening in this code, but you should know why you need to use Integer.parseInt on the
array values. At runtime, the Java machine isn’t aware of what is coming in from the command
line; it just sees a string. To convert a string to an int, you need to use the class Integer's
parseInt(String) method. (Note, use the Integer class, not int. If you’re confused, refer to
Chapter 7, “Data Types and Other Tokens.”)

CAUTION

To be complete, the parseInt method should be surrounded by a try{} catch{} block, in case
something other than an integer is typed in the command line.

Converting an Applet to an Application 305

Making the Window Close Work

By now, you probably have noticed that to close your new Clock application you have to press
Ctrl+C or in some other way cause the operating system to close your application. To allow the
user to close the window the normal way, you need to catch the windowClosing() event that is
generated. You can do this by creating a window listener and performing an exit in the
windowClosing () method.

The windowListener interface requires you to implement several methods, so it’s not

always the most convenient thing to do. Fortunately, the java.awt.event package includes

several convenience adapters that take care of some of the work for you. In the case of

WindowListener, the class WindowAdapter implements the interface and provides default

behavior for each of the methods. So, now you can extend the WindowAdapter class and just

override whatever method you are interested in. Part

In the case of the Clock program, now you can create an anonymous class and add a

WindowAdapter to the myFrame variable: s

myFrame.addWindowListener (new WindowAdapter(){
public void windowClosing(WindowEvent event){
System.exit(0);
}
B

Finally, the complete Clock applet should look like Listing 17.11.

Listing 17.11 The Final Clock Application with Everything in Place
/*

*

* Clock

*

*/

import java.applet.Applet;
import java.awt.*;

import java.awt.event.*;
import java.util.*;

public class Clock extends Applet implements Runnable{
Thread thisThread;

Color faceColor ,borderColor,minuteColor,hourColor,secondColor;

public void init(){
//read in the colors for each of the hands and for the face/border
faceColor = readColor (getParameter("faceCol"));
borderColor = readColor (getParameter("borderCol"));
minuteColor = readColor (getParameter("minuteCol"));
hourColor = readColor(getParameter("hourCol"));
secondColor = readColor(getParameter("secondCol"));

continues

306 Chapter 17 Applets Versus Applications

Listing 17.11 Continued

// This method creates a color based on a string.
// The string is assumed to be "red,green,blue" where each
// of the colors is represented by it's integer equivalent.
public Color readColor(String aColor) {
if (aColor == null) {
return Color.black;

}
int r;
int g;
int b;
//break the string apart into each number
StringTokenizer st = new StringTokenizer(aColor, ",");
try {

r = Integer.valueOf(st.nextToken()).intValue();

g = Integer.valueOf(st.nextToken()).intValue();

5

b = Integer.valueOf(st.nextToken()).intValue()
return new Color(r,g,b);
}
catch (Exception e) {
System.out.println("An exception occurred trying to
0 convert a parameter to a color:"+e);
return Color.black;

i
}

public void start(){
thisThread = new Thread(this);
thisThread.start();

}

public void run(){
while(true){
repaint();
try{
thisThread.sleep(1000);
}catch (Exception e){}
}
}

public void update(Graphics g){
paint(g);

public void paint(Graphics g){
//fill clock face
g.setColor(faceColor);
g.fillOval(0,0,100,100);
g.setColor(borderColor);
g.drawOval(0,0,100,100);

Converting an Applet to an Application 307

//get the current time
Calendar d = Calendar.getInstance();
//draw the minute hand
g.setColor(minuteColor);
double angle = (((double) (90 - d.get(Calendar.MINUTE)))/60)*2 * Math.PI;
g.drawLine(50,50,50+(int) (Math.sin(angle)*50),50 +
0 (int) (Math.cos(angle)*50));
//draw the hour hand
g.setColor(hourColor);
angle = ((((double)18 - d.get(Calendar.HOUR_OF_DAY)+
0 (double)d.get(Calendar.MINUTE)/60))/12)*2 * Math.PI;
g.drawLine(50,50,50+(int) (Math.sin(angle)*40),50 +
0 (int) (Math.cos(angle)*40));
//draw the second hand
g.setColor(secondColor);
angle = (((double) (90 - d.get(Calendar.SECOND)))/60)*2 * Math.PI;
g.drawLine(50,50,50+(int) (Math.sin(angle)*50),50 +
0 (int) (Math.cos(angle)*50));
}

Part

Ch

static boolean inApplet =true;

public static void main(String args[]){
/*set a boolean flag to show if you are in an applet or not */
inApplet=false;

/*Create a Frame to place your application in. */
/*You can change the string value to show your desired label*/
/*for the frame */
Frame myFrame = new Frame ("Clock as an Application");
myFrame.addWindowListener (new WindowAdapter(){
public void windowClosing(WindowEvent event){
System.exit(0);
}
B

/*Create a clock instance. */
Clock myApp = new Clock();

/*Add the current application to the Frame */
myFrame.add ("Center",myApp);

/*Resize the Frame to the desired size, and make it visible */
/*Resize the Frame to the desired size, and make it visible */
if (args.length>=2)
/*resize the Frame based on command line inputs */
myFrame.setSize(Integer.parselnt(args[@]),Integer.parselnt(args[1]));
else
myFrame.setSize(100,130);
myFrame.show();

continues

308

Chapter 17 Applets Versus Applications

Listing 17.11 Continued

/*Run the methods the browser normally would */
myApp.init();
myApp.start();

}

public String getParameter (String name){
String ST;
if (inApplet)
return super.getParameter(name);
//If you are not in an applet you default all of the values.

if (name == "hourCol")
return "255,00,00" ;

if (name == "minuteCol")
return "00,255,00";

if (name == "secondCol")
return "00,00,255";

if (name == "borderCol")
return "0,0,0";

if (name == "faceCol")

return "125,125,125";
return null;

Now, recompile and run Clock one last time. If you click the Window Close icon, Clock exits
like a normal program.

Checking All the Applet Methods

When you convert your own applets to applications, you need to perform one final step. You
need to search for all methods in java.applet.Applet that are valid only with respect to a
browser. Most commonly, you need to search for the methods described in the following sec-
tions.

getAppletContext() Fortunately, most of the things you will do with getAppletContext ()
you can ignore with applications. showDocument (), for example, has no meaning without a
browser. Attempting to execute getAppletContext().showDocument () produces an error on
System.out, but the application shouldn’t crash because of it.

Similarly, showStatus () usually is not relevant with applications. In applets that use the applet
context to display information, the easiest thing to do usually is to surround the specific code
with an if (inApplet){} block and ignore it if you're not in an applet.

What do you do if you really have to see that information? You can select the top and bottom 17
lines of the Frame and write into the paint method a section that displays the applet-context
information there. Why do you select the top and the bottom? Due to a strange quirk between
the UNIX version of Frame peer and the Windows 95 version of Frame peer, each system chops

Converting an Applet to an Application 309

out a 17-line area in which it can display its Warning applet message. On Windows machines,
this area is the top 17 lines; on UNIX machines, it is the bottom 17 lines.

If you're not convinced, go to the following URL:
http://www.magnastar.com/ultra_nav

UltraNav is a program by MagnaStar Inc. which aids in the navigation of Web pages. Notice the
yellow “information” line. Its location moves based on your platform.

If you are on a Windows machine, you should see an information bar at the top of the Frame. If
you’re on a UNIX machine, that bar is at the bottom. The bar is being drawn at both the top and
the bottom; you are just seeing only one.

getCodeBase() and getDocumentBase() getCodeBase()and getDocumentBase () are a bit

trickier to deal with. Both of these methods return an URL, and you don’t want to limit yourself Part
to having the user connected to the Internet. After all, if the user can access your Web site, you
probably have him or her downloading the applet directly from you, so you would have no need

to turn the applet into an application. o

You will usually deal with getCodeBase () and getDocumentBase () on a case-by-case basis. If
you can get away without the information, ignore it. If you really need the information from
getCodeBase () or getDocumentBase (), you may have to give it a hard-coded URL or one that
you read from the command line.

Paying Attention to Your Constructor Frequently, when converting applets, you will find
yourself creating a Constructor for your class other than the null Constructor. Creating a
custom Constructor is a perfectly desirable thing to do to pass information from the command
line or other information. If you do this, however, make sure you add the null Constructor
back in manually (the null Constructor is the Constructor that does not take any parameters
on input). If you create another Constructor, Java doesn’t automatically generate a null one for
you. You won't even notice that you need one until you are working on a project and another
class needs to create an instance of your applet, for a thread or something. When this situation
occurs, the class attempts to access the null Constructor. Now, even though you didn’t actually
delete the null Constructor from the class, it is no longer there. The error message that you
get will look something like this:

java.lang.NoSuchMethodError

at sun.applet.AppletPanel.run(AppletPanel.java:170)
at java.lang.Thread(Thread.java)

Notice that nothing in the error message tells you anything about your classes. The error
doesn’t even look like one that involves your class; it looks like a bug in AppletPanel. If you
encounter this situation, the first thing to do is delete *.class and recompile the whole pro-
gram. Then the compiler will be able to catch the missing Constructor call.

createlmage If you are using createImage, and the Image variable is being returned as null
when you convert your applet to an application, make sure you have made the Frame visible
first. See the caution under “Changing the Applet Code to an Application,” earlier in this
chapter.

310 Chapter 17 Applets Versus Applications

Packaging Your Applications in Zip Format

Now that you have converted your applets to applications, you can send them to your clients.
The best way to deliver the applications is in a single JAR file. To package the file as a JAR, just
follow the directions in Chapter 16, “JAR Archive Files.” Once you have the JAR file, you just
need to add it to the classpath. Then you will be able to run the program just as if all the classes
had been spread about the directory.

Converting an Application to an Applet

Converting an application to an applet is on one side much less complicated than converting an
applet and on another almost impossible. The easy part of converting an application to an
applet is getting the basic functionality of the application running. To do this, you really only
have one design decision. The question at hand is this: Do you want to start and stop your
application when the person leaves your Web page, or do you want to start it once and leave it
at that?

The Simplest Conversion

Assuming that you want to start the application once, all you need to do is extend
java.applet.Applet and call the static main method in the init () method:
public void init(){

main(null);

}

N O T E What do you do if you are already extending another class? Well, unfortunately there’s no
good answer to this question unless you are extending Panel, Container, or
Component. In the case of those three classes, just extend Applet instead (that is, change extends
xxxx to extends Applet). Polymorphism will leave your application virtually unchanged. If you're not so
lucky, however, you will need to find another way to be able to extend Applet.The two more common

classes which are extended may have fairly easy solutions depending on your situation.

Thread—Change your applet to implement Runnable. If you need access to Thread methods, you
will need to keep an instance variable for your running Thread.

Frame—Depending on what you are doing with the Frame, you may just be able to extend Applet,
but odds are you will need to create an instance Frame and add the Applet to it:

Frame fr = new Frame();
fr.add(this);

All Frame calls will then need to be directed at the fr variable.

Converting an Application to an Applet 311

Handling Command-Line Parameters

Now, of course, if you accept command-line parameters, you can set up <PARAM> tags to account
for this and pass them into an array which you would then deliver to the application as follows:

public void init(){
String args[] = new String[2];
args[1] = getParameter("parami");
args[2]= getParameter("param2");
main(args);

}

Maintaining a Single Instance of the Application

If, instead of starting the application once and letting it go on infinitely, you want to start and
stop your application as the user enters and exits the Web site, you have got some things to
think about. The easy solution is to create a new instance of the application each time in the
start () method by changing the method to start () rather than init (). Inthe stop()
method, you would perform the exiting procedures you normally have in place for your
application.

On the other hand, if you want to leave the instance of the application up, but you just want to
put it to sleep, you will have to do some extra work. How you do this depends entirely on your
program. If your application is in a Frame (), however, you may just be able to hide and show
the Frame as in the next instance:

public void init(){
String args[] = new String[2];
args[1] = getParameter("parami");
args[2]= getParameter("param2");
main(args);

}

public void start(){
myApp . show() ;
}

public void stop(){
myApp.hide();

Note that for this to work, you will need to keep an instance method of myApp which you gener-
ate in the main () method.

The More Difficult Problems for Application-to-Applet Conversion

There is, however, a very sticky problem when converting applications to applets that is not so
easily dealt with: replacing security-protected methods in applets. Unfortunately, for some
problems there is just no solution. System.exec (), for example, cannot be called from an
applet.

Part

Ch

312

Chapter 17 Applets Versus Applications

The most common problem, however, is accessing files. Unfortunately, there is no real way to
completely replace access to files—especially if you need to write to the file as well as read
from it. A possible replacement does exist for you, however, if all you need to do is read from
the file: the URL class. You see the following two code fragments produce InputStreams (the is
variable) which can both read from a file.

try{
FileInputStream fs = new FileInputStream("myFile.txt");

InputStream is = new InputStream (fs);
}catch (°

try{
URL us = new URL("http:"//www.magnastar.com/myFile.txt");

InputStream is = us.openStream();
} catch { ~

One difference here is that the myFile.txt file is located in a different location. In the first
case, it is on the local file system; in the latter, it is on a Web server. For configuration files,
however, this may be okay.

If you need to write to a file too, you're stuck. Either you can sign the applet and restrict your-
self to 1.1 browsers with support for local files (at the time of this writing only HotJava does),
or you can write a client/server application, with the server side storing the information to a
file. o

CHAPTER

Managing Applications

|n this chapter

Installing Applications 314
Maintaining Multiple Applications on the Same System 321

314

Chapter 18 Managing Applications

Installing Applications

Java applications are a very powerful way to deliver your Java programs. Before you can use
Java applications, however, you have to know how to install them. This chapter discusses how
to install and maintain applications. The chapter also provides directions for turning your
applets into applications.

Java applications come in many forms, but this chapter discusses the two most common: appli-
cations that come packaged as a series of .class files and applications that come as a single .zip
file.

CAUTION

When you install someone else’s Java applications, you are giving up the security protection that you are
guaranteed with an applet. Giving up this security is not necessarily a bad thing; in fact, you may need to
violate it. Just be aware that installing random Java applications can expose you to all the problems you

encounter with traditional software schemes, such as viruses and other malicious software.

Installing Applications from .class Files

Installing applications that come as a set of .class files is a bit less entangling than installing
applications for .zip files. In time, most applications will come with their own installation pro-
grams, but for now you must perform the installation manually. The following sections explain
how to install the Clock application, which is on the CD-ROM that comes with this book, that
you worked with in the previous chapter.

Create a Directory for the Application First, you need to designate a directory in which to
place your Clock. This directory need not be associated with the directory where you put your
Java JDK; however, having a deployment plan for your applications is important. This plan can
be the same one you use for installing more traditional programs, such as Netscape, or some-
thing unique to your Java applications.

CAUTION

Keeping backup copies of applications you value is important, just like with any other program or data that
you value. Don’t expect applications to become corrupted, but don’t ignore that possibility either.

Copy the Files After you create the directory in which you want to place the application, copy
all the .class files to it. You should make sure you maintain any directory structure that has
already been set up for the application. If you have subdirectories for packages, make sure you
keep the classes in them.

Installing Applications

N O T E To copy an entire subdirectory on a Windows machine from a DOS prompt, use the
following command:

xcopy c:\original\directory*.class c:\destination\directory /s
You can also drag-and-drop the whole directory structure within the Windows Explorer system.

On UNIX machines, the command is
cp -r /original/directory /destination/directory

CAUTION

If you are deploying an application you have written and you are still updating the program, don’t make your
working copy the same one that you have users accessing. If you happen to be compiling your application at
the same time that a user tries to start it, unexpected and undesirable effects may occur.

Make Sure That Everything Works Now make sure that everything is running the way it
should. Go to the directory in which you placed the Clock application and type java Clock. If
everything is going as planned, a clock window should appear onscreen, as shown in Figure
18.1. If not, something has gone wrong. Make sure that you followed all the procedures cor-
rectly. You should also make sure that you have the java executable in your path. If you have
been following through the rest of the book and you have installed the Java Development Kit,
the java executable should already be in your classpath; if not, refer to Chapter 3, “Installing
the JDK and Getting Started,” for information on installing the JDK.

FIG. 18.1 7| clock as an Application|
The Clock application
as it appears under

Finishing the Installation

After you copy all the .class files to the correct directory, the next task is to create a script or
batch file that you will use to run the application.

You can automate this process so your users don’t always have to type java Clock. Your users
will be much happier if they can just type Clock to invoke the Clock program, without having

to also type java. Making this possible, however, takes you in a different direction, depending
on your platform. Ideally, you will be able to follow the same path you would use for UNIX and
Windows 95/NT.

Finishing Installing Applications for UNIX

In explaining how to install an application under UNIX, this section covers specifically how to
do this under Solaris 2.4 using Korn shell. Your implementation may differ slightly, based on
your particular operating system and shell.

315

Part

Ch

316

Chapter 18 Managing Applications

Create a Wrapper Script Automating the usage of a Java application under UNIX is done by
creating a wrapper script. The wrapper script is essentially a standard script file that “wraps” all
the commands for a Java application together. The first task is creating the script. You can
create it with vi, nedit, or your favorite text editor. Listing 18.1 shows an example script for
Clock. Note that there are several variables you may need to change for your particular installa-
tion.

Listing 18.1 Clock

#Add the applications directory to the CLASSPATH

#set to the directory you have placed the application

#Note, I insert the application directory first to avoid
#having classes from other applications getting called first

CLASSPATH=/ns-home/docs/que/Clock/: $CLASSPATH

#Set the location in which you hold java.

#This directory is probably the same as below

#If you have java in your global path, this line is
#not really necessary

Java_Home=/optl/java/bin/java

#Specify the name of the application.
#Important: Remember this is the name of the class, not the
#file

App=Clock

#Now run the actual program.
#If you have any additional parameters which you need to
#pass to the application, you can add them here.

$Java_Home $App

Test the Script Copy the text from Listing 18.1 to a file called Clock and make sure that the
script is functioning correctly. To test it, simply type the name of the wrapper script, as follows:

Clock &

Your application should start and look something like Figure 18.2; if it doesn’t, make sure that
you made the script executable. You can make the script executable by typing the following:

chmod a+x Clock

Don’t do this if you don’t want everyone to execute your script. If that is the case, type chmod
u+x Clock, or check with your system administrator to determine the proper parameters to
use with chmod.

Copy the Script to a Common Location It is probably a good idea to place your new wrapper
script in the /usr/bin directory so that anyone who has access to the system can run the new
script.

FIG. 18.2
Testing the Clock
application.

Installing Applications

i} term

hone.nagnastar. con: /opt1/ns-hone/docs/que/Closk> Clock t

e

hene, nagnastar .cons/optl/ns-home/docs/que/Clock> Warning;
Cannot allocate colormap entry for default backaround

Finishing Installing an Application for Windows

This section discusses how to install applications under Windows 95. Aside from a few particu-
lars, the procedures are the same under Windows NT.

You can install an application under Windows in two ways: by creating a batch file or by using
the .pif file.

Creating a Wrapper Batch File To install the application with a batch file, use your favorite
editor. You can use the Edit command supplied with DOS, Notepad under Windows, or any
other text editor. Create a batch file called Clock.bat that contains the lines shown in Listing

18.2.

317

Part

@ If your application does not use the Windows environment, or if you need to be able to see the output
on System.out, use java instead of javaw.

Listing 18.2 Clock.bat

rem
rem
rem
rem

set

rem
rem

set

rem
rem

add the location where java.exe is located. If it
is already in your path don't add this line.
change c:\java\bin to the directory you have
installed for the JDK - see chapter 3

PATH=%PATH%;c:\java\bin

Set this line to be the directory where your new
application is located.

CLASSPATH = c:\appdir\ ;%CLASSPATH%

Run the actual application, change the applClass to